JP6215007B2 - Wear evaluation method and wear tester for tire rubber - Google Patents

Wear evaluation method and wear tester for tire rubber Download PDF

Info

Publication number
JP6215007B2
JP6215007B2 JP2013234105A JP2013234105A JP6215007B2 JP 6215007 B2 JP6215007 B2 JP 6215007B2 JP 2013234105 A JP2013234105 A JP 2013234105A JP 2013234105 A JP2013234105 A JP 2013234105A JP 6215007 B2 JP6215007 B2 JP 6215007B2
Authority
JP
Japan
Prior art keywords
rubber sample
rubber
wear
rotating
test load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013234105A
Other languages
Japanese (ja)
Other versions
JP2015094664A (en
Inventor
裕子 村田
裕子 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013234105A priority Critical patent/JP6215007B2/en
Publication of JP2015094664A publication Critical patent/JP2015094664A/en
Application granted granted Critical
Publication of JP6215007B2 publication Critical patent/JP6215007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤ用ゴムの摩耗評価方法及び摩耗試験機に関する。   The present invention relates to a tire rubber wear evaluation method and a wear tester.

タイヤのトレッドに用いられるゴムの摩耗評価方法として、評価対象となるゴムでできた円筒形のゴムサンプルSを、回転面に一定の接触圧で押し付け、摩耗させる方法が知られている。従来、前記接触圧は、実車に装着されたタイヤと路面との実際の接地圧を考慮したものではなく、恣意的に選択された接地圧であった。また、回転面の粗さも、実際の路面の粗さを考慮した粗さではなく、恣意的に選択された粗さであった。このように、実際のタイヤの使用条件とは異なる条件下で摩耗評価が行われるため、摩耗評価結果が信頼性に欠けるものとなっていた。例えば、異なる種類のゴムでそれぞれゴムサンプルSを作り、その摩耗評価を行った結果、あるゴムサンプルSの評価結果が最も良かったにもかかわらず、そのゴムで作ったタイヤの摩耗評価結果は、他のタイヤの評価結果よりも悪い、ということが起こっていた。   As a method for evaluating the wear of rubber used in a tire tread, a method is known in which a cylindrical rubber sample S made of rubber to be evaluated is pressed against a rotating surface with a constant contact pressure to be worn. Conventionally, the contact pressure is an arbitrarily selected contact pressure, not considering the actual contact pressure between the tire mounted on the actual vehicle and the road surface. Further, the roughness of the rotating surface was not arbitrarily determined considering the actual road surface roughness, but arbitrarily selected roughness. As described above, since the wear evaluation is performed under conditions different from the actual use conditions of the tire, the wear evaluation result lacks reliability. For example, each rubber sample S was made of different types of rubber and the wear evaluation was performed. As a result, although the evaluation result of a certain rubber sample S was the best, the wear evaluation result of a tire made of the rubber was It was happening that it was worse than the evaluation results of other tires.

これに対し、ゴムの摩耗評価において、実車のタイヤに作用する圧力を求め、その圧力をゴム試験片に作用させている例がある(特許文献1)。また、実際のタイヤを用いた摩耗評価において、骨材を用いて実際の路面を再現することが提案されている(特許文献2)。また、ゴムの路面による摩耗には、マクロ粗さ(路面を形成する小石等の骨材による粗さ)よりもミクロ粗さ(骨材が埋め込まれているアスファルト等の素地の粗さ)の方が影響するとの研究結果が報告されている(非特許文献1)。   On the other hand, in the rubber wear evaluation, there is an example in which a pressure acting on a tire of an actual vehicle is obtained and the pressure is applied to a rubber test piece (Patent Document 1). Further, in wear evaluation using an actual tire, it has been proposed to reproduce an actual road surface using aggregate (Patent Document 2). Also, in terms of wear due to rubber road surface, microroughness (roughness of asphalt or the like in which aggregates are embedded) is more than macro roughness (roughness due to aggregates such as pebbles that form the road surface). The research result that it influences is reported (nonpatent literature 1).

特開平2008−185475号公報JP 2008-185475 A 特開平7−20030号公報JP-A-7-20030

THE EFFECT OF ROAD SURFACE TETURE ON TIRE WEAR, R. W. Lowne, Wear 15 (1970)THE EFFECT OF ROAD SURFACE TETURE ON TIRE WEAR, R. W. Lowne, Wear 15 (1970)

本発明が解決しようとする課題は、信頼性が高い摩耗評価方法及び摩耗試験機を提供することである。   The problem to be solved by the present invention is to provide a highly reliable wear evaluation method and wear tester.

実施形態のタイヤ用ゴムの摩耗評価方法は、ゴムサンプルに本試験荷重をかけることによりこれを回転体の回転面に押し当て、前記ゴムサンプルを摩耗させるタイヤ用ゴムの摩耗評価方法であって、実車に装着されたタイヤと路面との接地圧を測定する工程と、前記ゴムサンプルの前記回転面との接触圧が、測定された前記接地圧と等しくなるように、前記ゴムサンプルにかける本試験荷重を決定する工程と、路面の凹凸のデータを採る工程と、得られた路面の凹凸のデータに基づき、前記回転面の表面粗さを決定する工程と、前記回転面を前記の決定された表面粗さとする工程と、前記ゴムサンプルに前記の決定された本試験荷重をかけて前記回転面に押し当てる工程と、を含み、前記の得られた路面の凹凸のデータに基づき前記回転面の表面粗さを決定する工程は、得られた路面の凹凸を表す線を波長の異なる複数の波に分解し、前記複数の波のうち所定長さより短い波長の波を足してできる線から表面粗さを計算し、前記回転面の表面粗さとする工程を含むことを特徴とする。 The tire rubber wear evaluation method of the embodiment is a tire rubber wear evaluation method in which a main test load is applied to a rubber sample to press the rubber sample against the rotating surface of the rotating body, and the rubber sample is worn. A step of measuring a contact pressure between a tire mounted on an actual vehicle and a road surface, and a main test applied to the rubber sample such that a contact pressure between the rubber sample and the rotating surface is equal to the measured contact pressure. The step of determining a load, the step of taking road surface unevenness data, the step of determining the surface roughness of the rotating surface based on the obtained road surface unevenness data, and the rotating surface being determined as described above a step of the surface roughness, the rubber samples over the present test load determined in includes a step of pressing the rotating surface of the rotating surface, based on the data of unevenness of the of the resulting road surface The step of determining the surface roughness is obtained by decomposing the obtained line representing the road surface irregularities into a plurality of waves having different wavelengths, and adding a wave having a wavelength shorter than a predetermined length of the plurality of waves to the surface roughness. The method includes calculating a thickness and setting the surface roughness of the rotating surface .

