JPS5955310A - Regenerating method of permselective membrane - Google Patents

Regenerating method of permselective membrane

Info

Publication number
JPS5955310A
JPS5955310A JP16739882A JP16739882A JPS5955310A JP S5955310 A JPS5955310 A JP S5955310A JP 16739882 A JP16739882 A JP 16739882A JP 16739882 A JP16739882 A JP 16739882A JP S5955310 A JPS5955310 A JP S5955310A
Authority
JP
Japan
Prior art keywords
membrane
rate
day
aqueous solution
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16739882A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Kamiyama
神山 義康
Keisuke Nakagome
中込 敬祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP16739882A priority Critical patent/JPS5955310A/en
Publication of JPS5955310A publication Critical patent/JPS5955310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To restore easily the decreased performance of a permeable membrane by treating an org. material having a carboxylic group deposited strongly on a membrane surface with a neutral aq. soln. of alkali metals and/or alkaline earth metals. CONSTITUTION:Ethylenediamine modified polyepichlorohydrin and isophthaloyl chloride are crosslinked on a polysulfone ultrafilter membrane, whereby a flat film-like composite film is obtd. When such membrane is mounted in a flow type cell and the process liquid extract of a medical plant consisting essentially of org. materials having carboxylic groups is supplied to the cell continuously for 199hr under 40kg/cm<2> at an ordinary temp., the rate of permeation decreases from initial 0.67m<3>/m<2>.day to 0.38m<3>/m<2>.day. Thereupon, when a 2wt% aq. soln. of magnesium sulfate is circlated and supplied to the cell for one hour under the conditions of 30 deg.C and 5kg/cm<2> pressure, the rate of permeation is restored up to 97% of the initial rate.

Description

【発明の詳細な説明】 本発明は選択性透過膜の再生方法に関し、詳しくは、カ
ルボキシル基を有する有機物質が膜面に沈積して、膜性
能、特に透水量が低下した選択性透過膜を洗浄して、上
記有機物質を除去し、その膜性能を回復させる選択性透
過膜の再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a selectively permeable membrane, and more specifically, the present invention relates to a method for regenerating a selectively permeable membrane. The present invention relates to a method for regenerating a selectively permeable membrane by washing it to remove the above-mentioned organic substances and restoring its membrane performance.

近年、産業排水の処理、食品、医薬、化学品等の製造に
おける分離、濃縮のプロセス等において、逆浸透膜や限
外濾過膜のような選択性透過膜を用いる膜処理が実用化
されるに至っている。しかし、このような膜処理におい
ては、処理原液中の成分、特に有機物質が次第に膜面に
沈着し、膜を汚染するので、膜性能、特に透水量の低下
が避けられない。
In recent years, membrane treatment using selective permeable membranes such as reverse osmosis membranes and ultrafiltration membranes has been put into practical use in the treatment of industrial wastewater, separation and concentration processes in the production of foods, medicines, chemicals, etc. It has been reached. However, in such membrane treatment, components in the treatment stock solution, especially organic substances, gradually deposit on the membrane surface and contaminate the membrane, so that a decrease in membrane performance, especially water permeation rate, is unavoidable.

そこで、従来、このよつに有機物質が沈積した膜面を洗
浄し、膜性能を回復させる方法が種々提案されている。
Therefore, various methods have been proposed in the past for cleaning the membrane surface on which organic substances have been deposited and restoring the membrane performance.

例えば、市販の合成洗剤に代表されるアニオン性及びノ
ニオン性界面活性剤水溶液を用いる方法、プロテアーゼ
やα−アミラーゼ等の酵素水溶液を用いる方法、次亜塩
素酸、過酸化水素等の酸化剤を用いる方法等が提案され
ているが、これらの方法は、沈積物質によっては、膜面
からの除去効果が殆どなく、或いは膜性能の回復に極め
て長時間を要し、更には、膜を変質劣化させる等の問題
もある。特に、カルボキシル基を有する有機物質は、そ
のカルボキシル基と膜面との相互作用によって特に強く
膜面に沈着されるため 。
For example, methods using aqueous solutions of anionic and nonionic surfactants such as commercially available synthetic detergents, methods using aqueous solutions of enzymes such as protease and α-amylase, and methods using oxidizing agents such as hypochlorous acid and hydrogen peroxide. However, depending on the deposited substances, these methods have almost no removal effect from the membrane surface, or it takes an extremely long time to recover membrane performance, and furthermore, these methods may alter and deteriorate the membrane. There are also other problems. In particular, organic substances having carboxyl groups are particularly strongly deposited on the membrane surface due to the interaction between the carboxyl group and the membrane surface.

