JP2019073757A - Hydrogen storing alloy particle - Google Patents
Hydrogen storing alloy particle Download PDFInfo
- Publication number
- JP2019073757A JP2019073757A JP2017199579A JP2017199579A JP2019073757A JP 2019073757 A JP2019073757 A JP 2019073757A JP 2017199579 A JP2017199579 A JP 2017199579A JP 2017199579 A JP2017199579 A JP 2017199579A JP 2019073757 A JP2019073757 A JP 2019073757A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- grain boundary
- hydrogen storage
- storage alloy
- boundary phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Powder Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本願は水素吸蔵合金粒子を開示する。 The present application discloses hydrogen storage alloy particles.
アルカリ電池の電極材料として水素吸蔵合金が利用されている。例えば、特許文献1には、Ti−V系固溶体からなり、体心立方構造を有する母相と、Ti−Ni系合金からなり、前記母相中に3次元網目状に存在して母相を小母相に分割する第2相とを含む所定の水素吸蔵合金が開示されており、小母相の平均断面積を30μm2以下、具体的には10−15μm2程度とすることで、高率放電特性及び充放電サイクル特性に優れた水素吸蔵合金電極を得ている。 Hydrogen storage alloys are used as electrode materials for alkaline batteries. For example, in Patent Document 1, a parent phase comprising a Ti-V based solid solution and having a body-centered cubic structure and a Ti-Ni based alloy are present in a three-dimensional network shape in the parent phase and the parent phase is A predetermined hydrogen storage alloy is disclosed that includes a second phase that is divided into a small matrix phase, and the average cross-sectional area of the small matrix phase is 30 μm 2 or less, specifically 10-15 μm 2 or so, and high. A hydrogen storage alloy electrode excellent in rate discharge characteristics and charge / discharge cycle characteristics is obtained.
本発明者の新たな知見によれば、特許文献1に開示されたような水素吸蔵合金を電池の電極に適用した場合、電流密度を高くすると放電特性が低下し、電池の出力が低下してしまうという課題がある。 According to a new finding of the present inventor, when a hydrogen storage alloy as disclosed in Patent Document 1 is applied to the electrode of a battery, the discharge characteristic is reduced when the current density is increased, and the output of the battery is reduced. There is a problem of
本願は上記課題を解決するための手段の一つとして、TiとCrとVと5at%以上10at%以下のNiとを含む水素吸蔵合金粒子であって、Ti、Cr及びVを主成分とし格子定数が3.05±0.05Åである体心立方構造を有する母相と、Ti及びNiを主成分とし前記母相の間に存在する粒界相と、を備え、前記母相の平均断面積が5μm2以下であり、粒子表面に占める前記粒界相の面積率が30%以上である、水素吸蔵合金粒子を開示する。 The present application is a hydrogen storage alloy particle containing Ti, Cr, V, and Ni at 5 at% or more and 10 at% or less, as one means for solving the above-mentioned problems, wherein Ti, Cr and V are main components A matrix phase having a body-centered cubic structure with a constant of 3.05 ± 0.05 Å, and a grain boundary phase consisting mainly of Ti and Ni and existing between the matrix phases, and the average breakage of the matrix phase Disclosed is a hydrogen storage alloy particle having an area of 5 μm 2 or less and an area ratio of the grain boundary phase occupying on the particle surface of 30% or more.
「Ti、Cr及びVを主成分とし」とは、母相に含まれる全元素量のうちTi、Cr及びVの合計量の占める割合(at%)が最も大きいことを意味する。
「Ti及びNiを主成分とし」とは、粒界相に含まれる全元素量のうちTi及びNiの合計量の占める割合(at%)が最も大きいことを意味する。
「母相の平均断面積」は、水素吸蔵合金粒子について断面SEM画像を取得し、当該断面SEM画像において粒界相に囲まれた領域(結晶粒)の面積を計測してその平均値を求めることで特定可能である。例えば、断面SEM画像において粒界相に囲まれた領域(結晶粒)を10個以上抽出し、各面積を計測してその平均値を求める。
「粒子表面に占める前記粒界相の面積率」は、水素吸蔵合金粒子の表面の反射電子像を2階調化した場合に白色に検出される領域の割合を計測することで特定可能である。例えば、水素吸蔵合金粒子の表面について反射電子像を取得し、当該反射電子像において、10μm×10μmの領域を選択し、画像処理ソフトで2階調化し、(白色画素数)÷(全画素数)×100として当該領域に占める粒界相の面積率を求め、粒子表面の10箇所以上について同様にしてそれぞれ面積率を求め、全体としての面積率を特定する。
“Ti, Cr and V as main components” means that the proportion (at%) of the total amount of Ti, Cr and V in the total amount of elements contained in the matrix is the largest.
The term “mainly composed of Ti and Ni” means that the proportion (at%) of the total amount of Ti and Ni out of the total amount of elements contained in the grain boundary phase is the largest.
The “average cross-sectional area of the matrix” is obtained by obtaining a cross-sectional SEM image of the hydrogen storage alloy particle, and measuring the area of the region (crystal grain) surrounded by the grain boundary phase in the cross-sectional SEM image to determine the average value. Can be identified. For example, ten or more regions (crystal grains) surrounded by the grain boundary phase in the cross-sectional SEM image are extracted, and each area is measured to obtain an average value thereof.