実施形態のタイヤ用ゴムの摩耗評価方法は、信頼性が高い。   The tire rubber wear evaluation method of the embodiment is highly reliable.

(a)ターンテーブル型の摩耗試験機1の部分平面図。(b)同正面図。(A) The partial top view of the wear test machine 1 of a turntable type | mold. (B) The front view. ドラム型の摩耗試験機2の部分正面図。FIG. 3 is a partial front view of the drum-type wear tester 2. (a)ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触面積との関係を示すグラフ。(b)ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触圧との関係を示すグラフ。(A) The graph which shows the relationship between the pre-test load concerning the rubber sample S, and the contact area of the rubber sample S and a contact surface. (B) The graph which shows the relationship between the pre-test load concerning the rubber sample S, and the contact pressure of the rubber sample S and a contact surface. 路面の断面図。Sectional drawing of a road surface. (a)測定された路面の凹凸を表す波形。(b)(a)の波形を近似する波長の異なる複数の波。(c)カットオフ後の波形。(A) A waveform representing the measured unevenness of the road surface. (B) A plurality of waves having different wavelengths that approximate the waveform of (a). (C) Waveform after cut-off. (a)比較例1の評価結果のグラフ。(b)比較例2の評価結果のグラフ。(c)実施例の評価結果のグラフ。(A) The graph of the evaluation result of the comparative example 1. (B) The graph of the evaluation result of the comparative example 2. (C) The graph of the evaluation result of an Example.

(1)ゴムの摩耗試験機
実施形態のゴムの摩耗評価方法では、評価対象のゴムが成型されたゴムサンプルSに対して評価が行われる。ゴムサンプルSは、円筒形に成型され、円筒の軸部分に回転軸を挿入する孔が開けられたものである。
(1) Rubber Wear Tester In the rubber wear evaluation method of the embodiment, evaluation is performed on a rubber sample S in which a rubber to be evaluated is molded. The rubber sample S is formed into a cylindrical shape, and a hole for inserting a rotating shaft is formed in a cylindrical shaft portion.

実施形態のゴムの摩耗評価方法に用いられる摩耗試験機としては、例えば、図1に示すターンテーブル型の摩耗試験機1がある。ターンテーブル型の摩耗試験機1は、回転体としてのターンテーブル10と、これにゴムサンプルSを押し当てる保持装置11を備える。   As a wear tester used for the rubber wear evaluation method of the embodiment, for example, there is a turntable wear tester 1 shown in FIG. The turntable wear tester 1 includes a turntable 10 as a rotating body and a holding device 11 that presses the rubber sample S against the turntable 10.

ターンテーブル10は、ターンテーブル10用の駆動装置により、水平に保たれた状態で回転する。ターンテーブル10の上面が、ゴムサンプルSが押し当てられる回転面13となる。又は、ターンテーブル10の上面に、回転面13となる部材が貼り付けられる。   The turntable 10 is rotated while being kept horizontal by a drive device for the turntable 10. The upper surface of the turntable 10 becomes a rotating surface 13 against which the rubber sample S is pressed. Alternatively, a member that becomes the rotation surface 13 is attached to the upper surface of the turntable 10.

ターンテーブル10の上方には、ゴムサンプルSを保持する保持装置11が設けられている。保持装置11は、水平で、かつターンテーブル10の回転方向に直角に保持される回転軸12を有する。回転軸12がゴムサンプルSの軸部分の孔に摺動不能な状態で嵌まることにより、ゴムサンプルSが保持装置11に保持される。回転軸12は、保持装置11の一部に設けられた回転軸12用の駆動装置により、ターンテーブル10の回転方向と対称方向に回転する。これにより、ゴムサンプルSがターンテーブル10の回転方向と対称方向に回転可能となっている。   A holding device 11 that holds the rubber sample S is provided above the turntable 10. The holding device 11 has a rotation shaft 12 that is held horizontally and perpendicular to the rotation direction of the turntable 10. The rubber sample S is held by the holding device 11 when the rotating shaft 12 is fitted in the hole of the shaft portion of the rubber sample S in a non-slidable state. The rotating shaft 12 is rotated in a direction symmetrical to the rotating direction of the turntable 10 by a driving device for the rotating shaft 12 provided in a part of the holding device 11. Thereby, the rubber sample S can rotate in a direction symmetrical to the rotation direction of the turntable 10.

保持装置11は、上下に変位可能で、下方に変位した場合に、ゴムサンプルSをターンテーブル10の回転面13に押し当てる。保持装置11は、ゴムサンプルSを回転面13に押し当てた状態で、ゴムサンプルSに荷重をかけることができる。荷重の大きさは、図示しない入力部から入力して指定することができる。摩耗試験機1には制御部が設けられており、該制御部が、入力部から入力された荷重をゴムサンプルSにかけるよう、保持装置11を制御する。   The holding device 11 can be displaced up and down and presses the rubber sample S against the rotating surface 13 of the turntable 10 when displaced downward. The holding device 11 can apply a load to the rubber sample S in a state where the rubber sample S is pressed against the rotating surface 13. The magnitude of the load can be specified by inputting from an input unit (not shown). The abrasion testing machine 1 is provided with a control unit, and the control unit controls the holding device 11 so that the load input from the input unit is applied to the rubber sample S.

また、別の摩耗試験機として、図2に示す図2の試験機はドラム型の摩耗試験機2がある。ドラム型の摩耗試験機2は回転体としてのドラム20を備える。ドラム20の外周面に、ゴムサンプルSが、回転しながら、一定の接触圧で押し付けられる。   As another wear tester, the tester shown in FIG. 2 is a drum-type wear tester 2. The drum-type wear tester 2 includes a drum 20 as a rotating body. The rubber sample S is pressed against the outer peripheral surface of the drum 20 with a constant contact pressure while rotating.

