JP2019074335A - Tire grounding condition evaluation method - Google Patents

Tire grounding condition evaluation method Download PDF

Info

Publication number
JP2019074335A
JP2019074335A JP2017198661A JP2017198661A JP2019074335A JP 2019074335 A JP2019074335 A JP 2019074335A JP 2017198661 A JP2017198661 A JP 2017198661A JP 2017198661 A JP2017198661 A JP 2017198661A JP 2019074335 A JP2019074335 A JP 2019074335A
Authority
JP
Japan
Prior art keywords
test piece
rubber test
tire
ground contact
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017198661A
Other languages
Japanese (ja)
Other versions
JP7017899B2 (en
Inventor
直生 諫山
Naoki Isayama
直生 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd, Toyo Tire Corp filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2017198661A priority Critical patent/JP7017899B2/en
Priority to CN201811035726.3A priority patent/CN109655287B/en
Publication of JP2019074335A publication Critical patent/JP2019074335A/en
Application granted granted Critical
Publication of JP7017899B2 publication Critical patent/JP7017899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/027Tyres using light, e.g. infrared, ultraviolet or holographic techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Tires In General (AREA)

Abstract

To provide a method of evaluating a tire grounding condition with high accuracy from a correlation between a tire contact area and a friction coefficient during traveling on a wet road surface.SOLUTION: A tire ground condition evaluation method includes the steps of: measuring a load when a rubber test piece is pressed through a fluorescent liquid against a ground contact surface having irregularities equivalent to an actual road surface provided on one surface of a transparent plate and is moved linearly while sliding, and a friction coefficient between the ground contact surface and the rubber test piece; irradiating the fluorescent liquid interposed between the ground contact surface and the rubber test piece with excitation light from the opposite side of the transparent plate to the ground contact surface to measure the luminance distribution of the fluorescence emitted from the fluorescent liquid; obtaining a binarized image by using an arbitrary luminance as a threshold on the basis of the obtained luminance distribution to determine a contact area; and obtaining an increase or decrease in the contact area from a difference between two or more types of binarized images in which measurement parameters are different from each other.SELECTED DRAWING: Figure 2

Description

本発明は、湿潤路面における走行時のタイヤ接触面積と摩擦係数との相関関係からタイヤ接地状態を評価する方法に関するものである。   The present invention relates to a method of evaluating a tire contact state from the correlation between a tire contact area and a friction coefficient when traveling on a wet road surface.

従来、タイヤの接地状態を評価する方法としては、平板上にタイヤを接地させ、その時の接地形状を可視化して観察する方法が用いられ、具体的には、光干渉法、全反射法などの可視化手法が知られている。   Conventionally, as a method of evaluating the contact state of the tire, a method of grounding the tire on a flat plate and visualizing and observing the contact shape at that time is used. Specifically, light interference method, total reflection method, etc. Visualization techniques are known.

しかしながら、平板上にタイヤを押しつけたときのタイヤ特性と実際の路面でのタイヤ特性とは解離しているため、実路面相当の凹凸面において評価可能な方法が求められている。その目的のため、例えば特許文献1では、表面に実路面相当の凹凸を設けた接地面にタイヤを接地させて、タイヤの接地形状を撮影する方法が提案されており、実車評価との整合性を高めるために、接地面上の空間部分に着色液体を充填してタイヤを接地させ、撮影することも提案されている。   However, since tire characteristics when a tire is pressed on a flat plate and tire characteristics on an actual road surface are dissociated, a method that can be evaluated on a rough surface equivalent to the actual road surface is required. For that purpose, for example, in Patent Document 1, a method is proposed in which the tire is brought into contact with the ground contact surface provided with irregularities equivalent to the actual road surface, and the contact shape of the tire is photographed. It has also been proposed to fill the space portion on the ground contact surface with colored liquid to ground the tire and to photograph.

この特許文献1に記載の方法では、湿潤路面での接地状態の評価も可能ではあるが、着色液体を用いた手法では原理的に保証される測定精度に難があり、拡張性の面で課題があった。   In the method described in this patent document 1, although it is possible to evaluate the grounding condition on a wet road surface, in the method using a colored liquid, there is a problem in the measurement accuracy guaranteed in principle, and it is a problem in terms of expandability. was there.

特に、実路では大小さまざまなスケールの凹凸が混在しており、(株)ミツトヨの接触式粗さ計で実路骨材表面の表面粗さを測定したところ、その算術平均粗さ(Ra)は20μm程度であった。動的なすべり状態ではこのような表面粗さを持つ骨材表面に形成される薄い水膜の影響があると考えられ、膜厚の薄い部分も検出することのできる測定精度に優れた手法が求められる。   In particular, unevenness on the actual road is mixed with irregularities of various scales, and when the surface roughness of the surface of the actual road aggregate is measured with a contact roughness meter (Mitsutoyo Co., Ltd.), the arithmetic mean roughness (Ra) Was about 20 μm. In the dynamic sliding state, it is considered that the thin water film formed on the aggregate surface with such surface roughness is considered to be effective, and a method with excellent measurement accuracy that can detect even thin portions of film thickness Desired.

そこで、実路面相当の凹凸面を有する湿潤路面におけるタイヤの接地状態を評価する方法として、非特許文献1では、光励起蛍光法を採用することが提案されている。光励起蛍光法では、ゴム試験片と接地面との間の蛍光液の膜厚が薄い場合、輝度は蛍光液の膜厚に比例するため、測定精度に優れており、膜厚10μm以下の測定事例も確認されている。   Therefore, as a method of evaluating the ground contact state of a tire on a wet road surface having an uneven surface equivalent to an actual road surface, Non-Patent Document 1 proposes that the photoexcitation fluorescence method be adopted. In the photoexcitation fluorescence method, when the film thickness of the fluorescent liquid between the rubber test piece and the ground plane is thin, the luminance is proportional to the film thickness of the fluorescent liquid, so the measurement accuracy is excellent and the measurement example with a film thickness of 10 μm or less Has also been confirmed.

しかしながら、実路面相当の凹凸面における静止状態のタイヤの接地状態を評価しても、実路面における走行時のタイヤの接地状態の評価との整合性がとれないという問題があった。   However, there is a problem that the evaluation of the ground contact state of the tire in the stationary state on the uneven surface equivalent to the actual road surface can not be consistent with the evaluation of the ground contact state of the tire when traveling on the actual road surface.