The “area ratio of the grain boundary phase occupied on the particle surface” can be identified by measuring the ratio of the area detected as white when the reflection electron image of the surface of the hydrogen storage alloy particle is converted to two gradations. . For example, a backscattered electron image is obtained on the surface of a hydrogen storage alloy particle, and in the backscattered electron image, an area of 10 μm × 10 μm is selected, and two gradations are performed by image processing software. The area ratio of the grain boundary phase occupying the region is determined as x100), the area ratio is similarly determined for 10 or more locations on the particle surface, and the area ratio as a whole is specified.
本開示の水素吸蔵合金粒子は、母相の平均断面積が5μm2以下と小さく、放電反応に寄与する粒界相の粒子表面に占める面積率が30%以上と大きいため、電池の電極材料として適用した場合に、電流密度が高くても放電容量が低下し難く、出力が高い。 The hydrogen storage alloy particles of the present disclosure have a small average cross-sectional area of 5 μm 2 or less of the matrix phase and a large area ratio of the grain boundary phase contributing to the discharge reaction to the particle surface of 30% or more. When applied, the discharge capacity hardly decreases even if the current density is high, and the output is high.
1.水素吸蔵合金粒子
図1に示す水素吸蔵合金粒子10は、TiとCrとVと5at%以上10at%以下のNiとを含む水素吸蔵合金粒子であって、Ti、Cr及びVを主成分とし格子定数が3.05±0.05Åである体心立方構造を有する母相1と、Ti及びNiを主成分とし母相1の間に存在する粒界相2と、を備える。また、本開示の水素吸蔵合金粒子10においては、母相1の平均断面積が5μm2以下であり、粒子表面に占める粒界相2の面積率が30%以上である。
1. Hydrogen storage alloy particle The hydrogen storage alloy particle 10 shown in FIG. 1 is a hydrogen storage alloy particle containing Ti, Cr, V, and Ni at 5 at% or more and 10 at% or less, and contains Ti, Cr, and V as main components. A matrix phase 1 having a body-centered cubic structure with a constant of 3.05 ± 0.05 Å, and a grain boundary phase 2 containing Ti and Ni as main components and existing between the matrix phases 1 are provided. Moreover, in the hydrogen storage alloy particle 10 of the present disclosure, the average cross-sectional area of the matrix phase 1 is 5 μm 2 or less, and the area ratio of the grain boundary phase 2 occupied on the particle surface is 30% or more.
1.1.母相
母相1は、Ti、Cr及びVを主成分とし格子定数が3.05±0.05Åである体心立方構造を有する。母相1は基本的にはTiCrV合金を主体とするものであるが、水素吸蔵量を高める等の目的で、Ti、Cr、V以外の元素が含まれていてもよい。例えば、La等を含み得る。ただし、Ti、Cr、V以外の元素の量が多過ぎると、高い水素吸蔵能を有する体心立法構造の母相の割合が減少し、容量低下を招く虞がある。そのため、Ti、Cr、V以外の元素の量は20at%以下が好ましく、10at%以下がより好ましい。言い換えれば、母相1に含まれる成分全体を100at%とした場合において、母相1に含まれるTi、Cr及びVの量は合計で80at%以上であることが好ましく、90at%以上であることがより好ましい。母相1に含まれるTi、Cr及びVのそれぞれの量は特に限定されるものではない。例えば、母相1に含まれる成分全体を100at%とした場合において、母相1に含まれるTiの量は15at%以上40at%以下であることが好ましく、さらに20at%以上、35at%以下であることが好ましい。Crの量は10at%以上50at%以下であることが好ましく、さらに20at%以上、40at%以下であることが好ましい。Vの量は10at%以上 70at%以下であることが好ましく、さらに30at%以上、60at%以下であることが好ましい。
1.1. Mother phase Mother phase 1 has a body-centered cubic structure mainly composed of Ti, Cr and V and having a lattice constant of 3.05 ± 0.05 Å. The matrix phase 1 is basically composed of a TiCrV alloy, but may contain elements other than Ti, Cr, and V for the purpose of increasing the hydrogen storage capacity. For example, La may be included. However, if the amount of elements other than Ti, Cr, and V is too large, the proportion of the matrix phase of the body-centered legislation having high hydrogen storage capacity may decrease, which may lead to a decrease in capacity. Therefore, 20 at% or less is preferable and, as for the quantity of elements other than Ti, Cr, and V, 10 at% or less is more preferable. In other words, when the whole component contained in matrix phase 1 is 100 at%, the total amount of Ti, Cr and V contained in matrix phase 1 is preferably 80 at% or more in total, and is 90 at% or more Is more preferred. The amounts of Ti, Cr and V contained in the matrix phase 1 are not particularly limited. For example, when the whole component contained in the mother phase 1 is 100 at%, the amount of Ti contained in the mother phase 1 is preferably 15 at% or more and 40 at% or less, and more preferably 20 at% or more and 35 at% or less Is preferred. The amount of Cr is preferably 10 at% or more and 50 at% or less, and more preferably 20 at% or more and 40 at% or less. The amount of V is preferably 10 at% or more and 70 at% or less, and more preferably 30 at% or more and 60 at% or less.