であるらしく、従来の洗浄方法によっては、これを効果
的に除去することは困難である。
Therefore, it is difficult to effectively remove it using conventional cleaning methods.

本発明者らは上記した問題を解決するために鋭意研究し
た結果、カルボキシル基を有する有機物質が膜面に沈積
して、膜性能の低下した選択性透過膜を中性の無機塩水
溶液にて洗浄することにより、短時間で上記有機物質が
除去されて、膜性能が容易に回復することを見出して、
本発明に至ったものである。
The present inventors conducted extensive research to solve the above-mentioned problems, and found that a selectively permeable membrane, in which organic substances with carboxyl groups were deposited on the membrane surface and the membrane performance had deteriorated, was treated with a neutral inorganic salt aqueous solution. They discovered that by cleaning, the organic substances mentioned above can be removed in a short time and the membrane performance can be easily restored.
This led to the present invention.

本発明による選択性透過膜の再生方法は、カルボキシル
基を有する有機物質が膜面に沈積した選択性透過膜を、
アルカリ金属塩及び/又はアルカリ土類金属塩を含有す
るpH6〜8の水溶液で処理することを特徴とする。
The method for regenerating a selectively permeable membrane according to the present invention is to recover a selectively permeable membrane in which an organic substance having a carboxyl group has been deposited on the membrane surface.
It is characterized by treatment with an aqueous solution containing an alkali metal salt and/or an alkaline earth metal salt and having a pH of 6 to 8.

本発明において、選択性透過膜とは、代表的には、逆浸
透膜や限外濾過膜のように、溶液中の特定の溶質成分を
選択的に透過させない膜をいい、既に種々のものが知ら
れている。具体例として、例えば、酢酸セルロース等の
セルロースエステル、ポリアミド、ポリイミド、ポリヘ
ンツィミダゾロン、ポリスルホン、ポリエーテルスルホ
ン、スルホン化ポリスルボン、ポリオレフィン、ポリ塩
化ビニル、ポリアクリロニトリル等の重合体からなる異
方性膜や、また、ポリスルホン限外濾過膜上にポリアミ
ド、ポリ尿素、ポリフラン等からなる超薄膜を直接形成
させた複合膜を挙げることができる。
In the present invention, a selectively permeable membrane typically refers to a membrane that does not selectively permeate a specific solute component in a solution, such as a reverse osmosis membrane or an ultrafiltration membrane, and various types of membranes are already available. Are known. Specific examples include anisotropic polymers such as cellulose esters such as cellulose acetate, polyamides, polyimides, polyhenzimidazolone, polysulfones, polyethersulfones, sulfonated polysulfones, polyolefins, polyvinyl chloride, and polyacrylonitrile. Examples include membranes and composite membranes in which an ultra-thin membrane made of polyamide, polyurea, polyfuran, etc. is directly formed on a polysulfone ultrafiltration membrane.

本発明において、カルボキシル基を含有する有機物質は
、単一の物質に限定されず、また、その分子量も広範囲
にわたってよく、例えば、分子量敵方の高分子量物質か
ら数百の低分子量化合物まで含まれる。かかるカルボキ
シル基を有する有機物質で膜面が汚染されたことは、例
えば、赤外吸収スペクトル等の表面分析手段によって知
ることができる。カルボキシル基を有する有機物質の代
表例としてカルボン酸を挙げることができるが、本発明
において、有機物質は、例えば、アミノ酸のように、カ
ルボキシル基以外にアミノ基等を有していてもよい。こ
のような有機物質は、動植物成分等の天然成分や、合成
物としての食品、医薬、化学品に多く含まれ、また、そ
の製造プロセスから多く排出される。例えば、薬草抽出
プロセス、発酵プロセス等は、カルボキシル基を有する
有機物質をプロセス水や、その排水中に多量に含有する
In the present invention, the organic substance containing a carboxyl group is not limited to a single substance, and its molecular weight may range over a wide range, for example, from high molecular weight substances on the contrary to hundreds of low molecular weight compounds. . The fact that the membrane surface is contaminated with such an organic substance having a carboxyl group can be determined by, for example, surface analysis means such as infrared absorption spectroscopy. A typical example of an organic substance having a carboxyl group is a carboxylic acid, but in the present invention, the organic substance may have an amino group or the like in addition to a carboxyl group, such as an amino acid. Such organic substances are contained in large quantities in natural ingredients such as animal and plant ingredients, as well as in synthetic foods, medicines, and chemical products, and are also discharged in large quantities from their manufacturing processes. For example, medicinal herb extraction processes, fermentation processes, etc. contain large amounts of organic substances having carboxyl groups in process water and wastewater.

