JP2019075451A - Photoelectric conversion element and method for manufacturing the same - Google Patents

Photoelectric conversion element and method for manufacturing the same Download PDF

Info

Publication number
JP2019075451A
JP2019075451A JP2017200340A JP2017200340A JP2019075451A JP 2019075451 A JP2019075451 A JP 2019075451A JP 2017200340 A JP2017200340 A JP 2017200340A JP 2017200340 A JP2017200340 A JP 2017200340A JP 2019075451 A JP2019075451 A JP 2019075451A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
amorphous selenium
conversion element
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017200340A
Other languages
Japanese (ja)
Inventor
和典 宮川
Kazunori Miyakawa
和典 宮川
成亨 為村
Shigeaki Tamemura
成亨 為村
大竹 浩
Hiroshi Otake
浩 大竹
節 久保田
Setsu Kubota
節 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2017200340A priority Critical patent/JP2019075451A/en
Publication of JP2019075451A publication Critical patent/JP2019075451A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

To provide a highly sensitive photoelectric conversion element which is formed so as to have a voltage resistive structure of high resistance, which never causes the breakdown of a film even if being subjected to application of a high voltage on a photoelectric conversion part, and which can cause a phenomenon of avalanche multiplication owing to a low dark current.SOLUTION: The photoelectric conversion element is arranged by laminating, on over a solid-state imaging element 7, such as a C-MOS, CCD or TFT, a voltage resistive layer 6 made of amorphous selenium, an electron-injection inhibiting reinforced layer 5 made of antimony trisulfide (SbS), a photoelectric conversion layer 4 made of amorphous selenium, an electric field relaxation layer 3 arranged by adding about 2000 ppm of lithium fluoride (LiF) to an amorphous selenium film, a hole-injection inhibiting reinforced layer 2 made of CeO, and a transparent electrode 1 made of ITO. The photoelectric conversion element has a structure in which the electron-injection inhibiting reinforced layer 5 made of antimony trisulfide (SbS) is sandwiched by the photoelectric conversion layer 4 of amorphous selenium and the voltage resistive layer 6. It is noted that light is incident on the side of the transparent electrode 1.SELECTED DRAWING: Figure 1

Description

本発明は、テレビカメラ等の撮像用あるいは医療診断用に好適な光電変換素子に関し、詳しくは、光電変換層を構成する非晶質セレン層と電子注入阻止強化層を構成する三硫化アンチモン層を順に配設した層構成とされた光電変換素子に関するものである。   The present invention relates to a photoelectric conversion device suitable for imaging or medical diagnosis such as a television camera, and more specifically, an amorphous selenium layer constituting the photoelectric conversion layer and an antimony trisulfide layer constituting the electron injection blocking and strengthening layer. The present invention relates to a photoelectric conversion element in which layers are sequentially arranged.

従来より、固体撮像素子上に非晶質セレンからなる光電変換層を形成し、同層に高電界を印加し、アバランシェ増倍現象を生ぜしめて、高い感度を得る光電変換素子が知られている。
光電変換層を非晶質セレンにより構成した場合、結晶セレンで構成した場合と比べて、増倍率を大幅に高めても、付加される雑音が少ない特性であることから、近年注目されている。
また、このような、光電変換素子としては、光電変換層の固体撮像素子側に、セレンと相性がよく、電子注入阻止機能を強化し得る層としての三硫化アンチモンからなる層を設けたものが知られている(特許文献1を参照)。
Conventionally, a photoelectric conversion element comprising amorphous selenium is formed on a solid-state imaging device, a high electric field is applied to the layer, an avalanche multiplication phenomenon is caused, and a high sensitivity is obtained. .
In the case where the photoelectric conversion layer is made of amorphous selenium, attention has been focused in recent years because noise added is small even if the multiplication factor is significantly increased as compared with the case where it is made of crystalline selenium.
In addition, as such a photoelectric conversion element, one provided with a layer made of antimony trisulfide as a layer having good compatibility with selenium and capable of enhancing the electron injection blocking function on the solid-state imaging element side of the photoelectric conversion layer It is known (refer patent document 1).

特許第1963469号Patent No. 1963469

ところで、固体撮像素子において、上述したような高い感度を得るための条件としては、基板(読出し回路)側である固体撮像素子最上部が、(1)汚れや異物のない清浄な状態とされていること、および(2)凹凸の少ない平坦な状態であることが必要となる。   By the way, in the solid-state imaging device, as a condition for obtaining the high sensitivity as described above, the uppermost portion of the solid-state imaging device on the substrate (readout circuit) side is (1) made clean without dirt or foreign matter. And (2) a flat state with few irregularities.