本発明者の知見では、水素吸蔵合金10を用いて電池の電極を構成した場合、母相1は容量に寄与するものの放電反応活性をほとんど持たず、後述の粒界相2の表面露出部分において放電反応が起こっているものと考えられる。よって、例えば、図2(A)に示すように、水素吸蔵合金粒子において母相が大きい場合、粒界相の表面露出部分がまばらであり、有効反応面積が限られることがネックとなって、高電流密度における放電特性が低下するものと考えられる。一方、図2(B)に示すように、本開示の水素吸蔵合金粒子10のように、母相1の平均断面積を5μm2以下と小さくすることで、粒界相2の表面露出部分(表面に占める面積率)が相対的に大きくなり、粒子全体における母相1と粒界相2との界面の面積も増加し、水素拡散が有利となって、電流密度が高くても放電容量が低下しにくく、出力が高い電極が得られる。特に、本発明者の知見では、後述の粒界相2は一定以上の大きさ(幅)に成長し難い(粒界からのNiの広がりが通常0.5μm以下)ことから、粒子表面に占める粒界相2の面積率を増大させるためには、母相1の大きさを小さくすることが極めて有効である。 According to the knowledge of the present inventor, when the battery electrode is configured using the hydrogen storage alloy 10, the matrix phase 1 contributes to the capacity but hardly has the discharge reaction activity, and in the surface exposed portion of the grain boundary phase 2 described later It is considered that a discharge reaction is taking place. Therefore, for example, as shown in FIG. 2A, when the parent phase is large in the hydrogen storage alloy particle, the surface exposed portion of the grain boundary phase is sparse, and the effective reaction area is limited, which is a bottleneck. It is considered that the discharge characteristics at high current density are degraded. On the other hand, as shown in FIG. 2 (B), as in the hydrogen storage alloy particles 10 of the present disclosure, by reducing the average cross-sectional area of the matrix phase 1 and 5 [mu] m 2 or less, a surface exposed portion of the grain boundary phase 2 ( The area ratio to the surface relatively increases, the area of the interface between parent phase 1 and grain boundary phase 2 in the whole particle also increases, hydrogen diffusion becomes advantageous, and the discharge capacity becomes high even if the current density is high. It is hard to lower and an electrode with high output is obtained. In particular, according to the findings of the inventor of the present invention, the grain boundary phase 2 described later is difficult to grow to a certain size (width) or more (the spread of Ni from the grain boundary is usually 0.5 μm or less). In order to increase the area ratio of the grain boundary phase 2, it is extremely effective to reduce the size of the matrix phase 1.
1.2.粒界相
粒界相2は、Ti及びNiを主成分とする相で、上記母相1の間に存在する。粒界相2は、母相1よりもNiを多く含む。固溶体合金系は高容量な一方で単体では充放電特性が低いが、Ti及びNiを主成分とする粒界相2を導入することで、充放電特性を向上させることができる。粒界相2に含まれる成分全体を100at%とした場合において、粒界相2に含まれるTiの量は70at%以上30at%以下であることが好ましく、Niの量は70at%以上30at%以下であることが好ましい。さらに、粒界相2に含まれる成分全体を100at%とした場合において、粒界相2に含まれるTi及びNiの量は合計で80at%以上であることが好ましく、90at%以上であることがより好ましい。
1.2. Grain Boundary Phase The grain boundary phase 2 is a phase mainly composed of Ti and Ni, and exists between the above-mentioned parent phases 1. Grain boundary phase 2 contains more Ni than parent phase 1. The solid solution alloy system has high capacity and low charge and discharge characteristics as a single substance, but the charge and discharge characteristics can be improved by introducing the grain boundary phase 2 containing Ti and Ni as main components. The amount of Ti contained in the grain boundary phase 2 is preferably 70 at% or more and 30 at% or less, and the amount of Ni is 70 at% or more and 30 at% or less, when the whole component contained in the grain boundary phase 2 is 100 at%. Is preferred. Furthermore, when the whole component contained in the grain boundary phase 2 is 100 at%, the total amount of Ti and Ni contained in the grain boundary phase 2 is preferably 80 at% or more in total, and 90 at% or more More preferable.
本発明者の知見では、水素吸蔵合金粒子10において粒子表面に占める粒界相2の面積率が30%以上であれば、当該粒子を電池の電極材料として適用した場合に、電流密度が高くても放電容量が低下しにくく、出力が高いものとなる。 According to the knowledge of the inventor, if the area ratio of the grain boundary phase 2 occupied on the particle surface in the hydrogen storage alloy particle 10 is 30% or more, the current density is high when the particle is applied as an electrode material of a battery. Also, the discharge capacity does not easily decrease and the output becomes high.
1.3.その他
水素吸蔵合金粒子10の全体としての大きさは特に限定されるものではない。電池の電極として適用した場合に入出力特性を一層高める観点からは、水素吸蔵合金粒子10の粒子径は50μm以下であることが好ましい。
1.3. Others The size of the hydrogen storage alloy particles 10 as a whole is not particularly limited. From the viewpoint of further enhancing input / output characteristics when applied as an electrode of a battery, the particle diameter of the hydrogen storage alloy particle 10 is preferably 50 μm or less.
