JP2019075484A - 半導体装置、および半導体装置の作製方法 - Google Patents

半導体装置、および半導体装置の作製方法 Download PDF

Info

Publication number
JP2019075484A
JP2019075484A JP2017201507A JP2017201507A JP2019075484A JP 2019075484 A JP2019075484 A JP 2019075484A JP 2017201507 A JP2017201507 A JP 2017201507A JP 2017201507 A JP2017201507 A JP 2017201507A JP 2019075484 A JP2019075484 A JP 2019075484A
Authority
JP
Japan
Prior art keywords
insulator
conductor
oxide
transistor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017201507A
Other languages
English (en)
Inventor
岡崎 豊
Yutaka Okazaki
豊 岡崎
克明 栃林
Katsuaki Tochibayashi
克明 栃林
寛士 藤木
Hiroshi Fujiki
寛士 藤木
亮 徳丸
Ryo Tokumaru
亮 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2017201507A priority Critical patent/JP2019075484A/ja
Publication of JP2019075484A publication Critical patent/JP2019075484A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】高集積化が可能な半導体装置を提供する。【解決手段】トランジスタ200において、酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。一方、酸化物230bにおけるチャネルが形成される領域と、ゲート絶縁体として機能する絶縁体250との界面に、酸素欠損が存在すると、電気特性の変動が生じ、信頼性が悪くなる場合がある。そこで、導電体260の上面に接して、バリア性を有する絶縁体270を設ける。また、導電体260の側面に接して、バリア性を有する絶縁体272を設ける。【選択図】図1

Description

本発明の一態様は、半導体装置、ならびに半導体装置の駆動方法に関する。または、本発明の一態様は、電子機器に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置および電子機器などは、半導体装置を有すると言える場合がある。
半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)等の電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
例えば、酸化物半導体として、酸化亜鉛、又はIn−Ga−Zn系酸化物を活性層とするトランジスタを用いて、表示装置を作製する技術が開示されている(特許文献1及び特許文献2参照)。
さらに近年、酸化物半導体を有するトランジスタを用いて、記憶装置の集積回路を作製する技術が公開されている(特許文献3参照)。また、記憶装置だけでなく、演算装置等も、酸化物半導体を有するトランジスタによって作製されてきている。
特開2007−123861号公報 特開2007−96055号公報 特開2011−119674号公報
本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。本発明の一態様は、信頼性の高い半導体装置を提供することを課題の一つとする。本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。
本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様では、酸化物半導体の周囲の絶縁体から過剰酸素を酸化物半導体に供給することで、酸化物半導体中の酸素欠損の低減を図る。
さらに、酸化物半導体の周囲の他の構造などから、水、水素などの不純物が酸化物半導体に混入することを防ぐ。なお、酸化物半導体に、水素などの不純物が外部から混入することを防ぐため、当該酸化物半導体を覆って、水、水素などの不純物に対してバリア性を有する絶縁体を形成する。
さらに、上記水、水素などの不純物に対してバリア性を有する絶縁体を、酸素を透過させにくいものとする。これによって、酸素が外方拡散するのを防ぎ、酸化物半導体及び周囲の酸化物絶縁体に効果的に酸素を供給する。
このようにして、酸化物半導体及び周囲の他の構造に含まれる、水、水素などの不純物を低減し、且つ酸化物半導体中の酸素欠損の低減を図る。
本発明の一態様は、トランジスタと、第1の絶縁体と、第2の絶縁体と、を有し、トランジスタは、第1の金属酸化物上に、第1の導電体、および第2の導電体を有し、第1の導電体、第2の導電体、第1の金属酸化物上に、第2の金属酸化物を有し、第2の金属酸化物上に第3の絶縁体を有し、第3の絶縁体上に第3の導電体を有し、第3の導電体上に第4の絶縁体を有し、第3の導電体、および第4の絶縁体の側面に接して、サイドウォール形状の第5の絶縁体を有し、第5の絶縁体は、第2の金属酸化物、および第3の絶縁体を介して、第1の導電体、および第2の導電体と重畳する領域を有し、第1の絶縁体は、過剰酸素領域を有し、第2の絶縁体、第4の絶縁体、および第5の絶縁体は、酸素の拡散を抑制する機能を有する。
本発明の一態様は、トランジスタと、第1の絶縁体と、第2の絶縁体と、第3の絶縁体と、第4の絶縁体と、第1のプラグと、第2のプラグとを有し、トランジスタは、第1の金属酸化物上に、第1の導電体、および第2の導電体を有し、第1の導電体、第2の導電体、第1の金属酸化物上に、第2の金属酸化物を有し、第2の金属酸化物上に第5の絶縁体を有し、第5の絶縁体上に第3の導電体を有し、第3の導電体上に第6の絶縁体を有し、第3の導電体、および第6の絶縁体の側面に接して、サイドウォール形状の第7の絶縁体を有し、第7の絶縁体は、第2の金属酸化物、および第5の絶縁体を介して、第1の導電体、および第2の導電体と重畳する領域を有し、第1の絶縁体は、過剰酸素領域を有し、第1の絶縁体、および第2の絶縁体は、第1の導電体を露出する第1の開口と、第2の導電体を露出する第2の開口を有し、第1のプラグは、第3の絶縁体を介して、第1の開口に埋め込まれ、第2のプラグは、第4の絶縁体を介して、第2の開口に埋め込まれ、第2の絶縁体、第3の絶縁体、第4の絶縁体、第6の絶縁体、および第7の絶縁体は、酸素の拡散を抑制する機能を有する。
上記構成において、第1の導電体上に、第8の絶縁体を有し、第2の導電体上に、第9の絶縁体を有し、第8の絶縁体、および第9の絶縁体は、酸素の拡散を抑制する機能を有する。
本発明の一態様は、第1の金属酸化物上に、第1の導電体、および第2の導電体を形成し、第1の導電体、第2の導電体、第1の金属酸化物上に、第1の金属酸化膜を形成し、第1の金属酸化膜上に第1の絶縁膜を形成し、第1の絶縁膜上に、第1の導電膜を成膜し、第1の導電膜上に、第2の絶縁膜を成膜し、第1の導電膜、および第2の絶縁膜の一部を除去することで、第3の導電体、および第1の絶縁体を形成し、第1の金属酸化物の側面と、第1の導電体の側面および上面と、第2の導電体の側面および上面と、第3の導電体の側面と、第1の絶縁体の側面および上面と、に接して、第3の絶縁膜を形成し、第3の絶縁膜にエッチバック処理を行い、第3の絶縁膜の一部と、第1の絶縁膜の一部と、第1の金属酸化膜の一部と、を除去することで、第2の絶縁体と、第2の金属酸化物と、第1の絶縁体の側面および第3の導電体の側面に接する第3の絶縁体と、を形成する。
本発明の一態様により、酸化物半導体を用いたトランジスタを有する半導体装置において、トランジスタの電気特性、および信頼性が、安定した半導体装置を提供することができる。
本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。本発明の一態様により、信頼性の高い半導体装置を提供することができる。本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。本発明の一態様により、生産性の高い半導体装置を提供することができる。
本発明の一態様により、長期間においてデータの保持が可能な半導体装置を提供することができる。本発明の一態様により、情報の書き込み速度が速い半導体装置を提供することができる。本発明の一態様により、設計自由度が高い半導体装置を提供することができる。本発明の一態様により、消費電力を抑えることができる半導体装置を提供することができる。本発明の一態様により、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係る半導体装置の構成を示す上面図および断面図。 本発明の一態様に係る半導体装置の構成を示す上面図および断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る半導体装置の作製方法を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成を示す断面図。 本発明の一態様に係る記憶装置の構成例を示すブロック図。 本発明の一態様に係る記憶装置の構成例を示す回路図。 本発明の一態様に係る記憶装置の模式図。 本発明の一態様に係る記憶装置の模式図。 本実施例に係るトランジスタのVg−Id測定結果を示す図。 本実施例に係るトランジスタのVg−Id測定結果を示す図。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。また、図面において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネルが形成される領域を有しており、ドレインとチチャネルが形成される領域とソースとを介して電流を流すことができるものである。なお、本明細書等において、チャネルが形成される領域とは、電流が主として流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、キャパシタ、その他の各種機能を有する素子などが含まれる。
なお、本明細書等において、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。また、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいう。なお、各元素の含有量は、例えば、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)等を用いて測定することができる。
また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
なお、本明細書において、バリア膜とは、水素などの不純物、または酸素の透過を抑制する機能を有する膜のことであり、該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。
また、本明細書等において、トランジスタのノーマリーオンの特性とは、電源による電位の印加がない(0V)ときにオン状態であることをいう。例えば、トランジスタのノーマリーオンの特性とは、トランジスタのゲートに与える電圧(Vg)が0Vの際に、ドレインとソースとの間に電流(Id)が流れる電気特性をさす場合がある。
本明細書等において、酸化物半導体は、金属酸化物(metal oxide)の一種である。金属酸化物とは、金属元素を有する酸化物をいう。金属酸化物は、組成や形成方法によって絶縁性、半導体性、導電性を示す場合がある。半導体性を示す金属酸化物を、金属酸化物半導体または酸化物半導体(Oxide Semiconductorまたは単にOSともいう)と呼ぶ。また、絶縁性を示す金属酸化物を、金属酸化物絶縁体または酸化物絶縁体と呼ぶ。また、導電性を示す金属酸化物を、金属酸化物導電体または酸化物導電体と呼ぶ。即ち、トランジスタのチャネル形成領域などに用いる金属酸化物を、酸化物半導体と呼びかえることができる。
(実施の形態1)
本実施の形態では、半導体装置の一形態を、図1乃至図13を用いて説明する。
<トランジスタの構造1>
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。図1(A)、図1(B)、および図1(C)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。図1(A)は上面図であり、図1(B)は、図1(A)に示す一点鎖線L1−L2、図1(C)は、一点鎖線W1−W2に対応する断面図である。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
本発明の一態様の半導体装置は、トランジスタ200と、層間膜として機能する絶縁体214、絶縁体216、絶縁体280、絶縁体282、および絶縁体284とを有する。
また、トランジスタ200と電気的に接続し、プラグとして機能する導電体246(導電体246a、および導電体246b)とを有する。