特に、非晶質セレン膜に、例えば1×10V/mの高電界を印加して動作させるアバランシェ増倍型の高感度光電変換膜(上記特許文献1を参照)においては、わずかな基板上の汚れ等により局所的に電界集中が生じてしまい、膜破壊が発生することが知られている。膜破懐が生じると大電流が流れ、暗電流が急増し、光電変換層を設けているC-MOS等
の固体撮像素子自体も壊れてしまう、という問題がある。
なお、非晶質セレンを主材料としたHARP(High-gain Avalanche Rushing amorphous Photoconductor)膜を撮像管に用いたHARP方式撮像管が知られているが、撮像管の場合には、大電流が流れても撮像管自体が壊れることはないので、固体撮像素子の場合のような問題は生じない。
In particular, in an avalanche multiplication type high sensitivity photoelectric conversion film (refer to Patent Document 1 above) operated by applying a high electric field of, for example, 1 × 10 8 V / m to an amorphous selenium film, a slight substrate is required. It is known that electric field concentration locally occurs due to the above-mentioned contamination or the like, and film breakage occurs. When film breakage occurs, a large current flows, and the dark current increases rapidly, which causes a problem that the solid-state imaging device itself such as C-MOS provided with the photoelectric conversion layer is also broken.
In addition, although the HARP system imaging tube which used the HARP (High-gain Avalanche Rushing amorphous photoconductor) film which made amorphous selenium the main material for an imaging tube is known, in the case of an imaging tube, a large current flows However, since the image pickup tube itself is not broken, the problem as in the case of the solid-state imaging device does not occur.

本発明はこのような事情に鑑みなされたものであり、高抵抗な耐圧構造に形成され、光電変換膜に高い電圧を印加しても膜破壊が生ぜず、低暗電流によってアバランシェ増倍現象を起こし得る高感度な光電変換素子を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and is formed in a high-resistance breakdown voltage structure, no film breakage occurs even if a high voltage is applied to the photoelectric conversion film, and avalanche multiplication phenomenon is caused by low dark current. It is an object of the present invention to provide a highly sensitive photoelectric conversion element that can be caused.

以上の目的を達成するため、本発明の光電変換素子は以下のような構成とされている。
すなわち、本発明の光電変換素子は、ベースとなる固体撮像素子上に、非晶質セレンからなる耐圧層、三硫化アンチモン層、および非晶質セレンからなる光電変換層を積層したことを特徴とするものである。
In order to achieve the above object, the photoelectric conversion element of the present invention is configured as follows.
That is, the photoelectric conversion device of the present invention is characterized in that a pressure-resistant layer made of amorphous selenium, an antimony trisulfide layer, and a photoelectric conversion layer made of amorphous selenium are laminated on a solid-state imaging device as a base. It is

この場合において、前記三硫化アンチモン層は電子注入阻止機能を強化する層とするこ
とができる。
また、前記耐圧層に砒素(As)を添加することが好ましい。
また、前記光電変換層の光入射側に、非晶質セレン中にフッ化リチウム(LiF)を添加してなる電界緩和層を設けることが好ましい。
In this case, the antimony trisulfide layer can be a layer that enhances the electron injection blocking function.
Preferably, arsenic (As) is added to the pressure resistant layer.
Moreover, it is preferable to provide an electric field relaxation layer formed by adding lithium fluoride (LiF) to amorphous selenium on the light incident side of the photoelectric conversion layer.

また、本発明の光電変換素子の製造方法は、ベースとなる固体撮像素子上に、非晶質セレンからなる耐圧層を形成し、続いて、該耐圧層上に三硫化アンチモン層を形成し、次に、該三硫化アンチモン層上に非晶質セレンからなる光電変換層を積層する、ことを特徴とするものである。   Further, in the method of manufacturing a photoelectric conversion device according to the present invention, a pressure-resistant layer made of amorphous selenium is formed on a solid-state imaging device as a base, and then an antimony trisulfide layer is formed on the pressure-resistant layer. Next, a photoelectric conversion layer made of amorphous selenium is laminated on the antimony trisulfide layer.

本発明の光電変換素子およびその製造方法によれば、固体撮像素子上に、非晶質セレンからなる耐圧層、三硫化アンチモン層、および非晶質セレンからなる光電変換層を順に積層することにより、三硫化アンチモン層の固体撮像素子側に非晶質セレン層からなる高抵抗な耐圧層を設けた耐圧構造とすることができ、三硫化アンチモンからなる電子注入阻止強化層の効果と相俟って、電子の流れが緩和され、光電変換素子に高電圧を印加しても膜破壊、および固体撮像素子へのダメージが発生する虞を低減することができる。   According to the photoelectric conversion device and the method of manufacturing the same of the present invention, the pressure-resistant layer made of amorphous selenium, the antimony trisulfide layer, and the photoelectric conversion layer made of amorphous selenium are sequentially laminated on the solid-state imaging device. A high voltage resistance layer comprising an amorphous selenium layer provided on the solid-state image sensor side of the antimony trisulfide layer to form a pressure-resistant structure, which is combined with the effect of the electron injection blocking / reinforcing layer formed of antimony trisulfide Therefore, the flow of electrons is alleviated, and even if a high voltage is applied to the photoelectric conversion element, the possibility of film breakage and damage to the solid-state imaging element can be reduced.