本発明において用いるアルカリ金属塩及びアルカリ土類
金属塩は、リチウム、ナトリウム、カリウム、カルシウ
ム、マグネシウム等のその水溶液のpl+が6〜8であ
る水溶性中性塩であり、硫酸塩、ハロゲン化水素酸塩、
リン酸塩等の中性塩が好ましく用いられる。ここに、水
溶性とは、常温において水に対して1重量%以上の熔解
性を有することをいう。従って、好ましくは、硫酸塩及
びハロゲン化水素酸塩が用いられる。上記中性塩の好ま
しい具体例として、硫酸ナトリウム、硫酸カリウム、硫
酸マグネシウム等の硫酸塩、塩化リチウム、塩化ナトリ
ウム、塩化カリウム、塩化マグネシウム、塩化カルシウ
ム、臭化ナトリウム等のハロゲン化水素酸塩、リン酸二
水素ナトリウム、リン酸二水素カリウム等のリン酸塩を
挙げることができる。
The alkali metal salts and alkaline earth metal salts used in the present invention are water-soluble neutral salts such as lithium, sodium, potassium, calcium, and magnesium whose aqueous solution has a pl+ of 6 to 8, sulfates, hydrogen halides, etc. acid salt,
Neutral salts such as phosphates are preferably used. Here, water-soluble means having a solubility in water of 1% by weight or more at room temperature. Therefore, preferably sulfates and hydrohalides are used. Preferred specific examples of the neutral salts include sulfates such as sodium sulfate, potassium sulfate, and magnesium sulfate; hydrohalides such as lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, and sodium bromide; Examples include phosphates such as sodium dihydrogen phosphate and potassium dihydrogen phosphate.

これらの無機塩類は、カルボキシル基を有する有機物質
が沈積した選択性透過膜をその水溶液で処理したときに
、膜性能、特に透水量の回復が最大になるように、膜の
素材、構造、沈積有機物質の性状等に応じて、実験的に
選ぶのがよい。一般的には、中性硫酸塩が好適である。
These inorganic salts are used to improve membrane materials, structure, and deposition so that when a selectively permeable membrane on which organic substances with carboxyl groups are deposited is treated with its aqueous solution, membrane performance, especially water permeation, is maximized. It is best to select it experimentally depending on the properties of the organic substance. Generally, neutral sulfates are preferred.

また、上記無機塩類水溶液の濃度は、通常、0.1〜1
0重量%、好ましくは0.5〜5重量%である。
Further, the concentration of the above inorganic salt aqueous solution is usually 0.1 to 1
0% by weight, preferably 0.5-5% by weight.

上記のような無機塩類を含有する水溶液で膜を処理する
には、好ましくはこの水溶液を加圧下に膜面に循環して
供給することにより行なわれる。
The treatment of the membrane with an aqueous solution containing the above-mentioned inorganic salts is preferably carried out by circulating and supplying this aqueous solution to the membrane surface under pressure.

処理温度は特に制限されるものではないが、通常、5〜
80℃、好ましくは20〜50℃あり、且つ、対象であ
る膜の耐熱温度以下に選ばれる。但し、膜の素材によっ
ては、上記範囲を越えて高温で処理することができるの
は勿論である。処理時間は沈積有機物質の性状や、用い
る無機塩の種類、濃度等にもよるが、−・般的には10
分乃至数日間、好ましくは0.5〜5時間でよい。再生
処理の他の方法として、無機塩水溶液中に膜を浸漬静置
する方法、加圧下に水溶液を透過させる方法等を挙げる
ことができる。
Although the treatment temperature is not particularly limited, it is usually 5~
The temperature is 80°C, preferably 20 to 50°C, and is selected to be below the heat resistance temperature of the target film. However, depending on the material of the film, it is of course possible to process at a high temperature exceeding the above range. The treatment time depends on the properties of the deposited organic matter, the type and concentration of the inorganic salt used, etc., but is generally about 10
The time may be from minutes to several days, preferably from 0.5 to 5 hours. Other methods of regeneration treatment include a method in which the membrane is immersed in an aqueous inorganic salt solution and a method in which the membrane is allowed to stand still, a method in which an aqueous solution is permeated under pressure, and the like.