本開示の水素吸蔵合金粒子10は、全体の組成としてTiとCrとVと5at%以上10at%以下のNiとを含む。本発明者の知見では、水素吸蔵合金粒子10に含まれるNiの量が5at%未満では、Niが固溶してしまい上記の粒界相2が形成され難く、充放電特性が低下する。一方、水素吸蔵合金粒子10に含まれるNiの量が10at%超の場合(例えば、特許文献1に開示されているようにNiの量を12at%とした場合)、容量への寄与が少ない粒界相が必要以上に増加する虞があり、高容量が長所である固溶体合金のメリットを生かせなくなる虞がある。 The hydrogen storage alloy particles 10 of the present disclosure include Ti, Cr, V, and 5 at% or more and 10 at% or less of Ni as the entire composition. According to the knowledge of the present inventor, when the amount of Ni contained in the hydrogen storage alloy particle 10 is less than 5 at%, Ni is solid-solved, the above-mentioned grain boundary phase 2 is difficult to be formed, and the charge / discharge characteristics deteriorate. On the other hand, when the amount of Ni contained in the hydrogen storage alloy particle 10 is more than 10 at% (for example, when the amount of Ni is 12 at% as disclosed in Patent Document 1), particles having a small contribution to the capacity There is a risk that the number of interphases increases more than necessary, and the merit of the solid solution alloy, which is an advantage of high capacity, may not be obtained.
一方、水素吸蔵合金粒子10全体としてのTi、Cr及びVの含有量は特に限定されるものではない。例えば、Tiを20at%以上35at%以下、Crを5at%以上40at%以下、Vを25at%以上70at%以下とすることが好ましい。本発明者の知見によれば、水素吸蔵合金粒子10においては、母相1に含まれるCrの量が増加するほど、粒子の耐久性が向上する。この点、母相1におけるCrの量は、より好ましくは10at%以上、さらに好ましくは20at%以上である。 On the other hand, the content of Ti, Cr and V in the entire hydrogen storage alloy particle 10 is not particularly limited. For example, it is preferable to set Ti to 20 at% or more and 35 at% or less, Cr to 5 at% or more and 40 at% or less, and V at 25 at% or more and 70 at% or less. According to the knowledge of the present inventor, in the hydrogen storage alloy particle 10, as the amount of Cr contained in the matrix phase 1 increases, the durability of the particle is improved. In this respect, the amount of Cr in the matrix phase 1 is more preferably 10 at% or more, further preferably 20 at% or more.
以上の通り、本開示の水素吸蔵合金粒子10によれば、高容量であるが出力に課題がある水素吸蔵合金粒子において、合金組織を微細化して母相1を小さなものとし、且つ、表面の反応活性点となる粒界相2の割合を増加させることで、出力特性を改善することができる。また、Crを必須で含ませることで、耐久性を向上させることもできる。 As described above, according to the hydrogen storage alloy particle 10 of the present disclosure, in the hydrogen storage alloy particle having high capacity but having a problem in output, the alloy structure is miniaturized to make the matrix 1 small, and the surface The output characteristics can be improved by increasing the proportion of the grain boundary phase 2 which becomes the reaction active point. Moreover, durability can also be improved by including Cr essentially.
2.水素吸蔵合金粒子の製造方法
本開示の水素吸蔵合金粒子10を製造するにあたり、上記した小さな母相1を有する水素吸蔵合金は、例えば急冷法を経て製造することができる。具体的には、ガスアトマイズ法、ロール急冷法、水冷法等の急冷法によって、上記の合金組成を有する水素吸蔵合金粒子を、溶融状態又は体心立方構造を維持できる温度から冷却速度1000K/sec以上で急速に冷却することで、小さな母相1を有する水素吸蔵合金を得ることができる(例えば、図3(B)参照)。また、このような小さな母相1の周囲には自ずと粒界相が形成されるが、当該粒界相の粒子表面に占める面積率を30%以上とするためには、粒界相から周囲にNiを拡散させて、粒界相を拡大することが好ましい。例えば、上記の急冷法によって得られた粒子に対して、さらに熱処理を施すことで、粒界相を拡大することができる(例えば、図3(C)参照)。このときの熱処理条件は特に限定されるものではない。例えば、熱処理雰囲気を真空雰囲気とし、熱処理温度を500℃程度とし、熱処理時間を2時間程度とすることができる。このように、本開示の水素吸蔵合金粒子10は、好ましくは急冷法とその後の熱処理とを経ることで、容易に製造することができる。
2. Method of Producing Hydrogen Storage Alloy Particles In producing the hydrogen storage alloy particles 10 of the present disclosure, a hydrogen storage alloy having the small mother phase 1 described above can be produced, for example, through a quenching method. Specifically, the hydrogen storage alloy particles having the above-mentioned alloy composition can be maintained at a cooling speed of 1000 K / sec or more from the temperature at which the molten state or body-centered cubic structure can be maintained by the quenching method such as gas atomizing method, roll quenching method, water cooling method By rapidly cooling at the same temperature, a hydrogen storage alloy having a small parent phase 1 can be obtained (see, for example, FIG. 3 (B)). In addition, a grain boundary phase is naturally formed around such a small mother phase 1, but in order to make the area ratio of the grain boundary phase to the particle surface 30% or more, from the grain boundary phase to the periphery It is preferable to diffuse Ni to expand the grain boundary phase. For example, the grain boundary phase can be expanded by further performing heat treatment on the particles obtained by the above-mentioned quenching method (see, for example, FIG. 3C). The heat treatment conditions at this time are not particularly limited. For example, the heat treatment atmosphere can be a vacuum atmosphere, the heat treatment temperature can be about 500 ° C., and the heat treatment time can be about 2 hours. Thus, the hydrogen storage alloy particles 10 of the present disclosure can be easily manufactured, preferably through rapid cooling and subsequent heat treatment.