本発明の実施形態に係る光電変換素子の断面構造を示す概略図である。It is the schematic which shows the cross-section of the photoelectric conversion element which concerns on embodiment of this invention. 実施例に係る、動作評価用のサンドイッチセルの層構成を示す概略図である。It is the schematic which shows the laminated constitution of the sandwich cell for operation evaluation based on an Example. 比較例(従来例)に係る、動作評価用のサンドイッチセルの層構成を示す概略図である。It is the schematic which shows the laminated constitution of the sandwich cell for operation evaluation based on a comparative example (conventional example). 実施例に係る、サンドイッチセルの電圧−暗電流特性を示すグラフである。It is a graph which shows the voltage-dark current characteristic of the sandwich cell based on an Example. 実施例に係る、サンドイッチセルの電圧−電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic of the sandwich cell based on an Example. 比較例(従来例)に係る、サンドイッチセルの電圧−暗電流特性を示すグラフである。It is a graph which shows the voltage-dark current characteristic of a sandwich cell based on a comparative example (conventional example). 比較例(従来例)に係る、サンドイッチセルの電圧−電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic of a sandwich cell based on a comparative example (conventional example). 実施例に係る、サンドイッチセルの量子効率(分光感度)特性を示すグラフである。It is a graph which shows the quantum efficiency (spectral sensitivity) characteristic of a sandwich cell concerning an example.

<実施形態>
以下、本発明の実施形態に係る光電変換素子について図面を用いて説明する。
図1に示すように、本実施形態に係る光電変換素子は、C−MOS、CCD、TFT等の固体撮像素子7上に、非晶質セレンからなる耐圧層6、三硫化アンチモン(Sb2S3)か
らなる電子注入阻止強化層5、非晶質セレンからなる光電変換層4、非晶質セレン膜中にフッ化リチウム(LiF)を2000ppm程度添加してなる電界緩和層3、酸化セリウム(CeO2)膜からなる正孔注入阻止強化層2、およびITO膜からなる透明電極1を積層してなる。な
お、光は、透明電極1側から入射する。
Embodiment
Hereinafter, a photoelectric conversion element according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the photoelectric conversion device according to the present embodiment includes a pressure-resistant layer 6 made of amorphous selenium, antimony trisulfide (Sb 2 S, and the like) on a solid-state imaging device 7 such as C-MOS, CCD, or TFT. 3 ) electron injection blocking and reinforcing layer 5, photoelectric conversion layer 4 made of amorphous selenium, electric field relaxation layer 3 formed by adding about 2000 ppm of lithium fluoride (LiF) into amorphous selenium film, cerium oxide ( A hole injection blocking and reinforcing layer 2 made of a CeO 2 film and a transparent electrode 1 made of an ITO film are laminated. Light is incident from the transparent electrode 1 side.

本実施形態の光電変換素子においては、非晶質セレンからなる耐圧層6、三硫化アンチモン(Sb2S3)からなる電子注入阻止強化層5、および非晶質セレンからなる光電変換層
4によって、三硫化アンチモン(Sb2S3)からなる層を、非晶質セレンからなる層によっ
てサンドイッチされた特有の構造を備えており、高抵抗な耐圧構造を確保している。
In the photoelectric conversion element of the present embodiment, the pressure-resistant layer 6 made of amorphous selenium, the electron injection blocking and reinforcing layer 5 made of antimony trisulfide (Sb 2 S 3 ), and the photoelectric conversion layer 4 made of amorphous selenium A layer having antimony trisulfide (Sb 2 S 3 ) is provided with a unique structure sandwiched by layers made of amorphous selenium to ensure a high-resistance pressure-resistant structure.

すなわち、本実施形態においては、このような特有のサンドイッチ構造を備えたこと、特に光入射側とは反対側に非晶質セレンよりなる耐圧層6を設けたことにより、三硫化ア
ンチモンからなる電子注入阻止強化層5の効果と相俟って、電子の流れを緩和せしめ、光電変換素子に高電圧を印加しても膜破壊、および固体撮像素子へのダメージが発生する虞を低減するようにしている。
That is, in the present embodiment, an electron made of antimony trisulfide is provided by providing such a unique sandwich structure, in particular, by providing the pressure-resistant layer 6 made of amorphous selenium on the side opposite to the light incident side. In combination with the effect of the injection blocking reinforcement layer 5, the flow of electrons is alleviated, and the risk of film breakage and damage to the solid-state imaging device is reduced even if a high voltage is applied to the photoelectric conversion device. ing.