以下では、摩耗評価にターンテーブル型の摩耗試験機1を用いることを想定して説明する。   In the following description, it is assumed that the turntable type wear tester 1 is used for wear evaluation.

(2)ゴムの摩耗評価方法
本実施形態の摩耗評価方法では、保持装置11に保持されたゴムサンプルSに荷重(この荷重を「本試験荷重」とする)をかけることにより、ゴムサンプルSをターンテーブル10の回転面13に押し当て、ゴムサンプルSを摩耗させて、摩耗量等を評価する。その前段階として、ゴムサンプルSにかける本試験荷重と、回転面13の表面粗さを決定する。
(2) Rubber Wear Evaluation Method In the wear evaluation method according to the present embodiment, a load is applied to the rubber sample S held by the holding device 11 (this load is referred to as “main test load”). The rubber sample S is pressed against the rotating surface 13 of the turntable 10 to evaluate the amount of wear. As the previous step, the main test load applied to the rubber sample S and the surface roughness of the rotating surface 13 are determined.

(2−1)ゴムサンプルSにかける本試験荷重の決定方法
まず、実車に装着されたタイヤと路面との接地圧を測定する。接地圧の測定方法は限定されないが、以下にその一例を説明する。まず、実車にタイヤを装着する。そして、実車の重量により1つのタイヤにかかる荷重を計算により求めておく。次に、タイヤにインクを塗り、実車を紙の上に置く。すると、紙にタイヤのトレッドのパターンが付く。紙に付いたパターンの着色部の面積が、タイヤと路面との接地面積である。なお、トレッドの溝の部分(紙上で着色部として現れない部分)の面積は、タイヤと路面との接地面積に含まない。次に、1つのタイヤにかかる荷重を、タイヤと路面との接地面積で割り、タイヤと路面との接地圧を求める。
(2-1) Method for Determining Main Test Load Applied to Rubber Sample S First, the contact pressure between the tire mounted on the actual vehicle and the road surface is measured. Although the measuring method of a ground pressure is not limited, The example is demonstrated below. First, tires are mounted on the actual vehicle. And the load concerning one tire is calculated | required by calculation with the weight of a real vehicle. Next, apply ink to the tires and place the actual vehicle on paper. Then, the tire tread pattern is attached to the paper. The area of the colored portion of the pattern on the paper is the contact area between the tire and the road surface. The area of the tread groove portion (the portion that does not appear as a colored portion on the paper) is not included in the contact area between the tire and the road surface. Next, the load applied to one tire is divided by the contact area between the tire and the road surface to determine the contact pressure between the tire and the road surface.

次に、準備した接触面にゴムサンプルSを押し付け、ゴムサンプルSにかかる荷重(ここでかける荷重を「前試験荷重」とする)と、ゴムサンプルSと接触面との接触圧との関係を求める。以下にその方法を説明する。まず、平らな接触面を準備する。接触面はどのようなものであっても良いが、例えばターンテーブル10の回転面13とする。また、平面上に紙を敷き、紙の上面を接触面としても良い。次に、ゴムサンプルSにインクを塗り、接触面の上に置き、上から前試験荷重をかける。すると、接触面にゴムサンプルSの接地痕が付く。その接地痕の面積が、ゴムサンプルSと接触面との接触面積である。次に、かけた前試験荷重を、接触面積で割り、ゴムサンプルSと接触面との接触圧を求める。このようにして、ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触圧との関係を求める。その後、ゴムサンプルSにかける前試験荷重の大きさを複数回変えながら、その都度ゴムサンプルSと接触面との接触圧を求める。なお、先に前試験荷重の大きさを複数回変えながらゴムサンプルSと接触面との接触面積を調べ(この場合図3(a)に例示するグラフが得られる)、その後、各前試験荷重に対応するゴムサンプルSと接触面との接触圧を計算により求めても良い。最終的に、図3(b)に例示するような、ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触圧との関係を示すグラフが完成する。グラフの各点を直線等で近似しておく。   Next, the rubber sample S is pressed against the prepared contact surface, and the relationship between the load applied to the rubber sample S (the load applied here is referred to as “pre-test load”) and the contact pressure between the rubber sample S and the contact surface is obtained. . The method will be described below. First, prepare a flat contact surface. Any contact surface may be used, for example, the rotation surface 13 of the turntable 10. Further, paper may be laid on a flat surface, and the upper surface of the paper may be used as the contact surface. Next, ink is applied to the rubber sample S, placed on the contact surface, and a pre-test load is applied from above. Then, the contact mark of the rubber sample S is attached to the contact surface. The area of the contact mark is the contact area between the rubber sample S and the contact surface. Next, the applied pre-test load is divided by the contact area to determine the contact pressure between the rubber sample S and the contact surface. In this way, the relationship between the pre-test load applied to the rubber sample S and the contact pressure between the rubber sample S and the contact surface is obtained. Thereafter, the contact pressure between the rubber sample S and the contact surface is obtained each time the magnitude of the pre-test load applied to the rubber sample S is changed a plurality of times. In addition, the contact area between the rubber sample S and the contact surface is first examined while changing the magnitude of the pretest load a plurality of times (in this case, the graph illustrated in FIG. 3A is obtained), and then each pretest load is obtained. The contact pressure between the rubber sample S and the contact surface corresponding to may be obtained by calculation. Finally, a graph showing the relationship between the pre-test load applied to the rubber sample S and the contact pressure between the rubber sample S and the contact surface as illustrated in FIG. 3B is completed. Each point of the graph is approximated by a straight line or the like.

最後に、このグラフから、ゴムサンプルSと接触面との接触圧が、先に求めたタイヤと路面との接地圧と等しくなる場合の、ゴムサンプルSにかかる前試験荷重を読み取る。この場合の前試験荷重を、本試験荷重とする。なお、この工程において、ゴムサンプルSと接触面との接触圧と、タイヤと路面との接地圧とを、完全に一致させるようにしなくても良い。両者の間には、摩耗評価結果に大きな影響が出ない程度の差は許容される。例えば、両者の間に、タイヤと路面との接地圧の10%分の差があっても良い。   Finally, from this graph, the pre-test load applied to the rubber sample S when the contact pressure between the rubber sample S and the contact surface is equal to the previously determined contact pressure between the tire and the road surface is read. The pre-test load in this case shall be the main test load. In this step, the contact pressure between the rubber sample S and the contact surface and the contact pressure between the tire and the road surface may not be completely matched. Between the two, a difference that does not significantly affect the wear evaluation result is allowed. For example, there may be a difference of 10% of the ground pressure between the tire and the road surface between the two.