3.用途
本開示の水素吸蔵合金粒子10は電池の電極材料として適用可能である。この場合、電極は水素吸蔵合金粒子10を適用したこと以外は従来と同様とすることができる。例えば、電極には、水素吸蔵合金粒子10のほか、導電助剤やバインダー等が含まれていてもよい。水素吸蔵合金粒子10を含む電極の製造方法そのものは本願を参照した当業者にとって自明である。例えば、水素吸蔵合金粒子10を含むペーストを基材(例えば多孔質の導電部材)に塗布し、乾燥させた後で、任意にプレスすること等によって水素吸蔵合金粒子10を含む電極を製造可能である。
3. Applications The hydrogen storage alloy particles 10 of the present disclosure are applicable as an electrode material of a battery. In this case, the electrode can be the same as the conventional one except that the hydrogen storage alloy particle 10 is applied. For example, the electrode may contain, in addition to the hydrogen storage alloy particles 10, a conductive additive, a binder, and the like. The method of manufacturing the electrode including the hydrogen storage alloy particle 10 itself is obvious to those skilled in the art having reference to the present application. For example, after a paste containing hydrogen storage alloy particles 10 is applied to a substrate (for example, a porous conductive member) and dried, an electrode containing hydrogen storage alloy particles 10 can be manufactured by optionally pressing or the like. is there.
特に、本開示の水素吸蔵合金粒子10は、アルカリ蓄電池の負極材料(負極活物質)として適用することが好ましい。アルカリ蓄電池は、例えば、ニッケル水素電池であっても良く、空気電池であっても良く、他の形態であっても良い。アルカリ蓄電池がニッケル水素電池である場合、正極には、例えば、水酸化ニッケル(Ni(OH)2)を用いることができる。これに対し、アルカリ蓄電池が空気電池である場合、正極には、例えば、LaNiO3のようなペロブスカイト構造をもつ酸化物等を用いることができる。 In particular, the hydrogen storage alloy particles 10 of the present disclosure are preferably applied as a negative electrode material (negative electrode active material) of an alkaline storage battery. The alkaline storage battery may be, for example, a nickel hydrogen battery, an air battery, or any other form. When the alkaline storage battery is a nickel hydrogen battery, for example, nickel hydroxide (Ni (OH) 2 ) can be used for the positive electrode. On the other hand, when the alkaline storage battery is an air battery, for example, an oxide having a perovskite structure such as LaNiO 3 can be used as the positive electrode.
電解質層は、正極及び負極の間に配置され、かつ、アルカリ水溶液を含む。アルカリ水溶液としては、例えば、水酸化カリウム(KOH)水溶液が挙げられる。水溶液の濃度は特に限定されないが、例えば、6mol/Lとすることができる。電解質層は、電解液のみからなるものであってもよく、電解液をセパレータに含浸させたものであってもよい。セパレータとしては、例えば、ポリエチレン・ポリプロピレン製の不織布セパレータを使用することができる。 The electrolyte layer is disposed between the positive electrode and the negative electrode, and includes an aqueous alkaline solution. As alkaline aqueous solution, potassium hydroxide (KOH) aqueous solution is mentioned, for example. The concentration of the aqueous solution is not particularly limited, and can be, for example, 6 mol / L. The electrolyte layer may be made only of the electrolytic solution, or may be one in which the electrolytic solution is impregnated in the separator. As the separator, for example, a non-woven separator made of polyethylene / polypropylene can be used.
アルカリ蓄電池を製造する際に、水素吸蔵合金粒子10を含む負極は、例えば、上述した方法によって製造することができる。一方、正極は、例えば、水酸化ニッケルと、酸化コバルトと、バインダーとが所定の重量比になるように秤量した後、これらを混練することにより作製したペースト状の組成物を、多孔質の導電性部材に塗布し、続いて乾燥させた後、これを所定の圧力でプレスする等の方法により、製造することができる。その後、所定の濃度になるように調整したアルカリ性の水溶液を容器に入れ、さらに、アルカリ性の水溶液を入れた容器へ、正極及び負極を配置する過程を経ることにより、アルカリ蓄電池を製造することができる。 When manufacturing an alkaline storage battery, the negative electrode containing the hydrogen storage alloy particle 10 can be manufactured by the method mentioned above, for example. On the other hand, for the positive electrode, for example, a paste-like composition prepared by kneading nickel hydroxide, cobalt oxide, and a binder so as to have a predetermined weight ratio and then kneading them is porous conductive It can be manufactured by a method such as pressing it at a predetermined pressure after being applied to a sexing member and subsequently dried. After that, an alkaline aqueous solution adjusted to a predetermined concentration is placed in a container, and an alkaline storage battery can be manufactured by further arranging a positive electrode and a negative electrode in a container containing the alkaline aqueous solution. .