また、本実施形態においては、光電変換層4に非晶質セレンを用いたことにより、結晶セレンを用いた場合と比べて増幅率を高めることができ、高感度の光電変換素子を得ることができる。
また、本実施形態においては、三硫化アンチモンからなる電子注入阻止強化層5を設けたことにより、光電変換層4を構成する非晶質セレン層と、この三硫化アンチモン層との接合部が形成され、これにより外部からの電子の侵入を阻止することができる。
Further, in the present embodiment, by using amorphous selenium for the photoelectric conversion layer 4, the amplification factor can be increased as compared to the case where crystalline selenium is used, and a photoelectric conversion element with high sensitivity can be obtained. it can.
Further, in the present embodiment, by providing the electron injection blocking / reinforcing layer 5 made of antimony trisulfide, a junction between the amorphous selenium layer constituting the photoelectric conversion layer 4 and the antimony trisulfide layer is formed. This can prevent the entry of electrons from the outside.

また、非晶質セレンからなる耐圧層6に砒素(As)を添加することが好ましく、これにより、耐熱効果を向上させることができる。但し、耐圧層6としての効果を奏する上では、砒素(As)の添加量を3重量%以下とすることが好ましい。
さらに、本実施形態においては、光電変換層4の光入射側に、非晶質セレン中にフッ化リチウム(LiF)を微量添加してなる電界緩和層3を設けているが、このようにフッ化リチウムを添加することにより、このフッ化リチウムに捕獲された正孔が形成する正の空間電荷によって内部電界を緩和することができ、異物付着による膜欠陥の発生を防止することができる。
Further, it is preferable to add arsenic (As) to the pressure-resistant layer 6 made of amorphous selenium, whereby the heat resistance effect can be improved. However, in order to exert the effect as the pressure-resistant layer 6, it is preferable to set the addition amount of arsenic (As) to 3% by weight or less.
Furthermore, in the present embodiment, the electric field relaxation layer 3 formed by adding a small amount of lithium fluoride (LiF) to amorphous selenium is provided on the light incident side of the photoelectric conversion layer 4. By adding lithium fluoride, the internal electric field can be relaxed by the positive space charge formed by the holes captured by the lithium fluoride, and the generation of a film defect due to the adhesion of foreign matter can be prevented.

本実施形態に係る光電変換素子の製造方法は以下のようにして行われる。
まず、固体撮像素子7上に、耐圧層6である非晶質セレン膜を形成する場合には、真空容器(真空度1×10-5Pa )中で、固体撮像素子7を回転(60回転/分)させながら抵抗加
熱蒸着法を用いて固体撮像素子7上の画素領域全面に、例えば1.5μmの厚みに形成する。
次に、この耐圧層6上に、電子注入阻止強化層5である三硫化アンチモン(Sb2S3)層
を、上記真空容器(真空度1×10-5Pa )中で、抵抗加熱蒸着法(真空度:1×10-5Pa )を用いて、例えば70nmの厚みに形成する。
The manufacturing method of the photoelectric conversion element which concerns on this embodiment is performed as follows.
First, in the case of forming an amorphous selenium film as the pressure-resistant layer 6 on the solid-state imaging device 7, the solid-state imaging device 7 is rotated (60 rotations) in a vacuum container (vacuum degree 1 × 10 −5 Pa). / Min) is formed on the entire surface of the pixel region on the solid-state imaging device 7 using a resistance heating evaporation method, for example, to a thickness of 1.5 .mu.m.
Next, on this pressure-resistant layer 6, the antimony trisulfide (Sb 2 S 3 ) layer which is the electron injection blocking and reinforcing layer 5 is applied by the resistance heating evaporation method in the above-mentioned vacuum vessel (vacuum degree 1 × 10 -5 Pa). It is formed, for example, to a thickness of 70 nm using (vacuum degree: 1 × 10 -5 Pa).

次に、電子注入阻止強化層5上に、光電変換層4である非晶質セレン膜を形成する場合には、耐圧層6と同様に、上記真空容器(真空度1×10-5Pa )中で、固体撮像素子7を回転(60回転/分)させながら抵抗加熱蒸着法を用いて、例えば1.5μmの厚みに形成する。
さらに、光電変換層4上に、電界緩和層3として、非晶質セレン中にフッ化リチウム(LiF)を2000ppm程度添加した層を、例えば60nmの厚みに形成する。
Next, when forming an amorphous selenium film which is the photoelectric conversion layer 4 on the electron injection blocking / reinforcing layer 5, the above-mentioned vacuum container (vacuum degree 1 × 10 −5 Pa) as in the pressure-resistant layer 6. The solid-state imaging device 7 is formed in a thickness of, for example, 1.5 μm using resistance heating evaporation while rotating (60 rotations / minute).
Further, on the photoelectric conversion layer 4, a layer obtained by adding about 2000 ppm of lithium fluoride (LiF) in amorphous selenium is formed to a thickness of, for example, 60 nm as the electric field relaxation layer 3.