トランジスタ200は、第1のゲート電極として機能する導電体205と、第2のゲート電極として機能する導電体260(導電体260a、および導電体260b)と、第1のゲート絶縁層として機能する絶縁体220、絶縁体222、および絶縁体224と、第2のゲート絶縁膜として機能する絶縁体250と、チャネルが形成される領域を有する酸化物230(酸化物230a、酸化物230b、および酸化物230c)と、ソースまたはドレインの一方として機能する導電体240aと、ソースまたはドレインの他方として機能する導電体240bと、導電体240(導電体240a、および導電体240b)と接するバリア層245(バリア層245a、およびバリア層245b)と、絶縁体270と、絶縁体270と、絶縁体272と、を有する。
トランジスタ200において、酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置が提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
一方で、酸化物半導体を用いたトランジスタは、酸化物半導体中の不純物及び酸素欠損によって、その電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。従って、酸素欠損が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の酸素欠損はできる限り低減されていることが好ましい。
酸化物半導体中の酸素欠損を低減するためには、酸化物半導体の近傍に、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を配置するとよい。例えば、絶縁体250、および絶縁体280には、化学量論的組成よりも酸素が過剰に存在する領域(以下、過剰酸素領域ともいう)が形成されていることが好ましい。当該過剰酸素が、酸化物半導体へと拡散することで、酸素欠損を補償することができる。
酸化物半導体中の酸素欠損は、例えば、酸化物半導体に近接して設けられる構造体に金属を用いる場合に、該金属に酸化物半導体の酸素原子が吸収されることで、生じる場合がある。また、酸素原子を吸収した金属が、酸化し、高抵抗化する場合がある。また、酸化物半導体に近接して設けられる構造体中の水素が、酸化物半導体中に拡散することで、酸素欠損を生じる場合がある。
例えば、ソース電極、およびドレイン電極として機能する導電体240と、酸化物230bが接する領域において、酸化物230の酸素原子が移動し、酸素欠損が生じる場合がある。酸化物230bにおいて、ソース電極、およびドレイン電極として機能する導電体240と重畳する領域は、ソース領域、およびドレイン領域として機能する。従って、導電体240と酸化物230bとが接する領域に、酸素欠損が生じ、当該領域が低抵抗領域となることにより、コンタクト抵抗を低減することができる。
一方、酸化物230bにおけるチャネルが形成される領域と、ゲート絶縁体として機能する絶縁体250との界面に、酸素欠損が存在すると、電気特性の変動が生じ、信頼性が悪くなる場合がある。しかしながら、酸化物230bにおけるチャネルが形成される領域は、ゲート絶縁体を介して、ゲート電極として機能する導電体260と近接するため、酸素欠損が生じる蓋然性が高い。
そこで、導電体260の上面に接して、バリア性を有する絶縁体270を設ける。また、導電体260の側面に接して、バリア性を有する絶縁体272を設ける。なお、本明細書において、特に規定せずバリア性と記載する場合、酸素(例えば、酸素原子、酸素分子など。なお、以下、酸素とした場合、酸素原子、酸素分子ともに含む。)の少なくとも一の拡散を抑制する機能(上記酸素が透過しにくい)とする。
上記構造を設けるには、まず、導電体260となる導電膜上に、絶縁体270となる絶縁膜を成膜する。次に、導電体260となる導電膜と、絶縁体270となる絶縁膜を加工し、導電体260と絶縁体270との積層体を形成する。当該積層体上に、絶縁体272となる絶縁膜を成膜した後、絶縁体272となる絶縁膜を加工し、絶縁体272を形成する。ここで、絶縁体272となる絶縁膜は、エッチバック処理により加工を行うとよい。従って、絶縁体272は、第3の導電体の側面を覆うサイドウォール構造となる。
なお、エッチバックとは、凹凸のある膜表面に平坦化膜を形成し、平坦化膜ごと凹凸のある膜に対して異方性の高いエッチング(例えば、ドライエッチング)を行うことで、膜の凹凸を低減する工程をいう。または、単に、全面に形成された膜に対し、被形成面の一部が露出するまで行うエッチング工程をいう。
絶縁体272の加工に、エッチバック処理を用いることで、マスクを用いることなく、絶縁体272を加工することができる。エッチバック処理は、マスクを用いないため、マスクずれなどに起因するアライメントマージンが不要であり、微細化に適している。従って、エッチバック処理を用いることで、合わせ精度を考慮することなく、微細な絶縁体272を形成することができる。さらに、絶縁体272の形状は、絶縁体272の膜厚により制御できる。従って、複数のトランジスタ200を集積する場合、設計自由度が向上し、高集積化が可能となる。
また、絶縁体272をサイドウォールの形状とすることで、絶縁体272の絶縁体280と接する側面に段差が生じず、絶縁体272の該側面はテーパー形状となる。つまり、導電体260を設けることで生じる段差に、断面が扇状(概略三角形)の絶縁体272が形成される。従って、絶縁体280の被膜性を向上させることができる。
なお、絶縁体270上に、ハードマスクとして機能する絶縁体271を配置してもよい。絶縁体271を設けることで、導電体260の加工の際、導電体260の側面が概略垂直、具体的には、導電体260の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。導電体260の側面を概略垂直に加工することで、導電体260の側面に形成する絶縁体272を所望の形状に形成することができる。
また、絶縁体280のエッチングレートに対して、絶縁体270、および絶縁体272のエッチングレートが十分に小さいことが好ましい。絶縁体280と、絶縁体270、および絶縁体272のエッチングレートが異なることで、導電体240と導電体246とを接続する開口を形成する(図13参照)際に、マスクが有する開口パターンの一部が、導電体260と重畳した場合でも、絶縁体270、および絶縁体272により、エッチングの進行が抑制される。つまり、絶縁体270、および絶縁体272のエッチングレートが十分に小さいため、開口パターン内に絶縁体270、および絶縁体272が存在しても該絶縁体のエッチングの進行は抑制され、開口は、絶縁体272に沿って形成される。従って、開口部と導電体260の距離を小さくでき、半導体装置の集積度が向上するため好ましい。
上記構造を用いることで、導電体260が、絶縁体280が有する過剰酸素による酸化、および低抵抗化を抑制することができる。また、絶縁体280の過剰酸素が、絶縁体250を介して、効率よく酸化物230へと拡散し、酸化物230の酸素欠損を補償することができる。
さらに、導電体260を積層して設けることが好ましい。例えば、図1に示すように、導電体260a、および導電体260bの2層構造とする場合、導電体260aは、耐酸化性の導電体を用い、導電体260bは、導電性が高い導電体を用いるとよい。
つまり、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250が有する過剰酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。
また、導電体260の一部は、配線として機能する場合がある。従って、導電体260bは、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
また、バリア性を有する導電体260aは、絶縁体272と接することが好ましい。つまり、絶縁体270、絶縁体272、および導電体260aにより、導電体260bを完全に封止することが好ましい。つまり、導電体260bを、バリア性を有する層により、取り囲む構造とすることで、導電体260bを封止し、導電体260bが、周囲の構造体から拡散した酸素により、酸化することを抑制することができる。
例えば、バリア性を有する膜の一例として、350℃、好ましくは400℃の雰囲気下において、酸素の拡散を抑制することができればよい。例えば、酸素を放出する第1の膜上に、任意の第2の膜を積層した構造において、TDS(Thermal Desorption Spectroscopy)測定を行った際に、400℃以下において、酸素分子(O)の放出が2.0×1015molecules/cm以下で検出される場合、第2の膜は、酸素に対してバリア性を有するとする。なお、好ましくは、600℃以下において、酸素分子(O)の放出が2.0×1014molecules/cm以下で検出される膜であるとよい。
また、上記バリア性を有する膜は、水素の拡散も抑制することが好ましい。バリア性を有する膜の一例として、350℃、好ましくは400℃の雰囲気下において、水素の拡散を抑制することができればよい。例えば、水素を放出する第1の膜上に、任意の第2の膜を積層した構造において、TDS測定を行った際に、400℃以下において、水素分子(H)の放出が3.0×1015molecules/cm以下で検出される場合、第2の膜は、酸素に対してバリア性を有するとする。なお、好ましくは、400℃以下において、水素分子(H)の放出が1.0×1015molecules/cm以下で検出される膜であるとよい。
さらに、上記バリア性を有する膜は、水の拡散も抑制することが好ましい。バリア性を有する膜の一例として、350℃、好ましくは400℃の雰囲気下において、水の拡散を抑制することができればよい。例えば、水を放出する第1の膜上に、任意の第2の膜を積層した構造において、TDS測定を行った際に、400℃以下において、水分子(HO)の放出が6.0×1015molecules/cm以下で検出される場合、第2の膜は、酸素に対してバリア性を有するとする。なお、好ましくは、400℃以下において、水分子(HO)の放出が5.0×1015molecules/cm以下で検出される膜であるとよい。
また、酸化物230のチャネルが形成される領域と接する絶縁体250は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
特に、絶縁体250には、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。つまり、絶縁体250には、化学量論的組成よりも酸素が過剰に存在する領域(以下、過剰酸素領域ともいう)が形成されていることが好ましい。酸化物230のチャネルが形成される領域に接して、過剰酸素領域を有する絶縁体を設けることで、トランジスタ200が有する酸化物230の酸素欠損を低減し、信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
ここで、絶縁体270、絶縁体272、および導電体260aを設けることで、絶縁体250から導電体260bへの過剰酸素の拡散が抑制される。つまり、酸化物230へ供給する過剰酸素量の減少を抑制することができる。また、周囲の構造物から拡散する過剰酸素による導電体260の酸化を抑制することができる。
以上より、安定した電気特性を有する半導体装置を提供することができる。また、信頼性が高い半導体装置を提供することができる。また、消費電力が小さい半導体装置を提供することができる。
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。
まず、トランジスタ200において、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200の閾値電圧を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200の閾値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
また、例えば、図1(A)に示すように、導電体205と、導電体260とを重畳して設けることで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、チャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
絶縁体214、および絶縁体216は、層間膜として機能する。
層間膜としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
例えば、絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア膜として機能することが好ましい。したがって、絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。また、例えば、絶縁体214として酸化アルミニウムや窒化シリコンなどを用いてもよい。当該構成により、水素、水などの不純物が絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。
例えば、絶縁体216は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
第2のゲートとして機能する導電体205は、絶縁体214および絶縁体216の開口の内壁に接して第1の導電体が形成され、さらに内側に第2の導電体が形成されている。ここで、第1の導電体および第2の導電体の上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、第1の導電体および第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層、または3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体205の第1の導電体は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
導電体205の第1の導電体が酸素の拡散を抑制する機能を持つことにより、導電体205の第2の導電体が酸化して導電率が低下することを抑制することができる。
また、導電体205が配線の機能を兼ねる場合、導電体205の第2の導電体は、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、導電体205の第2の導電体を単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
絶縁体220、絶縁体222、および絶縁体224は、第2のゲート絶縁体としての機能を有する。
例えば、酸化物230と接する絶縁体224は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いてもよい。つまり、絶縁体224には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
また、絶縁体222は、バリア性を有することが好ましい。絶縁体222がバリア性を有することで、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。また、絶縁体224が過剰酸素領域を有する場合、当該過剰酸素領域の酸素が、絶縁体220側へ拡散することなく、効率よく酸化物230へ供給することができる。また、導電体205が、絶縁体224が有する過剰酸素領域の酸素と反応することを抑制することができる。
絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
例えば、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、high−k材料の絶縁体と絶縁体222とを組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
なお、図1には、第2のゲート絶縁体として、3層の積層構造を示したが、単層、または2層以上の積層構造としてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
チャネル形成領域として機能する領域を有する酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流を得られる。
酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、チャネルが形成される領域の金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の半導体装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の半導体装置を構成するトランジスタに用いることができる。
導電体240(導電体240a、および導電体240b)は、一方がソース電極として機能し、他方がドレイン電極として機能する。
導電体240aと、導電体240bとは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を用いることができる。特に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があり、また、耐酸化性が高いため、好ましい。
また、図では単層構造を示したが、2層以上の積層構造としてもよい。例えば、窒化タンタルとタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
また、導電体240上に、バリア層245(バリア層245a、およびバリア層245b)を設けてもよい。バリア層245a、およびバリア層245bは、酸素、または水素に対してバリア性を有する物質を用いることが好ましい。当該構成により、導電体240a、および導電体240bが、酸化物230cを成膜する際に、酸化することを抑制することができる。また、絶縁体280が有する過剰酸素領域の酸素が、導電体240a、および導電体240bと反応し、酸化することを防止することができる。
バリア層245a、およびバリア層245bには、例えば、金属酸化物を用いることができる。特に、酸化アルミニウム、酸化ハフニウム、酸化ガリウムなどの、酸素や水素に対してバリア性のある絶縁膜を用いることが好ましい。また、CVD法で形成した窒化シリコンを用いてもよい。
バリア層245を有することで、導電体240の材料選択の幅を広げることができる。例えば、導電体240に、タングステンや、アルミニウムなどの耐酸化性が低い一方で導電性が高い材料を用いることができる。また、例えば、成膜、または加工がしやすい導電体を用いることができる。
また、導電体240の酸化を抑制し、絶縁体224、および絶縁体280から、脱離した酸素を効率的に酸化物230へと供給することができる。また、導電体240に導電性が高い導電体を用いることで、消費電力が小さいトランジスタ200を提供することができる。
絶縁体250は、第1のゲート絶縁体として機能する。
絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、昇温脱離ガス分光法分析(TDS分析)にて、酸素分子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm、または3.0×1020atoms/cmである酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下の範囲が好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、絶縁体250から、酸化物230bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。
また、例えば、絶縁体250として、加熱により酸素が放出される膜と、バリア性を有する膜との積層構造としてもよい。加熱により酸素が放出される膜と、導電体260との間にバリア性を有する膜を設けることで、加熱により放出した酸素が、導電体260へと吸収されることを抑制することができる。バリア性を有する膜としては、アルミニウムやハフニウムなどを含む金属酸化物を用いるとよい。当該金属酸化物は、比誘電率が高いため、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
第1のゲート電極として機能する導電体260は、導電体260a、および導電体260a上の導電体260bを有する。導電体260aは、導電体205の第1の導電体と同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体260aが酸素の拡散を抑制する機能を持つことにより、酸化物230、および絶縁体250から導電体260bへの過剰酸素の拡散が抑制される。従って、絶縁体250が有する過剰酸素による導電体260bの酸化が抑制され、導電率が低下することを防止することができる。また、酸化物230へ供給する過剰酸素量の減少を抑制することができる。
酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。また、導電体260aとして、酸化物230として用いることができる酸化物半導体を用いることができる。その場合、導電体260bをスパッタリング法で成膜することで、導電体260aの電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線として機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
導電体260の酸化を抑制し、酸化物230に酸素欠損が生じること抑制するために、絶縁体270、および絶縁体272を設ける。
導電体260の上面および側面に、バリア膜として機能する、絶縁体270、および絶縁体272を配置する。絶縁体270、および絶縁体272は、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
絶縁体270、および絶縁体272を有することで、絶縁体280が有する過剰酸素により、導電体260が酸化するのを抑制することができる。また、絶縁体270、および絶縁体272よりも上方からの水または水素などの不純物が、導電体260および絶縁体250を介して、酸化物230に混入することを抑制することができる。
また、絶縁体272の側面は、導電体260aの端部と接することが好ましい。または、絶縁体272の底面は、導電体260aの上面と接することが好ましい。さらに、絶縁体272の側面は、絶縁体270の端部と接することが好ましい。つまり、導電体260bを、バリア性を有する層により、取り囲む構造とすることで、導電体260bを封止し、導電体260bが、周囲の構造体から拡散した酸素原子により、酸化し、導電性が低下することを抑制することができる。
絶縁体280、絶縁体282、および絶縁体284は、層間膜として機能する。
絶縁体282は、絶縁体214と同様に、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。
また、絶縁体280、および絶縁体284は、絶縁体216と同様に、絶縁体214、および絶縁体282よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
特に、絶縁体280には、絶縁体250と同様に、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物を用いることが好ましい。つまり、トランジスタ200近傍の層間膜に、過剰酸素領域を有する絶縁体を設けることで、トランジスタ200が有する酸化物230の酸素欠損を低減することで、信頼性を向上させることができる。
絶縁体280が、過剰酸素領域を有する場合、絶縁体282は、酸素、水素、および水に対するバリア性を有することが好ましい。絶縁体282が、酸素に対するバリア性を有することで、過剰酸素領域の酸素は、絶縁体284側へ拡散することなく、効率よく酸化物230へ供給することができる。
また、トランジスタ200を覆う絶縁体280は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。本構造とすることで、絶縁体282の被膜性が向上する。従って、絶縁体282が、断膜することなく、トランジスタ200と絶縁体280とを封止することができる。
また、トランジスタ200は、絶縁体280、絶縁体282、および絶縁体284に埋め込まれた導電体246(導電体246a、および導電体246b)などのプラグや配線を介して、他の構造と電気的に接続してもよい。
また、導電体246の材料としては、導電体205と同様に、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。例えば、耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
例えば、導電体246としては、例えば、水素、および酸素に対してバリア性を有する導電体である窒化タンタル等と、導電性が高いタングステンとの積層構造を用いることで、配線としての導電性を保持したまま、外部からの不純物の拡散を抑制することができる。
上記構造を有することで、オン電流が大きい酸化物半導体を有するトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた半導体装置を提供することができる。
<トランジスタの構造2>
図2には、トランジスタ200を有する半導体装置の一例を示す。図2(A)は半導体装置の上面を示す。なお、図の明瞭化のため、図2(A)において一部の膜は省略されている。また、図2(B)は、図2(A)に示す一点鎖線L1−L2に対応する断面図であり、図2(C)はW1−W2に対応する断面図である。
なお、図2に示す半導体装置において、図1に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。
ここで、酸化物半導体を用いたトランジスタは、酸化物半導体中の不純物及び酸素欠損によって、その電気特性が変動し、ノーマリーオン特性となりやすい。一方、酸化物半導体中に、適量値を超えた過剰な酸素を有した状態で、該トランジスタを駆動した場合、過剰な酸素原子の価数が変化し、該トランジスタの電気特性が変動することで、信頼性が悪くなる場合がある。
従って、トランジスタに用いる酸化物半導体は、不純物、酸素欠損、および、化学量論的組成を満たす酸素よりも多くの酸素(以下、過剰酸素ともいう)がない、高純度真性な酸化物半導体を用いることが好ましい。
しかしながら、酸化物半導体中の酸素欠損は、例えば、酸化物半導体を成膜時、または酸化物半導体を形成した後の工程で生じる場合がある。また、酸化物半導体を用いたトランジスタにおいて、トランジスタを構成する導電体、またはトランジスタと接続するプラグや配線に用いられる導電体に、酸化物半導体の酸素が徐々に吸収され、継時的変化の一つとして、酸素欠損を生じる場合がある。
例えば、導電体246が、絶縁体280と接することで、絶縁体280が有する過剰酸素が、導電体246に吸収される場合がある。また、トランジスタ200の周辺に形成される他の構造に含まれる不純物である水素は、プラグや配線に用いられる導電体を介して、該導電体と接する構造へと拡散する場合がある。
そこで、導電体246と、過剰酸素領域を有する絶縁体280、並びにバリア性を有する絶縁体282および絶縁体283との間にバリア層276(バリア層276a、およびバリア層276b)を設けるとよい。特に、バリア層276は、バリア性を有する絶縁体282および絶縁体283と接して設けられることが好ましい。バリア層276と、絶縁体282および絶縁体283とが接して設けられることで、絶縁体280、およびトランジスタ200は、バリア性を有する絶縁体、およびバリア層により、封止される構造とすることができる。さらに、バリア層276は、絶縁体284の一部とも接することが好ましい。バリア層276が、絶縁体284まで延在していることで、酸素や不純物の拡散を、より抑制することができる。
つまり、バリア層276を設けることで、絶縁体280が有する過剰酸素が、導電体246、および導電体248に吸収されることを抑制することができる。また、バリア層276を有することで、不純物である水素の拡散を抑制することができる。
また、バリア層276を有することで、半導体装置に設けられるプラグや配線の形状、個数、または位置に関わらず、絶縁体280が有する過剰酸素を、適切な値で設けることができる。また、水素の拡散を抑制することで、酸素欠損ができにくくなるため、キャリア生成を抑えることができる。従って、トランジスタ200に、過剰酸素を安定して供給することができるため、トランジスタ200の電気特性が安定する。また、半導体装置を設計する際の自由度を高くすることができる。
また、バリア層276を設けることで、プラグや配線に用いられる導電体の材料選択の幅を広げることができる。例えば、導電体246、および導電体248に、酸素を吸収する性質を持つ一方で、導電性が高い金属材料を用いることで、低消費電力の半導体装置を提供することができる。具体的には、タングステンや、アルミニウムなどの耐酸化性が低い一方で導電性が高い材料を用いることができる。また、例えば、成膜、または加工がしやすい導電体を用いることができる。
なお、バリア層276としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
また、図2に示す半導体装置は、酸化物230に供給する過剰酸素を有する絶縁体280の体積を、膜厚により制御することで、絶縁体280が有する過剰酸素量を適宜設定することができる。一方、絶縁体280の平坦化を行わないため、絶縁体282の被膜性が低下する蓋然性が高い。そこで、絶縁体282上に、被膜性の高い絶縁体283を設けることが好ましい。
従って、図2に示す半導体装置は、酸化物半導体を成膜時、または、酸化物半導体を形成した後の工程で生じる酸素欠損に合わせて、絶縁体280が有する過剰酸素量を適宜設定することができる。また、バリア層276を設けることで、継時的変化の一つとして生じる酸素欠損を抑制することができる。
上記構造を有することで、オン電流が大きい酸化物半導体を有するトランジスタを有する半導体装置を提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた半導体装置を提供することができる。
<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう)など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。とくに、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[金属酸化物を有するトランジスタ]
続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
なお、上記金属酸化物をトランジスタのチャネル形成領域に用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物膜のキャリア密度を低くする場合においては、金属酸化物膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。例えば、金属酸化物は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、金属酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い金属酸化物をチャネル形成領域に有するトランジスタは、電気特性が不安定となる場合がある。
したがって、トランジスタの電気特性を安定にするためには、金属酸化物中の不純物濃度を低減することが有効である。また、金属酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
[不純物]
ここで、金属酸化物中における各不純物の影響について説明する。
金属酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、金属酸化物において欠陥準位が形成される。このため、金属酸化物におけるシリコンや炭素の濃度と、金属酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、金属酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。したがって、当該金属酸化物において、チャネル形成領域の窒素はできる限り低減されていることが好ましい。例えば、金属酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている金属酸化物を用いたトランジスタはノーマリーオン特性となりやすい。
また、金属酸化物に含まれる水素は、金属酸化物中に浅い欠陥準位(sDOS:shallow level Density of States)を形成する場合がある。浅い欠陥準位とは、伝導帯下端の近くに位置する界面準位をさす。浅い欠陥準位は、金属酸化物中の高密度領域と低密度領域の境界近傍に存在することが推定される。ここでは、金属酸化物中の高密度領域と低密度領域は、領域に含まれる水素の量で区別する。すなわち、低密度領域と比較して、高密度領域は、水素をより多く含む領域とする。金属酸化物中の高密度領域と低密度領域の境界近傍は、両領域間の応力歪によって、微小なクラックが生じやすく、該クラック近傍に酸素欠損およびインジウムのダングリングボンドが発生し、ここに、水素または水などの不純物が局在することで、浅い欠陥準位が形成されるものと推定される。
また、上記金属酸化物中の高密度領域は、低密度領域よりも結晶性が高くなる場合がある。また、上記金属酸化物中の高密度領域は、低密度領域よりも膜密度が高くなる場合がある。また、上記金属酸化物が、インジウムと、ガリウムと、亜鉛と、有する組成の場合、高密度領域は、インジウムと、ガリウムと、亜鉛と、を有し、低密度領域は、インジウムと、亜鉛と、を有する場合がある。別言すると、低密度領域は、高密度領域よりもガリウムの割合が少ない場合がある。
なお、上記浅い欠陥準位は、酸素欠損に起因すると推定される。金属酸化物中の酸素欠損が増えると、浅い欠陥準位とともに深い欠陥準位(dDOS:deep level Density of States)も増えると推定される。これは、深い欠陥準位も酸素欠損によるものだと考えられるためである。なお、深い欠陥準位とは、バンドギャップの中央付近に位置する欠陥準位をさす。
したがって、金属酸化物中の酸素欠損を抑制することで、浅い欠陥準位及び深い欠陥準位の双方の準位を低減させることが可能となる。
また、金属酸化物の浅い欠陥準位は、金属酸化物を半導体として用いたトランジスタの電気特性に影響を与える。即ち、浅い欠陥準位によって、トランジスタのドレイン電流−ゲート電圧(Id−Vg)特性において、ゲート電圧Vgに対するドレイン電流Idの変化が緩やかとなり、トランジスタのオフ状態からオン状態への立ち上がり特性の良し悪しの目安の1つである、S値(Subthreshold Swing、SSとも言う)が悪化する。これは浅い欠陥準位に電子がトラップされたためと考えられる。
このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<トランジスタの作製方法>
以下に、図1に示したトランジスタ200を有する半導体装置の作製方法の一例を図3乃至図12を参照して説明する。なお、各図(A)は、トランジスタ200の平面図である。各図(B)に示すL1−L2は、トランジスタ200のチャネル長方向の断面図である。また、各図(C)に示すW1−W2は、トランジスタ200のチャネル幅方向の断面図である。
はじめに、基板を準備する(図示しない)。基板として使用することができる基板に大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有していることが好ましい。例えば、バリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることができる。また、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム、ガリウムヒ素、インジウムヒ素、インジウムガリウムヒ素からなる化合物半導体基板、SOI(Silicon On Insulator)基板、GOI(Germanium on Insulator)基板などを適用することもでき、これらの基板上に半導体素子が設けられたものを、基板として用いてもよい。
また、基板として、可撓性基板を用いて半導体装置を作製してもよい。可撓性を有する半導体装置を作製するには、可撓性基板上にトランジスタを直接作製してもよいし、他の作製基板にトランジスタを作製し、その後可撓性基板に剥離、転置してもよい。なお、作製基板から可撓性基板に剥離、転置するために、作製基板と酸化物半導体を含むトランジスタとの間に剥離層を設けるとよい。
基板上に、絶縁体214、および絶縁体216を形成する。
絶縁体214、および絶縁体216は、例えば、スパッタリング法、CVD法、(熱CVD法、有機金属CVD(MOCVD:Metal Organic Chemical Vapor Deposition)法、プラズマ励起CVD(PECVD:Plasma Enhanced Chemical Vapor Deposition)法等を含む)、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、ALD法またはパルスレーザ堆積(PLD:Pulsed Laser Deposition)法などを用いて形成することができる。特に、当該絶縁体をCVD法、好ましくはALD法等によって成膜すると、被覆性を向上させることができるため好ましい。一方、スパッタリング法は、ALD法よりも成膜速度が高いため、生産性を向上することができる。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法またはALD法が好ましい。また、TEOS(Tetra−Ethyl−Ortho−Silicate)若しくはシラン等と、酸素若しくは亜酸化窒素等とを反応させて形成した段差被覆性のよい酸化シリコン膜を用いることもできる。
続いて、絶縁体216上にリソグラフィ法等を用いてレジストマスクを形成する。絶縁体214、および絶縁体216の不要な部分を除去する。その後、レジストマスクを除去することにより、開口部を形成することができる。
ここで、被加工膜の加工方法について説明する。被加工膜を微細に加工する場合には、様々な微細加工技術を用いることができる。例えば、リソグラフィ法等で形成したレジストマスクに対してスリミング処理を施す方法を用いてもよい。また、リソグラフィ法等でダミーパターンを形成し、当該ダミーパターンにサイドウォールを形成した後にダミーパターンを除去し、残存したサイドウォールをレジストマスクとして用いて、被加工膜をエッチングしてもよい。また、被加工膜のエッチングとして、高いアスペクト比を実現するために、異方性のドライエッチングを用いることが好ましい。また、無機膜または金属膜からなるハードマスクを用いてもよい。
レジストマスクの形成に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
また、レジストマスクとなるレジスト膜を形成する前に、被加工膜とレジスト膜との密着性を改善する機能を有する有機樹脂膜を形成してもよい。当該有機樹脂膜は、例えばスピンコート法などにより、その下方の段差を被覆して表面を平坦化するように形成することができ、当該有機樹脂膜の上方に設けられるレジストマスクの厚さのばらつきを低減できる。また、特に微細な加工を行う場合には、当該有機樹脂膜として、露光に用いる光に対する反射防止膜として機能する材料を用いることが好ましい。このような機能を有する有機樹脂膜としては、例えばBARC(Bottom Anti−Reflection Coating)膜などがある。当該有機樹脂膜は、レジストマスクの除去と同時に除去するか、レジストマスクを除去した後に除去すればよい。
続いて、絶縁体214、および絶縁体216上に、導電体205となる導電膜、および導電体205となる導電膜を成膜する。導電体205となる導電膜、および導電体205となる導電膜は、スパッタリング法、蒸着法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)などにより成膜することができる。また、プラズマによるダメージを減らすには、熱CVD法、MOCVD法またはALD法が好ましい。
続いて、導電体205となる導電膜、および導電体205となる導電膜の不要な部分を除去する。例えば、エッチバック処理、または、機械的化学的研磨法(CMP:Chemical Mechanical Polishing)処理などにより、絶縁体216が露出するまで、導電体205となる導電膜、および導電体205となる導電膜の一部を除去することで、導電体205を形成する(。この際、絶縁体216をストッパ層として使用することもでき、絶縁体216が薄くなる場合がある。
ここで、CMP処理とは、被加工物の表面を化学的・機械的な複合作用により平坦化する手法である。より具体的には、研磨ステージの上に研磨布を貼り付け、被加工物と研磨布との間にスラリー(研磨剤)を供給しながら研磨ステージと被加工物とを各々回転または揺動させて、スラリーと被加工物表面との間での化学反応と、研磨布と被加工物との機械的研磨の作用により、被加工物の表面を研磨する方法である。
なお、CMP処理は、1回のみ行ってもよいし、複数回行ってもよい。複数回に分けてCMP処理を行う場合は、高い研磨レートの一次研磨を行った後、低い研磨レートの仕上げ研磨を行うのが好ましい。このように研磨レートの異なる研磨を組み合わせてもよい。
次に、絶縁体220、絶縁体222、および絶縁体224を形成する。なお、絶縁体220、および絶縁体222は必ずしも設ける必要はない。
絶縁体220、絶縁体222、および絶縁体224は、絶縁体214、絶縁体216と同様の材料および方法で作製することができる。
また、絶縁体220、絶縁体222、および絶縁体224は、連続成膜することが好ましい。連続的に成膜することで、絶縁体220と絶縁体222との界面、および絶縁体222と絶縁体224との界面に不純物が付着することなく、信頼性が高い絶縁体を形成することができる。
特に、絶縁体224は、過剰酸素を含む絶縁層であることが好ましい。例えば、絶縁体224として、CVD法により、酸化窒化シリコンを形成する。絶縁体224の形成後に酸素ドープ処理を行うことで、絶縁体224に過剰酸素領域を形成してもよい。
続いて、絶縁体224に含まれる水分または水素などの不純物をさらに低減するために、加熱処理を行うことが好ましい。
また、加熱処理の前に、酸化性ガスを用いたプラズマ処理を行ってもよい。例えば、亜酸化窒素ガスを用いたプラズマ処理を行う。当該プラズマ処理を行うことで、露出した絶縁層中のフッ素濃度を低減することができる。また、試料表面の有機物を除去する効果も得られる。
加熱処理は、例えば、窒素や希ガスなどを含む不活性雰囲気下、酸化性ガス雰囲気下、又は超乾燥エア(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が20ppm(露点換算で−55℃)以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)雰囲気下で行なう。なお、「酸化性ガス雰囲気」とは、酸素、オゾンまたは窒化酸素などの酸化性ガスを10ppm以上含有する雰囲気をいう。また、「不活性雰囲気」とは、前述の酸化性ガスが10ppm未満であり、その他、窒素または希ガスで充填された雰囲気をいう。加熱処理中の圧力に特段の制約はないが、加熱処理は減圧下で行なうことが好ましい。
なお、不活性雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下で行えばよい。処理時間は24時間以内とする。24時間を超える加熱処理は生産性の低下を招くため好ましくない。
例えば、窒素ガス雰囲気中で400℃、1時間の加熱処理を行った後、窒素ガスを酸素ガスに換えて、さらに400℃、1時間の加熱処理を行なうとよい。始めに窒素ガス雰囲気中で加熱処理を行うことにより、絶縁体224に含まれる水分または水素などの不純物が放出されて、絶縁体224中の不純物濃度が低減される。続いて酸素ガス雰囲気中で加熱処理を行うことにより絶縁体224中に酸素が導入される。
続いて、酸化物230aとなる酸化膜230Aと、酸化物230bとなる酸化膜230Bを順に成膜する。当該酸化物は、大気に触れさせることなく連続して成膜することが好ましい。
例えば、酸化膜230A、および酸化膜230Bをスパッタリング法で形成する。また、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。
特に、酸化膜230Aの形成時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。
スパッタリング法による成膜時には、ターゲットと基板との間には、イオンとスパッタされた粒子とが存在する。例えば、ターゲットは、電源が接続されており、電位E0が与えられる。また、基板は、接地電位などの電位E1が与えられる。ただし、基板が電気的に浮いていてもよい。また、ターゲットと基板の間には電位E2となる領域が存在する。各電位の大小関係は、E2>E1>E0である。
プラズマ内のイオンが、電位差E2−E0によって加速され、ターゲットに衝突することにより、ターゲットからスパッタされた粒子がはじき出される。このスパッタされた粒子が成膜表面に付着し、堆積することにより成膜が行われる。また、一部のイオンはターゲットによって反跳し、反跳イオンとして形成された膜を介して、形成された膜の下部にある絶縁体224に取り込まれる場合がある。また、プラズマ内のイオンは、電位差E2−E1によって加速され、成膜表面を衝撃する。この際、イオンの一部のイオンは、絶縁体224の内部まで到達する。イオンが絶縁体224に取り込まれることにより、イオンが取り込まれた領域が絶縁体224に形成される。つまり、イオンが酸素を含むイオンであった場合において、絶縁体224に過剰酸素領域が形成される。
絶縁体224に過剰な酸素を導入することで、過剰酸素領域を形成することができる。絶縁体224の過剰な酸素は、酸化物230に供給され、酸化物230の酸素欠損が補填することができる。
従って、酸化膜230Aを成膜すると同時に、絶縁体224に過剰酸素を有する領域を形成することができる。なお、スパッタリングガスに含まれる酸素が多いほど、絶縁体224に供給される酸素も増加する。また、絶縁体224に供給された酸素の一部は、絶縁体224中に残存する水素と反応して水となり、後の加熱処理によって絶縁体224から放出される。従って、絶縁体224中の水素濃度を低減することができる。
続いて、酸化膜230Bをスパッタリング法で形成する。また、酸化膜230Bの形成後に酸素ドープ処理を行ってもよい。
続いて、酸化膜230A、および酸化膜230Bに含まれる水分または水素などの不純物をさらに低減して、酸化膜230A、および酸化膜230Bを高純度化するために、加熱処理を行うことが好ましい。
また、加熱処理を行うことにより、酸化膜230A、および酸化膜230B中の不純物の放出と同時に、絶縁体224に含まれる酸素を酸化膜230A、および酸化膜230B中に拡散させ、該酸化物に含まれる酸素欠損を低減することができる。
加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下で行えばよい。
例えば、窒素ガス雰囲気中で400℃、1時間の加熱処理を行った後、窒素ガスを酸素ガスに換えて、さらに400℃、1時間の加熱処理を行なうとよい。始めに窒素ガス雰囲気中で加熱処理を行うことにより、酸化膜230A、および酸化膜230Bに含まれる水分または水素などの不純物が放出されて、酸化膜230A、および酸化膜230B中の不純物濃度が低減される。続いて酸素ガス雰囲気中で加熱処理を行うことにより、酸化膜230A、および酸化膜230B中に酸素が導入される。
また、加熱処理の前に、酸化性ガスを用いたプラズマ処理を行ってもよい。例えば、亜酸化窒素ガスを用いたプラズマ処理を行う。当該プラズマ処理を行うことで、露出した絶縁層中のフッ素濃度を低減することができる。また、試料表面の有機物を除去する効果も得られる。
次に、導電膜240A、バリア膜245A、およびハードマスクとなる膜241Aを形成する(図3参照)。
例えば、導電膜240Aとして、窒化タンタルをスパッタリング法で形成する。窒化タンタルは、耐酸化性が高いため、後工程において加熱処理を行う場合に好ましい。
また、導電膜240Aが、酸化膜230Bと接することで、酸化膜230Bの表面に不純物元素が導入する場合がある。酸化膜230Bに不純物が添加されることで、トランジスタ200のしきい値電圧を変化させることができる。なお、導電膜240Aを形成する前に、イオン注入法、またはプラズマイマージョン注入法、または不純物元素を含むガスを用いたプラズマ処理などを行うことで、不純物元素を導入してもよい。また、導電膜240Aの形成後に不純物元素の導入をイオン注入法などで行なってもよい。
例えば、バリア膜245Aは、ALD法により形成するとよい。ALD法を用いて形成することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える膜を形成することができる。
例えば、ハードマスクとなる膜241Aとして、窒化タンタルをスパッタリング法で形成する。なお、該ハードマスクは、後の工程で、導電膜240Aと同時に加工するため、導電膜240Aと同じ材料、または、エッチングレートが近い材料で形成することが好ましい。
次に、ハードマスクとなる膜241A上にフォトリソグラフィ法によりレジストマスクを形成する。該レジストマスクを用いて、ハードマスクとなる膜241Aの一部を選択的に除去することで、開口を有するハードマスクとなる膜241Bを形成する(図4参照)。なお、本レジストマスクによる開口は、最小加工寸法とすることが好ましい。従って、膜241Bは、幅が最小加工寸法の開口を有する。
なお、開口を形成する際に、ハードマスクとなる膜241Bの開口側の側面は、導電膜240Aの上面に対して、角度を有することが好ましい。なお、角度は、30度以上90度以下、好ましくは45度以上80度以下とする。
次に、ハードマスクとなる膜241B、およびバリア膜245A上に、フォトリソグラフィ法により、レジストマスクを形成する。該レジストマスクを用いて、ハードマスクとなる膜241B、バリア膜245A、および導電膜240Aの一部を選択的に除去し、島状の導電膜240B、ハードマスク241a、ハードマスク241b、およびバリア膜245Bを形成する(図5参照)。
続いて、島状の導電膜240B、ハードマスク241a、ハードマスク241bをマスクとして、バリア膜245Bの一部、酸化物230a、および酸化物230bの一部を選択的に除去する。なお、本工程において、同時に絶縁体224の一部も除去される場合がある。その後、レジストマスクを除去することにより、島状の酸化物230a、島状の酸化物230b、を形成することができる(図6参照)。
なお、この時、バリア膜245Bから、バリア層245a、およびバリア層245bが形成する。つまり、ハードマスクとなる膜241Bにおける開口を最小加工寸法とした場合、バリア層245a、およびバリア層245bの間の距離は、最小寸法となる。
続いて、ハードマスク241a、およびハードマスク241bを除去すると同時に、バリア膜245B、および島状の導電膜240Bの一部を選択的に除去する。本工程により、導電膜240Bを、導電体240a、導電体240bに分離する(図6参照)。
導電体240a、および導電体240bは、トランジスタ200のソース電極およびドレイン電極としての機能を有するので、導電体240aと導電体240bのお互いに向かい合う間隔の長さは、本トランジスタのチャネル長と呼ぶことができる。つまり、バリア膜245Bの開口を最小加工寸法とした場合、バリア層245a、およびバリア層245bの間の距離は、最小寸法であるため、最小加工寸法より小さなゲート線幅およびチャネル長を形成することができる。
なお、酸化膜230A、酸化膜230B、導電膜240A、およびバリア膜245Aの除去は、ドライエッチング法や、ウェットエッチング法などを用いて行なうことができる。ドライエッチング法とウェットエッチング法の両方を用いてもよい。
また、ドライエッチング法により導電体240a、および導電体240bを形成した場合は、露出した酸化物230bにエッチングガスの残留成分などの不純物元素が付着する場合がある。例えば、エッチングガスとして塩素系ガスを用いると、塩素などが付着する場合がある。また、エッチングガスとして炭化水素系ガスを用いると、炭素や水素などが付着する場合がある。このため、酸化物230bの露出した表面に付着した不純物元素を低減することが好ましい。当該不純物の低減は、例えば、希フッ酸などを用いた洗浄処理、オゾンなどを用いた洗浄処理、または紫外線などを用いた洗浄処理で行なえばよい。なお、複数の洗浄処理を組み合わせてもよい。
また、酸化性ガスを用いたプラズマ処理を行ってもよい。例えば、亜酸化窒素ガスを用いたプラズマ処理を行う。当該プラズマ処理を行うことで、酸化物230b中のフッ素濃度を低減することができる。また、試料表面の有機物を除去する効果も得られる。
また、露出した酸化物230bに対して、酸素ドープ処理を行ってもよい。
次に、酸化膜230C、絶縁膜250A、導電膜260A、導電膜260B、絶縁膜270A、および絶縁膜271Aを成膜する(図7参照)。
酸化膜230Cとして、酸化物230a、または酸化物230bと同様の酸化物を成膜することが好ましい。従って、酸化膜230Cは、酸化物230a、または酸化物230bと同様の工程で成膜することができる。
なお、酸化膜230Cを形成後に、酸素ドープ処理、または加熱処理の一方、あるいは両方を行ってもよい。加熱処理を行うことで、酸化物230aおよび酸化膜230Cに含まれる酸素を酸化物230bに供給することができる。酸化物230bに酸素を供給することで、酸化物230b中の酸素欠損を低減することができる。
例えば、絶縁膜250Aは、絶縁体224と同様の材料、および製法で成膜することができる。
導電膜260A、および導電膜260Bは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。
絶縁膜270Aには、被膜性が高く、緻密な膜を用いることが好ましい。また、絶縁膜270Aには、酸素、水素、および水に対するバリア性を有することが好ましい。例えば、絶縁膜270Aとして、ALD法により、酸化アルミニウムを成膜するとよい。ALD法を用いて成膜することで、緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える絶縁膜270Aを形成することができる。
絶縁膜271Aは、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて成膜することができる。ここで、絶縁膜271Aの膜厚は、後の工程で成膜する絶縁膜272Aの膜厚より厚くすることが好ましい。これにより、後の工程で絶縁体272を形成する際、導電体260の上に絶縁体271を、容易に残存させることができる。
次に、絶縁膜271A上にフォトリソグラフィ法によりレジストマスクを形成する。該レジストマスクを用いて、絶縁膜271Aの一部を選択的に除去して絶縁体271を形成する。ここで、絶縁体271は、ハードマスクとして機能する。絶縁体271を設けることで、絶縁体250の側面、導電体260aの側面、導電体260bの側面、および絶縁体270の側面を、基板の上面に対し、概略垂直に形成することができる。
次に、絶縁体271をマスクとして、導電膜260A、導電膜260B、絶縁膜270Aの一部を除去し、導電体260(導電体260a、および導電体260b)、および絶縁体270を形成する(図8参照。)。
次に、酸化膜230Cと、導電体260、絶縁体270、および絶縁体271の積層体上に、絶縁体272となる絶縁膜を成膜する(図9参照)。続いて、絶縁体272となる絶縁膜に対し、エッチバック処理を行うことで、絶縁体272を形成する(図10参照)。
なお、本工程と同時に、絶縁膜250A、および酸化膜230Cの一部を除去し、絶縁体250、および酸化物230cを形成してもよい。
以上の工程により、本発明の一態様のトランジスタ200を作製することができる。
続いて、トランジスタ200上に、絶縁体280を形成する。また、絶縁体280となる絶縁体を形成した後、その上面の平坦性を高めるためにCMP法等を用いた平坦化処理を行ってもよい。
なお、絶縁体280は、絶縁体280は、過剰酸素領域を有することが好ましい。従って、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体を用いるとよい。過剰酸素を含む絶縁体を形成する方法としては、CVD法やスパッタリング法における成膜条件を適宜設定して膜中に酸素を多く含ませた酸化シリコン膜や酸化窒化シリコン膜を形成することができる。
なお、絶縁体280に酸素を過剰に含有させるためには、例えば酸素雰囲気下にて、絶縁体282の成膜を行えばよい。または、成膜後の絶縁体280に酸素を導入して酸素を過剰に含有する領域を形成してもよく、双方の手段を組み合わせてもよい。
例えば、成膜後の絶縁体280に酸素(少なくとも酸素ラジカル、酸素原子、酸素イオンのいずれかを含む)を導入して酸素を過剰に含有する領域を形成する。酸素の導入方法としては、イオン注入法、プラズマイマージョンイオン注入法、プラズマ処理などを用いることができる。
また、酸素導入処理として、酸素を含むガスを用いることができる。酸素を含むガスとしては、酸素、一酸化二窒素、二酸化窒素、二酸化炭素、一酸化炭素などを用いることができる。また、酸素導入処理において、酸素を含むガスに希ガスを含ませてもよく、例えば、二酸化炭素と水素とアルゴンの混合ガスを用いることができる。
続いて、絶縁体280上に、絶縁体282および絶縁体284を形成する(図11参照)。
絶縁体282は、スパッタリング装置により成膜することが好ましい。スパッタリング法を用いて成膜することで、絶縁体283を介して、絶縁体282の下層である絶縁体280に過剰酸素領域を形成することができる。
続いて、絶縁体282上に、絶縁体284形成する。また、絶縁体284を成膜した後、その上面の平坦性を高めるためにCMP法等を用いた平坦化処理を行ってもよい。
続いて、絶縁体284、絶縁体282、絶縁体280、およびバリア層245に、導電体240に到達する開口を形成する(図12参照)。
次に、導電体246となる導電膜を形成する。例えば、導電体246となる導電膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。特に、CVD法(特にMOCVD法)を用いることが好ましい。また、MOCVD法で成膜する導電体の密着性を高めるために、ALD法などによって成膜した導電体と、CVD法で成膜した導電体との多層膜にすると好ましい場合がある。
続いて、導電体246となる導電膜の不要な部分を除去する。例えば、エッチバック処理、または、機械的化学的研磨法(CMP)処理などにより、絶縁体284が露出するまで、導電体246となる導電膜の一部を除去することで導電体246を形成する(図1参照)。
以上の工程により、本発明の一態様の半導体装置を作製することができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態および他の実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、半導体装置の一形態を、図13および図14を用いて説明する。
[記憶装置1]
本発明の一態様である容量素子を使用した、半導体装置(記憶装置)の一例を図13に示す。本発明の一態様の半導体装置は、トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。なお、トランジスタ200として、先の実施の形態で説明したトランジスタ200を用いることができる。
トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
図13に示す半導体装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
また、図13に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。
<<トランジスタ300>>
トランジスタ300は、基板311上に設けられ、ゲート電極として機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
ここで、図13に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
なお、図13に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
<<容量素子100>>
容量素子100は、トランジスタ200の上方に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。
また、例えば、導電体246上に設けた導電体112と、導電体110は、同時に形成することができる。なお、導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。
図13では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。
例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
<<配線層>>
各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図13において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
同様に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。さらに、導電体120、および絶縁体130上には、絶縁体150が設けられている。
層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
例えば、絶縁体150、絶縁体212、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体210、および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
例えば、導電体328、導電体330、導電体356、導電体218、および導電体112等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
以上が構成例についての説明である。本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された半導体装置を提供することができる。
[記憶装置2]
本発明の一態様である半導体装置を使用した、記憶装置の一例を図14に示す。図14に示す記憶装置は、図13で示したトランジスタ200、トランジスタ300、および容量素子100を有する半導体装置に加え、トランジスタ400を有している。
トランジスタ400は、トランジスタ200の第2のゲート電圧を制御することができる。例えば、トランジスタ400の第1のゲート及び第2のゲートをソースとダイオード接続し、トランジスタ400のソースと、トランジスタ200の第2のゲートを接続する構成とする。当該構成でトランジスタ200の第2のゲートの負電位を保持するとき、トランジスタ400の第1のゲートーソース間の電圧および、第2のゲートーソース間の電圧は、0Vになる。トランジスタ400において、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流が非常に小さいため、トランジスタ200およびトランジスタ400に電源供給をしなくても、トランジスタ200の第2のゲートの負電位を長時間維持することができる。これにより、トランジスタ200、およびトランジスタ400を有する記憶装置は、長期にわたり記憶内容を保持することが可能である。
従って、図14において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200のゲートと電気的に接続され、配線1006はトランジスタ200のバックゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。配線1007はトランジスタ400のソースと電気的に接続され、配線1008はトランジスタ400のゲートと電気的に接続され、配線1009はトランジスタ400のバックゲートと電気的に接続され、配線1010はトランジスタ400のドレインと電気的に接続されている。ここで、配線1006、配線1007、配線1008、及び配線1009が電気的に接続されている。
また、図14に示す記憶装置は、図13に示す記憶装置と同様に、マトリクス状に配置することで、メモリセルアレイを構成することができる。なお、1個のトランジスタ400は、複数のトランジスタ200の第2のゲート電圧を制御することができる。そのため、トランジスタ400は、トランジスタ200よりも、少ない個数を設けるとよい。
<<トランジスタ400>>
トランジスタ400は、トランジスタ200と、同じ層に形成されており、並行して作製することができるトランジスタである。トランジスタ400は、第1のゲート電極として機能する導電体460(導電体460a、および導電体460b)と、第2のゲート電極として機能する導電体405(導電体405a、および導電体405b)と、導電体460と接する絶縁体470、および絶縁体472と、絶縁体470上の絶縁体471と、ゲート絶縁層として機能する絶縁体220、絶縁体222、絶縁体224、および絶縁体450と、チャネルが形成される領域を有する酸化物430cと、ソースまたはドレインの一方として機能する導電体440a、酸化物431a、および酸化物431bと、ソースまたはドレインの他方として機能する導電体440b、酸化物432a、および酸化物432bと、導電体440(導電体440a、および導電体440b)絶縁体445(絶縁体445a、および絶縁体445b)を有する。
トランジスタ400において、導電体405は、導電体205と、同じ層である。酸化物431a、および酸化物432aと、酸化物230aと、同じ層であり、酸化物431b、および酸化物432bと、酸化物230bと、同じ層である。導電体440は、導電体240と、同じ層である。酸化物430cは、酸化物230cは同じ層である。絶縁体450は、絶縁体250と、同じ層である。絶縁体472は、絶縁体272と、同じ層である。導電体460は、導電体260と、同じ層である。絶縁体470は、絶縁体270と、同じ層である。
なお、同じ層に形成された構造体は、同時に形成することができる。例えば、酸化物430cは、酸化物230cとなる酸化膜を加工することで、形成することができる。
トランジスタ400の活性層として機能する酸化物430cは、酸化物230などと同様に、酸素欠損が低減され、水素または水などの不純物が低減されている。これにより、トランジスタ400のしきい値電圧を0Vより大きくし、オフ電流を低減し、第2のゲート電圧及び第1のゲート電圧が0Vのときのドレイン電流を非常に小さくすることができる。
本実施の形態は、他の実施の形態や実施例などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、図15および図16を用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<記憶装置の構成例>
図15(A)にOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、コントロールロジック回路1460を有する。
列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、および書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、WDATAは書き込み回路に入力される。
コントロールロジック回路1460は、外部からの入力信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
なお、図15(A)において、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図15(B)に示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
図16に上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
[DOSRAM]
図16(A)乃至(C)に、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図16(A)に示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(フロントゲートと呼ぶ場合がある。)、及びバックゲートを有する。
トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図16(B)に示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図16(C)に示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に低くすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
[NOSRAM]
図16(D)乃至(H)に、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。図16(D)に示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、フロントゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、図16(E)に示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図16(F)に示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、図16(G)に示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。
上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に低くすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に低いため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至1477も同様である。
なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。
また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2、M3にOSトランジスタを用いた場合、メモリセルアレイ1470を単極性回路によって構成することができる。
また、図16(H)に3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。図16(H)に示すメモリセル1478は、トランジスタM4乃至M6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、RWL、WWL、BGL、およびGNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、WBLに電気的に接続してもよい。
トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。
なお、トランジスタM5、M6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至M6がOSトランジスタでもよい、この場合、メモリセルアレイ1470を単極性回路によって構成することができる。
上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、M6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に低くすることができる。
なお、本実施の形態に示す、周辺回路1411、およびメモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
本実施の形態に示す構成は、他の実施の形態や実施例に示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、図17を用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
図17(A)に示すように、チップ1200は、CPU(Central Processing Unit)1211、GPU(Graphics Processing Unit)1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
チップ1200には、バンプ(図示しない)が設けられ、図17(B)に示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。また、例えば、フラッシュメモリ1222に先の実施の形態に示すNOSRAMを用いることができる。
CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したNOSRAMや、DOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明の酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの演算を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータや、ノート型のコンピュータや、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図18にリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
図18(A)はUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。基板1104のメモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
図18(B)はSDカードの外観の模式図であり、図18(C)は、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。基板1113のメモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
図18(D)はSSDの外観の模式図であり、図18(E)は、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。基板1153のメモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
本実施例では、試料1A、試料1Bおよび試料1Cとして、本発明の一態様である、図1に示すトランジスタ200を有する半導体装置を作製し、トランジスタ200の電気特性の測定を行った。なお、トランジスタ200のチャネル長は60nm、チャネル幅は60nmとした。また、試料1A、試料1B、および試料1Cは、同一工程にて、複数個のトランジスタ200を形成した。試料1A、および試料1Bは、トランジスタ200の密度が0.89個/μm、試料1Cは、トランジスタ200の密度が、2.94個/μmとなるようにした。
ここで、試料1Aは、絶縁体272の膜厚を15nmで成膜した。一方、試料1Bおよび試料1Cは、絶縁体272の膜厚を5nmで成膜した。下表に、試料1A乃至試料1Cにおける絶縁体272の膜厚と、トランジスタ200の密度を示す。
<試料の作製方法>
以下に、試料1A、試料1B、および試料1Cの作製方法を説明する。
酸化物230aとなる第1の酸化物をとして、In−Ga−Zn酸化物をスパッタリング法により、In:Ga:Zn=1:3:4[原子数比]のターゲットを用いて成膜した。続いて、第1の酸化物上に、酸化物230bとなる第2の酸化物として、In−Ga−Zn酸化物をスパッタリング法により、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜した。なお、第1の酸化物と第2の酸化物とは、連続成膜した。
次に、第2の酸化物上に、導電体240となる窒化タンタル膜、およびバリア層245となる絶縁膜を成膜した。その後、当該窒化タンタル膜、当該絶縁膜、第2の酸化物、および第1の酸化物を加工し、酸化物230a、酸化物230b、導電体240a、および導電体240bを形成した。
次に、酸化物230cとなる第3の酸化物として、In−Ga−Zn酸化物をスパッタリング法により、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜した。
次に、絶縁体250となる酸化窒化シリコン膜を成膜した。
次に、絶縁体250となる酸化窒化シリコン膜上に、導電体260aとなる導電膜として、窒化チタン膜を成膜した。続いて、導電体260bとなる導電膜として、タングステン膜を成膜した。なお、窒化チタン膜、およびタングステン膜は連続成膜により形成した。
次に、絶縁体270となる膜として酸化アルミニウム膜を成膜した後、絶縁体271となる膜として酸化窒化シリコンを成膜した。その後、該酸化窒化シリコン膜、該酸化アルミニウム膜、該タングステン膜、および該窒化チタン膜を加工し、絶縁体271、絶縁体270、および導電体260を形成した。
次に、絶縁体272となる酸化アルミニウム膜を成膜した。成膜条件は、基板温度を250℃とし、Al(CHを含む固体を昇華させた原料ガスと、酸化剤としてOガス、およびOガスを用いた。
続いて、マスクを用いずに、上記酸化アルミニウム膜の一部、および絶縁体250となる酸化窒化シリコン膜に対し、異方性のドライエッチングを行い、導電体260の側壁部に絶縁体272を形成した。なお、当該ドライエッチングにより、絶縁体250となる膜の一部も除去し、絶縁体250を形成した。その後、絶縁体271、絶縁体272をマスクとして、酸化物230cとなる第3の酸化物の一部を除去し、酸化物230cを形成した。
次に、CVD法によって、絶縁体280となる酸化窒化シリコン膜を成膜した。続いて、CMP処理を行ない、当該酸化窒化シリコン膜を研磨し、酸化窒化シリコン膜の表面を平坦化することで、絶縁体280を形成した。
次に、絶縁体280上に、スパッタリング法によって、絶縁体282として酸化アルミニウム膜を、酸素を含む雰囲気下にて、成膜した。
以上の工程より、試料1A、乃至試料1Cを作製した。
<トランジスタの電気特性>
次に、試料2A乃至試料2Eの電気特性として、Id−Vg特性を測定した。
なお、Id−Vg特性の測定では、トランジスタ200の第1のゲート電極として機能する導電体260に印加する電位(以下、ゲート電位(Vg)ともいう)を、第1の値から第2の値まで変化させたときの、ソース電極として機能する導電体240sとドレイン電極として機能する導電体240dとの間の電流(以下、ドレイン電流(Id)ともいう)の変化を測定する。
ここでは、導電体240sに印加する電位(以下、ソース電位Vsともいう)と導電体240dに印加する電位(以下、ドレイン電位Vdともいう)との差である電圧(以下、ドレイン電圧ともいう)を+0.1V、または+1.2Vとし、ソース電位とゲート電位と差である電圧(以下、ゲート電圧ともいう)を−4.0Vから+4.0Vまで変化させたときのドレイン電流(Id)の変化を測定した。
なお、本測定においては、第2のゲート電極(バックゲート電極)として機能する導電体205の電位(以下、バックゲート電位(Vbg)ともいう)を、0.00Vとした。
図19に、試料1A、試料1B、および試料1Cのそれぞれ9個のトランジスタに対し、Id−Vg特性の初期特性を測定した結果を示す。なお、図19(A)に試料1Aの測定結果、図19(B)に試料1Bの測定結果、および図19(C)に試料1Cの測定結果を、それぞれ示す。
図1に示す結果より、試料1A乃至試料1Bは、優れた電気特性を有することがわかった。これは、絶縁体272を有することで、絶縁体280が有する過剰酸素が、導電体260に吸収されることが、抑制され、酸化物230へ、十分な過剰酸素が供給できたと推測できる。つまり、絶縁体280が有する過剰酸素は、効率的に酸化物230へと供給され、酸素欠損を補償することができることが確認できた。また、絶縁体272、および絶縁体270により、導電体260の酸化を抑制することができた。
なお、試料1Aと試料1Bとの比較より、絶縁体272は5nm程度の膜厚でも、十分に機能することがわかった。従って、複数のトランジスタ200を集積する場合、設計自由度が向上し、高集積化が可能となる。また、試料1Bと試料1Cとの比較より、トランジスタ200の密度に関わらず、良好な特性であることが確認できた。つまり、試料1Cのように、トランジスタ200の密度が高い場合でも、ばらつきや特性に変化は見られなかった。
以上より、本発明の一態様を用いたトランジスタは、優れた信頼性を有するトランジスタを有する半導体装置であることが確認できた。また、本発明の一態様を用いたトランジスタは良好な電気特性を有し、また、ばらつきが小さいことがわかった。
本実施例は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
本実施例では、試料2A、試料2B、試料2C、および試料2Dとして、本発明の一態様である、図2に示すトランジスタ200を有する半導体装置を作製し、トランジスタ200の電気特性の測定を行った。なお、トランジスタ200のチャネル長は60nm、チャネル幅は60nmとした。また試料2A、試料2B、試料2C、および試料2Dは、同一工程にて、複数個のトランジスタ200を形成し、トランジスタ200の密度が0.89個/μmとなるようにした。
本実施例では、絶縁体282を成膜する際の酸素ガスの割合により、絶縁体280が有する過剰酸素量を調整した。試料2A乃至試料2Dは、絶縁体283の成膜時において、酸素ガスの割合が異なる。試料2A乃至試料2Dにおいて、絶縁体283の成膜時の酸素ガスの割合を下表に示す。
また、本実施例では、トランジスタ200の酸化物半導体の近傍に、過剰酸素領域を有する構造体として絶縁体280を設けた。また、酸素を吸収する可能性がある構造体である導電体246と、過剰酸素領域を有する構造体である絶縁体280との間に、バリア性を有する構造体であるバリア層276を配置した。つまり、絶縁体280が有する過剰酸素が、他の構造体に吸収されることなく、効率的に酸化物230に、供給することができる。
<試料の作製方法>
以下に、試料2A、試料2B、試料2C、および試料2Dの作製方法を説明する。
まず、先の実施例と同様に、酸化物230を有するトランジスタ200を形成した。
次に、絶縁体280として、CVD法によって、膜厚60nmの酸化窒化シリコン膜を成膜した。成膜ガスは、シラン(SiH)、および一酸化二窒素(NO)を用いた。また、反応室の圧力を800Paとし、基板表度を325℃、150W(60MHz)の高周波(RF)電力を印加することで成膜した。
続いて、絶縁体280上に、スパッタリング法によって、絶縁体282として酸化アルミニウム膜を、酸素を含む雰囲気下にて、成膜した。成膜条件は、酸化アルミニウムのターゲットを用い、酸素(O)ガスとアルゴンガス(Ar)との混合雰囲気下にて、成膜温度250℃、圧力0.4Pa、ターゲットと基板との間の距離を60mm、2.5kWの電源電力(RF)を印加し、成膜した。
次に、絶縁体283として、ALD法により、酸化アルミニウムを成膜した。
以上の工程より、試料2A、乃至試料2Dを作製した。
<トランジスタの電気特性>
次に、試料2A乃至試料2Eの電気特性として、Id−Vg特性を測定した。なお、Id−Vg特性の測定は、先の実施例と同条件で行った。
図20に、試料2A乃至試料2Dのそれぞれ36個のトランジスタに対し、Id−Vg特性の初期特性を測定した結果を示す。なお、図20(A)に試料2Aの測定結果、図20(B)に試料2Bの測定結果、図20(C)に試料2Cの測定結果、および図20(D)に試料2Dの測定結果を、それぞれ示す。
図20に示す結果より、試料2A乃至試料2Bはトランジスタの電気特性を有することがわかった。従って、絶縁体280が有する過剰酸素は、効率的に酸化物230へと供給され、酸素欠損を補償することができることが確認できた。
ここで、絶縁体282の成膜条件より、絶縁体280が有する過剰酸素量は、試料2A、試料2B、試料2C、試料2Dの順で少ない。図2より、他の構造体に過剰酸素が他の構造体に吸収されることを抑制することで、酸化物半導体を有するトランジスタに供給する過剰酸素量を少なくしても、良好な電気特性を有するトランジスタを提供できることが確認できた。
以上より、本発明の一態様を用いたトランジスタは、優れた信頼性を有するトランジスタを有する半導体装置であることが確認できた。また、本発明の一態様を用いたトランジスタは良好な電気特性を有し、また、ばらつきが小さいことがわかった。
本実施例は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
100 容量素子、110 導電体、112 導電体、120 導電体、130 絶縁体、150 絶縁体、200 トランジスタ、205 導電体、210 絶縁体、212 絶縁体、214 絶縁体、216 絶縁体、218 導電体、220 絶縁体、222 絶縁体、224 絶縁体、230 酸化物、230a 酸化物、230A 酸化膜、230b 酸化物、230B 酸化膜、230c 酸化物、230C 酸化膜、240 導電体、240a 導電体、240A 導電膜、240b 導電体、240B 導電膜、240d 導電体、240s 導電体、241a ハードマスク、241A 膜、241b ハードマスク、241B 膜、245 バリア層、245a バリア層、245A バリア膜、245b バリア層、245B バリア膜、246 導電体、246a 導電体、246b 導電体、248 導電体、250 絶縁体、250A 絶縁膜、260 導電体、260a 導電体、260A 導電膜、260b 導電体、260B 導電膜、270 絶縁体、270A 絶縁膜、271 絶縁体、271A 絶縁膜、272 絶縁体、272A 絶縁膜、276 バリア層、276a バリア層、276b バリア層、280 絶縁体、282 絶縁体、283 絶縁体、284 絶縁体、300 トランジスタ、311 基板、313 半導体領域、314a 低抵抗領域、314b 低抵抗領域、315 絶縁体、316 導電体、320 絶縁体、322 絶縁体、324 絶縁体、326 絶縁体、328 導電体、330 導電体、350 絶縁体、352 絶縁体、354 絶縁体、356 導電体、400 トランジスタ、405 導電体、405a 導電体、405b 導電体、430c 酸化物、431a 酸化物、431b 酸化物、432a 酸化物、432b 酸化物、440 導電体、440a 導電体、440b 導電体、445 絶縁体、445a 絶縁体、445b 絶縁体、450 絶縁体、460 導電体、460a 導電体、460b 導電体、470 絶縁体、471 絶縁体、472 絶縁体

Claims (4)

  1. トランジスタと、第1の絶縁体と、第2の絶縁体と、を有し、
    前記トランジスタは、
    第1の金属酸化物上に、第1の導電体、および第2の導電体を有し、
    前記第1の導電体、前記第2の導電体、前記第1の金属酸化物上に、第2の金属酸化物を有し、
    前記第2の金属酸化物上に第3の絶縁体を有し、
    前記第3の絶縁体上に第3の導電体を有し、
    前記第3の導電体上に第4の絶縁体を有し、
    前記第3の導電体、および第4の絶縁体の側面に接して、サイドウォール形状の第5の絶縁体を有し、
    前記第5の絶縁体は、前記第2の金属酸化物、および第3の絶縁体を介して、前記第1の導電体、および前記第2の導電体と重畳する領域を有し、
    前記第1の絶縁体は、過剰酸素領域を有し、
    前記第2の絶縁体、前記第4の絶縁体、および前記第5の絶縁体は、酸素の拡散を抑制する機能を有することを特徴とする半導体装置。
  2. トランジスタと、第1の絶縁体と、第2の絶縁体と、第3の絶縁体と、第4の絶縁体と、第1のプラグと、第2のプラグとを有し、
    前記トランジスタは、
    第1の金属酸化物上に、第1の導電体、および第2の導電体を有し、
    前記第1の導電体、前記第2の導電体、前記第1の金属酸化物上に、第2の金属酸化物を有し、
    前記第2の金属酸化物上に第5の絶縁体を有し、
    前記第5の絶縁体上に第3の導電体を有し、
    前記第3の導電体上に第6の絶縁体を有し、
    前記第3の導電体、および第6の絶縁体の側面に接して、サイドウォール形状の第7の絶縁体を有し、
    前記第7の絶縁体は、前記第2の金属酸化物、および第5の絶縁体を介して、前記第1の導電体、および前記第2の導電体と重畳する領域を有し、
    前記第1の絶縁体は、過剰酸素領域を有し、
    前記第1の絶縁体、および前記第2の絶縁体は、前記第1の導電体を露出する第1の開口と、前記第2の導電体を露出する第2の開口を有し、
    前記第1のプラグは、前記第3の絶縁体を介して、前記第1の開口に埋め込まれ、
    前記第2のプラグは、前記第4の絶縁体を介して、前記第2の開口に埋め込まれ、
    前記第2の絶縁体、前記第3の絶縁体、前記第4の絶縁体、前記第6の絶縁体、および前記第7の絶縁体は、酸素の拡散を抑制する機能を有することを特徴とする半導体装置。
  3. 請求項1、または請求項2において、
    前記第1の導電体上に、第8の絶縁体を有し、
    前記第2の導電体上に、第9の絶縁体を有し、
    前記第8の絶縁体、および前記第9の絶縁体は、酸素の拡散を抑制する機能を有することを特徴とする半導体装置。
  4. 第1の金属酸化物上に、第1の導電体、および第2の導電体を形成し、
    前記第1の導電体、前記第2の導電体、前記第1の金属酸化物上に、第1の金属酸化膜を形成し、
    前記第1の金属酸化膜上に第1の絶縁膜を形成し、
    前記第1の絶縁膜上に、第1の導電膜を成膜し、
    前記第1の導電膜上に、第2の絶縁膜を成膜し、
    前記第1の導電膜、および前記第2の絶縁膜の一部を除去することで、第3の導電体、および第1の絶縁体を形成し、
    前記第1の金属酸化物の側面と、前記第1の導電体の側面および上面と、前記第2の導電体の側面および上面と、前記第3の導電体の側面と、第1の絶縁体の側面および上面と、に接して、第3の絶縁膜を形成し、
    前記第3の絶縁膜にエッチバック処理を行い、前記第3の絶縁膜の一部と、前記第1の絶縁膜の一部と、前記第1の金属酸化膜の一部と、を除去することで、第2の絶縁体と、第2の金属酸化物と、第1の絶縁体の側面および第3の導電体の側面に接する第3の絶縁体と、を形成することを特徴とする半導体装置の作製方法。
JP2017201507A 2017-10-18 2017-10-18 半導体装置、および半導体装置の作製方法 Withdrawn JP2019075484A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017201507A JP2019075484A (ja) 2017-10-18 2017-10-18 半導体装置、および半導体装置の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017201507A JP2019075484A (ja) 2017-10-18 2017-10-18 半導体装置、および半導体装置の作製方法

Publications (1)

Publication Number Publication Date
JP2019075484A true JP2019075484A (ja) 2019-05-16

Family

ID=66544293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017201507A Withdrawn JP2019075484A (ja) 2017-10-18 2017-10-18 半導体装置、および半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP2019075484A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090104A1 (ja) * 2019-11-08 2021-05-14 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090104A1 (ja) * 2019-11-08 2021-05-14 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Similar Documents

Publication Publication Date Title
JP6532710B2 (ja) 半導体装置の作製方法
JP2024050930A (ja) 半導体装置
JP2012256837A (ja) 記憶装置、及び半導体装置
WO2021191716A1 (ja) 半導体装置及び半導体装置の作製方法
JP7549639B2 (ja) 半導体装置
JP2017112390A (ja) 半導体装置
JP2012253327A (ja) 半導体装置、記憶装置および半導体装置の作製方法
US20230047805A1 (en) Semiconductor Device and Method For Manufacturing Semiconductor Device
WO2021053473A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019197946A1 (ja) 半導体装置、および半導体装置の作製方法
TW202025447A (zh) 半導體裝置
KR102012981B1 (ko) 반도체 장치
JPWO2020115595A1 (ja) 半導体装置、および半導体装置の作製方法
JP2019075484A (ja) 半導体装置、および半導体装置の作製方法
US20230329002A1 (en) Semiconductor device, capacitor, and manufacturing method thereof
WO2019016642A1 (ja) 半導体装置、および半導体装置の作製方法
US20220376113A1 (en) Transistor and electronic device
WO2021053450A1 (ja) 半導体装置
JP2021015976A (ja) 記憶装置
JPWO2019145807A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019162807A1 (ja) 半導体装置、および半導体装置の作製方法
WO2024079586A1 (ja) 半導体装置、及び記憶装置
WO2023209486A1 (ja) 半導体装置、及び記憶装置
WO2024095108A1 (ja) 半導体装置、及び記憶装置
WO2023237961A1 (ja) 半導体装置、記憶装置、及び半導体装置の作製方法

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200819