1.水素吸蔵合金粒子の作製
1.1.比較例1
合金組成が原子比でTi:Cr:V:Ni=26:8:56:10となるように仕込み量を調整し、アーク溶解法にて、比較例1に係るTi26Cr8V56Ni10合金粒子を得た。得られた粒子の断面SEM画像を取得し、当該断面SEM画像において粒界相に囲まれた領域(結晶粒)を10個抽出し、各面積を計測してその平均値を求めることで、「母相の平均断面積」を特定した。また、得られた粒子の表面について反射電子像を取得し、当該反射電子像において、10μm×10μmの領域を選択し、画像処理ソフトで2階調化し、(白色画素数)÷(全画素数)×100として当該領域に占める粒界相の面積率を求め、粒子表面の10箇所について同様にしてそれぞれ面積率を求め、その平均値を求めることで、「粒子表面に占める粒界相の面積率」を特定した。図3(A)に、比較例1に係る粒子の反射電子像を示す。
1. Preparation of Hydrogen Storage Alloy Particles 1.1. Comparative Example 1
The preparation amount was adjusted so that the alloy composition was Ti: Cr: V: Ni = 26: 8: 56: 10 in atomic ratio, and Ti26Cr8V56Ni10 alloy particles according to Comparative Example 1 were obtained by the arc melting method. By acquiring a cross-sectional SEM image of the obtained particles, extracting 10 regions (crystal grains) surrounded by the grain boundary phase in the cross-sectional SEM image, measuring each area to obtain an average value thereof, The average cross-sectional area of the mother phase was identified. In addition, a backscattered electron image is acquired for the surface of the obtained particle, and in the backscattered electron image, an area of 10 μm × 10 μm is selected, and two gradations are performed by image processing software. The area ratio of the grain boundary phase in the region is determined as x 100), the area ratio is similarly calculated for each of ten locations on the particle surface, and the average value is calculated. "Rate" was identified. The reflected-electron image of the particle | grain which concerns on the comparative example 1 to FIG. 3 (A) is shown.
比較例1に係るTi26Cr8V56Ni10合金粒子は、母相の平均断面積が275μm2であり、粒子表面に占める粒界相の面積率は16%であった。 In the Ti26Cr8V56Ni10 alloy particles according to Comparative Example 1, the average cross-sectional area of the matrix phase was 275 μm 2 , and the area ratio of the grain boundary phase occupied on the particle surface was 16%.
1.2.比較例2
合金組成が原子比でTi:Cr:V:Ni=26:8:56:10となるように仕込み量を調整し、ガスアトマイズ法にて、比較例2に係るTi26Cr8V56Ni10合金粒子を得た。得られた粒子の断面SEM画像を取得し、当該断面SEM画像において粒界相に囲まれた領域(結晶粒)を10個抽出し、各面積を計測してその平均値を求めることで、「母相の平均断面積」を特定した。また、得られた粒子の表面について反射電子像を取得し、当該反射電子像において、10μm×10μmの領域を選択し、画像処理ソフトで2階調化し、(白色画素数)÷(全画素数)×100として当該領域に占める粒界相の面積率を求め、粒子表面の10箇所について同様にしてそれぞれ面積率を求め、その平均値を求めることで、「粒子表面に占める粒界相の面積率」を特定した。図3(B)に、比較例2に係る粒子の反射電子像を示す。
1.2. Comparative example 2
The preparation amount was adjusted so that the alloy composition was Ti: Cr: V: Ni = 26: 8: 56: 10 in atomic ratio, and Ti26Cr8V56Ni10 alloy particles according to Comparative Example 2 were obtained by gas atomization. By acquiring a cross-sectional SEM image of the obtained particles, extracting 10 regions (crystal grains) surrounded by the grain boundary phase in the cross-sectional SEM image, measuring each area to obtain an average value thereof, The average cross-sectional area of the mother phase was identified. In addition, a backscattered electron image is acquired for the surface of the obtained particle, and in the backscattered electron image, an area of 10 μm × 10 μm is selected, and two gradations are performed by image processing software. The area ratio of the grain boundary phase in the region is determined as x 100), the area ratio is similarly calculated for each of ten locations on the particle surface, and the average value is calculated. "Rate" was identified. The reflected-electron image of the particle | grain which concerns on the comparative example 2 in FIG. 3 (B) is shown.
比較例2に係るTi26Cr8V56Ni10合金粒子は、母相の平均断面積が5.8μm2であり、粒子表面に占める粒界相の面積率は15%であった。 In the Ti26Cr8V56Ni10 alloy particles according to Comparative Example 2, the average cross-sectional area of the parent phase was 5.8 μm 2 , and the area ratio of the grain boundary phase occupied on the particle surface was 15%.