(2−2)回転面13の表面粗さの決定方法
まず、タイヤを装着した車両が走行する路面の凹凸のデータを採る。路面には様々な種類があるが、ここでは一例として、図4に示すような、小石等の骨材3がアスファルト30によって固着された路面を想定する。測定には、例えば、一般的な表面粗さ計や非接触のマイクロスコープが用いられる。この測定で得られるデータは、路面の凹凸を表すデータ、換言すれば、測定方向の位置とその位置での路面の高さのデータであり、横軸が位置、縦軸が路面の高さを表すものとすると、図5(a)に例示するような線として表されるものである。この線は、骨材3による凹凸や、アスファルト30の表面の凹凸等を表している。骨材3による凹凸は粗い凹凸として、アスファルト30の表面の凹凸は細かい凹凸として、前記の線に表される。
(2-2) Method for Determining Surface Roughness of Rotating Surface 13 First, data on unevenness of a road surface on which a vehicle equipped with tires travels is taken. There are various types of road surfaces. Here, as an example, a road surface in which an aggregate 3 such as pebbles is fixed by an asphalt 30 as shown in FIG. 4 is assumed. For example, a general surface roughness meter or a non-contact microscope is used for the measurement. The data obtained by this measurement is data representing the unevenness of the road surface, in other words, the position in the measurement direction and the road surface height at that position, the horizontal axis is the position, and the vertical axis is the road surface height. If expressed, it is expressed as a line as illustrated in FIG. This line represents the unevenness due to the aggregate 3, the unevenness on the surface of the asphalt 30, and the like. The unevenness due to the aggregate 3 is expressed as rough unevenness, and the unevenness on the surface of the asphalt 30 is expressed as fine unevenness in the line.

次に、路面の凹凸を表すデータに対し、カットオフを行う。具体的には以下のことを行う。図5(a)に示す路面の凹凸を表す線を波形として捉えると、図5(b)に示すように、該波形を波長の異なる複数の波に分解することができる。換言すると、路面の凹凸を表す波形は、波長の異なる複数の波で近似することができる。ここで、波長の長い波ほど、骨材3等の大きな凹凸による波形を近似している。一方、波長の短い波ほど、アスファルト30の表面の凹凸等の細かい凹凸による波形を近似している。この波長の異なる複数の波の中から、所定長さ以上の波長の波を取り除く。ここで、所定長さの具体的数値は限定されないが、骨材3による波形を近似している波を取り除くことができる数値であることが望ましい。そして、残った波、すなわち所定長さより短い波長の波を足して新たな波形を描く。すると、図5(c)に示す波形が得られる。この波形は、主としてアスファルト30の表面の凹凸等の細かい凹凸による波形である。この波形を示すデータがカットオフ後のデータである。   Next, a cut-off is performed on the data representing the road surface unevenness. Specifically: If a line representing the road surface unevenness shown in FIG. 5A is captured as a waveform, as shown in FIG. 5B, the waveform can be decomposed into a plurality of waves having different wavelengths. In other words, the waveform representing the road surface unevenness can be approximated by a plurality of waves having different wavelengths. Here, the longer the wave, the closer the waveform due to large unevenness of the aggregate 3 or the like. On the other hand, as the wave has a shorter wavelength, the waveform due to fine unevenness such as the unevenness on the surface of the asphalt 30 is approximated. A wave having a wavelength longer than a predetermined length is removed from the plurality of waves having different wavelengths. Here, the specific numerical value of the predetermined length is not limited, but is preferably a numerical value that can remove a wave that approximates the waveform of the aggregate 3. Then, the remaining wave, that is, a wave having a wavelength shorter than a predetermined length is added to draw a new waveform. Then, the waveform shown in FIG. 5C is obtained. This waveform is a waveform mainly due to fine irregularities such as irregularities on the surface of the asphalt 30. Data indicating this waveform is data after cut-off.

次に、カットオフ後のデータから、表面粗さを求める。ここで求める表面粗さとしては、算術平均粗さや十点平均粗さ等、様々なものが有り得る。   Next, the surface roughness is obtained from the data after cut-off. As the surface roughness obtained here, there can be various ones such as arithmetic average roughness and ten-point average roughness.

以上のようにして求められた表面粗さを、回転面13の表面粗さとする。   The surface roughness obtained as described above is defined as the surface roughness of the rotating surface 13.

(2−3)試験の実施
回転面13の表面粗さを、以上の方法で決定した表面粗さとする。その方法は限定されないが、例えば、上記の方法で決定した表面粗さと同じ表面粗さのセーフティウォークを、ターンテーブル10の上面に貼り付け、回転面13とする。ここで、セーフティウォークとは、布の表面に砥粒を糊等で付けて、所定の表面粗さとしたものである。
(2-3) Implementation of test The surface roughness of the rotating surface 13 is the surface roughness determined by the above method. Although the method is not limited, for example, a safety walk having the same surface roughness as the surface roughness determined by the above method is attached to the upper surface of the turntable 10 to form the rotating surface 13. Here, the safety walk is a predetermined surface roughness obtained by attaching abrasive grains to the surface of the cloth with glue or the like.

次に、ゴムサンプルSを保持装置11に保持させる。また、上記の方法で決定した本試験荷重を摩耗試験機1の入力部に入力する。   Next, the rubber sample S is held by the holding device 11. Further, the main test load determined by the above method is input to the input unit of the wear tester 1.

次に、ターンテーブル10の回転を開始するとともに、保持装置11を下方に変位させ、ゴムサンプルSを回転面13に押し付ける。この時、制御部の制御により、ゴムサンプルSには入力部に入力された本試験荷重がかけられる。   Next, rotation of the turntable 10 is started, the holding device 11 is displaced downward, and the rubber sample S is pressed against the rotation surface 13. At this time, the main test load input to the input unit is applied to the rubber sample S under the control of the control unit.

その後、所定時間が経過すると、ターンテーブル10の回転が停止し、保持装置11が上方へ変位する。ゴムサンプルSを保持装置11から取り外し、摩耗量等を調べる。   Then, when predetermined time passes, rotation of the turntable 10 will stop and the holding | maintenance apparatus 11 will be displaced upwards. The rubber sample S is removed from the holding device 11, and the wear amount and the like are examined.

(3)効果
本実施形態のタイヤ用ゴムの摩耗評価方法によれば、実車に装着されたタイヤと路面との接地圧と同じ大きさの接触圧を、ゴムサンプルSにかけることができる。さらに、路面の表面粗さに基づいて決定された表面粗さを有する回転面13でゴムサンプルSを摩耗させることができる。そのため、ゴムサンプルSを、タイヤの実際の摩耗条件に近い条件下で摩耗させることができる。そのため、摩耗評価の信頼性が高くなる。
(3) Effect According to the tire rubber wear evaluation method of the present embodiment, a contact pressure of the same magnitude as the contact pressure between the tire mounted on the actual vehicle and the road surface can be applied to the rubber sample S. Furthermore, the rubber sample S can be worn on the rotating surface 13 having the surface roughness determined based on the surface roughness of the road surface. Therefore, the rubber sample S can be worn under conditions close to the actual wear conditions of the tire. Therefore, the reliability of wear evaluation is increased.

特に、測定した路面の凹凸を表すデータに対しカットオフを行い、カットオフ後のデータから求めた表面粗さを回転面13の表面粗さとするため、回転面13の表面粗さを、ゴムの摩耗に影響するミクロ粗さに近い粗さとすることができる。そのため、摩耗評価の信頼性が高くなる。また、回転面13を加工するにあたって、ゴムの摩耗に対する影響の小さいマクロ粗さを再現する必要が無いため、加工の工数が減る。特に、カットオフによって骨材3による波形を近似している波を取り除いた場合は、回転面13の表面粗さをよりミクロ粗さに近い粗さとすることができるため、これらの効果が顕著になる。   In particular, a cut-off is performed on the data representing the unevenness of the measured road surface, and the surface roughness obtained from the data after the cut-off is used as the surface roughness of the rotation surface 13. Roughness close to micro-roughness that affects wear can be achieved. Therefore, the reliability of wear evaluation is increased. Further, since it is not necessary to reproduce the macro roughness having a small influence on the rubber wear when the rotating surface 13 is processed, the number of processing steps is reduced. In particular, when the wave that approximates the waveform of the aggregate 3 is removed by the cut-off, the surface roughness of the rotating surface 13 can be made closer to a microroughness, so that these effects are remarkable. Become.

(4)実施例
以上の実施形態の摩耗評価方法の精度について調べた。具体的には、3種類のゴムでタイヤとゴムサンプルSを作り、実車に装着したタイヤの摩耗評価、下に述べる比較例の方法で行ったゴムサンプルSの摩耗評価、上記の実施形態の方法(実施例の方法)で行ったゴムサンプルSの摩耗評価、をそれぞれ行い、結果を指数化した。ここで、タイヤの摩耗評価結果の指数を実車摩耗指数、ゴムサンプルSの摩耗評価結果の指数をラボ摩耗指数とする。そして、実車摩耗指数と実施例のラボ摩耗指数との間の相関係数を求めるとともに、実車摩耗指数と比較例のラボ摩耗指数との間の相関係数を求め、これらの相関係数を比較し、いずれの相関が強いか調査した。
(4) Example The accuracy of the wear evaluation method of the above embodiment was examined. Specifically, a tire and a rubber sample S are made from three types of rubber, and the wear evaluation of a tire mounted on an actual vehicle, the wear evaluation of the rubber sample S performed by the method of the comparative example described below, and the method of the above embodiment The wear evaluation of the rubber sample S performed in (Method of Example) was performed, and the results were indexed. Here, an index of the tire wear evaluation result is an actual vehicle wear index, and an index of the rubber sample S wear evaluation result is a laboratory wear index. Then, the correlation coefficient between the actual vehicle wear index and the lab wear index of the example is obtained, and the correlation coefficient between the actual vehicle wear index and the lab wear index of the comparative example is obtained, and these correlation coefficients are compared. We investigated which correlation was strong.

詳細には、まず、配合剤の種類及び量を変えた3種類のゴムで、それぞれタイヤ及びゴムサンプルSを製造した。   Specifically, first, a tire and a rubber sample S were manufactured using three types of rubbers with different types and amounts of compounding agents.

次に、製造したタイヤを4輪の実車に装着して、その摩耗量を評価した。ここで、4輪のタイヤは全て同じ種類のタイヤとした。タイヤはゴムの種類毎に3種類あるため、評価が終わる毎にタイヤを全て別の種類のものに交換し、全ての種類のタイヤについて評価を行った。評価に用いられたタイヤのサイズは、195/65R15である。タイヤの内圧は230kPaである。   Next, the manufactured tire was mounted on a four-wheel actual vehicle, and the amount of wear was evaluated. Here, all the tires of the four wheels were the same type. Since there are three types of tires for each type of rubber, every time the evaluation is completed, the tires are all replaced with different types, and all types of tires are evaluated. The size of the tire used for evaluation is 195 / 65R15. The internal pressure of the tire is 230 kPa.

また、ゴムの種類が異なる3種類のゴムサンプルSについて、摩耗試験機を用いて摩耗量を評価した。評価方法は、以下の比較例1、比較例2、実施例の方法である。   Further, the wear amount of three types of rubber samples S having different types of rubber was evaluated using a wear tester. The evaluation methods are those of Comparative Example 1, Comparative Example 2, and Examples below.

比較例1の評価方法は、従来から実施されている評価方法である。具体的には、ゴムサンプルSに負荷する荷重及び回転面13の表面粗さを恣意的に定める評価方法である。ここでは、ゴムサンプルSに負荷する荷重を、ゴムサンプルSと回転面13との接触圧が300kPaになる大きさとした。また、回転面13を、240メッシュの砥粒が糊付けされたセーフティウォークとした。   The evaluation method of Comparative Example 1 is an evaluation method that has been conventionally performed. Specifically, this is an evaluation method for arbitrarily determining the load applied to the rubber sample S and the surface roughness of the rotating surface 13. Here, the load applied to the rubber sample S was set to such a magnitude that the contact pressure between the rubber sample S and the rotating surface 13 was 300 kPa. The rotating surface 13 was a safety walk to which 240 mesh abrasive grains were glued.

比較例2の評価方法は、ゴムサンプルSに負荷する荷重を、上記の実施形態の方法で決定し、回転面13の表面粗さを、恣意的に定める評価方法である。ゴムサンプルSに負荷する荷重は、上記の実施形態の方法で決定した結果、ゴムサンプルSと回転面13との接触圧が230kPaとなる大きさとなった。また、回転面13を、240メッシュの砥粒が糊付けされたセーフティウォークとした。   The evaluation method of Comparative Example 2 is an evaluation method in which the load applied to the rubber sample S is determined by the method of the above embodiment, and the surface roughness of the rotating surface 13 is arbitrarily determined. As a result of determining the load applied to the rubber sample S by the method of the above embodiment, the contact pressure between the rubber sample S and the rotating surface 13 became 230 kPa. The rotating surface 13 was a safety walk to which 240 mesh abrasive grains were glued.

実施例の評価方法は、上記の実施形態の評価方法である。ゴムサンプルSに負荷する荷重は、上記の実施形態の方法で決定した結果、ゴムサンプルSと回転面13との接触圧が230kPaとなる大きさとなった。回転面13の表面粗さも、上記の実施形態の方法で決定し、回転面13をその表面粗さのセーフティウォークとした。   The evaluation method of an Example is the evaluation method of said embodiment. As a result of determining the load applied to the rubber sample S by the method of the above embodiment, the contact pressure between the rubber sample S and the rotating surface 13 became 230 kPa. The surface roughness of the rotating surface 13 was also determined by the method of the above embodiment, and the rotating surface 13 was used as a safety walk for the surface roughness.

以上の記載事項を除けば、比較例1、比較例2、実施例の、評価方法の詳細な条件や、評価に用いた試験機の構造は、同じである。   Except for the items described above, the detailed conditions of the evaluation method and the structure of the testing machine used for evaluation are the same in Comparative Example 1, Comparative Example 2, and Examples.

評価結果を指数で表し、各ゴムについての実車摩耗指数を縦軸、ラボ摩耗指数を横軸に取ってプロットしたのが図6(a)〜(c)である。また、求まった相関係数を表1に示す。   The evaluation results are expressed as indexes, and the actual vehicle wear index for each rubber is plotted on the vertical axis, and the laboratory wear index is plotted on the horizontal axis in FIGS. 6 (a) to 6 (c). Table 1 shows the obtained correlation coefficients.

実施例、比較例2、比較例1の順に相関係数が1に近く、相関が強かった。このことから、上記の実施形態の評価方法によれば、ゴムの種類の違いによるタイヤの摩耗状態の良否を、最も良く再現できることが確認できた。そのため、上記の実施形態の評価方法の信頼性が高いことが確認できた。   The correlation coefficient was close to 1 in the order of Example, Comparative Example 2, and Comparative Example 1, and the correlation was strong. From this, it was confirmed that according to the evaluation method of the above-described embodiment, the quality of the tire wear state due to the difference in the type of rubber can be best reproduced. Therefore, it was confirmed that the evaluation method of the above embodiment has high reliability.

(5)変更例
(5−1)摩耗試験機の変更例1
ゴムサンプルSにかける本試験荷重は、摩耗試験機によって自動的に決定されても良い。例えば、摩耗試験機が以下のような構成となっていても良い。まず、実車に装着されたタイヤと路面との接地圧を入力する実測接地圧入力部が設けられている。また、ゴムサンプルSを準備した接触面に押し付けた時の、ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触面積とを入力する、前試験結果入力部が設けられている。さらに、前試験結果入力部からの入力値に基づき、(2−1)で示した方法で、ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触圧との関係を求める本試験荷重決定部が設けられている。本試験荷重決定部は、(2−1)で示した方法で、ゴムサンプルSの回転面13との接触圧が、実測接地圧入力部から入力された接地圧と等しくなるように、ゴムサンプルSにかける本試験荷重を決定する。さらに、決定された本試験荷重をゴムサンプルSにかけるよう保持装置11を制御する制御部も設けられている。
(5) Modification Example (5-1) Modification Example 1 of Wear Tester
The actual test load applied to the rubber sample S may be automatically determined by a wear tester. For example, the wear tester may have the following configuration. First, an actual contact pressure input unit is provided for inputting the contact pressure between the tire mounted on the actual vehicle and the road surface. Further, a pre-test result input unit is provided for inputting a pre-test load applied to the rubber sample S and a contact area between the rubber sample S and the contact surface when the rubber sample S is pressed against the prepared contact surface. Yes. Furthermore, based on the input value from the previous test result input unit, the relationship between the previous test load applied to the rubber sample S and the contact pressure between the rubber sample S and the contact surface is obtained by the method shown in (2-1). A test load determination unit is provided. This test load determination unit is the method shown in (2-1), so that the contact pressure with the rotating surface 13 of the rubber sample S is equal to the ground pressure input from the measured ground pressure input unit. Determine the actual test load on S. Furthermore, a control unit that controls the holding device 11 so as to apply the determined final test load to the rubber sample S is also provided.

評価者は、実車に装着されたタイヤと路面との接地圧を実測接地圧入力部に入力する。また、ゴムサンプルSを準備した接触面に押し付けた時の、ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触面積とを、前試験結果入力部に入力する。すると、本試験荷重決定部がデータ処理を行って本試験荷重を決定し、制御部がその本試験荷重をゴムサンプルSにかけるよう保持装置11を制御する。   The evaluator inputs the contact pressure between the tire mounted on the actual vehicle and the road surface to the measured contact pressure input unit. Further, the pre-test load applied to the rubber sample S and the contact area between the rubber sample S and the contact surface when the rubber sample S is pressed against the prepared contact surface are input to the pre-test result input unit. Then, the main test load determination unit performs data processing to determine the main test load, and the control unit controls the holding device 11 so that the main test load is applied to the rubber sample S.

摩耗試験機がこのような構成となっていれば、本試験荷重が自動的に決定されるため、評価者の手間が省ける。   If the wear tester has such a configuration, the test load is automatically determined, so that the labor of the evaluator can be saved.

(5−2)摩耗試験機の変更例2
回転面13の表面粗さは、摩耗試験機によって自動的に決定されても良い。例えば、摩耗試験機が以下のような構成となっていても良い。まず、測定された路面の凹凸のデータを入力する路面表面粗さ入力部が設けられている。また、入力されたデータに対して(2−2)で説明したカットオフを行い、カットオフ後のデータから表面粗さを求める表面粗さ決定部が設けられている。さらに、求まった表面粗さが表示される表示部が設けられている。
(5-2) Modification 2 of the wear tester
The surface roughness of the rotating surface 13 may be automatically determined by a wear tester. For example, the wear tester may have the following configuration. First, a road surface surface roughness input unit for inputting measured road surface unevenness data is provided. In addition, a surface roughness determination unit that performs the cutoff described in (2-2) on the input data and obtains the surface roughness from the data after the cutoff is provided. Further, a display unit for displaying the obtained surface roughness is provided.

評価者は、測定された路面の凹凸のデータを入力部に入力する。すると、表面粗さ決定部がデータ処理を行う。そして、求まった表面粗さが表示部に表示される。評価者はそれを見て、回転面13の表面粗さを、表示部に表示された表面粗さとする。   The evaluator inputs the measured road surface unevenness data to the input unit. Then, the surface roughness determination unit performs data processing. The obtained surface roughness is displayed on the display unit. The evaluator looks at it and sets the surface roughness of the rotating surface 13 as the surface roughness displayed on the display unit.

摩耗試験機がこのような構成となっていれば、回転面13の表面粗さが自動的に決定されるため、評価者の手間が省ける。   If the wear tester has such a configuration, the surface roughness of the rotating surface 13 is automatically determined, so that the labor of the evaluator can be saved.

また、予め回転面13が所定の表面粗さに加工されたターンテーブル10等の回転体が、表面粗さ毎に複数種類準備されていても良い。そして、以上の方法により回転面13の表面粗さが決定すると、回転面13がその表面粗さとなっている回転体が回転位置に出てくるように、構成されていても良い。   Also, a plurality of types of rotating bodies such as the turntable 10 in which the rotating surface 13 has been processed in advance to a predetermined surface roughness may be prepared for each surface roughness. And when the surface roughness of the rotating surface 13 is determined by the above method, the rotating body having the surface roughness of the rotating surface 13 may be configured to come out at the rotating position.

(5−3)ゴムサンプルSにかける本試験荷重の決定方法の変更例
ゴムサンプルSにかける本試験荷重は、ゴムサンプルSと回転面13との接触圧が、実車に装着されたタイヤと路面との接地圧と等しくなるように決定されれば良く、上記の実施形態の方法に限定されない。例えば、ゴムサンプルSにかかる前試験荷重と、ゴムサンプルSと接触面との接触圧との関係を求めるに当たって、該接触圧を、感圧紙等で直接測っても良い。接触圧を直接測れば、上記の実施形態の場合のような計算の手間が省ける。
(5-3) Modification Example of Determination Method of the Test Load Applied to the Rubber Sample S The test load applied to the rubber sample S is such that the contact pressure between the rubber sample S and the rotating surface 13 is the tire mounted on the actual vehicle and the road surface. And is not limited to the method of the above embodiment. For example, in determining the relationship between the pre-test load applied to the rubber sample S and the contact pressure between the rubber sample S and the contact surface, the contact pressure may be directly measured using pressure sensitive paper or the like. If the contact pressure is measured directly, it is possible to save the calculation effort as in the case of the above embodiment.

(5−4)回転面13の表面粗さの決定方法の変更例
回転面13の表面粗さは、実際の路面の凹凸のデータに基づき決定されていれば良く、データ処理の仕方等の具体的方法は上記の実施形態の方法に限定されない。例えば、路面の凹凸のデータにカットオフ等のデータ処理を行わず、そのままのデータから表面粗さを求め、回転面13の表面粗さとしても良い。この場合、データ処理の手間が省ける。
(5-4) Modification Example of Method for Determining Surface Roughness of Rotating Surface 13 The surface roughness of the rotating surface 13 only needs to be determined based on actual road surface unevenness data. The general method is not limited to the method of the above embodiment. For example, the surface roughness of the rotating surface 13 may be obtained by obtaining the surface roughness from the data as it is without performing data processing such as cutoff on the road surface unevenness data. In this case, the labor of data processing can be saved.

Figure 0006215007
Figure 0006215007

S…ゴムサンプル、1…ターンテーブル型の摩耗試験機、10…ターンテーブル、11…保持装置、12…回転軸、13…回転面、2…ドラム型の摩耗試験機、20…ドラム、3…骨材、30…アスファルト S ... rubber sample, 1 ... turntable type wear tester, 10 ... turntable, 11 ... holding device, 12 ... rotating shaft, 13 ... rotating surface, 2 ... drum type wear tester, 20 ... drum, 3 ... Aggregate, 30 ... asphalt

Claims (2)

ゴムサンプルに本試験荷重をかけることによりこれを回転体の回転面に押し当て、前記ゴムサンプルを摩耗させるタイヤ用ゴムの摩耗評価方法であって、
実車に装着されたタイヤと路面との接地圧を測定する工程と、
前記ゴムサンプルの前記回転面との接触圧が、測定された前記接地圧と等しくなるように、前記ゴムサンプルにかける本試験荷重を決定する工程と、
路面の凹凸のデータを採る工程と、
得られた路面の凹凸のデータに基づき、前記回転面の表面粗さを決定する工程と、
前記回転面を前記の決定された表面粗さとする工程と、
前記ゴムサンプルに前記の決定された本試験荷重をかけて前記回転面に押し当てる工程と、を含み、
前記の得られた路面の凹凸のデータに基づき前記回転面の表面粗さを決定する工程は、
得られた路面の凹凸を表す線を波長の異なる複数の波に分解し、前記複数の波のうち所定長さより短い波長の波を足してできる線から表面粗さを計算し、前記回転面の表面粗さとする工程を含む、
タイヤ用ゴムの摩耗評価方法。
A method for evaluating the wear of a tire rubber in which the rubber sample is pressed against a rotating surface of a rotating body by applying a main test load to the rubber sample, and the rubber sample is worn.
Measuring the contact pressure between the tire mounted on the actual vehicle and the road surface;
Determining a final test load applied to the rubber sample such that a contact pressure of the rubber sample with the rotating surface is equal to the measured ground pressure;
A process of taking data on road surface irregularities,
Based on the obtained road surface irregularity data, determining the surface roughness of the rotating surface;
Setting the rotating surface to the determined surface roughness;
Applying the determined final test load to the rubber sample and pressing the rubber sample against the rotating surface .
The step of determining the surface roughness of the rotating surface based on the obtained road surface unevenness data,
The obtained road surface irregularities are decomposed into a plurality of waves having different wavelengths, and the surface roughness is calculated from a line formed by adding a wave having a wavelength shorter than a predetermined length among the plurality of waves. Including the step of surface roughness,
A method for evaluating wear of rubber for tires.
前記本試験荷重を決定する工程は、
前記ゴムサンプルに異なる複数の大きさの前試験荷重をかけてこれを接触面に押し当て、前記前試験荷重と、前記ゴムサンプルと前記接触面との接触圧との関係を求める工程と、
求められた前記前試験荷重と前記接触圧との関係から、前記ゴムサンプルと前記回転面との接触圧を、測定されたタイヤと路面との前記接地圧と等しくするための、前記ゴムサンプルにかける前記本試験荷重を決定する工程と、
を含む請求項1に記載のタイヤ用ゴムの摩耗評価方法。
The step of determining the main test load includes:
Applying a plurality of different pre-test loads to the rubber sample and pressing them against the contact surface, and determining the relationship between the pre-test load and the contact pressure between the rubber sample and the contact surface;
From the relationship between the obtained pre-test load and the contact pressure, the rubber sample for making the contact pressure between the rubber sample and the rotating surface equal to the measured contact pressure between the tire and the road surface Determining the actual test load to be applied;
The tire rubber wear evaluation method according to claim 1, comprising:
JP2013234105A 2013-11-12 2013-11-12 Wear evaluation method and wear tester for tire rubber Active JP6215007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234105A JP6215007B2 (en) 2013-11-12 2013-11-12 Wear evaluation method and wear tester for tire rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234105A JP6215007B2 (en) 2013-11-12 2013-11-12 Wear evaluation method and wear tester for tire rubber

Publications (2)

Publication Number Publication Date
JP2015094664A JP2015094664A (en) 2015-05-18
JP6215007B2 true JP6215007B2 (en) 2017-10-18

Family

ID=53197156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234105A Active JP6215007B2 (en) 2013-11-12 2013-11-12 Wear evaluation method and wear tester for tire rubber

Country Status (1)

Country Link
JP (1) JP6215007B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922722B2 (en) * 2017-12-22 2021-08-18 住友ゴム工業株式会社 Evaluation method of uneven wear resistance of rubber members and tire manufacturing method using this
CN108519243A (en) * 2018-05-29 2018-09-11 青岛科技大学 A kind of rubber abrasion detection device of Novel imitation pneumatic tire
KR102400526B1 (en) * 2020-09-03 2022-05-20 넥센타이어 주식회사 Compound fuel economy performance test method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3234678B2 (en) * 1993-06-16 2001-12-04 株式会社ブリヂストン Road surface for tire wear testing machine
JP3406643B2 (en) * 1993-06-30 2003-05-12 株式会社ブリヂストン Tire tread contact measurement device and tire tread contact measurement method
JP3277155B2 (en) * 1998-05-08 2002-04-22 株式会社ブリヂストン Tire wear life prediction method
JP5534588B2 (en) * 2010-02-24 2014-07-02 株式会社ブリヂストン Tire rubber index calculation method, apparatus and program
US8555698B2 (en) * 2011-01-26 2013-10-15 Bridgestone Americas Tire Operations, Llc Engineered surfaces for laboratory tread wear testing of tires

Also Published As

Publication number Publication date
JP2015094664A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP5972906B2 (en) Surface designed for laboratory tire tread wear testing
JP5534588B2 (en) Tire rubber index calculation method, apparatus and program
CN105259034A (en) Method for measuring and representing microcosmic interface phases of asphalt concrete
JP6215007B2 (en) Wear evaluation method and wear tester for tire rubber
Hernandez et al. Analytical approach for predicting three-dimensional tire–pavement contact load
JP4963978B2 (en) Rubber abrasion tester and tire tread rubber abrasion test method using the same
JP5889605B2 (en) Rubber abrasion test method
JP5035991B2 (en) Rubber testing machine
US6023967A (en) Method for measuring tire wear using intensity of reflected light
Nataadmadja et al. Quantifying aggregate microtexture with respect to wear—Case of New Zealand aggregates
Wright et al. Effects of age and wear on the stiffness and friction properties of an SUV tyre
JP6444720B2 (en) Wear evaluation method and wear tester for tire rubber
CN101984333A (en) Method for forecasting remaining service life of retreaded tire body of heavy-duty vehicle
CN104897497A (en) Method for improving wear resistance of tyre through ground pressure distribution analysis
JP6922722B2 (en) Evaluation method of uneven wear resistance of rubber members and tire manufacturing method using this
JP2014163703A (en) Rubber wear testing method
JP2017187404A (en) Distortion predicting method for rubber
KR20110065915A (en) Method for assessing road state contacting tire
KR20090013247U (en) A Measuring Instrument of Contact Pressure for a Tire
CN106132676B (en) Surface releasability forecast model
KR101607772B1 (en) Master Tire for Processing Road Surface of Indoor Wear Test Machine
JP7017899B2 (en) Tire ground contact condition evaluation method
Anzabi Haul truck tire reliability and condition monitoring
CN205483877U (en) Grand torn -up device of test finished product child tread rubber acker
Wright et al. The Effects of Age on the Stiffness Properties of a SUV Tyre

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250