特開2003−240681号公報JP 2003-240681 A 特開2012−154858号公報JP 2012-154858 A 特開2004−9880号公報JP 2004-9880 A 特開2016−8950号公報JP, 2016-8950, A 特開2017−58244号公報JP, 2017-58244, A

江口正夫氏著「光誘起蛍光法を用いたゴム平板−凹凸面間接接触部の解析 −可視化と輝度ヒストグラム解析−」、トライボロジスト第58巻第10号(2013)763〜772頁Eguchi Masao, "Rubber plate-analysis of indirect contact with uneven surface using light induced fluorescence method-Visualization and luminance histogram analysis-", Tribologist, 58, 10 (2013) 763-772.

タイヤ走行時の評価方法に関しては、特許文献2では、白色の液体から成る液体層を表面に設けた透明板にタイヤを接地させて、タイヤを前後方向に相対的に移動させながらタイヤの接地形状を撮影する方法が開示されているが、上記特許文献1と同様に、着色液体を用いた計測方法であり、評価の精度が十分ではない。また、平滑なガラス平板における動的な接地面形状の輪郭を得ることに主眼を置いており、実路面のランダム凹凸との接地状態を評価することは想定していない。   With regard to the evaluation method when running the tire, in Patent Document 2, the tire is in contact with the transparent plate provided with a liquid layer made of a white liquid on the surface, and the tire is moved relative to the front and rear direction. Although the method of image | photographing is disclosed, it is a measuring method using a coloring liquid like the said patent document 1, and the precision of evaluation is not enough. In addition, the main focus is on obtaining an outline of a dynamic ground contact surface shape in a flat glass flat plate, and it is not assumed to evaluate the ground contact state with the random unevenness of the actual road surface.

また、湿潤路面において同じ接触面積が得られるタイヤであっても、グリップ性能等に寄与する摩擦係数が異なるものがあり、本発明者は、単純な接触面積の大小関係だけでなく接地状態の特徴を知る必要があると考えた。そして、タイヤ接触面積と摩擦係数との相関関係から、他のパラメータの与える影響について評価することで、タイヤ接地状態をより優れた精度で評価できることを見出した。例えば、接触面積が同じでも摩擦係数に大小関係がある状態を、実験パラメータ違いで選定し、両者を比較することで摩擦係数の高い接地状態の特徴を明らかにすることができる。しかしながら、両者の差異は微小であることが予測され、精度の高い測定手法が必要である。   In addition, even with tires that can obtain the same contact area on a wet road surface, there are cases where the friction coefficient contributing to grip performance and the like differ, and the present inventor has described not only simple magnitudes of contact area but also ground contact characteristics. I thought I needed to know Then, it has been found that the tire ground contact state can be evaluated with higher accuracy by evaluating the influence of other parameters from the correlation between the tire contact area and the friction coefficient. For example, even if the contact area is the same, a state in which there is a large or small relation between the friction coefficients is selected based on experimental parameter differences, and the characteristics of the contact state with high friction coefficient can be clarified by comparing the two. However, the difference between the two is predicted to be small, and a highly accurate measurement method is required.

本発明は、以上の点に鑑み、湿潤路面における走行時のタイヤ接触面積と摩擦係数との相関関係からタイヤ接地状態を高精度で評価する方法を提供することを目的とする。   An object of the present invention is to provide a method of evaluating a tire grounding state with high accuracy from the correlation between a tire contact area and a friction coefficient during traveling on a wet road surface in view of the above points.

なお、特許文献3には、タイヤ走行時のタイヤ踏面の接地形状を測定する装置が記載され、特許文献4には、スリップ角の付与されたゴム等の弾性材料の変形を観察できる観察方法が記載されている。   Patent Document 3 describes an apparatus for measuring the ground contact shape of a tire tread during running of a tire, and Patent Document 4 has an observation method capable of observing the deformation of an elastic material such as rubber having a slip angle. Have been described.

また、特許文献5には、骨材を含んで実路面を模擬してなる試験路面にゴム試験片の平坦面を押し当て、平坦な試験路面上でゴム試験片をすべらせながら直進移動させたときの荷重を計測し、試験路面とゴム試験片との間の摩擦係数を測定するゴム摩擦試験方法が記載されている。   Further, according to Patent Document 5, the flat surface of the rubber test piece is pressed against the test road surface simulating the actual road surface including the aggregate, and the rubber test piece is moved straight while sliding on the flat test road surface. A rubber friction test method has been described which measures the load at the time and measures the coefficient of friction between a test road surface and a rubber test piece.

しかしながら、これらは湿潤路面でのタイヤの特性を評価するものではなく、これらの方法を湿潤路面での評価にそのまま適用することはできない。また、特許文献5は、摩擦係数を測定しているだけであり、湿潤路面における走行時のタイヤ接触面積と摩擦係数との相関関係を評価することは開示されていない。   However, these do not evaluate the characteristics of tires on wet road surfaces, and these methods can not be applied as they are to evaluation on wet road surfaces. Further, Patent Document 5 only measures the coefficient of friction, and does not disclose evaluating the correlation between the contact area of the tire and the coefficient of friction when traveling on a wet road surface.

本発明に係るタイヤ接地状態評価方法は、透明板の一方の面に設けた実路面相当の凹凸を有する接地面に、蛍光液を介在させてゴム試験片を押し当て、すべらせながら直進移動させたときの荷重を計測し、接地面とゴム試験片との摩擦係数を測定する工程と、透明板の接地面とは反対側から、接地面とゴム試験片との間に介在する蛍光液に対して励起光を照射し、蛍光液から放出された蛍光の輝度分布を測定する工程と、得られた輝度分布を基準に、任意の輝度を閾値とし2値化画像を得て接触面積を求める工程と、測定パラメータの異なる、2種以上の2値化画像の差から接触面積の増減を求める工程を有するものとする。   In the tire ground contact state evaluation method according to the present invention, a rubber test piece is pressed against a ground contact surface provided with unevenness corresponding to the actual road surface provided on one surface of a transparent plate, and a rubber test piece is pressed and moved straight while sliding. Measuring the friction load between the ground contact surface and the rubber test piece, and from the opposite side to the ground contact surface of the transparent plate, to the fluorescent liquid interposed between the ground contact surface and the rubber test piece The step of irradiating the excitation light to measure the luminance distribution of the fluorescence emitted from the fluorescent liquid and obtaining a binarized image with an arbitrary luminance as a threshold based on the obtained luminance distribution to determine the contact area It is assumed that there is a process and a process of obtaining an increase or decrease in the contact area from the difference between two or more types of binarized images having different measurement parameters.

上記異なる測定パラメータは、測定時点、ゴム試験片の移動速度、ゴム試験片の硬さ、ゴム試験片を接地面に対して押し当てる圧力、及びゴム試験片の形状からなる群より選択される少なくとも1種であるものとすることができる。   The different measurement parameters are at least selected from the group consisting of measurement time point, moving speed of rubber test piece, hardness of rubber test piece, pressure pressing rubber test piece against the ground surface, and shape of rubber test piece It can be one kind.

上記蛍光液は、励起スペクトルと蛍光スペクトルとのピーク波長の差が100nm以上である親水性蛍光色素を含有するものとすることができ、上記親水性蛍光色素はピラニンであることが好ましい。   The fluorescent liquid may contain a hydrophilic fluorescent dye having a peak wavelength difference of 100 nm or more between the excitation spectrum and the fluorescent spectrum, and the hydrophilic fluorescent dye is preferably pyranine.

本発明の評価方法によれば、湿潤路面における走行時のタイヤ接触面積と摩擦係数との相関関係からタイヤ接地状態を高精度で評価することができる。   According to the evaluation method of the present invention, the tire ground contact state can be evaluated with high accuracy from the correlation between the tire contact area and the friction coefficient during traveling on a wet road surface.

一実施形態に係るタイヤ接地状態評価方法を行う試験機の全体の構成を示す簡略図。BRIEF DESCRIPTION OF THE DRAWINGS The simplification figure which shows the whole structure of the testing machine which performs the tire grounding evaluation method based on one Embodiment. 一実施形態に係るタイヤ接地状態評価方法を行う蛍光測定装置の構成を示す簡略図。BRIEF DESCRIPTION OF THE DRAWINGS The simplification figure which shows the structure of the fluorescence measurement apparatus which performs the tire grounding evaluation method which concerns on one Embodiment. 蛍光色素としてピラニンを用いた場合の励起スペクトルと蛍光スペクトルとの関係を示す簡略図。The simplified drawing which shows the relationship of the excitation spectrum at the time of using pyranine as a fluorescent dye, and a fluorescence spectrum.

以下、本発明に係る一実施形態のタイヤ接地状態評価方法について、図1〜3に基づいて説明する。   Hereinafter, the tire grounding state evaluation method of one embodiment concerning the present invention is explained based on Drawings 1-3.

本実施形態のタイヤ接地状態評価方法は、透明板の一方の面に設けた実路面相当の凹凸を有する接地面に、蛍光液を介在させてゴム試験片を押し当て、すべらせながら直進移動させたときの荷重を計測し、接地面とゴム試験片との摩擦係数を測定する工程と、透明板の接地面とは反対側から、接地面とゴム試験片との間に介在する蛍光液に対して励起光を照射し、蛍光液から放出された蛍光の輝度分布を測定する工程と、得られた輝度分布を基準に、任意の輝度を閾値とし2値化画像を得て接触面積を求める工程と、測定パラメータの異なる、2種以上の2値化画像の差から接触面積の増減を求める工程を有するものとする。   In the tire ground contact state evaluation method of this embodiment, a fluorescent liquid is interposed on a ground contact surface provided with irregularities corresponding to the actual road surface provided on one surface of a transparent plate, and a rubber test piece is pressed and moved straight while sliding. Measuring the friction load between the ground contact surface and the rubber test piece, and from the opposite side to the ground contact surface of the transparent plate, to the fluorescent liquid interposed between the ground contact surface and the rubber test piece The step of irradiating the excitation light to measure the luminance distribution of the fluorescence emitted from the fluorescent liquid and obtaining a binarized image with an arbitrary luminance as a threshold based on the obtained luminance distribution to determine the contact area It is assumed that there is a process and a process of obtaining an increase or decrease in the contact area from the difference between two or more types of binarized images having different measurement parameters.

図1は、本実施形態のタイヤ接地状態評価方法を行う試験機の全体の構成を示す簡略図である。   FIG. 1 is a simplified view showing the entire configuration of a testing machine that performs the tire grounding state evaluation method of the present embodiment.

試験機10は、実路面相当の凹凸を有する接地面を一方の面に備えた透明板1と、ゴム試験片2を保持するホルダー3と、透明板1にゴム試験片2を押し当てる荷重装置4と、透明板1に対してゴム試験片2を相対移動させるための駆動装置5と、ゴム試験片2に作用する荷重を計測する荷重センサ6と、試験に必要な動作の制御を行う制御装置7とを備える。また、透明板1は、透明板設置台18の上に設置され、透明板設置台18の下には、蛍光測定装置20を備える。   The testing machine 10 is a load device for pressing the rubber test piece 2 against the transparent plate 1, the holder 3 for holding the rubber test piece 2, and the transparent plate 1 provided with the ground contact surface having unevenness equivalent to the actual road surface on one side. 4 and a driving device 5 for moving the rubber test piece 2 relative to the transparent plate 1, a load sensor 6 for measuring the load acting on the rubber test piece 2, and control for controlling the operation necessary for the test And an apparatus 7. In addition, the transparent plate 1 is installed on the transparent plate installation stand 18, and the fluorescence measurement device 20 is provided under the transparent plate installation stand 18.

実路面相当の凹凸を有する接地面を備えた透明板1の作製方法は、特に限定されず、例えば、実際の路面に対応するアスファルトから、シリコーンゴムで真空注型用シリコン型を型取り、この型に透明樹脂を流し込み、真空脱気状態で硬化させることにより作製することができる。透明樹脂としては、例えば、ウレタン系樹脂を挙げることができる。   The method of producing the transparent plate 1 having the ground contact surface having irregularities equivalent to the actual road surface is not particularly limited. For example, the silicone mold for vacuum casting is molded with silicone rubber from asphalt corresponding to the actual road surface It can be produced by pouring a transparent resin into a mold and curing it in a vacuum degassed state. As transparent resin, urethane-type resin can be mentioned, for example.

ゴム試験片2は、加硫ゴムにより作製され、透明板1に押し当てられる平坦面を有するものであり、タイヤ溝に相当する溝やテーパーを有するものであってもよい。   The rubber test piece 2 is made of a vulcanized rubber and has a flat surface pressed against the transparent plate 1 and may have a groove or a taper corresponding to a tire groove.

ホルダー3は荷重装置4に接続されている。荷重装置4は、透明板1に対して垂直なZ方向(図1の上下方向)に沿ってホルダー3を往復動可能に構成されている。このホルダー3の位置(ホルダー3と透明板1との間隔)を適宜に設定することで、ゴム試験片2に入力されるZ方向の荷重を調整でき、よって所定の圧力条件下でゴム試験片2を透明板1に押し当てることができる。荷重装置4は、サーボモータにより構成されているが、他のアクチュエータ機構を利用することもできる。   The holder 3 is connected to the load device 4. The load device 4 is configured to be capable of reciprocating the holder 3 along a Z direction (vertical direction in FIG. 1) perpendicular to the transparent plate 1. By appropriately setting the position of the holder 3 (the distance between the holder 3 and the transparent plate 1), the load in the Z direction input to the rubber test piece 2 can be adjusted, and thus the rubber test piece under a predetermined pressure condition 2 can be pressed against the transparent plate 1. The load device 4 is constituted by a servomotor, but other actuator mechanisms can also be used.

駆動装置5は、荷重装置4を支持するテーブル8をX方向(図1における左右方向)に沿って往復動可能に構成されている。このテーブル8の移動によってホルダー3が移動し、透明板1上でゴム試験片2をすべらせながら移動させることができる。アクチュエータ9は、X方向とZ方向の両方に垂直なY方向(図1の紙面に垂直な方向)に沿ってテーブル8を往復動可能に構成されていて、Y方向におけるゴム試験片2と透明板1との位置合わせに利用される。本実施形態では、駆動装置5とアクチュエータ9が、それぞれサーボモータにより構成されているが、これに限定されない。   The driving device 5 is configured to be capable of reciprocating the table 8 supporting the loading device 4 along the X direction (left and right direction in FIG. 1). The holder 3 is moved by the movement of the table 8 and can be moved while sliding the rubber test piece 2 on the transparent plate 1. The actuator 9 is configured to be capable of reciprocating the table 8 along the Y direction (direction perpendicular to the sheet of FIG. 1) perpendicular to both the X direction and the Z direction, and is transparent to the rubber test piece 2 in the Y direction. It is used for alignment with the board 1. In the present embodiment, the drive device 5 and the actuator 9 are respectively configured by servomotors, but the present invention is not limited to this.

荷重センサ6は、垂直成分及び水平二成分の計三成分の荷重を計測可能であり、ゴム試験片2に作用するZ方向の荷重(垂直力)、X方向の荷重(前後力)及びY方向の荷重(横力)を計測することができる。荷重センサ6は、例えばロードセルによって構成される。本実施形態では、ホルダー3の上側(ゴム試験片2とは反対側)に荷重センサ6が取り付けられている。   The load sensor 6 is capable of measuring a total of three component loads, a vertical component and a horizontal component, and the load in the Z direction (vertical force) acting on the rubber test piece 2, the load in the X direction (longitudinal force) and the Y direction Load (lateral force) can be measured. The load sensor 6 is configured of, for example, a load cell. In the present embodiment, the load sensor 6 is attached to the upper side of the holder 3 (opposite to the rubber test piece 2).

制御装置7は、摩擦係数の測定に必要な計算を行う演算部7aと、荷重装置4や駆動装置5などの作動を制御する作動制御部7bと、試験作業者からの入力を受け付ける入力部7cと、試験機10の操作や設定などに関する各種情報を画面上に表示する表示部7dとを備える。荷重センサ6による計測値は制御装置7に送られ、それに基づいて演算部7aが摩擦係数を計算する。   The control device 7 includes an operation unit 7a that performs calculations necessary to measure the coefficient of friction, an operation control unit 7b that controls the operation of the load device 4 and the drive device 5, and an input unit 7c that receives an input from a test operator. And a display unit 7 d for displaying various information related to the operation and setting of the test machine 10 on the screen. The measured value by the load sensor 6 is sent to the control device 7, based on which the computing unit 7a calculates the coefficient of friction.

また、図2に示すように、透明板設置台18の下部には、蛍光測定装置20として、光源12と、光源12から照射される光から特定の波長の光のみを透過し分離するフィルタ16と、特定の波長の光のみを反射するダイクロイックミラー14と、蛍光液11から放出された蛍光を反射するミラー15と、放出された蛍光から特定の波長の光のみを透過させて分離するフィルタ17と、フィルタ17を透過した蛍光を測定する撮影手段13が配されている。   Further, as shown in FIG. 2, a light source 12 and a filter 16 for transmitting and separating only light of a specific wavelength from the light irradiated from the light source 12 as a fluorescence measurement apparatus 20 under the transparent plate installation stand 18 , A dichroic mirror 14 that reflects only light of a specific wavelength, a mirror 15 that reflects fluorescence emitted from the fluorescent liquid 11, and a filter 17 that transmits and separates only light of a specific wavelength from the emitted fluorescence. An imaging means 13 for measuring the fluorescence transmitted through the filter 17 is disposed.

蛍光測定装置20は、透明板設置台18の下部に固定されていてもよく、テーブル8に支持され、駆動装置5により、荷重装置4と連動してX方向に沿って往復動可能に構成されていてもよい。   The fluorescence measurement apparatus 20 may be fixed to the lower part of the transparent plate installation base 18, supported by the table 8, and configured to be capable of reciprocating along the X direction by the drive device 5 in conjunction with the load device 4. It may be

本実施形態のタイヤ接地状態評価方法は、例えば、親水性蛍光色素としてピラニンを使用し、上記の試験機10を用いて次のように実施することができる。すなわち、実路面に相当する凹凸を有する透明板1にピラニンを含有する蛍光液11を介在させて、ゴム試験片2の平坦面を押し当て、その透明板1上でゴム試験片2をすべらせながら直進移動させたときの荷重を計測し、透明板1とゴム試験片2との間の摩擦係数を測定する。静止摩擦係数と動摩擦係数のいずれも測定可能である。透明板1に押し当てられるゴム試験片2の圧力条件、並びに、速度や経路などの直進移動に関する条件は、制御装置7によって制御される。移動速度は、ゴム試験片2が所定の区間を一様な速度ですべるように設定することができる。   The tire grounding state evaluation method of the present embodiment can be implemented as follows using, for example, pyranine as the hydrophilic fluorescent dye and using the above-described tester 10. That is, the fluorescent liquid 11 containing pyranine is interposed on the transparent plate 1 having irregularities corresponding to the actual road surface, the flat surface of the rubber test piece 2 is pressed, and the rubber test piece 2 is slid on the transparent plate 1 The load when moving straight is measured while measuring the coefficient of friction between the transparent plate 1 and the rubber test piece 2. Both static and dynamic friction coefficients can be measured. The pressure condition of the rubber test piece 2 pressed against the transparent plate 1 and the condition regarding the rectilinear movement such as the velocity and the path are controlled by the controller 7. The moving speed can be set so that the rubber test piece 2 can slide a predetermined section at a uniform speed.

その際、光源12として紫外線LED(ピーク波長365nm)を用いて励起光を照射し、フィルタ16(400nmローパスフィルタ)によって、波長が400nm以下の励起光を分離する。分離した励起光をダイクロイックミラー14に反射させて、透明板1の接地面とは反対側から、ゴム試験片2と接地面との間に介在する蛍光液11に対して励起光を照射することにより、蛍光液11に含まれるピラニンを基底状態から励起状態へと遷移させる。その後、励起状態のピラニンは基底状態へと戻り、その際蛍光が放出される。放出された蛍光は、ダイクロイックミラー14を透過した後、ミラー15によって反射し、フィルタ17(480nmハイパスフィルタ)によって、波長が480nm以上の蛍光が分離される。分離された蛍光を撮影手段13で撮影することにより、輝度分布(蛍光強度画像)を得ることができる。   At that time, the excitation light is irradiated using an ultraviolet LED (peak wavelength 365 nm) as the light source 12, and the excitation light having a wavelength of 400 nm or less is separated by the filter 16 (400 nm low pass filter). The separated excitation light is reflected by the dichroic mirror 14, and the excitation light is irradiated to the fluorescent liquid 11 interposed between the rubber test piece 2 and the ground surface from the side opposite to the ground surface of the transparent plate 1. As a result, pyranine contained in the fluorescent liquid 11 is transitioned from the ground state to the excited state. The excited state pyranine then returns to the ground state, at which time fluorescence is emitted. The emitted fluorescence is transmitted through the dichroic mirror 14 and then reflected by the mirror 15, and the filter 17 (480 nm high-pass filter) separates the fluorescence having a wavelength of 480 nm or more. By photographing the separated fluorescence by the photographing means 13, a luminance distribution (fluorescence intensity image) can be obtained.

本実施形態のタイヤ接地状態評価方法は、上記で得られた輝度分布を基準に、任意の輝度を閾値とし、2値化を行う工程をさらに有するものである。具体的には、ある特定の輝度を閾値に設定することで、輝度が閾値以下である領域をゴム試験片2と接地面とが接触している領域として2値化画像を得ることができる。このような2値化画像からは、例えば、実際にゴム試験片2と接地面が接触している面積を算出することができる。   The tire ground contact state evaluation method of the present embodiment further includes a step of binarizing using any luminance as a threshold with reference to the luminance distribution obtained above. Specifically, by setting a certain specific luminance as a threshold, a binarized image can be obtained as an area where the rubber test piece 2 is in contact with the ground contact area, in which the luminance is equal to or less than the threshold. From such a binarized image, for example, the area where the rubber test piece 2 and the ground contact surface are in contact can be calculated.

上記試験を行うことにより、湿潤路面での摩擦係数と、湿潤路面とゴム試験片2との接地状態を示す2値化画像とが同時に得られ、これらの相関関係を求めることができる。   By performing the above test, a coefficient of friction on a wet road surface and a binarized image showing the contact state between the wet road surface and the rubber test piece 2 can be obtained simultaneously, and the correlation between them can be obtained.

本実施形態のタイヤ接地状態評価方法は、上記工程に加えて、測定パラメータの異なる2種以上の2値化画像の差から接触面積の増減を求める工程を有する。2値化画像の差から接触面積の増減を求めることにより、測定パラメータが接地状態に与える影響について評価することができる。例えば、接触面積が同じであるが、摩擦係数が異なる2値化画像がある場合、両者の比較から摩擦係数の高い接地状態の特徴を明らかにすることができる。なお、2種以上の2値化画像は、同じ閾値で処理したものとする。   The tire ground contact state evaluation method of the present embodiment includes, in addition to the above steps, a step of obtaining an increase or decrease in the contact area from the difference between two or more types of binarized images having different measurement parameters. By determining the increase or decrease of the contact area from the difference between the binarized images, it is possible to evaluate the influence of the measurement parameter on the grounding state. For example, in the case where there are binarized images having the same contact area but different friction coefficients, the comparison of the two can reveal the characteristics of the contact state having a high friction coefficient. Note that two or more types of binarized images are processed with the same threshold value.

測定パラメータとしては、例えば、測定時点、ゴム試験片2の移動速度、ゴム試験片2の硬さ、ゴム試験片2を接地面に対して押し当てる圧力、ゴム試験片2の形状などが挙げられる。すなわち、測定パラメータの異なる2種以上の2値化画像は、一回の試験で得られた測定時点の異なる2値化画像同士を対比してもよく、ゴム試験片2の移動速度、ゴム試験片2の硬さ、ゴム試験片2を接地面に対して押し当てる圧力、ゴム試験片2の形状などの測定パラメータを変えて行った異なる試験において得られた2値化画像同士を対比してもよい。   The measurement parameters include, for example, measurement time, moving speed of the rubber test piece 2, hardness of the rubber test piece 2, pressure pressing the rubber test piece 2 against the ground contact surface, shape of the rubber test piece 2, etc. . That is, two or more types of binarized images having different measurement parameters may be compared between different binarized images at the measurement time point obtained in one test, the moving speed of the rubber test piece 2, the rubber test Contrasting the binarized images obtained in different tests performed by changing measurement parameters such as the hardness of the piece 2, the pressure pressing the rubber test piece 2 against the ground contact surface, and the shape of the rubber test piece 2 It is also good.

上記実施形態においては、親水性蛍光色素としてピラニンを用いた場合について説明したが、本発明はこれに限定されるものではない。蛍光液11には、種々の親水性蛍光色素を使用することができるが、優れた測定精度が得られる観点から、励起スペクトルと蛍光スペクトルとのピーク波長の差が100nm以上である親水性蛍光色素を含有する水溶液であることが好ましい。励起スペクトルと蛍光スペクトルとのピーク波長の差が100nm以上である親水性蛍光色素の具体例としては、ピラニンや、Dyomics社製のDY−481XL−Carboxylic Acid、DY−521XL−Carboxylic Acid、ATTO−TEC社製のATTO 490LS carboxyなどが挙げられ、安全性やコストの観点からピラニンを好適に用いることができる。また、励起スペクトル及び/又は蛍光スペクトルのピーク波長が複数ある親水性蛍光色素の場合は、励起スペクトル及び/又は蛍光スペクトルについて、フィルタなどを使用することにより、励起スペクトルと蛍光スペクトルとのピーク波長の差が100nm以上となるようにピーク波長を選択して使用してもよい。   Although the case where pyranine is used as the hydrophilic fluorescent dye has been described in the above embodiment, the present invention is not limited to this. Although various hydrophilic fluorescent dyes can be used for the fluorescent liquid 11, from the viewpoint of obtaining excellent measurement accuracy, a hydrophilic fluorescent dye having a peak wavelength difference of 100 nm or more between the excitation spectrum and the fluorescence spectrum. It is preferable that it is an aqueous solution containing Specific examples of the hydrophilic fluorescent dye having a peak wavelength difference of 100 nm or more between the excitation spectrum and the fluorescence spectrum include pyranine, DY-481XL-Carboxylic Acid, DY-521XL-Carboxylic Acid, ATTO-TEC manufactured by Dyomics. Company-made ATTO 490LS carboxy etc. are mentioned, and it can use pyranine suitably from a safety or a viewpoint of cost. Also, in the case of a hydrophilic fluorescent dye having a plurality of peak wavelengths of the excitation spectrum and / or fluorescence spectrum, by using a filter or the like for the excitation spectrum and / or fluorescence spectrum, the peak wavelengths of the excitation spectrum and the fluorescence spectrum The peak wavelength may be selected and used so that the difference is 100 nm or more.

ピラニンは、親水性のpH感受性蛍光色素であり、pHが中性〜酸性では、励起スペクトルのピーク波長が365nm付近と400nm付近に表れ、pHがアルカリ性では、励起スペクトルのピーク波長が450nm付近に表れる。また、蛍光スペクトルのピーク波長は、pHに関わらず主に510nm付近であり、400nm以下の蛍光スペクトルはほとんど検出されない。従って、親水性蛍光色素としてピラニンを用いる場合には、励起スペクトルと蛍光スペクトルとのピーク波長の差を100nm以上とする観点から、蛍光液11のpHは中性〜酸性であることが好ましく、pHが5〜8であることがより好ましい。また、本実施形態においては400nm以下の波長のみを透過するフィルタ16を励起光に対して用いたことにより、ピラニンの励起スペクトルのピーク波長は主に365nmであり、励起スペクトルと蛍光スペクトルとのピーク波長の差は最大145nmとなる。   Pyranine is a hydrophilic pH-sensitive fluorescent dye. When the pH is neutral to acidic, the peak wavelengths of the excitation spectrum appear near 365 nm and 400 nm, and when the pH is alkaline, the peak wavelength of the excitation spectrum appears near 450 nm . Further, the peak wavelength of the fluorescence spectrum is mainly around 510 nm regardless of the pH, and the fluorescence spectrum of 400 nm or less is hardly detected. Therefore, when pyranine is used as the hydrophilic fluorescent dye, the pH of the fluorescent solution 11 is preferably neutral to acidic, from the viewpoint of setting the difference in peak wavelength between the excitation spectrum and the fluorescence spectrum to 100 nm or more. Is more preferably 5-8. Further, in the present embodiment, the peak wavelength of the excitation spectrum of pyranine is mainly 365 nm by using the filter 16 transmitting only the wavelength of 400 nm or less for the excitation light, and the peaks of the excitation spectrum and the fluorescence spectrum The wavelength difference is up to 145 nm.

図3に示すように、蛍光液11として励起スペクトルと蛍光スペクトルとのピーク波長の差が100nm以上である蛍光色素を使用することにより、励起スペクトルと蛍光スペクトルとの波長域の重複がほとんど生じず、励起スペクトルと蛍光スペクトルとを十分に分離することができるため、優れた測定精度が得られ易い。   As shown in FIG. 3, by using a fluorescent dye in which the difference in peak wavelength between the excitation spectrum and the fluorescence spectrum is 100 nm or more as the fluorescent liquid 11, overlapping of the wavelength ranges of the excitation spectrum and the fluorescence spectrum hardly occurs. Since the excitation spectrum and the fluorescence spectrum can be sufficiently separated, excellent measurement accuracy can be easily obtained.

蛍光液中の親水性蛍光色素の濃度は、特に限定されないが、ピラニンを使用する場合には、100〜10000mg/Lであることが好ましい。   The concentration of the hydrophilic fluorescent dye in the fluorescent liquid is not particularly limited, but when pyranine is used, it is preferably 100 to 10000 mg / L.

上記光源12は、使用する親水性蛍光色素の励起スペクトルに合わせて、適宜選択して使用することができ、特に限定されないが、使用する親水性蛍光色素の励起スペクトルのピーク波長付近にピーク波長を有する光源12であることが好ましく、単一波長であることがより好ましい。使用する親水性蛍光色素がピラニンである場合は、照射される光のピーク波長が350〜400nmであることが好ましい。   The light source 12 can be appropriately selected and used according to the excitation spectrum of the hydrophilic fluorescent dye to be used, and is not particularly limited. However, the peak wavelength is around the peak wavelength of the excitation spectrum of the hydrophilic fluorescent dye to be used It is preferable that it is the light source 12 which it has, and it is more preferable that it is a single wavelength. When the hydrophilic fluorescent dye to be used is pyranine, it is preferable that the peak wavelength of the irradiated light is 350 to 400 nm.

ダイクロイックミラー14や、フィルタ16,17は、特に限定されず、使用する親水性蛍光色素の励起スペクトルと蛍光スペクトルに合わせて、適宜選択して使用することができる。フィルタ16,17としては、例えば、蛍光検出を行う際にノイズを除去する波長選択型の蛍光フィルタや、規定波長よりも短波長側の光をカットして長波長側の光を透過させるハイパスフィルタ(ロングパスフィルタ)、規定波長よりも長波長側の光をカットして短波長側の光を透過させるローパスフィルタ(ショートパスフィルタ)、一定の波長域の光のみ透過させ、それ以外の短波長側及び長波長側の光をカットするバンドパスフィルタなどが挙げられる。   The dichroic mirror 14 and the filters 16 and 17 are not particularly limited, and can be appropriately selected and used in accordance with the excitation spectrum and the fluorescence spectrum of the hydrophilic fluorescent dye to be used. The filters 16 and 17 may be, for example, a wavelength selective fluorescent filter that removes noise when performing fluorescence detection, or a high pass filter that cuts light on the short wavelength side of the specified wavelength and transmits light on the long wavelength side. (Long-pass filter), a low-pass filter (short-pass filter) that cuts light on the longer wavelength side than the specified wavelength and transmits light on the short wavelength side, transmits only light in a certain wavelength range, and other short wavelength sides And a band pass filter for cutting light on the long wavelength side.

本実施形態のタイヤ接地状態評価方法は、得られた輝度分布を、蛍光液11の膜厚分布に変換する工程をさらに有するものであってもよい。この場合、膜厚分布画像を2値化処理し、2値化画像を得て、異なる測定パラメータの画像同士を対比する。ゴム試験片2と接地面との間の蛍光液11の膜厚が薄い場合、輝度は膜厚に比例するため、数値化した輝度を膜厚に換算することで、得られた輝度分布を膜厚分布に変換することが可能である。また、この工程の前段階として輝度と膜厚の校正を行ってもよい。例えば、寸法既知のガラス板を使用して膜厚と輝度の校正曲線を得て、それを適用することで輝度を膜厚に換算することができる。これにより、輝度と膜厚が比例関係にない場合でも適用可能である。   The tire ground contact state evaluation method of the present embodiment may further include the step of converting the obtained luminance distribution into the film thickness distribution of the fluorescent liquid 11. In this case, the film thickness distribution image is binarized to obtain a binarized image, and images of different measurement parameters are compared with each other. When the film thickness of the fluorescent liquid 11 between the rubber test piece 2 and the ground plane is thin, the luminance is proportional to the film thickness, so the obtained luminance distribution is converted into a film by converting the quantified luminance into a film thickness. It is possible to convert to a thickness distribution. In addition, the calibration of the brightness and the film thickness may be performed as a step before this process. For example, a calibration curve of film thickness and brightness is obtained using a glass plate of known dimensions, and the brightness can be converted to a film thickness by applying it. Thus, the present invention is applicable even when the luminance and the film thickness are not in a proportional relationship.

本発明の実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While the embodiments of the present invention have been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

本発明のタイヤ接地状態評価方法は、乗用車、ライトトラック・バス等の各種タイヤの接地状態の評価に用いることができる。   The tire contact state evaluation method of the present invention can be used to evaluate the contact state of various tires such as passenger cars and light trucks and buses.

1・・・透明板
2・・・ゴム試験片
3・・・ホルダー
4・・・荷重装置
5・・・駆動装置
6・・・荷重センサ
7・・・制御装置
8・・・テーブル
9・・・アクチュエータ
10・・試験機
11・・蛍光液
12・・光源
13・・撮影手段
14・・ダイクロイックミラー
15・・ミラー
16・・フィルタ
17・・フィルタ
18・・透明板設置台
20・・蛍光測定装置
DESCRIPTION OF SYMBOLS 1 ...... Transparent plate 2 ... Rubber test piece 3 ... Holder 4 ... Load apparatus 5 ... Drive apparatus 6 ... Load sensor 7 ... Control apparatus 8 ... Table 9 ... · Actuator 10 · · Test machine 11 · · Fluorescent solution 12 · · Light source 13 · · Imaging means 14 · · Dichroic mirror 15 · · Mirror 16 · · Filter 17 · Filter 18 · Transparent plate installation stand 20 · · Fluorescence measurement apparatus

Claims (4)

透明板の一方の面に設けた実路面相当の凹凸を有する接地面に、蛍光液を介在させてゴム試験片を押し当て、すべらせながら直進移動させたときの荷重を計測し、接地面とゴム試験片との摩擦係数を測定する工程と、
透明板の接地面とは反対側から、接地面とゴム試験片との間に介在する蛍光液に対して励起光を照射し、蛍光液から放出された蛍光の輝度分布を測定する工程と、
得られた輝度分布を基準に、任意の輝度を閾値とし2値化画像を得て接触面積を求める工程と、
測定パラメータの異なる2種以上の2値化画像の差から接触面積の増減を求める工程を有することを特徴とする、タイヤ接地状態評価方法。
A fluorescent test piece is pressed against a ground contact surface with irregularities equivalent to the actual road surface provided on one side of a transparent plate, and a rubber test piece is pressed against it, and the load when moving straight while sliding is measured. Measuring the coefficient of friction with the rubber test piece;
Irradiating a fluorescent liquid interposed between the ground plane and the rubber test piece from the opposite side to the ground plane of the transparent plate with excitation light to measure the luminance distribution of the fluorescence emitted from the fluorescent liquid;
A step of obtaining a contact area by obtaining a binarized image with an arbitrary luminance as a threshold value based on the obtained luminance distribution;
A tire ground contact state evaluation method comprising the step of obtaining an increase or decrease of a contact area from the difference between two or more types of binarized images having different measurement parameters.
前記異なる測定パラメータが、測定時点、ゴム試験片の移動速度、ゴム試験片の硬さ、ゴム試験片を接地面に対して押し当てる圧力、及びゴム試験片の形状からなる群より選択される少なくとも1種であることを特徴とする、請求項1に記載のタイヤ接地状態評価方法。   The different measurement parameters are at least selected from the group consisting of measurement time point, moving speed of rubber test piece, hardness of rubber test piece, pressure pressing rubber test piece against the ground surface, and shape of rubber test piece The tire grounding state evaluation method according to claim 1, wherein the tire grounding state is one type. 前記蛍光液が、励起スペクトルと蛍光スペクトルとのピーク波長の差が100nm以上である親水性蛍光色素を含有することを特徴とする、請求項1又は2に記載のタイヤ接地状態評価方法。   The tire grounding condition evaluation method according to claim 1 or 2, wherein the fluorescent liquid contains a hydrophilic fluorescent dye having a difference in peak wavelength between an excitation spectrum and a fluorescence spectrum of 100 nm or more. 前記親水性蛍光色素がピラニンであることを特徴とする、請求項1〜3のいずれか1項に記載のタイヤ接地状態評価方法。

The tire grounding condition evaluation method according to any one of claims 1 to 3, wherein the hydrophilic fluorescent dye is pyranine.

JP2017198661A 2017-10-12 2017-10-12 Tire ground contact condition evaluation method Active JP7017899B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017198661A JP7017899B2 (en) 2017-10-12 2017-10-12 Tire ground contact condition evaluation method
CN201811035726.3A CN109655287B (en) 2017-10-12 2018-09-06 Tire grounding state evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198661A JP7017899B2 (en) 2017-10-12 2017-10-12 Tire ground contact condition evaluation method

Publications (2)

Publication Number Publication Date
JP2019074335A true JP2019074335A (en) 2019-05-16
JP7017899B2 JP7017899B2 (en) 2022-02-09

Family

ID=66110676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198661A Active JP7017899B2 (en) 2017-10-12 2017-10-12 Tire ground contact condition evaluation method

Country Status (2)

Country Link
JP (1) JP7017899B2 (en)
CN (1) CN109655287B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015103A (en) * 2022-05-24 2022-09-06 武汉中誉鼎力智能科技有限公司 Real-time detection method and device for friction factor and microscopic morphology of material surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240681A (en) * 2002-02-20 2003-08-27 Bridgestone Corp Tire grounding characteristic evaluating method
JP2009085621A (en) * 2007-09-27 2009-04-23 Sumitomo Rubber Ind Ltd Measuring tool of tire grounding part
JP2012154858A (en) * 2011-01-27 2012-08-16 Bridgestone Corp Method and apparatus for measuring shape of tire
US20160061681A1 (en) * 2013-04-17 2016-03-03 CHUNIL SYSTEM Co., LTD Module for sensing dynamic contact pressure of tire and tire testing apparatus using the same
CN106525137A (en) * 2016-12-07 2017-03-22 天津大学 Liquid film temperature field and flow field simultaneous measurement method based on laser induced fluorescence
JP2017058244A (en) * 2015-09-16 2017-03-23 東洋ゴム工業株式会社 Rubber friction test method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191163B2 (en) * 2007-04-27 2013-04-24 株式会社ブリヂストン Tire contact state estimation method and tire contact state estimation device
US8379978B2 (en) * 2008-03-17 2013-02-19 Tokyo University Of Agriculture And Technology Contact area measurement device and method for measuring contact area
JP5887224B2 (en) * 2012-07-20 2016-03-16 株式会社ブリヂストン Method and apparatus for measuring tire ground contact characteristics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240681A (en) * 2002-02-20 2003-08-27 Bridgestone Corp Tire grounding characteristic evaluating method
JP2009085621A (en) * 2007-09-27 2009-04-23 Sumitomo Rubber Ind Ltd Measuring tool of tire grounding part
JP2012154858A (en) * 2011-01-27 2012-08-16 Bridgestone Corp Method and apparatus for measuring shape of tire
US20160061681A1 (en) * 2013-04-17 2016-03-03 CHUNIL SYSTEM Co., LTD Module for sensing dynamic contact pressure of tire and tire testing apparatus using the same
JP2017058244A (en) * 2015-09-16 2017-03-23 東洋ゴム工業株式会社 Rubber friction test method
CN106525137A (en) * 2016-12-07 2017-03-22 天津大学 Liquid film temperature field and flow field simultaneous measurement method based on laser induced fluorescence

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
江口正夫: "光誘起蛍光法を用いたゴム平板−凹凸面間接触部の解析 −可視化と輝度ヒストグラム解析−", トライボロジスト, vol. 第58巻、第10号, JPN6020037410, 2013, pages 763 - 772, ISSN: 0004514816 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015103A (en) * 2022-05-24 2022-09-06 武汉中誉鼎力智能科技有限公司 Real-time detection method and device for friction factor and microscopic morphology of material surface

Also Published As

Publication number Publication date
CN109655287A (en) 2019-04-19
JP7017899B2 (en) 2022-02-09
CN109655287B (en) 2020-12-08

Similar Documents

Publication Publication Date Title
KR101108250B1 (en) Measuring apparatus for tire wear
US9459092B2 (en) Method and system for the automatic optical inspection of a tread profile of at least one wheel of a vehicle
US10900893B2 (en) Method of measuring height of water on ice
JP5833317B2 (en) Tire shape measuring method and tire shape measuring apparatus
WO2007046528B1 (en) Imprint apparatus, imprint method, and mold for imprint
JP2006242674A (en) Light section measuring device and emission line image imaging apparatus
WO2013009065A3 (en) Apparatus for 3d vision inspection of led component and method for vision inspection
KR20130134394A (en) Inspection device of tire tread using machine vision and inspection method thereof
CN112818563A (en) Pavement skid resistance evaluation method based on friction contact surface estimation
CN107548448B (en) Calculation of layer thickness
JP7017899B2 (en) Tire ground contact condition evaluation method
Sakai Measurement and visualization of the contact pressure distribution of rubber disks and tires
CA2876903C (en) Apparatus, system, and method for image normalization using a gaussian residual of fit selection criteria
Isomaa et al. Onset of frictional sliding in rubber–ice contact
JP6271188B2 (en) Evaluation method of road surface properties of paved roads
JP6215007B2 (en) Wear evaluation method and wear tester for tire rubber
CN101196438B (en) Hydroplaning measuring apparatus of tire
JP7502328B2 (en) How to inspect the coating on a probe
US11506573B2 (en) Apparatus for the analysis of the behavior of a pneumatic tire at the interface with the ground
Schmiedel et al. Tire splash and spray directly before and during hydroplaning
JP6815842B2 (en) Tire contact condition measurement method
KR101826191B1 (en) Curvature of both sides surface and refractive index profile simultaneous measurement equipment and method of the lens
KR102057153B1 (en) Curvature of both sides surface and refractive index profile simultaneous measurement method of the lens
JP2013178116A (en) Evaluation method of tire
JP2020104674A (en) Tire testing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150