1.3.実施例
比較例2に係るTi26Cr8V56Ni10合金粒子に対して真空下、500℃で2時間の熱処理を施すことで、実施例に係るTi26Cr8V56Ni10合金粒子を得た。得られた粒子の断面SEM画像を取得し、当該断面SEM画像において粒界相に囲まれた領域(結晶粒)を10個抽出し、各面積を計測してその平均値を求めることで、「母相の平均断面積」を特定した。また、得られた粒子の表面について反射電子像を取得し、当該反射電子像において、10μm×10μmの領域を選択し、画像処理ソフトで2階調化し、(白色画素数)÷(全画素数)×100として当該領域に占める粒界相の面積率を求め、粒子表面の10箇所について同様にしてそれぞれ面積率を求め、その平均値を求めることで、「粒子表面に占める粒界相の面積率」を特定した。図3(C)及び図4に、実施例に係る粒子の反射電子像を示す。
1.3. Example Ti26Cr8V56Ni10 alloy particles according to Comparative Example 2 were heat-treated at 500 ° C. for 2 hours under vacuum to obtain Ti26Cr8V56Ni10 alloy particles according to Example. By acquiring a cross-sectional SEM image of the obtained particles, extracting 10 regions (crystal grains) surrounded by the grain boundary phase in the cross-sectional SEM image, measuring each area to obtain an average value thereof, The average cross-sectional area of the mother phase was identified. In addition, a backscattered electron image is acquired for the surface of the obtained particle, and in the backscattered electron image, an area of 10 μm × 10 μm is selected, and two gradations are performed by image processing software. The area ratio of the grain boundary phase in the region is determined as x 100), the area ratio is similarly calculated for each of ten locations on the particle surface, and the average value is calculated. "Rate" was identified. The reflected-electron image of the particle | grain which concerns on FIG.3 (C) and FIG. 4 concerning an Example is shown.
実施例に係るTi26Cr8V56Ni10合金粒子は、母相の平均断面積が4.6μm2であり、粒子表面に占める粒界相の面積率は34%であった。図3及び図4に示すように、実施例に係る粒子は、比較例1、2に係る粒子よりも、母相が小さく、且つ、粒界相が大きくなっている(幅が拡大している)ことが分かる。 The average cross-sectional area of the parent phase of the Ti26Cr8V56Ni10 alloy particle according to the example was 4.6 μm 2 , and the area ratio of the grain boundary phase occupied on the particle surface was 34%. As shown in FIGS. 3 and 4, in the particles according to the example, the parent phase is smaller and the grain boundary phase is larger than the particles according to comparative examples 1 and 2 (the width is expanded). I understand that).
2.電極材料としての評価
上記のようにして作製したTi26Cr8V56Ni10合金粒子を活物質とし、導電助剤(Ni粉末)及びバインダーと混練し、発泡Ni上に塗布した後、乾燥及びロールプレスすることで、評価用の水素吸蔵合金電極を得た。以上のように作製した水素吸蔵合金電極を負極とし、Ni(OH)2電極を対極として組み合せ、電解液に6M−KOHを用いて、評価用の電池を作製した。
2. Evaluation as an electrode material The Ti26Cr8V56Ni10 alloy particles prepared as described above are used as an active material, kneaded with a conductive additive (Ni powder) and a binder, coated on foamed Ni, dried and roll pressed, and evaluated. Hydrogen storage alloy electrode was obtained. The hydrogen storage alloy electrode manufactured as described above was used as a negative electrode, the Ni (OH) 2 electrode was used as a counter electrode, and 6 M-KOH was used as an electrolytic solution to manufacture a battery for evaluation.
作製した電池について、以下の充放電条件にて放電レート特性を評価した。結果を図5に示す。
充放電条件:温度25℃、CC充放電
充電:10mA/cm2、7.5hカット
放電:5〜100mA/cm2、作用極−0.5V vs Hg/HgOカット
The discharge rate characteristics of the produced battery were evaluated under the following charge and discharge conditions. The results are shown in FIG.
Charge / discharge conditions: temperature 25 ° C., CC charge / discharge charge: 10 mA / cm 2 , 7.5 h cut Discharge: 5 to 100 mA / cm 2 , working electrode − 0.5 V vs Hg / HgO cut
図5に示すように、実施例に係る水素吸蔵合金粒子を電池の電極材料として適用した場合、比較例1、2に係る水素吸蔵合金粒子を電池の電極材料として適用した場合よりも、電流密度が高くても放電容量が低下しにくく、出力が高くなることが分かった。実施例において高率放電特性が大きく向上したのは、比較例2で見られる母相の微細化による効果(表面に露出する粒界相(反応活性部分)の増加、及び、母相と粒界相との界面の面積増加)に加えて、熱処理によって表面においてNiが拡散して粒界相が拡大し、表面に占める粒界相の面積率が増加したことで、合金粒子上の反応面積が増加したためと考えられる。 As shown in FIG. 5, when the hydrogen storage alloy particles according to the example are applied as an electrode material of a battery, the current density is higher than when the hydrogen storage alloy particles according to comparative examples 1 and 2 are applied as an electrode material of a battery It was found that the discharge capacity was hard to decrease even if the value of. In the examples, the high rate discharge characteristics are greatly improved because of the effect of the refinement of the matrix phase seen in Comparative Example 2 (the increase in the grain boundary phase (reaction active portion) exposed to the surface, and the matrix phase and the grain boundary In addition to the increase in the area of the interface with the phase), the heat treatment diffuses Ni on the surface to expand the grain boundary phase, and the area ratio of the grain boundary phase occupied on the surface increases. It is considered to be due to the increase.