本発明の方法によって処理される膜の形態は?=1ら制
限されず、平板状、管状、スパイラル状、中空糸状等任
意である。また、膜の洗浄再生効果を高めるために、膜
形態に応じて、攪拌1.摩擦、超音波洗浄等の物理的な
洗浄を併用し7てもよい。
What is the morphology of the membrane treated by the method of the present invention? = 1, but is not limited to the shape, and may be in any shape such as a flat plate, a tube, a spiral, a hollow fiber, etc. In addition, in order to enhance the cleaning and regeneration effect of the membrane, stirring 1. Physical cleaning such as friction and ultrasonic cleaning may also be used together.

本発明の方法によれば、カルボキシル基を有する有機物
質が膜面に沈着して、膜性能、特に透水量が低下した選
択性透過膜を、アルカリ金属及び/又はアルカリ土類金
属の中性水溶液で洗浄することにより、1−記有機物質
が特異的に膜面から除去され、かくして、膜はほぼ初期
の性能を回復すると共に、膜の変質、劣化のおそれもな
い。このように無機塩の中性水溶液で膜を処理すること
により、カルボキシル基を有する有機物質が特異的に除
去される理由は必ずしも明らかではないが、そのカルボ
キシル基により膜表面と相互作用している有機物質が、
前記した無機塩水溶液で膜を処理した際に、無機塩の金
属イオンに対してより強く作用し7、その結果、沈積有
機物質が膜面より容易に除去されると考えることができ
る。
According to the method of the present invention, a selectively permeable membrane in which an organic substance having a carboxyl group is deposited on the membrane surface and the membrane performance, particularly the water permeation rate has decreased, is removed from a neutral aqueous solution of an alkali metal and/or alkaline earth metal. By washing with water, the organic substance described in 1- is specifically removed from the membrane surface, and thus the membrane recovers almost its initial performance, and there is no fear of alteration or deterioration of the membrane. Although it is not necessarily clear why organic substances with carboxyl groups are specifically removed by treating the membrane with a neutral aqueous solution of inorganic salts, it is likely that the carboxyl groups interact with the membrane surface. organic substances are
It can be considered that when the membrane is treated with the above-mentioned inorganic salt aqueous solution, the inorganic salt acts more strongly on the metal ions7, and as a result, the deposited organic substances are easily removed from the membrane surface.

以上に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
Although the present invention will be described above with reference to Examples, the present invention is not limited to these Examples in any way.

実施例1 特公昭54−38164号公報に記載されている方法に
従って、ポリスルポン限外濾過膜上でエチレンジアミン
変性ポリエピクロロヒドリンと塩化・イソフタt−1イ
ルとを架橋させて平膜状の選択性複合透過膜を得た。こ
の膜を流通型セルに装着して実験用モジュールとした。
Example 1 According to the method described in Japanese Patent Publication No. 54-38164, ethylenediamine-modified polyepichlorohydrin and isophthalic chloride/t-1yl chloride were crosslinked on a polysulfone ultrafiltration membrane to form a flat membrane. A composite permeable membrane was obtained. This membrane was attached to a flow cell to create an experimental module.

カルボキシル基を有する有機物質が主成分である薬草抽
出プロセス液を常温、40kg/en!の圧力で100
時間連続して、上記膜モジュールに供給したところ、透
水量は初期の0.67r+?/−・日か。
The medicinal herb extraction process liquid, which is mainly composed of organic substances with carboxyl groups, is prepared at room temperature at 40 kg/en! 100 at a pressure of
When water was continuously supplied to the membrane module for hours, the water permeation amount was 0.67r+? /-・Day?

ら0.39信/、(・1]に低下した。It decreased to 0.39 confidence/(・1).

そこで、硫酸マグネシウムの2重量%水溶液を温度30
℃、圧力5 kg / ctAの条件で1時間、上記膜
に循環供給したところ、前記と同し条件において透水量
は0.65 m / m・日に回復したく回復率97%
)。
Therefore, a 2% by weight aqueous solution of magnesium sulfate was added at a temperature of 30%.
When the membrane was circulated for 1 hour at a temperature of 5 kg/ctA and a pressure of 5 kg/ctA, the water permeation rate recovered to 0.65 m/m/day under the same conditions as above, a recovery rate of 97%.
).

実施例2 実施例1において、硫酸マグネジラムの代わりに硫酸ナ
トリウムを用いた以外は、実施例1と全く同様にし2て
、連続運転後の膜を処理したところ、腺の透水量は0.
63信/m・日に回復した(回復率94%)。
Example 2 The membrane after continuous operation was treated in the same manner as in Example 1 except that sodium sulfate was used instead of magnesium sulfate, and the water permeability of the glands was 0.
It recovered to 63 communications/m day (recovery rate 94%).

実施例3 実施例1と同じ膜モジュールにアミノ酸含有製薬プロセ
ス排水を常温、圧力40kg/cn+で100時間連続
して供給したところ、透水量は初期の0゜58 ra 
/ m・日から0.29n?/m・日に低下した。
Example 3 When amino acid-containing pharmaceutical process wastewater was continuously supplied to the same membrane module as in Example 1 at room temperature and pressure of 40 kg/cn+ for 100 hours, the amount of water permeation decreased from the initial 0°58 ra.
/ 0.29n from m day? /m day.

そこで、塩化カルシウムの2重量%水溶液を実施例1と
同じ条件上記膜に循環供給したところ、前記と同し条件
での透水量は0.59m/n(・日に回復した(回復率
100%)。
Therefore, when a 2% by weight aqueous solution of calcium chloride was circulated and supplied to the above membrane under the same conditions as in Example 1, the water permeation rate recovered to 0.59 m/n (day) (recovery rate 100%). ).

実施例4 特開昭57−27102号公+IJに記載されている方
法に従って調製したポリスルボン映」二で、ポリビニル
アルコールとエチレンジアミンとをトリメシン酸クロラ
イドで架橋して、選択性複合透過II央を得ノこ。
Example 4 Polyvinyl alcohol and ethylene diamine were cross-linked with trimesic acid chloride using polysulfone film prepared according to the method described in JP-A-57-27102+IJ to obtain a selective composite permeate film II. child.

実施例1において、TE力20kg/cJで膜モジュー
ルに供給した以外は、実施例1と全く同様にして薬草抽
出プロセス液を膜処理したところ、透水量は初期の1.
7rr?/n(−5から0.4−6 rd / ni 
・日に低下した。
In Example 1, the medicinal herb extraction process liquid was subjected to membrane treatment in exactly the same manner as in Example 1 except that the TE force was supplied to the membrane module at 20 kg/cJ, and the water permeation rate was 1.
7rr? /n(-5 to 0.4-6 rd/ni
・Decreased daily.

この膜を硫酸マグネシウムの2重里%水溶液で実施例1
と同様にして処理したところ、透水量は1.65イ/I
・日に回復した(回復率97%)。
Example 1: This membrane was coated with a 2% aqueous solution of magnesium sulfate.
When treated in the same manner as above, the water permeability was 1.65 I/I.
・He recovered within days (97% recovery rate).

実施例5 実施例4において、硫酸マグネシウムの代わりに塩化ナ
トリウムを用いた以外は、実施例4と全く同様にして膜
を処理したところ、透水量は1.53 n? / n(
・日まで回復したく回復率90%)。
Example 5 In Example 4, the membrane was treated in exactly the same manner as in Example 4, except that sodium chloride was used instead of magnesium sulfate, and the water permeation amount was 1.53 n? /n(
・Recovery rate is 90%.

比較例1 実施例1において、連続運転後の膜にアニオン性界面活
性剤ドデシルヘンゼンスルボン酸ナトリウムの2重量%
水溶液を実施例1と同様にして供給したが、処理後の透
水量は0.42r&/m・日であって、殆ど処理前と変
わらなかった。
Comparative Example 1 In Example 1, 2% by weight of the anionic surfactant sodium dodecylhenzensulfonate was added to the membrane after continuous operation.
An aqueous solution was supplied in the same manner as in Example 1, but the amount of water permeation after treatment was 0.42 r&/m day, which was almost the same as before treatment.

比較例2 実施例4において、硫酸マグネシウム水溶液の代わりに
pH12の水酸化ナトリウム水溶液を用いた以外は、全
〈実施例4と同様にして膜を処理した。処理後の膜は、
透水量は3.50督/ml・日とむしろ初期値を上回っ
たか、除去率は初期の98%から70%へと低下してお
り、膜が劣化を起こしていることが認められた。
Comparative Example 2 A membrane was treated in the same manner as in Example 4, except that a sodium hydroxide aqueous solution having a pH of 12 was used instead of the magnesium sulfate aqueous solution. The membrane after treatment is
The water permeation rate was 3.50 m/ml/day, which was actually higher than the initial value, and the removal rate decreased from the initial 98% to 70%, indicating that the membrane had deteriorated.

66一66-1

Claims (3)

【特許請求の範囲】[Claims] (1)  カルボキシル基を有する有機物質が膜面に沈
積した選択性透過膜を、アルカリ金属塩及び/又はアル
カリ土類金属塩を含有するpl(6〜8の水溶液で処理
することを特徴とする選択性透過膜の再生方法。
(1) A selectively permeable membrane in which an organic substance having a carboxyl group is deposited on the membrane surface is treated with an aqueous solution of PL (6 to 8) containing an alkali metal salt and/or an alkaline earth metal salt. Method for regenerating selectively permeable membranes.
(2)金属塩が硫酸塩及び/又はハロゲン化水素酸塩で
あることを特徴とする特許請求の範囲第1項記載の選択
性透過膜の再生方法。
(2) The method for regenerating a selectively permeable membrane according to claim 1, wherein the metal salt is a sulfate and/or a hydrohalide.
(3)無機塩水溶液が0.1〜10重量%の無機塩を含
有していることを特徴とする特許請求の範囲第1項又は
第2項記載の選択性透過膜の再生方法。
(3) The method for regenerating a selectively permeable membrane according to claim 1 or 2, wherein the inorganic salt aqueous solution contains 0.1 to 10% by weight of inorganic salt.
JP16739882A 1982-09-24 1982-09-24 Regenerating method of permselective membrane Pending JPS5955310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16739882A JPS5955310A (en) 1982-09-24 1982-09-24 Regenerating method of permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16739882A JPS5955310A (en) 1982-09-24 1982-09-24 Regenerating method of permselective membrane

Publications (1)

Publication Number Publication Date
JPS5955310A true JPS5955310A (en) 1984-03-30

Family

ID=15848959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16739882A Pending JPS5955310A (en) 1982-09-24 1982-09-24 Regenerating method of permselective membrane

Country Status (1)

Country Link
JP (1) JPS5955310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238036A (en) * 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology Fermentation ethanol separation purification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238036A (en) * 2004-02-24 2005-09-08 National Institute Of Advanced Industrial & Technology Fermentation ethanol separation purification system

Similar Documents

Publication Publication Date Title
KR100204608B1 (en) Apparatus and method for multistage reverse osmosis separation
EP0253287B1 (en) Combined membrane and sorption process for selective ion removal
EP0117919B1 (en) A membrane treatment method for semipermeable membranes
JP3887072B2 (en) Method for cleaning hollow fiber membrane module and filtration device used in the method
JP2000281638A (en) Separation of urea
JPH11309351A (en) Washing of hollow fiber membrane module
Bellona Nanofiltration–theory and application
JPH05192660A (en) Method for treating outflowing liquid
JP4304573B2 (en) Treatment method of high concentration solution by reverse osmosis membrane
WO2007029291A1 (en) Separation membrane cleaning composition
JPS5955310A (en) Regenerating method of permselective membrane
JP2002095936A (en) Cleaning method for reverse osmosis membrane
JPS5955311A (en) Regenerating method of permselective membrane
JP3353810B2 (en) Reverse osmosis seawater desalination system
JPH05247868A (en) Treatment of waste water in production of pulp
JPH0871593A (en) Water treatment method
JPS58119304A (en) Treatment of osmotic membrane
JP2004097911A (en) Treatment method for highly concentrated solution using reverse osmosis membrane
JPS5814905A (en) Separation apparatus by reverse osmosis
JP2007014829A (en) On-line washing method
JPH09155344A (en) Method for desalination of brackish water and apparatus therefor
JPH11215980A (en) Treatment of liquid containing microbial cell
JP2834265B2 (en) Concentration method of organic valuables by reverse osmosis membrane
JPH0252087A (en) Method for making pure water
JP3371783B2 (en) Cell isolation method