次に、電界緩和層3上に、正孔注入阻止強化層2である酸化セリウム(CeO2)層を、上記真空容器(真空度1×10-5Pa 、酸素ガス分圧 7.6×10-3Pa・アルゴンガス分圧 6.0×10-1Pa)中で、RFスパッタ法を用いて、例えば厚さ20nmの厚みに成膜する。
この後、正孔注入阻止強化層2上に、透明電極1としてのITO膜を、上記真空容器(真
空度1×10-5Pa 、酸素ガス分圧 7.6×10-3Pa・アルゴンガス分圧 6.0×10-1Pa)中で、DCスパッタ法を用いて、例えば30nmの厚みに形成する。
これにより、本実施形態に係る光電変換素子を形成することができる。
Next, on the electric field relaxation layer 3, a cerium oxide (CeO 2 ) layer which is the hole injection blocking / reinforcing layer 2 is put into the above-mentioned vacuum container (vacuum degree 1 × 10 -5 Pa, oxygen gas partial pressure 7.6 × 10 -3). The film is formed to a thickness of, for example, 20 nm in thickness by RF sputtering in Pa · argon gas partial pressure 6.0 × 10 −1 Pa).
After that, the ITO film as the transparent electrode 1 is formed on the hole injection blocking / reinforcing layer 2 in the above vacuum container (vacuum degree 1 × 10 −5 Pa, oxygen gas partial pressure 7.6 × 10 −3 Pa · argon gas partial pressure The film is formed to a thickness of, for example, 30 nm by DC sputtering in 6.0 × 10 −1 Pa).
Thereby, the photoelectric conversion element according to the present embodiment can be formed.

<評価>
図1を用いて説明した、本実施形態に係る光電変換素子のうちの光電変換部を評価するための構成として、図2に示すような実施例に係る試料1と、図3に示すような比較例(従来例)に係る試料2を作成し、実施例に係る試料1を比較例に係る試料2と比較することにより評価を行った。
<Evaluation>
As a configuration for evaluating the photoelectric conversion part of the photoelectric conversion element according to the present embodiment described with reference to FIG. 1, the sample 1 according to the embodiment as shown in FIG. 2 and as shown in FIG. The sample 2 according to the comparative example (conventional example) was prepared, and the evaluation was performed by comparing the sample 1 according to the example with the sample 2 according to the comparative example.

(試料1)
まず、ガラス基板(材料:ソーダーライムガラス、大きさ:25mm×35mm、厚み:1.6mm
)9の一方の面(図2においては上面)に、金属電極8を形成し(材料:モリブデン、成膜法:DCスパッタ法、大きさ:2.0mm×12.5mm、厚み:100nm)、この上面を覆うように、耐圧層6である非晶質セレン膜を形成した(材料:非晶質セレン、成膜法:抵抗加熱蒸着法、大きさ:4.5mm×3.5mm、厚み:1.5μm)。
次に、電子注入阻止強化層5を形成した(材料:三硫化アンチモン、成膜法:抵抗加熱蒸着法、真空度1×10-5Pa 、大きさ:4.5mm×3.5mm、厚み:70nm)。
(Sample 1)
First, a glass substrate (material: soda lime glass, size: 25 mm × 35 mm, thickness: 1.6 mm
Metal electrode 8 is formed on one surface (upper surface in FIG. 2) of 9) (material: molybdenum, film forming method: DC sputtering method, size: 2.0 mm × 12.5 mm, thickness: 100 nm), The amorphous selenium film which is the pressure-resistant layer 6 was formed so as to cover (material: amorphous selenium, film forming method: resistance heating evaporation method, size: 4.5 mm × 3.5 mm, thickness: 1.5 μm).
Next, the electron injection blocking reinforcing layer 5 was formed (material: antimony trisulfide, film forming method: resistance heating evaporation method, vacuum degree 1 × 10 −5 Pa, size: 4.5 mm × 3.5 mm, thickness: 70 nm) .

次に、光電変換層4である非晶質セレン膜を形成した(材料:非晶質セレン、成膜法:抵抗加熱蒸着法、大きさ:4.5mm×3.5mm、厚さ:1.5μm)。
さらに、電界緩和層3を、非晶質セレン膜中にフッ化リチウム(LiF)を2000ppm程度添加した層により形成した(成膜法:RFスパッタ法、大きさ:4.5mm×3.5mm、厚み:60nm)。
Next, an amorphous selenium film which is the photoelectric conversion layer 4 was formed (material: amorphous selenium, film forming method: resistance heating evaporation method, size: 4.5 mm × 3.5 mm, thickness: 1.5 μm).
Furthermore, the electric field relaxation layer 3 was formed of a layer obtained by adding about 2000 ppm of lithium fluoride (LiF) in an amorphous selenium film (film forming method: RF sputtering method, size: 4.5 mm × 3.5 mm, thickness: 60 nm).

次に、正孔注入阻止強化層2が光電変換層4を覆うように形成した(材料:酸化セリウム(CeO2)成膜法:RFスパッタ法、酸素ガス分圧:7.6×10-3Pa、アルゴンガス分圧:6.0×10-1Pa、大きさ:5.0mm×4.0mm、厚み:20nm)。
最後に、透明電極1を形成した(材料:ITO、成膜法:DCスパッタ法、酸素ガス分圧:7.6×10-1Pa、アルゴンガス分圧:6.0×10-1Pa、大きさ:7.0mm×2.0mm、膜厚:30nm)。
このようにして形成された試料1の、セルとして動作する領域は、全ての層が重なり合う、2.0mm×2.0mmの0.04cm2の領域である。
Next, the hole injection blocking / reinforcing layer 2 was formed to cover the photoelectric conversion layer 4 (material: cerium oxide (CeO 2 ) film forming method: RF sputtering method, oxygen gas partial pressure: 7.6 × 10 −3 Pa, Argon gas partial pressure: 6.0 × 10 −1 Pa, size: 5.0 mm × 4.0 mm, thickness: 20 nm).
Finally, the transparent electrode 1 was formed (material: ITO, film forming method: DC sputtering method, oxygen gas partial pressure: 7.6 × 10 −1 Pa, argon gas partial pressure: 6.0 × 10 −1 Pa, size: 7.0 mm × 2.0 mm, film thickness: 30 nm).
The area of the sample 1 thus formed to operate as a cell is an area of 0.04 mm 2 of 2.0 mm × 2.0 mm where all the layers overlap.

(試料2)
耐圧層6を形成しなかったこと以外は、試料1と同様にして試料2を形成した。なお、図3において、各部材の符号は、図2の対応する部材の符号に10を加算して表した。
このようにして形成された試料2の、セルとして動作する領域は、上記試料1と同様に0.04cm2の領域である。
(Sample 2)
The sample 2 was formed in the same manner as the sample 1 except that the pressure-resistant layer 6 was not formed. In addition, in FIG. 3, the code | symbol of each member added and represented 10 to the code | symbol of the corresponding member of FIG.
The area of the sample 2 thus formed to operate as a cell is an area of 0.04 cm 2 as in the case of the sample 1 described above.

(評価結果)
このようにして得られた、実施例に係る試料1について、光入射側の透明電極1に正の電圧を、逆側の金属電極8に負の電圧を各々印加し、電流計(A)を用いて動作評価を行
った。
同様に、比較例に係る試料2について、光入射側の透明電極11に正の電圧を、逆側の金属電極18に負の電圧を各々印加し、電流計(A)を用いて動作評価を行った。
なお、入射光の波長は、いずれの試料に対しても450nmとした。
(Evaluation results)
In the sample 1 according to the example thus obtained, a positive voltage is applied to the transparent electrode 1 on the light incident side, and a negative voltage is applied to the metal electrode 8 on the opposite side, and an ammeter (A) is obtained. We used it to evaluate its performance.
Similarly, for the sample 2 according to the comparative example, a positive voltage is applied to the transparent electrode 11 on the light incident side and a negative voltage is applied to the metal electrode 18 on the opposite side, and the operation evaluation is performed using the ammeter (A). went.
The wavelength of incident light was 450 nm for all samples.

得られた測定値に基づき、電圧−暗電流特性および電圧−信号電流(ここでの信号電流は、暗電流を含む測定値である実信号電流から暗電流を減じたものである)特性のグラフを作成した。   Graph of voltage-dark current characteristics and voltage-signal current (here, the signal current is a value obtained by subtracting dark current from actual signal current which is a measured value including dark current) based on the obtained measured values It was created.

すなわち、実施例に係る試料1の電圧−暗電流特性を示すグラフを図4に、実施例に係る試料1の電圧−電流特性(電圧−暗電流特性および電圧−信号電流特性)を示すグラフを図5に、比較例に係る試料2の電圧−暗電流特性を示すグラフを図6に、比較例に係る試料2の電圧−電流特性(電圧−暗電流特性および電圧−信号電流特性)を示すグラフを図7に、それぞれ示す。なお、何れのグラフも、横軸は電圧(V)を表すものであり、縦軸は電流(A)を表すものである。   That is, the graph showing the voltage-dark current characteristics of the sample 1 according to the embodiment is shown in FIG. 4 and the graph showing the voltage-current characteristics (voltage-dark current characteristics and voltage-signal current characteristics) of the sample 1 according to the embodiment FIG. 5 shows a graph showing the voltage-dark current characteristics of the sample 2 according to the comparative example in FIG. 6, and shows a voltage-current characteristic (voltage-dark current characteristics and voltage-signal current characteristics) of the sample 2 according to the comparative example The graphs are shown in FIG. 7 respectively. In each graph, the horizontal axis represents voltage (V), and the vertical axis represents current (A).

この結果、比較例のものでは、両電極11、18間に50V程度の電圧を印加した時点で暗電流が急激に増加し、膜破壊が生じた(図6、7を参照)のに対し、実施例のものでは、200Vの高電圧を印加した場合でも、膜が破壊されず、正常に光電変換動作が行われた(図4、5を参照)。また高電界印加(増倍動作)時でも暗電流が少なく、膜が破壊
されないことが確認された。
As a result, in the comparative example, when a voltage of about 50 V was applied between both the electrodes 11 and 18, the dark current increased sharply and film breakage occurred (see FIGS. 6 and 7), In the example, even when a high voltage of 200 V was applied, the film was not broken, and the photoelectric conversion operation was performed normally (see FIGS. 4 and 5). In addition, it was confirmed that the film was not broken even when a high electric field was applied (multiplication operation) and the dark current was small.

また、実施例のものでは、150V(108V/m)近傍からアバランシェ増倍現象が起きることが確認された(図5を参照)。
また、図8は、実施例に係る試料1についての、印加電圧に対する分光感度特性(量子効率特性)を示すグラフである。
図8から明らかなように、印加電圧を200Vとしたときには、増倍率を約3.5まで高めることができた(波長450nm近傍)。また、印加電圧を200Vとしたときには、380〜650nmの可視領域の範囲において、増倍効果が確認された。
Moreover, in the example of the example, it was confirmed that the avalanche multiplication phenomenon occurs from around 150 V (10 8 V / m) (see FIG. 5).
Moreover, FIG. 8 is a graph which shows the spectral sensitivity characteristic (quantum efficiency characteristic) with respect to the applied voltage about the sample 1 which concerns on an Example.
As apparent from FIG. 8, when the applied voltage is 200 V, the multiplication factor can be increased to about 3.5 (wavelength near 450 nm). In addition, when the applied voltage was 200 V, the multiplication effect was confirmed in the visible region of 380 to 650 nm.

本発明の光電変換素子およびその製造方法としては、上記実施形態のものに限られるものではなく、その他の種々の態様の変更が可能である。例えば、上記実施形態における、各層の構成材料を適宜変更することが可能であり、透明電極1の構成材料をITOに替えて、SnO、IT、Al、Au、Ni等から構成してもよい。また、正孔注入阻止強化層2の構成材料として、酸化セリウム(CeO2)に替えて、Ga、In、G
eO、SiC等から構成してもよい。さらに、電界緩和層3の添加材料をLiFに替えてKF、InO等としてもよい。何れの変更によっても、上記実施形態のものと略同様の効果を奏することができる。
The photoelectric conversion element of the present invention and the method of manufacturing the same are not limited to those of the above embodiment, and various other modifications can be made. For example, it is possible to appropriately change the constituent material of each layer in the above embodiment, and the constituent material of the transparent electrode 1 may be replaced with ITO and may be made of SnO 2 , IT, Al, Au, Ni, etc. . Furthermore, as a material for the hole injection blocking reinforcing layer 2, instead of cerium oxide (CeO 2), Ga 2 O 3, In 2 O 3, G
eO 2, may be formed from such as SiC. Furthermore, the additive material of the electric field relaxation layer 3 may be changed to LiF to be KF, InO 3 or the like. With any change, substantially the same effect as that of the above embodiment can be obtained.

また、必要に応じて、層間に他の層を挿入することが可能である。
さらに、耐熱性を強化するために光電変換部4および耐圧層6を構成する非晶質セレンに3重量%以下のひ素(As)を添加することが好ましく、このようにひ素(As)を添加し
ても、添加しない場合と同様の本発明の効果を奏することができる。
In addition, it is possible to insert another layer between the layers as needed.
Furthermore, it is preferable to add 3 wt% or less of arsenic (As) to the amorphous selenium constituting the photoelectric conversion part 4 and the pressure-resistant layer 6 in order to enhance heat resistance, and thus addition of arsenic (As) Even if it does not add, the same effect of the present invention can be produced.

上述した実施形態における各層の厚みは、適宜、薄くまたは厚くすることができる。
また、本発明の光電変換素子は、撮像用の他、種々の用途に適用することができる。例えば、放射線医療診断の分野への応用が可能である。この場合において、X線を透過させないようにし得る、150μm以上の超厚膜の光電変換層を有する、本発明の光電変換素子を用いることができる。
The thickness of each layer in the embodiment described above can be made thin or thick as appropriate.
Further, the photoelectric conversion element of the present invention can be applied to various uses other than for imaging. For example, application to the field of radiological medical diagnosis is possible. In this case, it is possible to use the photoelectric conversion element of the present invention which has an ultra-thick film photoelectric conversion layer of 150 μm or more which can prevent X-rays from being transmitted.

1、11 透明電極(ITO)
2、12 正孔注入阻止強化層(CeO
3、13 電界緩和層(非晶質Se+LiF(2000ppm))
4、14 光電変換層(非晶質Se)
5、15 電子注入阻止強化層(Sb
6 耐圧層(非晶質Se)
7 固体撮像素子
8、18 金属電極(Mo)
9 ガラス基板
A 電流計
1, 11 Transparent electrode (ITO)
2, 12 Hole injection blocking enhancement layer (CeO 2 )
3, 13 Electric field relaxation layer (amorphous Se + LiF (2000 ppm))
4, 14 Photoelectric conversion layer (amorphous Se)
5, 15 Electron injection blocking enhancement layer (Sb 2 S 3 )
6 Pressure resistant layer (amorphous Se)
7 Solid-state image sensor 8, 18 Metal electrode (Mo)
9 Glass substrate A ammeter

Claims (5)

固体撮像素子をベースとして、非晶質セレンからなる耐圧層と、三硫化アンチモン層と、非晶質セレンからなる光電変換層を積層してなることを特徴とする光電変換素子。   What is claimed is: 1. A photoelectric conversion device comprising a solid-state imaging device as a base, and a pressure-resistant layer made of amorphous selenium, an antimony trisulfide layer, and a photoelectric conversion layer made of amorphous selenium. 前記三硫化アンチモン層は電子注入阻止機能を強化する層であることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion device according to claim 1, wherein the antimony trisulfide layer is a layer that enhances an electron injection blocking function. 前記耐圧層に砒素(As)を添加したことを特徴とする請求項1または2に記載の光電変換素子。   The photoelectric conversion element according to claim 1 or 2, wherein arsenic (As) is added to the pressure-resistant layer. 前記光電変換層の光入射側に、非晶質セレン中にフッ化リチウム(LiF)を添加してなる電界緩和層を設けてなる請求項1〜3のうちいずれか1項に記載の光電変換素子。   The photoelectric conversion according to any one of claims 1 to 3, wherein an electric field relaxation layer formed by adding lithium fluoride (LiF) in amorphous selenium is provided on the light incident side of the photoelectric conversion layer. element. 固体撮像素子をベースとして、非晶質セレンからなる耐圧層を形成し、続いて、該耐圧層上に三硫化アンチモン層を形成し、次に、該三硫化アンチモン層上に非晶質セレンからなる光電変換層を積層する、ことを特徴とする光電変換素子の製造方法。   Based on the solid-state imaging device, a pressure-resistant layer made of amorphous selenium is formed, an antimony trisulfide layer is subsequently formed on the pressure-resistant layer, and then amorphous selenium is formed on the antimony trisulfide layer. A method of manufacturing a photoelectric conversion element, comprising laminating the photoelectric conversion layer according to
JP2017200340A 2017-10-16 2017-10-16 Photoelectric conversion element and method for manufacturing the same Pending JP2019075451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017200340A JP2019075451A (en) 2017-10-16 2017-10-16 Photoelectric conversion element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200340A JP2019075451A (en) 2017-10-16 2017-10-16 Photoelectric conversion element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2019075451A true JP2019075451A (en) 2019-05-16

Family

ID=66544207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200340A Pending JP2019075451A (en) 2017-10-16 2017-10-16 Photoelectric conversion element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2019075451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021050814A1 (en) * 2019-09-12 2021-03-18 The Research Foundation For The State University Of New York High-gain amorphous selenium photomultiplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021050814A1 (en) * 2019-09-12 2021-03-18 The Research Foundation For The State University Of New York High-gain amorphous selenium photomultiplier

Similar Documents

Publication Publication Date Title
TWI718868B (en) Photoelectric conversion element, imaging device, light sensor and manufacturing method of photoelectric conversion element
JP6384822B2 (en) Image sensor and manufacturing method thereof
JP4908289B2 (en) Image processing apparatus, method, and program
JP5185003B2 (en) Radiation detector
JP5052181B2 (en) Radiation detector
JP2019075451A (en) Photoelectric conversion element and method for manufacturing the same
JP7116597B2 (en) Photoelectric conversion element and imaging device
JP6362257B2 (en) PHOTOELECTRIC CONVERSION ELEMENT, METHOD FOR PRODUCING PHOTOELECTRIC CONVERSION ELEMENT, LAMINATED SOLID IMAGE PICKUP ELEMENT, AND SOLAR CELL
WO2016167179A1 (en) Imaging panel and x-ray imaging device equipped with same
JP6463937B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP5070031B2 (en) Radiation image detector
JP2008288318A (en) Radiographic image detector
JP2008166539A (en) Method of manufacturing photoelectric conversion element, photoelectric conversion element and solid-state image sensor
JP2002057314A (en) Image sensing device and its operation method
JP2015225886A (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, laminate type solid-state imaging device, and solar battery
JP2008288253A (en) Process for fabricating functional element, photoelectric conversion element, image sensor
JP2009164215A (en) Radiological image detecting device and manufacturing method of the radiological image detecting device
JP2006049773A (en) X-ray detector
JP2010161269A (en) Organic photoelectric conversion element and method of manufacturing the same, and organic photoelectric conversion imaging element
KR20160111671A (en) Image sensor and manufacturing method thereof
US11011570B2 (en) Imaging panel and method for manufacturing same
JP7344086B2 (en) Photoelectric conversion element, its manufacturing method, and stacked image sensor
JP2007103408A (en) Radiation detector
JP6768413B2 (en) Photoelectric conversion element and imaging device
JP3959398B2 (en) X-ray flat panel detector

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180427