ただし、本発明者の知見では、熱処理は母相の粒成長(放電特性の低下因子)も促進させる場合があり、Niの拡散量と母相の粒成長のバランスで熱処理条件を設定することが好ましい。熱処理条件を最適に設定することで、TiとCrとVと5at%以上10at%以下のNiとを含む水素吸蔵合金粒子において、母相の平均断面積を5μm2以下とするとともに、粒子表面に占める粒界相の面積率を30%以上とすることができる。 However, according to the findings of the present inventor, heat treatment may also promote grain growth of the matrix phase (a reduction factor of discharge characteristics), and heat treatment conditions may be set based on the balance of Ni diffusion amount and grain growth of the matrix phase. preferable. By setting the heat treatment conditions optimally, in the hydrogen storage alloy particles containing Ti, Cr, V and Ni of 5 at% or more and 10 at% or less, the average cross-sectional area of the parent phase is 5 μm 2 or less, and The area ratio of the grain boundary phase can be 30% or more.
本開示の水素吸蔵合金粒子は、例えば、電池用の電極材料として、好ましくはアルカリ蓄電池の負極材料(負極活物質)として利用できる。 The hydrogen storage alloy particles of the present disclosure can be used, for example, as an electrode material for batteries, preferably as a negative electrode material (negative electrode active material) of an alkaline storage battery.
1 母相
2 粒界相
10 水素吸蔵合金粒子
1 mother phase 2 grain boundary phase 10 hydrogen storage alloy particles
Claims (1)
Ti、Cr及びVを主成分とし格子定数が3.05±0.05Åである体心立方構造を有する母相と、Ti及びNiを主成分とし前記母相の間に存在する粒界相と、を備え、
前記母相の平均断面積が5μm2以下であり、
粒子表面に占める前記粒界相の面積率が30%以上である、
水素吸蔵合金粒子。 A hydrogen storage alloy particle comprising Ti, Cr, V, and 5 at% to 10 at% Ni,
A parent phase having a body-centered cubic structure having Ti, Cr and V as main components and a lattice constant of 3.05 ± 0.05 Å, and a grain boundary phase containing Ti and Ni as main components and existing between the parent phases , And
The average cross-sectional area of the matrix phase is 5 μm 2 or less,
The area ratio of the grain boundary phase occupied on the particle surface is 30% or more
Hydrogen storage alloy particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017199579A JP6879162B2 (en) | 2017-10-13 | 2017-10-13 | Hydrogen storage alloy particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017199579A JP6879162B2 (en) | 2017-10-13 | 2017-10-13 | Hydrogen storage alloy particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019073757A true JP2019073757A (en) | 2019-05-16 |
JP6879162B2 JP6879162B2 (en) | 2021-06-02 |
Family
ID=66544968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017199579A Active JP6879162B2 (en) | 2017-10-13 | 2017-10-13 | Hydrogen storage alloy particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6879162B2 (en) |
-
2017
- 2017-10-13 JP JP2017199579A patent/JP6879162B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6879162B2 (en) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017531276A5 (en) | Particulate material, method of making particulate material, composition, electrode composition, electrode, and rechargeable metal ion battery | |
EP1900834B1 (en) | Composition for negative electrode of accumulator with alkaline electrolyte | |
US6455197B1 (en) | Positive active material for alkaline electrolyte storage battery nickel electrodes | |
WO2013118806A1 (en) | Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell | |
EP1826283B1 (en) | Hydridable alloy for alkaline storage battery | |
JP2017168362A (en) | Negative electrode for alkali storage battery, method for manufacturing the same, and alkali storage battery | |
JP6726798B2 (en) | Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery | |
JP2019073757A (en) | Hydrogen storing alloy particle | |
JPH117952A (en) | Paste type nickel plate | |
JPWO2019181538A1 (en) | Alkaline battery | |
JP3545985B2 (en) | Zinc alloy powder and alkaline battery using the same | |
JPS64787B2 (en) | ||
JP7559706B2 (en) | Anode active material, alkaline storage battery, and method for producing anode active material | |
JP5769028B2 (en) | Nickel metal hydride storage battery | |
JP2003272615A (en) | Zinc alloy powder and alkaline battery using the same | |
JP2010050011A (en) | Nickel-hydrogen storage battery and manufacturing method therefor | |
JP2001273889A (en) | Nickel electrode for alkaline storage battery and method of manufacturing the same | |
JPH0834100B2 (en) | Hydrogen storage alloy electrode | |
JPH0773876A (en) | Nickel electrode for secondary battery and manufacture thereof | |
JPH06145850A (en) | Hydrogen storage alloy and hydrogen storage electrode | |
JP5895937B2 (en) | Negative electrode for alkaline storage battery, outer can for alkaline storage battery, and alkaline storage battery | |
JP6015642B2 (en) | Method for producing hydrogen storage alloy and method for producing negative electrode for alkaline storage battery | |
JP2000054042A (en) | Production of hydrogen storage alloy | |
JP2953641B2 (en) | Nickel electrode for alkaline storage battery and method for producing metal cobalt-coated cobalt monoxide | |
US20150162608A1 (en) | Metal hydride, metal hydride particles, electrode for alkaline storage battery, and alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200923 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210412 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6879162 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |