JP2019071482A - Developing liquid managing method and device - Google Patents

Developing liquid managing method and device Download PDF

Info

Publication number
JP2019071482A
JP2019071482A JP2019014496A JP2019014496A JP2019071482A JP 2019071482 A JP2019071482 A JP 2019071482A JP 2019014496 A JP2019014496 A JP 2019014496A JP 2019014496 A JP2019014496 A JP 2019014496A JP 2019071482 A JP2019071482 A JP 2019071482A
Authority
JP
Japan
Prior art keywords
concentration
developer
carbon dioxide
conductivity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019014496A
Other languages
Japanese (ja)
Other versions
JP6624762B2 (en
Inventor
中川 俊元
Toshimoto Nakagawa
俊元 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirama Rika Kenkyusho Ltd
Original Assignee
Hirama Rika Kenkyusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirama Rika Kenkyusho Ltd filed Critical Hirama Rika Kenkyusho Ltd
Priority to JP2019014496A priority Critical patent/JP6624762B2/en
Publication of JP2019071482A publication Critical patent/JP2019071482A/en
Application granted granted Critical
Publication of JP6624762B2 publication Critical patent/JP6624762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide developing liquid managing method and device that can maintain desired development performance and realize development processing capable of maintaining desired line width and residual film thickness.SOLUTION: A developer management device D includes control means 21 having a data storage unit 23 for storing conductivity data having conductivity values of developing liquid which is pre-confirmed to have predetermined development performance for each concentration area specified by using, as indexes, the dissolved photoresist concentration and the absorbed carbon dioxide concentration of repetitively used alkaline developing liquid, and a controller 31 for using, as a control target value, a conductivity value stored in the data storage unit 23 of the concentration area specified by the measurement value of the dissolved photoresist concentration and the measurement value of the absorbed carbon dioxide concentration of the developing liquid, and outputting a control signal to control valves 41 to 43 provided to a flow path for feeding supplemental liquid which is to be supplemented to the developing liquid so that the conductivity of the developing liquid is equal to the control target value.SELECTED DRAWING: Figure 1

Description

本発明は、現像液の管理方法及び装置に関し、特に、半導体や液晶パネルにおける回路基板の現像工程等でフォトレジスト膜を現像するために繰り返し使用される、アルカリ性を示す現像液の管理方法及び装置に関する。   The present invention relates to a method and apparatus for managing a developer, and more particularly, to a method and apparatus for managing an alkaline developer which is repeatedly used to develop a photoresist film in a process of developing a circuit board in a semiconductor or liquid crystal panel. About.

半導体や液晶パネル等における微細配線加工を実現するフォトリソグラフィーの現像工程には、基板の上に製膜されたフォトレジストを溶解する薬液として、アルカリ性を示す現像液(以下、「アルカリ性現像液」という。)が用いられている。   In the development step of photolithography to realize fine wiring processing in semiconductors, liquid crystal panels, etc., a developer exhibiting alkalinity (hereinafter referred to as “alkaline developer”) as a chemical solution for dissolving a photoresist formed on a substrate Is used.

半導体や液晶パネル基板の製造工程では、近年、ウェハやガラス基板の大型化と配線加工の微細化及び高集積化が進められてきた。このような状況下、大型基板の配線加工の微細化及び高集積化を実現すべく、アルカリ性現像液の主要成分の濃度をより一層高精度に測定して現像液を維持管理することが必要となってきている。   In the manufacturing process of semiconductors and liquid crystal panel substrates, in recent years, the enlargement of wafers and glass substrates and the miniaturization and high integration of wiring processing have been promoted. Under these circumstances, it is necessary to measure the concentration of the main components of the alkaline developer with even higher precision and maintain and manage the developer in order to realize miniaturization and high integration of wiring processing of a large substrate. It has become to.

従来のアルカリ性現像液の成分濃度の測定は、アルカリ性現像液のアルカリ成分の濃度(以下、「アルカリ成分濃度」という。)と導電率との間に良好な直線関係が得られることを利用したものであった(例えば、特許文献1)。   The measurement of the component concentration of the conventional alkaline developing solution utilizes the fact that a good linear relationship is obtained between the concentration of the alkaline component of the alkaline developing solution (hereinafter referred to as "alkali component concentration") and the conductivity. (E.g., Patent Document 1).

しかしながら、近年、現像処理により、アルカリ性現像液が空気に触れる機会が増え、アルカリ性現像液が空気中の二酸化炭素を吸収するため、アルカリ性現像液の二酸化炭素の吸収量が増えている。吸収された二酸化炭素濃度が高くなると、従来法による現像液管理では、所定の線幅加工が維持できないなどの問題が生じている。   However, in recent years, the developing treatment increases the chance of the alkaline developing solution coming into contact with the air, and the alkaline developing solution absorbs carbon dioxide in the air, so the amount of carbon dioxide absorbed by the alkaline developing solution increases. When the absorbed carbon dioxide concentration becomes high, there are problems such as the fact that predetermined line width processing can not be maintained in the developer management by the conventional method.

この問題は、アルカリ性現像液中の現像活性を有するアルカリ成分が、二酸化炭素の吸収により、炭酸塩を生じる反応に消費されるために起こっている。また、アルカリ性現像液中の現像活性を有するアルカリ成分が、フォトレジストの溶解により、フォトレジスト塩を生じる反応によっても消費されるために起こっている。   This problem is caused by the fact that an alkaline component having development activity in an alkaline developer is consumed in a reaction to generate carbonate by absorption of carbon dioxide. In addition, an alkaline component having a development activity in an alkaline developer is consumed as a result of dissolution of the photoresist and a reaction for producing a photoresist salt.

このような問題点に対し、消費されて減少したアルカリ成分を補おうとする現像液管理が種々試みられている。これらの試みは、炭酸塩濃度を測定することにより、炭酸塩を生じる反応に消費されたアルカリ成分を、補充液により補って現像活性を有するアルカリ成分の濃度を一定化しようとするものである。フォトレジストの溶解により消費されたアルカリ成分についても同様である。これらは、炭酸塩やフォトレジスト塩となったアルカリ成分は、現像活性を失って失活している、との観点に立つものである(例えば、特許文献2)。   To cope with such problems, various attempts have been made to control the developing solution to compensate for the consumed and reduced alkali components. In these attempts, by measuring the carbonate concentration, the alkaline component consumed in the reaction for producing a carbonate is compensated by the replenisher to make the concentration of the alkaline component having developing activity constant. The same applies to the alkali component consumed by the dissolution of the photoresist. These stand from the viewpoint that the alkali component which has become a carbonate or a photoresist salt loses its developing activity and is inactivated (for example, Patent Document 2).

特許第2561578号公報Patent No. 2561578 gazette 特開2008−283162号公報JP, 2008-283162, A

しかしながら、このような種々の現像液管理の試みによっても、依然として、満足のいく現像液管理を実現することが難しかった。   However, even with such various developer management attempts, it has still been difficult to achieve satisfactory developer management.

本発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液の導電率値を管理することによって実現できること、さらに、このような導電率の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていること、の知見を得た。   The inventors of the present invention conducted intensive studies on developer control, and it was found that carbonates and resist salts are also partially released in the developer to contribute to the developing action, and from these components thought to be inactivated. The developer management which also takes into consideration the contribution to the development action of the developer can be realized by managing the conductivity value of the developer, and further, the management value of such conductivity is the concentration of absorbed carbon dioxide and the concentration of dissolved photoresist We obtained the knowledge that they differed in various ways.

これは、炭酸塩やフォトレジスト塩となったアルカリ成分は失活したのではなく、一部が遊離して現像作用に寄与すること、そして、現像活性を有するアルカリ成分や炭酸塩及びレジスト塩から遊離して現像作用に寄与する成分がいずれも導電率に作用すること、に基づくものと思われる。すなわち、現像作用を有する成分の総体が、現像液の導電率値により管理することにより最適に管理されることを、発明者が見出し、本発明に至った。   This is because the alkali component which has become a carbonate or photoresist salt is not inactivated but is partly liberated to contribute to the developing action, and from the alkali component or carbonate and resist salt having developing activity. It is believed that any component which is liberated to contribute to the development action affects the conductivity. That is, the inventor has found that the whole of the components having a developing action can be optimally managed by controlling the conductivity value of the developer, and the present invention has been achieved.

本発明は、上記の課題を解決すべくなされたもので、フォトレジストに対して所定の現像性能を達成することができる現像液の管理方法及び装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method and apparatus for managing a developing solution capable of achieving a predetermined developing performance for a photoresist.

前記目的を達成するために、本発明の現像液の管理方法は、繰り返し使用される、アルカリ性を示す現像液の導電率、溶解フォトレジスト濃度及び吸収二酸化炭素濃度を測定し、前記現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の前記導電率値を、前記現像液の導電率の制御目標値に設定し、前記現像液の導電率が前記制御目標値となるように、前記現像液に補充液を補給する。   In order to achieve the above object, the method of managing a developer according to the present invention measures the conductivity, the concentration of a dissolved photoresist and the concentration of absorbed carbon dioxide of a developer exhibiting alkalinity, which is repeatedly used, and dissolves the developer. Among the conductivity data having the conductivity value of the developer, which is previously confirmed to have a predetermined development performance for each concentration range specified using the photoresist concentration and the absorbed carbon dioxide concentration as an index, the dissolved photo measured The conductivity value of the concentration range specified by the resist concentration and the measured absorbed carbon dioxide concentration is set as a control target value of the conductivity of the developer, and the conductivity of the developer becomes the control target value. As described above, the developer is replenished with a replenisher.

本発明の現像液の管理方法によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   According to the method of managing a developing solution of the present invention, no matter what dissolved photoresist concentration and absorbed carbon dioxide concentration are in the developing solution, the component having the activity of developing in the developing solution is maintained constant. A desired development performance can be maintained, and a development process capable of maintaining a desired line width and residual film thickness can be realized.

前記目的を達成するために、本発明の現像液管理装置は、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データが格納されているデータ記憶部と、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記導電率値を制御目標値として、前記現像液の導電率が前記制御目標値となるように前記現像液に補給される補充液を送液する流路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段、を備える。   In order to achieve the above object, the developing solution management apparatus of the present invention is configured to perform predetermined development for each concentration range specified using the dissolved photoresist concentration of the developing solution exhibiting alkalinity and the absorbed carbon dioxide concentration, which are repeatedly used. A data storage unit storing conductivity data having a conductivity value of the developing solution previously confirmed to be a performance, a measured value of a dissolved photoresist concentration of the developing solution, and a measured value of an absorbed carbon dioxide concentration Using the conductivity value stored in the data storage unit of the concentration region specified by the control target value as the control target value, and the replenishing solution supplied to the developer so that the conductivity of the developer becomes the control target value A control unit including: a control unit that generates a control signal to a control valve provided in a flow path for sending a liquid.

本発明の現像液管理装置によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   According to the developer management apparatus of the present invention, the component having the activity of developing in the developer is maintained constant regardless of what the concentration of dissolved photoresist and absorbed carbon dioxide are in the developer. A desired development performance can be maintained, and a development process capable of maintaining a desired line width and residual film thickness can be realized.

本発明の現像液管理装置の好ましい態様によれば、前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置をさらに備え、前記制御手段が、前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法を用いて、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算部をさらに備える。   According to a preferred embodiment of the developer management apparatus of the present invention, the characteristic value of the developer having a correlation with the concentration of the dissolved photoresist of the developer and the characteristic of the developer having a correlation with the absorbed carbon dioxide concentration of the developer. And a plurality of measuring devices for measuring a plurality of characteristic values of the developer including the value, and the control means performs multivariate analysis from the plurality of characteristic values of the developer measured by the plurality of measuring devices. The method further includes a calculation unit that calculates the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration using a method.

本発明の現像液管理装置の好ましい態様によれば、前記現像液の溶解フォトレジスト濃度と相関のある前記現像液の特性値と前記現像液の吸収二酸化炭素濃度と相関のある前記現像液の特性値とを含む前記現像液の複数の特性値を測定する複数の測定装置と、前記複数の測定装置により測定された前記現像液の複数の特性値から、多変量解析法を用いて、前記現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する演算手段と、をさらに備える。   According to a preferred embodiment of the developer management apparatus of the present invention, the characteristic value of the developer having a correlation with the concentration of the dissolved photoresist of the developer and the characteristic of the developer having a correlation with the absorbed carbon dioxide concentration of the developer. And a plurality of measurement devices for measuring a plurality of characteristic values of the developer including the values, and the plurality of characteristic values of the developer measured by the plurality of measurement devices using the multivariate analysis method, the development And calculating means for calculating a measured value of the dissolved photoresist concentration of the liquid and a measured value of the absorbed carbon dioxide concentration.

本発明の現像液管理装置の好ましい態様によれば、密度計をさらに備え、前記制御手段が、前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度から前記現像液の吸収二酸化炭素濃度を算出する演算部を、さらに備える。   According to a preferred aspect of the developer management device of the present invention, the developer management apparatus further comprises a densitometer, and the control means measures the density by the densitometer based on the correspondence between the absorbed carbon dioxide concentration and the density of the developer. The computer further comprises an operation unit that calculates the absorbed carbon dioxide concentration of the developer from the density of the developer.

本発明の現像液管理装置の好ましい態様によれば、密度計と、前記現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて前記密度計により測定された前記現像液の密度から前記現像液の吸収二酸化炭素濃度を算出する演算手段と、をさらに備える。
本発明の現像液の管理方法によれば、繰り返し使用される、アルカリ性を示す現像液の導電率に基づいてアルカリ濃度を測定し、前記現像液の溶解フォトレジスト濃度と相関関係のある吸光度を測定し、前記現像液の吸収二酸化炭素濃度を測定し、前記現像液の吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ濃度値を有するアルカリ濃度データのうち、測定された吸光度及び測定された吸収二酸化炭素濃度により特定される濃度領域の前記アルカリ濃度値を、前記現像液のアルカリ濃度の制御目標値に設定し、前記現像液のアルカリ濃度が前記制御目標値となるように、前記現像液に補充液を補給する。
According to a preferred embodiment of the developer management device of the present invention, the density of the developer measured by the densitometer based on the correspondence between the density meter and the absorbed carbon dioxide concentration and density of the developer. And calculating means for calculating the absorbed carbon dioxide concentration of the developer.
According to the method of managing a developer according to the present invention, the alkali concentration is measured based on the conductivity of the developer exhibiting alkalinity, which is repeatedly used, and the absorbance which is correlated with the concentration of the dissolved photoresist of the developer is measured. The concentration of absorbed carbon dioxide in the developer and the absorbance of the developer and the concentration of absorbed carbon dioxide in the developer are identified in advance as a predetermined development performance for each concentration range specified as an index Of the alkali concentration data having alkali concentration values, the alkali concentration value of the concentration range specified by the measured absorbance and the measured absorbed carbon dioxide concentration is set as the control target value of the alkali concentration of the developer, The replenisher is replenished with the replenisher so that the alkali concentration of the developer becomes the control target value.

本発明の現像液管理装置によれば、繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関関係のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ濃度値を有するアルカリ濃度データが格納されているデータ記憶部と、前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ濃度値を制御目標値として、前記現像液のアルカリ濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する流路に設けられた制御弁に制御信号を発する制御部と、を備えた制御手段、を備える。   According to the developing solution management apparatus of the present invention, predetermined development is performed for each concentration range specified using the absorbance and the absorbed carbon dioxide concentration that are correlated with the dissolved photoresist concentration of the developing solution showing alkalinity repeatedly used. Data storage unit in which alkali concentration data having alkali concentration value of the developing solution previously confirmed to be a performance is stored, and a concentration region specified by measured values of absorbance and absorbed carbon dioxide concentration of the developing solution In the flow path for feeding the replenishing solution to be replenished to the developer so that the alkali concentration of the developer becomes the control target value, using the alkali concentration value stored in the data storage unit as the control target value And a control unit including a control unit that issues a control signal to a control valve provided.

本発明によれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   According to the present invention, no matter what dissolved photoresist concentration and absorbed carbon dioxide concentration are in the developing solution, the component having the activity for developing action in the developing solution is kept constant, so the desired developing performance can be obtained. It is possible to realize a development process that can be maintained and can maintain a desired line width and residual film thickness.

第一実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 1st embodiment. 第二実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 2nd embodiment. 第三実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 3rd embodiment. 第四実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 4th embodiment. 現像液の二酸化炭素濃度と密度との関係を示すグラフである。It is a graph which shows the relationship between the carbon dioxide concentration of a developing solution, and the density. 第五実施形態の現像液管理装置を説明するための現像工程の模式図である。It is a schematic diagram of the image development process for demonstrating the developing solution management apparatus of 5th embodiment.

以下、適宜図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。ただし、これらの実施の形態に記載されている装置等の形状、大きさ、寸法比、その相対配置などは、とくに特定的な記載がない限り、本発明の範囲を図示されているもののみに限定するものではない。単なる説明例として、模式的に図示しているに過ぎない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as appropriate. However, the shapes, sizes, dimensional ratios, relative arrangements and the like of the devices etc. described in these embodiments are limited to those illustrated within the scope of the present invention unless otherwise specified. It is not limited. It is only schematically illustrated as an illustrative example.

また、以下の説明では、現像液の具体例として、半導体や液晶パネル基板の製造工程で主に使われる2.38%テトラメチルアンモニウムハイドロオキサイド水溶液(以下、テトラメチルアンモニウムハイドロオキサイドをTMAHという。)を、適宜用いて説明する。ただし、本発明が適用される現像液はこれに限定されるものではない。本発明の現像液の管理方法や装置が適用できる他の現像液の例として、水酸化カリウム、水酸化ナトリウム、リン酸ナトリウム、ケイ酸ナトリウムなどの無機化合物の水溶液や、トリメチルモノエタノールアンモニウムハイドロオキサイド(コリン)などの有機化合物の水溶液を挙げることができる。   In the following description, a 2.38% tetramethyl ammonium hydroxide aqueous solution (hereinafter, tetramethyl ammonium hydroxide is referred to as TMAH) which is mainly used in the process of manufacturing a semiconductor or liquid crystal panel substrate as a specific example of a developer. Will be described using as appropriate. However, the developing solution to which the present invention is applied is not limited to this. Examples of other developing solutions to which the method and apparatus for managing developing solutions of the present invention can be applied include aqueous solutions of inorganic compounds such as potassium hydroxide, sodium hydroxide, sodium phosphate and sodium silicate, and trimethyl monoethanol ammonium hydroxide An aqueous solution of an organic compound such as (choline) can be mentioned.

以下の説明では、アルカリ成分濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度などの成分濃度は、重量百分率濃度(wt%)による濃度である。「溶解フォトレジスト濃度」とは、溶解したフォトレジストをフォトレジストの量として換算した場合の濃度をいい、「吸収二酸化炭素濃度」とは、吸収された二酸化炭素を二酸化炭素の量として換算した場合の濃度をいうものとする。   In the following description, component concentrations such as alkali component concentration, dissolved photoresist concentration, absorbed carbon dioxide concentration, and the like are concentrations by weight percentage concentration (wt%). “Dissolved photoresist concentration” refers to the concentration when dissolved photoresist is converted as the amount of photoresist, and “absorbed carbon dioxide concentration” refers to when absorbed carbon dioxide is converted as the amount of carbon dioxide The concentration of

現像処理プロセスでは、現像液が露光処理後のフォトレジスト膜の不要部分を溶かすことにより、現像が行われる。現像液に溶解したフォトレジストは、現像液のアルカリ成分との間にフォトレジスト塩を生じる。このため、現像液を適切に管理していなければ、現像処理が進行するにつれて、現像液は現像活性を有するアルカリ成分が消費されて劣化し、現像性能が悪化していく。同時に、現像液中には溶解したフォトレジストがアルカリ成分とのフォトレジスト塩として蓄積されていく。   In the development processing process, development is performed by the developer dissolving unnecessary portions of the photoresist film after exposure processing. The photoresist dissolved in the developer produces a photoresist salt with the alkali component of the developer. For this reason, if the developing solution is not properly managed, as the developing process proceeds, the alkaline component having developing activity is consumed and the developing solution is deteriorated, and the developing performance is deteriorated. At the same time, the dissolved photoresist is accumulated in the developer as a photoresist salt with an alkali component.

現像液に溶解したフォトレジストは、現像液中で界面活性作用を示す。このため、現像液に溶解したフォトレジストは、現像処理に供されるフォトレジスト膜の現像液に対するぬれ性を高め、現像液とフォトレジスト膜とのなじみを良くする。したがって、適度にフォトレジストを含む現像液では、現像液がフォトレジスト膜の微細な凹部内にもよく行き渡るようになり、微細な凹凸を有するフォトレジスト膜の現像処理を良好に実施できる。   The photoresist dissolved in the developer exhibits surfactant action in the developer. For this reason, the photoresist dissolved in the developer improves the wettability of the photoresist film to be developed to the developer, and improves the compatibility between the developer and the photoresist film. Therefore, in the developing solution appropriately containing the photoresist, the developing solution can be well spread in the minute depressions of the photoresist film, and the development process of the photoresist film having the fine unevenness can be performed well.

また、近年の現像処理では、基板が大型化したことに伴い、大量の現像液が繰り返し使用されるようになったため、現像液が空気に曝される機会が増えている。ところが、アルカリ性現像液は、空気に曝されると空気中の二酸化炭素を吸収する。吸収された二酸化炭素は、現像液のアルカリ成分との間に炭酸塩を生じる。このため、現像液を適切に管理していなければ、現像液は現像活性を有するアルカリ成分が吸収された二酸化炭素により消費され減少する。同時に、現像液中には吸収された二酸化炭素がアルカリ成分との炭酸塩として蓄積されていく。   Further, in recent development processing, a large amount of developing solution has been repeatedly used with the increase in size of the substrate, and therefore, the opportunity for the developing solution to be exposed to air is increasing. However, alkaline developers absorb carbon dioxide in the air when exposed to air. The absorbed carbon dioxide forms a carbonate with the alkali component of the developer. For this reason, if the developer is not properly managed, the developer is consumed and reduced by carbon dioxide in which the alkali component having development activity is absorbed. At the same time, absorbed carbon dioxide is accumulated as a carbonate with the alkali component in the developer.

しかしながら、現像液中の炭酸塩は、現像液中でアルカリ性を示すため、現像作用を有している。   However, carbonates in the developer have a developing action because they are alkaline in the developer.

このように、現像液に溶解されたフォトレジストや吸収された二酸化炭素が、現像処理の現像活性を失活させるとする従来の認識とは異なり、実際には現像液の現像性能に寄与している。そのため、溶解フォトレジストや吸収二酸化炭素を完全に排除するような現像液管理をするのではなく、現像液中に溶解フォトレジストや吸収二酸化炭素を溶存することを許容しつつ、これらを最適な濃度に維持管理する現像液管理が必要である。   Thus, unlike the conventional recognition that the photoresist dissolved in the developer or the absorbed carbon dioxide deactivates the development activity of the development processing, it actually contributes to the development performance of the developer. There is. Therefore, instead of managing the developing solution so as to completely remove the dissolved photoresist and absorbed carbon dioxide, it is possible to dissolve these dissolved photoresist and absorbed carbon dioxide in the developing solution while optimizing these concentrations. It is necessary to manage the developer to maintain.

また、現像液中に生じたフォトレジスト塩や炭酸塩は、その一部が解離して、フォトレジストイオンや炭酸イオン、炭酸水素イオンなど、多様な遊離イオンを生じる。そして、これらの遊離イオンは、現像液の導電率に様々な寄与率で影響を及ぼしている。   In addition, a part of the photoresist salt and carbonate generated in the developing solution is dissociated to generate various free ions such as photoresist ion, carbonate ion and hydrogen carbonate ion. And these free ions affect the conductivity of the developer with various contributions.

これらの点につき、本発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液の導電率値を管理することによって実現できること、さらに、このような導電率の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていること、の知見を得た。   In these respects, the present inventors have intensively studied the developer management, and it is believed that carbonates and resist salts are also partially released in the developer to contribute to the developing action and to be inactivated. In addition, developing solution management taking into consideration the contribution of these components to the developing action can be realized by managing the conductivity value of the developing solution, and further, such managing value of conductivity is the concentration of absorbed carbon dioxide And, it was found that the concentration was different depending on the concentration of the dissolved photoresist.

そこで発明者は、現像液としてTMAH水溶液の管理を行う場合を想定して、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させて、フォトレジストに対する所望の現像性能と、現像液の導電率値との関係を求めた。   Therefore, assuming that the developer controls the aqueous solution of TMAH as the developer, the concentration of the dissolved photoresist and the concentration of absorbed carbon dioxide are variously changed to obtain the desired developing performance for the photoresist and the conductivity of the developer. I asked for the relationship with the value.

吸収二酸化炭素濃度を0.0〜1.3(wt%)の間で変化させ、溶解フォトレジスト濃度を0.0〜0.40(wt%)(0.0〜1.3(abs)相当)の間で変化させたTMAH水溶液の現像液のサンプルを調製した。発明者は、これらのサンプルについて、現像液の導電率、吸収二酸化炭素濃度、および、溶解フォトレジスト濃度を測定し、現像性能、導電率、吸収二酸化炭素濃度、および、溶解フォトレジスト濃度成分との相関を確かめる実験を行った。吸収二酸化炭素濃度を一つの項目とし縦又は横に配列し、溶解フォトレジスト濃度を他の項目とし、横又は縦に配列したマトリックス(組み合わせ表)を作成した。吸収二酸化炭素濃度と溶解フォトレジスト濃度との組み合わせ毎に、フォトレジストに対する所望の現像性能を満足する、現像液の導電率を求め、各欄に記入し、マトリックスを完成させた。   The absorbed carbon dioxide concentration is changed between 0.0 and 1.3 (wt%), and the dissolved photoresist concentration is equivalent to 0.0 to 0.40 (wt%) (0.0 to 1.3 (abs) A sample of the developer of the aqueous TMAH solution, which was varied between) was prepared. The inventors measure the conductivity of the developer, the absorbed carbon dioxide concentration, and the dissolved photoresist concentration for these samples, and the development performance, the conductivity, the absorbed carbon dioxide concentration, and the dissolved photoresist concentration component are measured. An experiment was conducted to confirm the correlation. Absorbed carbon dioxide concentration was arranged in one item, vertically or horizontally, and dissolved photoresist concentration was set in another item, to form a matrix (combination table) arranged horizontally or vertically. For each combination of absorbed carbon dioxide concentration and dissolved photoresist concentration, the conductivity of the developing solution satisfying the desired developing performance for the photoresist was determined, and the columns were completed to complete the matrix.

ここで、所定の現像性能とは、現像工程で実現しようとしている線幅や残膜厚が実現されるときの現像液の現像性能を意味する。   Here, the predetermined development performance means the development performance of the developer when the line width and residual film thickness to be realized in the development step are realized.

代表的な各サンプルの吸収二酸化炭素濃度、溶解フォトレジスト濃度、および、導電率の測定結果を例示する。吸収二酸化炭素濃度が0.0(wt%)で、溶解フォトレジスト濃度が0.0(wt%)(0.0(abs)相当)である場合(いわゆる新液)、所定の現像性能を発揮できる現像液の導電率は54.58(mS/cm)であった。   The measurement results of absorbed carbon dioxide concentration, dissolved photoresist concentration, and conductivity of each representative sample are illustrated. When the absorbed carbon dioxide concentration is 0.0 (wt%) and the dissolved photoresist concentration is 0.0 (wt%) (equivalent to 0.0 (abs)) (so-called new solution), the predetermined development performance is exhibited. The conductivity of the resulting developer was 54.58 (mS / cm).

吸収二酸化炭素濃度が0.0(wt%)で、溶解フォトレジスト濃度が0.25(wt%)(0.8abs相当)である場合、所定の現像性能を発揮できる現像液の導電率は54.55(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.53(mS/cm)であった。   When the absorbed carbon dioxide concentration is 0.0 (wt%) and the dissolved photoresist concentration is 0.25 (wt%) (equivalent to 0.8 abs), the conductivity of the developer capable of exhibiting a predetermined development performance is 54 In the case of .55 (mS / cm) and the dissolved photoresist concentration was 0.40 (wt%) (equivalent to 1.3 abs), the conductivity of the developer was 54.53 (mS / cm).

また、溶解フォトレジスト濃度が0.0(wt%)(0.0(abs)相当)で、吸収二酸化炭素濃度が0.6(wt%)である場合、現像液の導電率は54.60(mS/cm)であり、吸収二酸化炭素濃度が1.3(wt%)である場合、現像液の導電率は54.75(mS/cm)であった。   When the dissolved photoresist concentration is 0.0 (wt%) (equivalent to 0.0 (abs)) and the absorbed carbon dioxide concentration is 0.6 (wt%), the conductivity of the developer is 54.60. When it is (mS / cm) and the absorbed carbon dioxide concentration is 1.3 (wt%), the conductivity of the developer is 54.75 (mS / cm).

また、吸収二酸化炭素濃度が0.6(wt%)で、溶解フォトレジスト濃度が0.22(wt%)(0.7abs相当)である場合、現像液の導電率は54.60(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.58(mS/cm)であった。   In addition, when the absorbed carbon dioxide concentration is 0.6 (wt%) and the dissolved photoresist concentration is 0.22 (wt%) (equivalent to 0.7 abs), the conductivity of the developer is 54.60 (mS / m). The conductivity of the developer was 54.58 (mS / cm) when the concentration of the dissolved photoresist was 0.40 (wt%) (equivalent to 1.3 abs).

また、吸収二酸化炭素濃度が1.3(wt%)で、溶解フォトレジスト濃度が0.22(wt%)(0.7abs相当)である場合、現像液の導電率は54.75(mS/cm)であり、溶解フォトレジスト濃度が0.40(wt%)(1.3abs相当)である場合、現像液の導電率は54.75(mS/cm)であった。   When the absorbed carbon dioxide concentration is 1.3 (wt%) and the dissolved photoresist concentration is 0.22 (wt%) (equivalent to 0.7 abs), the conductivity of the developer is 54.75 (mS / m). The conductivity of the developer was 54.75 (mS / cm) when the concentration of the dissolved photoresist was 0.40 (wt%) (equivalent to 1.3 abs).

なお、上述の実験においては、ある濃度領域において、吸収二酸化炭素濃度が大きくなると、導電率の管理値が大きくなる傾向にあり、溶解フォトレジスト濃度が大きくなると、導電率の管理値が小さくなる傾向が見られた。   In the above experiment, when the absorbed carbon dioxide concentration increases in a certain concentration range, the control value of conductivity tends to increase, and when the concentration of dissolved photoresist increases, the control value of conductivity decreases. It was observed.

上述の実験では、各サンプルの現像液の導電率は導電率計により測定した値を用いた。吸収二酸化炭素濃度は滴定分析法によりを測定した値を用いた。溶解フォトレジスト濃度は重量調製値を用いた。滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。   In the above-mentioned experiment, the conductivity of the developer of each sample used the value measured by the conductivity meter. The absorbed carbon dioxide concentration used the value measured by titration analysis. The dissolved photoresist concentration used the weight adjustment value. The titration is a neutralization titration using hydrochloric acid as a titration reagent. As a titrator, an automatic titrator GT-200 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.

なお、上述の導電率、吸収二酸化炭素濃度、及び溶解フォトレジスト濃度は、導電率、吸収二酸化炭素濃度、及び溶解フォトレジスト濃度と現像性能との関係性を見出すためであり、各数値に限定されない。   The conductivity, absorbed carbon dioxide concentration, and dissolved photoresist concentration described above are to find the relationship between the conductivity, absorbed carbon dioxide concentration, and dissolved photoresist concentration and development performance, and are not limited to the respective values. .

上述したように、現像性能を発揮できる導電率は、吸収二酸化炭素濃度及び溶解フォトレジスト濃度により様々に異なっていることが理解できる。このように、現像液の管理において、吸収二酸化炭素、及び溶解フォトレジストを含む現像液では、導電率を管理値とし、さらに吸収二酸化炭素濃度、及び溶解フォトレジスト濃度を測定し、各測定結果に基づいて導電率の管理値を異ならせることにより、所定の現像性能を発揮させることができる。   As described above, it can be understood that the conductivity capable of exhibiting the developing performance varies depending on the absorbed carbon dioxide concentration and the dissolved photoresist concentration. Thus, in the management of the developer, in the developer containing absorbed carbon dioxide and the dissolved photoresist, the conductivity is taken as the control value, and the absorbed carbon dioxide concentration and the dissolved photoresist concentration are measured, and By varying the control value of conductivity based on the predetermined development performance can be exhibited.

つまり、現像液の溶解フォトレジスト濃度、及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに、所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データ(マトリックス)を記憶し、導電率データ(マトリックス)を利用することで、所定の現像性能を発揮させることができる、現像液の管理が可能となる。   That is, the conductivity data having the conductivity value of the developer which is previously confirmed to be a predetermined development performance for each concentration region specified using the dissolved photoresist concentration of the developer and the absorbed carbon dioxide concentration as an index By storing the matrix) and using the conductivity data (matrix), it is possible to manage the developing solution which can exhibit predetermined development performance.

また、発明者が、現像液管理について鋭意研究したところ、炭酸塩やレジスト塩も現像液中で一部が遊離して現像作用に寄与すること、および、失活すると思われていたこれらの成分からの現像作用への寄与をも併せて考慮した現像液管理が現像液のアルカリ濃度値を管理することによって実現できること、さらに、このようなアルカリ濃度の管理値は吸収二酸化炭素濃度及び溶解フォトレジスト濃度と相関関係のある吸光度により様々に異なっていること、の知見を得た。   In addition, when the inventor diligently studied the developer control, it is considered that carbonates and resist salts are also partially released in the developer to contribute to the developing action, and these components are considered to be inactivated. Management of the developing solution in consideration of the contribution to the developing action from the above can be realized by managing the alkali concentration value of the developing solution, and further, such a management value of the alkali concentration is the absorbed carbon dioxide concentration and the dissolved photoresist It was found that the absorbance was different depending on the concentration and was different.

そこで発明者は、現像液としてTMAH水溶液の管理を行う場合を想定して、アルカリ性を示す現像液の導電率に基づいて測定されるアルカリ濃度と、現像液の溶解フォトレジスト濃度と相関関係のある吸光度と、現像液の吸収二酸化炭素濃度を様々に変化させて、フォトレジストに対する所望の現像性能と、現像液のアルカリ濃度との関係を求めた。   Therefore, assuming that the developer manages a TMAH aqueous solution as a developer, the inventor has a correlation between the alkali concentration measured based on the conductivity of the developer exhibiting alkalinity and the dissolved photoresist concentration of the developer. The absorbance and the absorbed carbon dioxide concentration of the developer were variously changed to determine the relationship between the desired developing performance for the photoresist and the alkali concentration of the developer.

吸収二酸化炭素濃度を0.0〜1.3(wt%)の間で変化させ、溶解フォトレジスト濃度と相関関係のある吸光度を0.0〜1.3(abs)の間で変化させたTMAH水溶液の現像液のサンプルを調製した。発明者は、これらのサンプルについて、現像液のアルカリ濃度、吸収二酸化炭素濃度、および、吸光度を測定し、現像性能、アルカリ濃度、吸収二酸化炭素濃度、および、吸光度との相関を確かめる実験を行った。吸収二酸化炭素濃度を一つの項目とし縦又は横に配列し、吸光度を他の項目とし、横又は縦に配列したマトリックス(組み合わせ表)を作成した。吸収二酸化炭素濃度と吸光度との組み合わせ毎に、フォトレジストに対する所望の現像性能を満足する、現像液のアルカリ濃度を求め、各欄に記入し、マトリックスを完成させた。   TMAH where the absorbed carbon dioxide concentration was varied between 0.0 and 1.3 (wt%) and the absorbance correlated with the dissolved photoresist concentration was varied between 0.0 and 1.3 (abs) A sample of the aqueous solution developer was prepared. The inventor measured the alkali concentration, absorbed carbon dioxide concentration, and absorbance of the developer for these samples, and conducted an experiment to confirm the correlation between the development performance, the alkali concentration, the absorbed carbon dioxide concentration, and the absorbance. . Absorbed carbon dioxide concentration was made into one item and arranged vertically or horizontally, absorbance was made another item, and the matrix (combination table) arranged horizontally or vertically was created. For each combination of absorbed carbon dioxide concentration and absorbance, the alkali concentration of the developing solution satisfying the desired development performance for the photoresist was determined, and each column was filled in to complete the matrix.

ここで、所定の現像性能とは、現像工程で実現しようとしている線幅や残膜厚が実現されるときの現像液の現像性能を意味する。   Here, the predetermined development performance means the development performance of the developer when the line width and residual film thickness to be realized in the development step are realized.

代表的な各サンプルの吸収二酸化炭素濃度、吸光度、および、アルカリ濃度の測定結果を例示する。吸収二酸化炭素濃度が0.0(wt%)で、吸光度が0.0(abs)である場合(いわゆる新液)、所定の現像性能を発揮できる現像液のアルカリ濃度は2.380(wt%)であった。   The measurement results of absorbed carbon dioxide concentration, absorbance, and alkali concentration of each representative sample are illustrated. When the absorbed carbon dioxide concentration is 0.0 (wt%) and the absorbance is 0.0 (abs) (so-called new solution), the alkali concentration of the developer capable of exhibiting a predetermined development performance is 2.380 wt% )Met.

吸収二酸化炭素濃度が0.0(wt%)で、吸光度が0.8absである場合、所定の現像性能を発揮できる現像液のアルカリ濃度は2.379(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ濃度は2.378(wt%)であった。   When the absorbed carbon dioxide concentration is 0.0 (wt%) and the absorbance is 0.8 abs, the alkali concentration of the developer capable of exhibiting a predetermined development performance is 2.479 (wt%), and the absorbance is 1. In the case of 3 abs, the alkali concentration of the developer was 2.378 (wt%).

また、吸光度が0.0(abs)で、吸収二酸化炭素濃度が0.6(wt%)である場合、現像液のアルカリ濃度は2.381(wt%)であり、吸収二酸化炭素濃度が1.3(wt%)である場合、現像液のアルカリ濃度は2.388(wt%)であった。   When the absorbance is 0.0 (abs) and the absorbed carbon dioxide concentration is 0.6 (wt%), the alkali concentration of the developer is 2.381 (wt%), and the absorbed carbon dioxide concentration is 1 In the case of .3 (wt%), the alkali concentration of the developer was 2.388 (wt%).

また、吸収二酸化炭素濃度が0.6(wt%)で、吸光度が0.7absである場合、現像液のアルカリ濃度は2.381(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ濃度は2.380(wt%)であった。   When the absorbed carbon dioxide concentration is 0.6 (wt%) and the absorbance is 0.7 abs, the alkali concentration of the developer is 2.381 (wt%) and the absorbance is 1.3 abs, The alkali concentration of the developer was 2.380 (wt%).

また、吸収二酸化炭素濃度が1.3(wt%)で、吸光度が0.7absである場合、現像液のアルカリ濃度は2.388(wt%)であり、吸光度が1.3absである場合、現像液のアルカリ濃度は2.388(wt%)であった。   When the absorbed carbon dioxide concentration is 1.3 (wt%) and the absorbance is 0.7 abs, the alkali concentration of the developer is 2.388 wt% and the absorbance is 1.3 abs, The alkali concentration of the developer was 2.388 (wt%).

なお、上述の実験においては、ある濃度領域において、吸収二酸化炭素濃度が大きくなると、アルカリ濃度の管理値が大きくなる傾向にあり、吸光度が大きくなると、アルカリ濃度の管理値が小さくなる傾向が見られた。   In the above experiment, when the absorbed carbon dioxide concentration increases in a certain concentration range, the control value of the alkali concentration tends to increase, and when the absorbance increases, the control value of the alkali concentration tends to decrease. The

上述の実験では、各サンプルの現像液のアルカリ濃度は、導電率計で導電率を測定することにより求めることができる。具体的には、TMAH水溶液の新液(現像前のTMAH水溶液)のアルカリ濃度と導電率値との相関関係(例えば直線関係)を予め検量線として作成しておく。この検量線に基づいて、導電率値からアルカリ濃度を求めることができる。   In the above-described experiment, the alkali concentration of the developer in each sample can be determined by measuring the conductivity with a conductivity meter. Specifically, a correlation (for example, a linear relationship) between the alkali concentration of the new solution of TMAH aqueous solution (TMAH aqueous solution before development) and the conductivity value is prepared in advance as a calibration curve. The alkali concentration can be determined from the conductivity value based on this calibration curve.

吸収二酸化炭素濃度は滴定分析法によりを測定した値を用いた。滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。吸光度の測定には吸光光度計を用いた。   The absorbed carbon dioxide concentration used the value measured by titration analysis. The titration is a neutralization titration using hydrochloric acid as a titration reagent. As a titrator, an automatic titrator GT-200 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used. An absorptiometer was used to measure the absorbance.

なお、上述のアルカリ濃度、吸収二酸化炭素濃度、及び吸光度は、アルカリ濃度、吸収二酸化炭素濃度、及び吸光度と現像性能との関係性を見出すためであり、各数値に限定されない。   The above-mentioned alkali concentration, absorbed carbon dioxide concentration, and absorbance are to find the relationship between the alkali concentration, absorbed carbon dioxide concentration, and absorbance, and development performance, and are not limited to the respective values.

上述したように、現像性能を発揮できるアルカリ濃度は、吸収二酸化炭素濃度、及び吸光度により様々に異なっていることが理解できる。このように、現像液の管理において、吸収二酸化炭素、及び溶解フォトレジストを含む現像液では、アルカリ濃度を現像液の管理値とし、さらに吸収二酸化炭素濃度、及び吸光度を測定し、各測定結果に基づいてアルカリ濃度の管理値を異ならせることにより、所定の現像性能を発揮させることができる。   As described above, it can be understood that the alkali concentration capable of exhibiting the development performance is variously different depending on the absorbed carbon dioxide concentration and the absorbance. Thus, in the management of the developing solution, in the developing solution containing absorbed carbon dioxide and the dissolved photoresist, the alkali concentration is taken as the control value of the developing solution, and the absorbed carbon dioxide concentration and absorbance are measured. By making the management value of the alkali concentration different based on the predetermined development performance can be exhibited.

つまり、現像液の吸光度、及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに、所定の現像性能となることが予め確認された現像液のアルカリ濃度値を有するアルカリ濃度データ(マトリックス)を記憶し、アルカリ濃度データ(マトリックス)を利用することで、所定の現像性能を発揮させることができる。   That is, the alkali concentration data (matrix) having the alkali concentration value of the developer which has been previously confirmed to be a predetermined development performance for each concentration range specified using the absorbance of the developer and the absorbed carbon dioxide concentration as an index By storing and using alkali concentration data (matrix), predetermined development performance can be exhibited.

次に、具体的な実施例について、図面を参照しながら説明する。   Next, specific examples will be described with reference to the drawings.

〔第一実施形態〕
図1は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。
First Embodiment
FIG. 1 is a schematic view of a developing process for describing the developing solution management device D of the present embodiment. The developing solution management apparatus D of the present invention is illustrated together with the developing process equipment A, the replenishing solution storage unit B, the circulating stirring mechanism C, and the like.

まず、現像工程設備Aについて簡単に説明する。   First, the development process equipment A will be briefly described.

現像工程設備Aは、主に、現像液貯留槽61、オーバーフロー槽62、現像室フード64、ローラーコンベア65、現像液シャワーノズル67などからなる。現像液貯留槽61には現像液が貯留されている。現像液は、補充液が補充されて組成管理される。現像液貯留槽61は、液面計63とオーバーフロー槽62とを備え、補充液を補給することによる液量の増加を管理している。現像液貯留槽61と現像液シャワーノズル67とは、現像液管路80により接続されている。現像液貯留槽61内に貯留された現像液が現像液管路80に設けられた循環ポンプ72によりフィルター73を介して現像液シャワーノズル67に送液される。ローラーコンベア65は、現像液貯留槽61の上方に備えられ、フォトレジスト膜の製膜された基板66を搬送する。現像液は現像液シャワーノズル67から滴下される。ローラーコンベア65により搬送される基板66は滴下される現像液の中を通過することで現像液に浸される。その後、現像液は、現像液貯留槽61に回収され、再び貯留される。このように、現像液は、現像工程で循環して繰り返し使用される。なお、小型のガラス基板における現像室内は、窒素ガスを充満させるなどにより、空気中の二酸化炭素を吸収しないような処理が施される場合もある。なお、劣化した現像液は廃液ポンプ71を作動することにより廃液(ドレン)される。   The development process equipment A mainly includes a developer storage tank 61, an overflow tank 62, a development chamber hood 64, a roller conveyor 65, a developer shower nozzle 67, and the like. A developer is stored in the developer storage tank 61. The developer is replenished with a replenisher to control its composition. The developer storage tank 61 includes a liquid level meter 63 and an overflow tank 62, and manages an increase in the amount of liquid by replenishing the replenishment liquid. The developer storage tank 61 and the developer shower nozzle 67 are connected by a developer channel 80. The developer stored in the developer storage tank 61 is fed to the developer shower nozzle 67 through the filter 73 by the circulation pump 72 provided in the developer channel 80. The roller conveyor 65 is provided above the developing solution storage tank 61, and conveys the substrate 66 on which the photoresist film is formed. The developer is dropped from a developer shower nozzle 67. The substrate 66 transported by the roller conveyor 65 is immersed in the developer by passing through the developer to be dropped. Thereafter, the developer is collected in the developer storage tank 61 and stored again. Thus, the developer is repeatedly used repeatedly in the development step. In the developing chamber of a small glass substrate, processing may be performed such that carbon dioxide in the air is not absorbed by filling nitrogen gas or the like. The deteriorated developer is drained (drained) by operating the drain pump 71.

循環攪拌機構Cについて説明する。循環攪拌機構Cは、主として、現像液貯留槽61内に貯留された現像液を循環し、攪拌するためのものである。   The circulating stirring mechanism C will be described. The circulating stirring mechanism C is mainly for circulating and stirring the developer stored in the developer storage tank 61.

現像液貯留槽61の底部と現像液貯留槽61の側部とは、途中に循環ポンプ74とフィルター75とが設けられた循環管路85により接続されている。循環ポンプ74を作動させると、現像液貯留槽61に貯留されたエッチング液は、循環管路85を介して循環する。現像液は、循環管路85を介して現像液貯留槽61の側部から現像液貯留槽61に戻され、貯留された現像液を攪拌する。   The bottom of the developer storage tank 61 and the side portion of the developer storage tank 61 are connected by a circulation pipeline 85 provided with a circulation pump 74 and a filter 75 in the middle. When the circulation pump 74 is operated, the etching solution stored in the developer storage tank 61 circulates through the circulation line 85. The developer is returned from the side portion of the developer storage tank 61 to the developer storage tank 61 via the circulation pipe 85, and the stored developer is agitated.

また、合流管路84を介して循環管路85に補充液が流入した場合、この流入した補充液は、循環管路85内において循環する現像液と混合されながら、現像液貯留槽61内に供給される。   In addition, when the replenishing solution flows into the circulation pipeline 85 via the merging pipeline 84, the replenishing solution that has flowed in is mixed with the developing solution circulating in the circulation pipeline 85 and is then introduced into the developing solution storage tank 61. Supplied.

次に、本実施形態の現像液管理装置Dについて説明する。本実施形態の現像液管理装置Dは、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データを用いて、現像液の溶解フォトレジスト濃度の測定値、及び吸収二酸化炭素濃度の測定値により特定される濃度領域の導電率を制御目標値として、現像液の導電率が制御目標値となるように現像液に補充液を補給する方式の現像液管理装置である。   Next, the developer management apparatus D of the present embodiment will be described. The developing solution management apparatus D of the present embodiment is a developing solution in which it is confirmed in advance that predetermined developing performance is obtained for each concentration region specified using the dissolved photoresist concentration of the developing solution exhibiting alkalinity and the absorbed carbon dioxide concentration as an index. The conductivity data of the developer is used as the control target value for the conductivity of the concentration region specified by the measured value of the dissolved photoresist concentration and the measured value of the absorbed carbon dioxide concentration using the conductivity data having the conductivity value of This developer management apparatus is a system in which the developer is replenished with a replenisher so that the conductivity becomes a control target value.

現像液管理装置Dは、測定部1と、制御手段21とを備えている。現像液管理装置Dはサンプリング配管15及び出口側配管16により現像液貯留槽61と接続されている。   The developer management device D includes a measurement unit 1 and a control unit 21. The developer management device D is connected to the developer storage tank 61 by the sampling pipe 15 and the outlet pipe 16.

測定部1は、サンプリングポンプ14と、導電率計11、及び溶解フォトレジスト濃度を測定する第1濃度測定手段12、及び吸収二酸化炭素濃度を測定するための第2濃度測定手段13を、備えている。導電率計11、第1濃度測定手段12、及び第2濃度測定手段13は、サンプリングポンプ14の後段に直列に接続される。測定部1は、さらに、測定精度を高めるために、サンプリングした現像液を所定の温度に安定させる温度調節手段(図示せず)を備えていることが望ましい。この際、温度調節手段は、測定手段の直前に設けられていることが好ましい。サンプリング配管15は、現像液管理装置Dの測定部1のサンプリングポンプ14に接続されており、出口側配管16は、測定手段末端の配管と接続されている。   The measurement unit 1 includes a sampling pump 14, a conductivity meter 11, a first concentration measurement means 12 for measuring a dissolved photoresist concentration, and a second concentration measurement means 13 for measuring an absorbed carbon dioxide concentration. There is. The conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 are connected in series in the rear stage of the sampling pump 14. It is desirable that the measuring unit 1 further includes a temperature control unit (not shown) for stabilizing the sampled developer at a predetermined temperature in order to enhance the measurement accuracy. At this time, it is preferable that the temperature control means be provided immediately before the measurement means. The sampling pipe 15 is connected to the sampling pump 14 of the measuring unit 1 of the developer management device D, and the outlet pipe 16 is connected to the pipe at the end of the measuring means.

また、図1では、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13が、直列に接続された態様を図示したが、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13の接続はこれに限定されない。並列接続でもよいし、それぞれが独立に送液経路を備えて測定するのでもよい。導電率計11、第1濃度測定手段12、及び第2濃度測定手段13の順番についても、特にその先後を問わない。各測定手段の特徴に応じて適宜最適な順番で測定すればよい。   In FIG. 1, the conductivity meter 11, the first concentration measuring unit 12, and the second concentration measuring unit 13 are connected in series, but the conductivity meter 11, the first concentration measuring unit 12, The connection of the second concentration measuring means 13 is not limited to this. It may be connected in parallel, or each may be independently provided with a liquid flow path and measured. The order of the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13 does not matter in particular. The measurement may be performed in an optimal order according to the characteristics of each measurement means.

制御手段21は、データ記憶部23と制御部31とを備えている。データ記憶部23には、アルカリ性を示す現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された、使用する現像液の導電率値を有する導電率データが格納されている。   The control unit 21 includes a data storage unit 23 and a control unit 31. The data storage unit 23 is a developer used that has been previously confirmed to have a predetermined development performance for each concentration range specified using the dissolved photoresist concentration of the developer exhibiting alkalinity and the absorbed carbon dioxide concentration as an index. Conductivity data having a conductivity value is stored.

制御手段21は、測定部1の導電率計11、第1濃度測定手段12、及び第2濃度測定手段13と信号線により接続されている。測定部1で測定された導電率値、溶解フォトレジスト濃度値、及び、吸収二酸化炭素濃度値が制御手段21へと送られる。   The control unit 21 is connected to the conductivity meter 11, the first concentration measurement unit 12, and the second concentration measurement unit 13 of the measurement unit 1 by signal lines. The conductivity value, the dissolved photoresist concentration value, and the absorbed carbon dioxide concentration value measured by the measurement unit 1 are sent to the control means 21.

制御手段21の制御部31は、現像液に補充液を送液する流路に設けられた制御弁41〜43と、信号線により接続されている。図1では、制御弁41〜43は、現像液管理装置Dの内部部品として図示したが、制御弁41〜43は、本実施形態の現像液管理装置Dの部品として必須のものというわけではない。制御部31は、制御弁41〜43の動作を制御して、現像液に補充液を補給できるように、制御弁41〜43と連絡していればよい。制御弁41〜43は、現像液管理装置Dの外に存在するのでもよい。   The control unit 31 of the control means 21 is connected by signal lines to control valves 41 to 43 provided in the flow path for feeding the replenisher to the developer. In FIG. 1, the control valves 41 to 43 are illustrated as internal parts of the developer management device D, but the control valves 41 to 43 are not necessarily essential as components of the developer management device D of this embodiment. . The control unit 31 may be in communication with the control valves 41 to 43 so as to control the operation of the control valves 41 to 43 so that the developer can be replenished with the replenishment liquid. The control valves 41 to 43 may be present outside the developing solution management device D.

続いて、本実施形態の現像液管理装置Dの動作について説明する。   Subsequently, the operation of the developing solution management device D of the present embodiment will be described.

現像液貯留槽61からサンプリングされた現像液は、測定部1内に送液され、温度調節される。現像液は、その後、導電率計11、第1濃度測定手段12、及び第2濃度測定手段13に送液され、導電率、溶解フォトレジスト濃度、及び吸収二酸化炭素濃度が測定される。各測定データは制御手段21に送られる。   The developer sampled from the developer reservoir 61 is fed into the measuring unit 1 and temperature-controlled. Thereafter, the developer is sent to the conductivity meter 11, the first concentration measuring means 12, and the second concentration measuring means 13, and the conductivity, the dissolved photoresist concentration, and the absorbed carbon dioxide concentration are measured. Each measurement data is sent to the control means 21.

制御部31には、現像液の溶解フォトレジスト濃度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された現像液の導電率値を有する導電率データの導電率値に対応する、導電率の管理値が設定されている。制御部31は、測定部1から受け取った測定データにより、以下のように制御を行う。   The control unit 31 is a conductivity having a conductivity value of the developer which is previously confirmed to be a predetermined development performance for each concentration region specified using the dissolved photoresist concentration of the developer and the absorbed carbon dioxide concentration as an index. A control value of conductivity corresponding to the conductivity value of data is set. The control unit 31 performs control as follows according to the measurement data received from the measurement unit 1.

制御部31は、測定部1から受け取った溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Control unit 31 measures the concentration of the dissolved photoresist measured in the conductivity data stored in data storage unit 23 based on the concentration of the dissolved photoresist and the concentration of absorbed carbon dioxide received from measurement unit 1. The conductivity value of the concentration range specified by the absorbed carbon dioxide concentration is determined. The determined conductivity value is set as a control target value of the developer conductivity.

制御部31は、測定部1から受け取った測定された導電率と、制御目標値として設定された導電率とを比較し、比較結果に応じて次のような管理を行う。すなわち、制御目標値として設定された導電率が、測定された導電率と同じ場合、基本的に現像液に補充液を加えない。また、制御目標値として設定された導電率が、測定された導電率より大きい場合、現像液に導電率を上げるように作用をする補充液を補給すればよい。また、制御目標値として設定された導電率が、測定された導電率より小さい場合、現像液に導電率を下げるように作用をする補充液を補給すればよい。   The control unit 31 compares the measured conductivity received from the measurement unit 1 with the conductivity set as the control target value, and performs the following management according to the comparison result. That is, when the conductivity set as the control target value is the same as the measured conductivity, basically the replenisher is not added to the developer. In addition, when the conductivity set as the control target value is larger than the measured conductivity, the developer may be replenished with a replenishing solution which acts to increase the conductivity. In addition, when the conductivity set as the control target value is smaller than the measured conductivity, the developer may be replenished with a replenisher that acts to lower the conductivity.

ここで、現像液に補給される補充液としては、例えば、現像液の原液や新液、純水などがある。   Here, as a replenishing solution to be replenished to the developing solution, there are, for example, an undiluted solution, a new solution, pure water and the like of the developing solution.

補充液は、補充液貯留部Cの補充液貯留槽91、92に貯留されている。補充液貯留槽91、92は、バルブ46、47を備えた窒素ガス用管路86が接続されており、この管路を介して供給される窒素ガスにより加圧されている。また、補充液貯留槽91、92にはそれぞれに補充液用管路81、82が接続され、通常開いた状態のバルブ44、45を介して補充液が送液される。補充液用管路81、82及び純水用管路83には制御弁41〜43が備えられており、制御弁41〜43は制御部3により開閉制御される。制御弁が動作することにより、補充液貯留槽91、92に貯留されていた補充液が圧送され、また、純水が送液される。その後、補充液は合流管路84を経て、循環攪拌機構Dと合流し、現像液貯留槽61に補給され攪拌される。   The replenishing solution is stored in the replenishing solution reservoirs 91 and 92 of the replenishing solution reservoir C. A nitrogen gas pipe 86 provided with valves 46 and 47 is connected to the replenisher storage reservoirs 91 and 92, and is pressurized by nitrogen gas supplied via the pipe. Further, replenishing solution pipes 81 and 82 are connected to the replenishing solution storage tanks 91 and 92, respectively, and the replenishing solution is fed via the valves 44 and 45 which are normally open. Control valves 41 to 43 are provided in the replenishment solution pipelines 81 and 82 and the pure water pipeline 83, and the control valves 41 to 43 are controlled to open and close by the control unit 3. By operating the control valve, the replenishment liquid stored in the replenishment liquid storage tanks 91 and 92 is pressure-fed, and pure water is transported. Thereafter, the replenishing solution passes through the joining pipeline 84, joins with the circulating stirring mechanism D, is replenished to the developing solution storage tank 61, and is stirred.

補給により補充液貯留槽91、92内に貯留された補充液が減少すると、その内圧が下がって供給量が不安定となるため、補充液の減少に応じてバルブ46、47を適宜開いて窒素ガスを供給し、補充液貯留槽91、92の内圧が保たれるように維持される。補充液貯留槽91、92が空になったときは、バルブ44、45を閉じて、補充液を満たした新しい補充液貯留槽と交換するか、または、別途調達した補充液を空になった補充液貯留槽に再び充填する。   If the amount of replenished solution stored in the replenished solution storage tank 91, 92 decreases due to replenishment, the internal pressure drops and the supply amount becomes unstable. Therefore, according to the decreased amount of replenished solution, the valves 46, 47 are opened appropriately Gas is supplied and maintained so as to maintain the internal pressure of the replenisher reservoirs 91 and 92. When the replenisher reservoirs 91 and 92 became empty, the valves 44 and 45 were closed and replaced with a new replenisher reservoir filled with replenisher, or the separately supplied replenisher was exhausted. Refill the refill reservoir.

制御弁41〜43の制御は、例えば、次のように行われる。制御弁の開時に流れる流量が調整されていれば、制御弁を開けている時間を管理することにより、補給すべき液量の補充液を補給することができる。制御部31は、測定部1から受け取った測定された導電率と、制御目標値として設定された導電率に基づいて、補給すべき液量の補充液が流れるように、所定時間制御弁を開けるように制御弁に制御信号を発する。   Control of the control valves 41 to 43 is performed, for example, as follows. If the flow rate at the time of opening the control valve is adjusted, the replenishment liquid of the liquid amount to be replenished can be replenished by managing the time during which the control valve is open. The control unit 31 opens the control valve for a predetermined time so that the replenishment liquid of the liquid amount to be replenished flows based on the measured conductivity received from the measurement unit 1 and the conductivity set as the control target value. And issue a control signal to the control valve.

制御の方式は、制御量を目標値に合わせる制御に用いられる各種の制御方法を採用し得る。特に、比例制御(P制御)、積分制御(I制御)、微分制御(D制御)、及び、これらを組み合わせた制御(PI制御など)が好ましい。より好ましくは、PID制御が適している。   The control method may employ various control methods used to control the control amount to the target value. In particular, proportional control (P control), integral control (I control), differential control (D control), and control (PI control etc.) combining these are preferable. More preferably, PID control is suitable.

以上により、本実施形態に係る現像液管理装置Dによれば、現像液がどのような溶解フォトレジスト濃度及び吸収二酸化炭素濃度となろうとも、現像液中の導電率で、現像液を管理することにより、現像作用に活性を有する成分が維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   As described above, the developer management apparatus D according to the present embodiment manages the developer by the conductivity in the developer regardless of the dissolved photoresist concentration and the absorbed carbon dioxide concentration regardless of the developer concentration. As a result, since the component having the activity of developing is maintained, desired development performance can be maintained, and development processing capable of maintaining desired line width and residual film thickness can be realized.

また、本実施形態に係る現像液管理装置Dによれば、現像性能が予め確認された現像液の導電率値の導電率データを使用して制御目標管理値とすることで、現像液の溶解フォトレジスト濃度が0.0〜0.40(wt%)(0.0〜1.3(abs)相当)であり、かつ吸収二酸化炭素濃度が0.0〜1.3(wt%)であっても、所望の現像活性を有する現像液として使用することができる。すなわち、本実施形態に係る現像液管理装置Dによれば、現像液の溶解フォトレジスト濃度が0.25(wt%)以上(0.8(abs)相当)、かつ吸収二酸化炭素濃度が0.6(wt%)以上であっても、現像液を廃液することなく使用でき、現像液の廃液量を減らすことが可能となる。   Further, according to the developer management device D according to the present embodiment, the developer data is dissolved by using the conductivity data of the conductivity value of the developer whose development performance has been confirmed in advance as the control target management value. The photoresist concentration is 0.0 to 0.40 (wt%) (equivalent to 0.0 to 1.3 (abs)), and the absorbed carbon dioxide concentration is 0.0 to 1.3 (wt%) However, it can be used as a developer having desired development activity. That is, according to the developing solution management apparatus D according to this embodiment, the dissolved photoresist concentration of the developing solution is 0.25 (wt%) or more (equivalent to 0.8 (abs)), and the absorbed carbon dioxide concentration is 0. Even if it is 6 (wt%) or more, the developer can be used without draining it, and the amount of developer drained can be reduced.

上述において、現像液の導電率、吸収二酸化炭素濃度、及び溶解フォトレスト濃度と、導電率データを用いた例を説明した。これに限定されることなく、現像液のアルカリ濃度、吸収二酸化炭素濃度、及び吸光度と、アルカリ濃度データを用いて、現像液を管理することができる。   In the above, an example using the developer conductivity, absorbed carbon dioxide concentration, dissolved photorest concentration, and conductivity data has been described. Without being limited thereto, the developer can be managed using the alkali concentration, absorbed carbon dioxide concentration, absorbance, and alkali concentration data of the developer.

〔第二実施形態〕
図2は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
Second Embodiment
FIG. 2 is a schematic view of a developing process for describing the developing solution management device D of the present embodiment. The developing solution management apparatus D of the present invention is illustrated together with the developing process equipment A, the replenishing solution storage unit B, the circulating stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment, and description may be abbreviate | omitted.

現像液管理装置Dの測定部1は、導電率計11、現像液の溶解フォトレジスト濃度と相関のある現像液の特性値と、現像液の吸収二酸化炭素濃度と相関のある現像液の特性値とを測定する複数の測定装置を備えている。例えば、溶解フォトレジスト濃度と相関のある現像液の特性値を測定する第1特性値測定手段12Aとして、例えばλ=560nmにおける吸光度を測定する吸光光度計を備えている。吸収二酸化炭素濃度と相関のある現像液の特性値を測定する第2特性値測定手段13Aとして、現像液の密度を測定する密度計を備えている。   The measurement unit 1 of the developer management device D measures the conductivity value of the developer 11, the characteristic value of the developer having a correlation with the concentration of the dissolved photoresist, and the characteristic value of the developer having a correlation with the concentration of absorbed carbon dioxide of the developer. And a plurality of measuring devices for measuring For example, as a first characteristic value measuring means 12A for measuring the characteristic value of the developing solution having a correlation with the dissolved photoresist concentration, for example, an absorptiometer for measuring the absorbance at λ = 560 nm is provided. As a second characteristic value measuring means 13A for measuring the characteristic value of the developing solution having a correlation with the absorbed carbon dioxide concentration, a densitometer for measuring the density of the developing solution is provided.

ここで、「相関のある」現像液の特性値とは、その特性値がその成分濃度と関係があり、その成分濃度の変化に応じて特性値が変わるような関係にあることをいう。例えば、現像液の成分濃度のうち少なくとも成分濃度Aと相関のある現像液の特性値aとは、特性値aが成分濃度を変数とする関数により求められるときに、変数の一つに少なくとも成分濃度Aを含むことをいう。特性値aが成分濃度Aのみの関数であってもよいが、通常は、成分濃度Aのほかに、成分濃度BやCなどを変数とする多変数関数となっているときに、多変量解析法(例えば、重回帰分析法)を用いる意義が大きい。   Here, the characteristic value of the “correlated” developer means that the characteristic value is related to the concentration of the component, and the characteristic value changes in accordance with the change in the concentration of the component. For example, the characteristic value a of the developing solution having a correlation with at least the component concentration A of the component concentrations of the developing solution is at least one of the components when the characteristic value a is determined by a function using the component concentration as a variable. It means containing concentration A. The characteristic value a may be a function of only the component concentration A, but usually, when the multivariate function has component concentration B or C as a variable in addition to component concentration A, multivariate analysis The significance of using a method (eg, multiple regression analysis) is significant.

制御手段21は、データ記憶部23、制御部31、及び演算部32を備えている。演算部32は、測定部1で測定された現像液の複数の特性値から、多変量解析法により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。   The control unit 21 includes a data storage unit 23, a control unit 31, and an operation unit 32. The calculation unit 32 calculates the measurement value of the dissolved photoresist concentration of the developer and the measurement value of the absorbed carbon dioxide concentration by the multivariate analysis method from the plurality of characteristic values of the developer measured by the measurement unit 1.

本実施形態では、現像液貯留槽61からサンプリングされた現像液は、測定部1内に送液され、温度調節される。現像液は、その後、導電率計11、第1特性値測定手段12A吸、及び第2特性値測定手段13Aに送液され、導電率、吸光度、及び密度が測定される。各測定データは制御手段21に送られる。   In the present embodiment, the developer sampled from the developer reservoir 61 is fed into the measuring unit 1 and temperature-controlled. The developer is then sent to the conductivity meter 11, the first characteristic value measuring means 12A, and the second characteristic value measuring means 13A, and the conductivity, absorbance, and density are measured. Each measurement data is sent to the control means 21.

演算部32は、測定部1で測定された吸光度、及び密度から多変量解析法により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。この際、導電率、吸光度、及び密度から多変量解析法により溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出することもできる。   The calculating unit 32 calculates the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration from the absorbance and the density measured by the measuring unit 1 by multivariate analysis. At this time, it is also possible to calculate the measurement value of the dissolved photoresist concentration and the measurement value of the absorbed carbon dioxide concentration by multivariate analysis from the conductivity, the absorbance, and the density.

制御部31は、演算部32で算出された溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   The control unit 31 measures the concentration of the dissolved photoresist measured in the conductivity data stored in the data storage unit 23 based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration calculated by the computing unit 32. The conductivity value of the concentration range specified by the absorbed carbon dioxide concentration is determined. The determined conductivity value is set as a control target value of the developer conductivity.

その他の構成、動作などは、第一実施形態と同様であるので、省略する。   The other configurations, operations, and the like are the same as those of the first embodiment, and thus will not be described.

次に、現像液の複数の特性値から、溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度を、多変量解析法により算出する手法について説明する。   Next, a method of calculating the measurement value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration from a plurality of characteristic values of the developer by multivariate analysis will be described.

発明者は、演算手法に多変量解析法(例えば、重回帰分析法)を用いれば、従来法を用いた場合より、精度よく現像液の各成分の濃度を算出できること、及び、従来困難であった吸収二酸化炭素濃度が測定できること、を見出した。多変量解析法(例えば、重回帰分析法)により算出した現像液の成分濃度(溶解フォトレジスト、及び濃度吸収二酸化炭素濃度)を用いれば、予め現像性の確認された溶解フォトレジスト濃度、及び吸収二酸化炭素濃度と導電率値を有する導電率データから、目的の導電率値を容易に得ることが可能となる。   If the inventor uses multivariate analysis (for example, multiple regression analysis) as the calculation method, the concentration of each component of the developer can be calculated more accurately than when the conventional method is used, and it is difficult. It has been found that the absorbed carbon dioxide concentration can be measured. Using the component concentration (dissolved photoresist and concentration absorbed carbon dioxide concentration) of the developer calculated by multivariate analysis (for example, multiple regression analysis), dissolved photoresist concentration and absorption in which developability was confirmed in advance It is possible to easily obtain the target conductivity value from the conductivity data having the carbon dioxide concentration and the conductivity value.

2.38%TMAH水溶液の管理を行う場合を想定して、アルカリ成分濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させたTMAH水溶液を模擬現像液サンプルとして調製した。発明者は、これらの模擬現像液サンプルについて測定した各種特性値から、重回帰分析法によりその成分濃度を求める実験を行った。以下に、重回帰分析法による一般的な演算手法を説明し、そのあと、発明者の行った実験に基づいて、重回帰分析法を用いた現像液の成分濃度の演算手法について説明する。   Assuming that the 2.38% aqueous solution of TMAH is managed, an aqueous solution of TMAH in which the concentration of the alkaline component, the concentration of the dissolved photoresist, and the concentration of absorbed carbon dioxide were variously changed was prepared as a sample of the simulated developer. The inventor conducted an experiment to obtain the concentration of the component by multiple regression analysis from various characteristic values measured for these simulated developer solutions. Hereinafter, a general calculation method by the multiple regression analysis method will be described, and thereafter, a calculation method of the component concentration of the developer using the multiple regression analysis method will be described based on the experiments performed by the inventor.

重回帰分析法は校正と予測の二段階からなる。n成分系の重回帰分析法において、校正標準溶液をm個用意したとする。i番目の溶液中に存在するj番目の成分の濃度をCijと表す。ここで、i=1〜m、j=1〜nである。m個の標準溶液について、それぞれ、p個の特性値(例えば、ある波長における吸光度とか導電率などの特性値)Aik(k=1〜p)を測定する。濃度データと特性データは、それぞれ、まとめて行列の形(C,A)に表すことができる。   Multiple regression analysis consists of two steps: calibration and prediction. In the n-component multiple regression analysis method, it is assumed that m calibration standard solutions are prepared. The concentration of the j-th component present in the i-th solution is denoted as Cij. Here, i = 1 to m and j = 1 to n. For each of the m standard solutions, p characteristic values (for example, characteristic values such as absorbance or conductivity at a certain wavelength) Aik (k = 1 to p) are measured. The concentration data and the characteristic data can be collectively represented in the form of a matrix (C, A).

Figure 2019071482
Figure 2019071482

これらの行列を関係づける行列を校正行列といい、ここでは記号S(Skj ;k=1〜p、j=1〜n)で表す。   A matrix relating these matrices is called a calibration matrix, and is represented by symbols S (Sk j; k = 1 to p, j = 1 to n) here.

Figure 2019071482
Figure 2019071482

既知のCとA(Aの内容は、同質の測定値のみならず異質の測定値が混在しても構わない。例えば、導電率と吸光度と密度。)からSを行列演算により算出するのが校正段階である。この時、p>=n、且つ、m>=npでなければならない。Sの各要素は全て未知数であるから、m>npであることが望ましく、その場合は次のように最小二乗演算を行う。   It is possible to calculate S by matrix operation from known C and A (the content of A may be not only homogeneous measurement values but also heterogeneous measurement values. For example, conductivity and absorbance and density). It is a calibration stage. At this time, p> = n and m> = np. Since all elements of S are unknowns, it is desirable that m> np, in which case the least squares operation is performed as follows.

Figure 2019071482
Figure 2019071482

ここで、上付きのTは転置行列を、上付きの−1は逆行列を意味する。   Here, superscript T means transposed matrix, superscript -1 means inverse matrix.

濃度未知の試料液についてp個の特性値を測定し、それらをAu(Auk;k=1〜p)とすれば、それにSを乗じて求めるべき濃度Cu(Cuj;j=1〜n)を得ることができる。   If p characteristic values are measured for sample solutions of unknown concentrations and these are Au (Auk; k = 1 to p), then the concentration Cu (Cuj; j = 1 to n) to be determined by multiplying it by S You can get it.

Figure 2019071482
Figure 2019071482

これが予測段階である。   This is the prediction stage.

発明者は、使用済みのアルカリ性現像液(2.38%TMAH水溶液)を、アルカリ成分、溶解フォトレジスト、吸収二酸化炭素の3成分からなる多成分系(n=3)とみなして、当該現像液の特性値として3つの特性値(p=3)、すなわち、現像液の導電率値、特定波長における吸光度値、及び、密度値から、上記重回帰分析法により各成分濃度を算出する実験を行った。発明者は、2.38%TMAH水溶液を現像液の基本組成として、アルカリ成分濃度(TMAH濃度)、溶解フォトレジスト濃度、吸収二酸化炭素濃度を様々に変化させた11個の校正標準溶液を調製した(m=11で、p>=nかつm>npを満たす)。   The inventor regards the used alkaline developing solution (2.38% aqueous solution of TMAH) as a multicomponent system (n = 3) consisting of three components of an alkaline component, a dissolved photoresist, and absorbed carbon dioxide, and the developing solution Experiment to calculate each component concentration by the above-mentioned multiple regression analysis method from three characteristic values (p = 3), that is, conductivity value of developer, absorbance value at specific wavelength, and density value as characteristic values of The The inventor prepared 11 calibration standard solutions in which the alkaline component concentration (TMAH concentration), the dissolved photoresist concentration, and the absorbed carbon dioxide concentration were variously changed using the 2.38% aqueous solution of TMAH as the basic composition of the developer. (When m = 11, p> = n and m> np are satisfied).

実験は、11個の校正標準溶液について、導電率値、波長λ=560nmにおける吸光度値、及び、密度値を現像液の特性値として測定し、各成分濃度を線形重回帰分析法(Multiple Linear Regression − Inverse Least Squares;MLR−ILS)により演算した。   In the experiment, conductivity values, absorbance values at a wavelength of λ = 560 nm, and density values were measured as characteristic values of a developer for 11 calibration standard solutions, and each component concentration was subjected to multiple linear regression analysis (Multiple Linear Regression) -Calculated according to Inverse Least Squares (MLR-ILS).

測定は、校正標準溶液を25.0℃に温度調整して、行った。温度調整は、25℃付近に温度管理された恒温水槽に校正標準溶液の入ったボトルを長時間浸しておき、ここからサンプリングして、さらに測定直前に温度コントローラにて再度25.0℃にする、という方式である。導電率計は自社製の導電率計を採用した。白金黒処理を施した自社製の導電率フローセルを用いて測定した。導電率計には、別途校正作業により確認された導電率フローセルのセル定数が入力されている。吸光光度計も自社製のものを採用した。波長λ=560nmの光源部と測光部とガラスフローセルとを備える吸光光度計である。密度測定には、U字管フローセルを励振して測定される固有振動数から密度を求める固有振動法を採用した密度計を用いた。測定された導電率値、吸光度値、密度値の単位は、それぞれ、mS/cm、Abs.(Absorbance)、g/cmである。 The measurement was performed by adjusting the temperature of the calibration standard solution to 25.0 ° C. For temperature adjustment, keep the bottle containing the calibration standard solution for a long time in a thermostatic water bath whose temperature is controlled around 25 ° C, sample it from here, and make it 25.0 ° C again with the temperature controller just before measurement. It is a method called ,. The conductivity meter adopted its own conductivity meter. It measured using the conductivity flow cell made in-house which gave the platinum black processing. In the conductivity meter, the cell constant of the conductivity flow cell confirmed by the calibration operation separately is input. The absorptiometer also adopted one made in-house. It is an absorptiometer provided with the light source part of wavelength (lambda) = 560 nm, a photometry part, and a glass flow cell. For density measurement, a densitometer employing a natural vibration method to obtain a density from natural frequencies measured by exciting a U-shaped tube flow cell was used. The units of the measured conductivity value, absorbance value and density value are mS / cm and Abs. (Absorbance), g / cm 3 .

演算は、11個の校正標準溶液のうち一つを未知試料に見立てて、残り10標準で校正行列を求め、仮定した未知試料の濃度を算出して既知の値(他の正確な分析手法により測定した濃度値や重量調製値)と比べる手法(一個抜き交差確認法;Leave−One−Out法)によるものである。   The calculation is performed by assuming one of 11 calibration standard solutions as an unknown sample, determining the calibration matrix with the remaining 10 standards, calculating the concentration of the assumed unknown sample, and determining the known value (other accurate analysis methods It is based on the method (one piece omission cross confirmation method; Leave-One-Out method) and the density | concentration value and weight preparation value which were measured.

MLR−ILS計算を行った結果を表1に示す。   Table 1 shows the results of the MLR-ILS calculation.

Figure 2019071482
Figure 2019071482

MLR−ILS計算に当たっては、TMAH水溶液が強アルカリ性で二酸化炭素を吸収して劣化しやすいことに鑑み、演算に用いる濃度行列には、アルカリ成分濃度や吸収二酸化炭素濃度を正確に分析できる滴定分析法により校正標準溶液を別途測定した値を用いた。ただし、溶解フォトレジスト濃度に関しては、重量調製値を用いた。   In the calculation of MLR-ILS, in view of the fact that the aqueous solution of TMAH is strongly alkaline and absorbs carbon dioxide and is easily degraded, the concentration matrix used for the calculation can be accurately analyzed by the concentration of the alkaline component and the concentration of absorbed carbon dioxide. The value which measured separately the calibration standard solution by was used. However, for the dissolved photoresist concentration, the weight adjustment value was used.

滴定は、塩酸を滴定試薬とする中和滴定である。滴定装置として、三菱化学アナリテック社製の自動滴定装置GT−200を使用した。   The titration is a neutralization titration using hydrochloric acid as a titration reagent. As a titrator, an automatic titrator GT-200 manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used.

以下、表2に、濃度行列を示す。   Table 2 below shows the concentration matrix.

Figure 2019071482
Figure 2019071482

このときの校正標準溶液の特性値の測定結果を表3に示す。吸光度の欄は、波長λ=560nmにおける吸光度値(光路長d=10mm)である。   The measurement results of the characteristic values of the calibration standard solution at this time are shown in Table 3. The column of absorbance is the absorbance value (optical path length d = 10 mm) at a wavelength λ = 560 nm.

Figure 2019071482
Figure 2019071482

校正行列を表4に示す。   The calibration matrix is shown in Table 4.

Figure 2019071482
Figure 2019071482

表5に、表2の濃度測定値と表1のMLR−ILS計算値との比較を示す。   Table 5 shows a comparison of the measured concentration values of Table 2 with the calculated MLR-ILS values of Table 1.

Figure 2019071482
Figure 2019071482

表5の通り、重回帰分析法により求められたTMAH濃度、溶解フォトレジスト濃度、吸収二酸化炭素濃度は、いずれも滴定分析により測定したTMAH濃度や吸収二酸化炭素濃度、及び、調整重量から求めた溶解フォトレジスト濃度と、いずれもかなり近似した値となっている。   As shown in Table 5, the concentration of TMAH, the concentration of dissolved photoresist, and the concentration of absorbed carbon dioxide determined by multiple regression analysis are all determined from the concentration of TMAH or absorbed carbon dioxide determined by titration analysis, and the adjusted weight. Both the photoresist concentration and the value are fairly similar.

このように、アルカリ性現像液の導電率、特定波長における吸光度、及び、密度を測定して、多変量解析法(例えば、重回帰分析法)を用いることにより、現像液のアルカリ成分濃度、溶解フォトレジスト濃度、及び、吸収二酸化炭素濃度を測定できることが理解される。   Thus, by measuring the conductivity, the absorbance at a specific wavelength, and the density of the alkaline developer and using multivariate analysis (for example, multiple regression analysis), the concentration of the alkaline component in the developer, the dissolution photo It is understood that the resist concentration and the absorbed carbon dioxide concentration can be measured.

多変量解析法(例えば、重回帰分析法)は、複数の成分の濃度を演算して求めるのに有効である。現像液の複数の特性値a、b、c、…を測定して、それらの測定値から多変量解析法(例えば、重回帰分析法)により成分濃度A、B、C、…を求めることができる。この際、求めるべき成分濃度につき、少なくともこの成分濃度と相関のある特性値が、少なくともひとつは測定されて演算に用いられることが必要である。   Multivariate analysis (for example, multiple regression analysis) is effective for calculating and determining the concentrations of a plurality of components. Measuring a plurality of characteristic values a, b, c, ... of the developer and determining component concentrations A, B, C, ... from the measured values by multivariate analysis (for example, multiple regression analysis) it can. At this time, it is necessary that at least one characteristic value correlated with at least one component concentration to be determined is measured and used for calculation.

また、成分濃度は、全体に対するその成分の相対量を示す尺度である。繰り返し使用される現像液のような経時的に成分が増減する混合液の成分濃度は、その成分単独で決まらず、通常、他の成分の濃度の関数となる。そのため、現像液の特性値と成分濃度の関係は、平面的なグラフで表示することが困難なことが多い。このような場合には、検量線を用いる演算法などでは、現像液の特性値から成分濃度を算出することができない。   Component concentration is also a measure of the relative amount of that component relative to the whole. The component concentration of a mixed solution in which the component increases and decreases with time, such as a developer to be used repeatedly, is not determined by the component alone, and usually becomes a function of the concentration of other components. Therefore, it is often difficult to display the relationship between the characteristic value of the developer and the component concentration in a planar graph. In such a case, the component concentration can not be calculated from the characteristic value of the developer by an arithmetic method using a calibration curve or the like.

しかし、多変量解析法(例えば、重回帰分析法)によれば、算出しようとする成分濃度と相関のある複数の特性値の測定値が一組揃えば、これを演算に用いて、成分濃度が一組算出される。従来の知見では一見すると測定困難な成分濃度であっても、特性値を測定することで成分濃度を測定できる、という顕著な効果を、多変量解析法(例えば、重回帰分析法)による成分濃度測定では得ることができる。   However, according to multivariate analysis (for example, multiple regression analysis), if one set of measurement values of a plurality of characteristic values correlated with the component concentration to be calculated is used, this is used for the calculation, Is calculated. The remarkable effect of measuring component concentrations by measuring characteristic values even with component concentrations that are seemingly difficult to measure by conventional findings is that component concentrations by multivariate analysis (for example, multiple regression analysis) It can be obtained by measurement.

以上のとおり、本発明の演算手法によれば、現像液のアルカリ成分濃度、溶解フォトレジスト濃度、及び、吸収二酸化炭素濃度を、現像液の特性値(例えば、導電率、特定波長における吸光度、及び、密度)の測定値に基づいて算出することができる。本発明の演算手法によれば、従来法に比べ、高精度に各成分濃度を算出することができる。   As described above, according to the calculation method of the present invention, the alkali component concentration of the developer, the concentration of the dissolved photoresist, and the absorbed carbon dioxide concentration are determined as the characteristic values of the developer (for example, conductivity, absorbance at a specific wavelength, and , Density) can be calculated. According to the calculation method of the present invention, the concentration of each component can be calculated with high accuracy as compared with the conventional method.

また、本発明では多変量解析法(例えば、重回帰分析法)を用いているので、現像液の成分濃度を算出する演算に、現像液の特定の成分濃度と直線関係にない現像液の特性値をも採用することができる。   Further, since multivariate analysis (for example, multiple regression analysis) is used in the present invention, the characteristic of the developer which is not in a linear relationship with the specific component concentration of the developer in the calculation for calculating the component concentration of the developer. Values can also be adopted.

また、本発明によれば、特許文献2の発明では必要な、高精度測定を可能とするための非常に多数のサンプルの準備と予備測定が、必要ない。(前述の実験例のとおり、成分数n=3の現像液であれば、測定する特性値の数p=3として、m>=npを満たすサンプル数p(例えばp=11個のサンプル)を準備して測定すれば、十分である。成分数n=2ならばサンプル数はさらに少なくてよい。)
さらに、本発明は多変量解析法(例えば、重回帰分析法)を用いているので、従来は測定が困難であった現像液の吸収二酸化炭素濃度を、精度よく算出することができる。
Also, according to the present invention, the preparation and preliminary measurement of a very large number of samples to enable high-precision measurement, which is required in the invention of Patent Document 2, is not necessary. (As in the above-mentioned experimental example, in the case of a developer having the number of components n = 3, the number p of samples satisfying m> = np (for example, p = 11 samples) is set as the number p = 3 of characteristic values to be measured Preparation and measurement is sufficient, if the number of components n = 2, the number of samples may be smaller.)
Furthermore, since the present invention uses multivariate analysis (for example, multiple regression analysis), it is possible to accurately calculate the absorbed carbon dioxide concentration of the developer which has been difficult to measure conventionally.

本実施形態では、現像液の溶解フォトレジスト濃度と相関のある現像液の特性値として、λ=560nmにおける吸光度を例示したが、これに限定されない。他の特定波長における吸光度、すなわち、可視領域、より好ましくは360〜600nmの波長領域、の特定波長、より好ましくは波長λ=480nm、における吸光度を、特性値として利用することもできる。これらの波長域に含まれる特定波長における吸光度は溶解レジスト濃度と比較的良好な対応関係にあるためである。   In the present embodiment, the absorbance at λ = 560 nm is exemplified as a characteristic value of the developer having a correlation with the concentration of the dissolved photoresist in the developer, but the characteristic value is not limited to this. The absorbance at another specific wavelength, that is, the absorbance at a specific wavelength in the visible region, more preferably in the wavelength range of 360 to 600 nm, more preferably in the wavelength λ = 480 nm, can also be used as the characteristic value. It is because the absorbance at specific wavelengths included in these wavelength ranges has a relatively good correspondence with the dissolved resist concentration.

また、現像液の吸収二酸化炭素濃度と相関のある現像液の特性値として、密度を例示したが、これに限定されない。現像液の溶解フォトレジスト濃度や吸収二酸化炭素濃度と相関のある現像液の特性値として、現像液の導電率と組み合わせて測定する特性値に採用し得る特性値には、例えば、上記特定波長における吸光度や密度の他に、超音波伝播速度、屈折率、滴定終点、pHなどを挙げることができる。   Moreover, although the density was illustrated as a characteristic value of the developing solution which has a correlation with the absorbed carbon dioxide concentration of a developing solution, it is not limited to this. The characteristic value that can be adopted as the characteristic value to be measured in combination with the conductivity of the developing solution as the characteristic value of the developing solution having a correlation with the dissolved photoresist concentration of the developing solution or the absorbed carbon dioxide concentration is, for example, Besides the absorbance and density, ultrasonic wave propagation speed, refractive index, titration end point, pH and the like can be mentioned.

〔第三実施形態〕
図3は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、及び第二実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
Third Embodiment
FIG. 3 is a schematic view of a developing process for describing the developing solution management device D of the present embodiment. The developing solution management apparatus D of the present invention is illustrated together with the developing process equipment A, the replenishing solution storage unit B, the circulating stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment and 2nd embodiment, and description may be abbreviate | omitted.

本実施形態の現像液管理装置Dは、測定部1と、制御手段21、及び演算手段36を備えている。本実施形態では、第二実施形態とは異なり、制御手段21と、演算を行う演算手段36とが、別体の装置で構成されている。   The developing solution management device D of the present embodiment includes the measuring unit 1, the control unit 21, and the calculating unit 36. In the present embodiment, unlike the second embodiment, the control means 21 and the arithmetic means 36 for performing calculations are configured as separate devices.

測定部1は、導電率計11、第1特性値測定手段12A、及び第2特性値測定手段13Aを備えている。演算手段36は、第1特性値測定手段12A、及び第2特性値測定手段13Aにより測定された吸光度、及び密度から多変量解析法により、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値を算出する。この際、導電率、吸光度、及び密度から多変量解析法により溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度を算出することができる。   The measurement unit 1 includes a conductivity meter 11, a first characteristic value measurement unit 12A, and a second characteristic value measurement unit 13A. The calculating means 36 measures the dissolved photoresist concentration of the developer and the absorbed carbon dioxide by the multivariate analysis method from the absorbance and the density measured by the first characteristic value measuring means 12A and the second characteristic value measuring means 13A. Calculate the measured value of concentration. At this time, the measured value of the dissolved photoresist concentration and the absorbed carbon dioxide concentration can be calculated by the multivariate analysis method from the conductivity, the absorbance, and the density.

制御部31は、演算手段で算出された溶解フォトレジスト濃度と吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   The control unit 31 measures the dissolved photoresist concentration and the measured concentration among the conductivity data stored in the data storage unit 23 based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration calculated by the computing means. The conductivity value of the concentration range specified by the absorbed carbon dioxide concentration is determined. The determined conductivity value is set as a control target value of the developer conductivity.

その他の構成、動作などは、第二実施形態と同様であるので、省略する。   The other configurations, operations, and the like are the same as those in the second embodiment, and thus will not be described.

〔第四実施形態〕
図4は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、第二実施形態、及び第三実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
Fourth Embodiment
FIG. 4 is a schematic view of a developing process for describing the developing solution management device D of the present embodiment. The developing solution management apparatus D of the present invention is illustrated together with the developing process equipment A, the replenishing solution storage unit B, the circulating stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment, 2nd embodiment, and 3rd embodiment, and description may be abbreviate | omitted.

本実施形態の測定部1は、導電率計11、第1濃度測定手段12、及び密度計13Bを備える。制御手段21はデータ記憶部23と演算部33とを備える。演算部33は、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計13Bにより測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。   The measuring unit 1 of the present embodiment includes a conductivity meter 11, a first concentration measuring unit 12, and a density meter 13B. The control unit 21 includes a data storage unit 23 and an operation unit 33. The calculation unit 33 calculates the absorbed carbon dioxide concentration of the developer from the density of the developer measured by the density meter 13B based on the correspondence between the absorbed carbon dioxide concentration and the density of the developer.

制御部31は、測定部1で測定された溶解フォトレジスト濃度と、演算部33で算出された吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   Control unit 31 measures the conductivity data stored in data storage unit 23 based on the dissolved photoresist concentration measured in measurement unit 1 and the absorbed carbon dioxide concentration calculated in operation unit 33. The conductivity value of the concentration region specified by the dissolved photoresist concentration and the measured absorbed carbon dioxide concentration is determined. The determined conductivity value is set as a control target value of the developer conductivity.

その他の構成、動作などは、第一実施形態と同様であるので、省略する。   The other configurations, operations, and the like are the same as those of the first embodiment, and thus will not be described.

現像液の密度値と吸収二酸化炭素濃度値との関係について説明する。発明者は、鋭意研究を続けた結果、次の知見を得た。すなわち、現像液のアルカリ成分濃度や溶解フォトレジスト濃度によらず、現像液の密度値と吸収二酸化炭素濃度値との間には比較的良好な対応関係(直線関係)が得られること、である。また、この対応関係(直線関係)を用いれば密度計により現像液の密度を測定することで従来困難であった吸収二酸化炭素濃度が測定できること、である。   The relationship between the density value of the developer and the absorbed carbon dioxide concentration value will be described. The inventor obtained the following knowledge as a result of continuing earnest research. That is, a relatively good correspondence relationship (linear relationship) can be obtained between the density value of the developer and the absorbed carbon dioxide concentration value regardless of the concentration of the alkaline component and the concentration of the dissolved photoresist in the developer. . In addition, it is possible to measure the concentration of absorbed carbon dioxide which was conventionally difficult by measuring the density of the developer with a densitometer by using this correspondence relationship (linear relationship).

発明者は、多変量解析法を用いた現像液の成分濃度の演算に用いた11個の校正標準溶液を模擬現像液サンプルとし、これらについてアルカリ成分濃度(TMAH濃度)、溶解フォトレジスト濃度、吸収二酸化炭素濃度、および、密度を測定し、成分濃度と密度との相関を確かめる実験を行った。   The inventor uses the 11 calibration standard solutions used for calculating the component concentration of the developer using multivariate analysis as the simulated developer samples, and the alkali component concentration (TMAH concentration), the dissolved photoresist concentration, and the absorption for these are used as the simulated developer solutions. An experiment was conducted to measure the carbon dioxide concentration and the density, and to confirm the correlation between the component concentration and the density.

以下の表6に、各サンプルの成分濃度と密度の測定結果を示す。表6は、表5の濃度測定値(wt%)と表3の密度(g/cm)とを対比させた表である。 Table 6 below shows the measurement results of component concentration and density of each sample. Table 6 is a table in which the concentration measurement values (wt%) of Table 5 and the densities (g / cm 3 ) of Table 3 are compared.

Figure 2019071482
Figure 2019071482

図5に、表6に示した各サンプルの吸収二酸化炭素濃度と密度とのグラフを示す。このグラフは、二酸化炭素濃度(wt%)を横軸にとり、密度(g/cm)を縦軸にとり、各サンプルの値をプロットしたグラフである。プロットした各点から、最小二乗法により回帰直線を求めた。 FIG. 5 shows a graph of absorbed carbon dioxide concentration and density of each sample shown in Table 6. This graph is a graph in which the carbon dioxide concentration (wt%) is taken on the horizontal axis and the density (g / cm 3 ) is taken on the vertical axis, and the values of each sample are plotted. From each plotted point, a regression line was determined by the least squares method.

図5から、現像液の吸収二酸化炭素濃度は、アルカリ成分濃度や溶解フォトレジスト濃度が様々であるにも関わらず、現像液の密度との間に良好な直線関係があることが理解できる。この実験結果により、この現像液の二酸化炭素濃度と密度との間の対応関係(直線関係)を用いれば、現像液の密度を測定することにより現像液の吸収二酸化炭素濃度を算出することが可能であることを、発明者は知見したのである。   It can be understood from FIG. 5 that the absorbed carbon dioxide concentration of the developer has a good linear relationship with the density of the developer even though the concentration of the alkali component and the concentration of the dissolved photoresist are various. According to this experimental result, it is possible to calculate the absorbed carbon dioxide concentration of the developer by measuring the density of the developer if the correspondence relationship (linear relationship) between the carbon dioxide concentration and the density of the developer is used. The inventor has found that.

したがって、アルカリ成分濃度(TMAH濃度)や溶解レジスト濃度にかかわらず、この対応関係(直線関係)により、密度計を用いることにより、現像液の吸収二酸化炭素濃度を測定することができる。   Therefore, regardless of the alkali component concentration (TMAH concentration) and the dissolved resist concentration, it is possible to measure the absorbed carbon dioxide concentration of the developer by using the densitometer based on this correspondence relationship (linear relationship).

演算部33で、現像液の密度と吸収二酸化炭素濃度の関係を利用することで、容易に現像液の吸収二酸化炭素濃度を測定することができる。   By using the relationship between the density of the developer and the absorbed carbon dioxide concentration in the calculation unit 33, the absorbed carbon dioxide concentration of the developer can be easily measured.

〔第五実施形態〕
図6は、本実施形態の現像液管理装置Dの説明をするための現像工程の模式図である。本発明の現像液管理装置Dが、現像工程設備A、補充液貯留部B、循環攪拌機構Cなどとともに図示されている。なお、第一実施形態、及び第二実施形態の構成と同様の構成には同一符号を付して説明を省略する場合がある。
Fifth Embodiment
FIG. 6 is a schematic view of a developing process for describing the developing solution management device D of the present embodiment. The developing solution management apparatus D of the present invention is illustrated together with the developing process equipment A, the replenishing solution storage unit B, the circulating stirring mechanism C, and the like. In addition, the same code | symbol may be attached | subjected to the structure similar to the structure of 1st embodiment and 2nd embodiment, and description may be abbreviate | omitted.

本実施形態の現像液管理装置Dは、測定部1と、制御手段21、及び演算手段37を備えている。本実施形態では、第四実施形態とは異なり、制御手段21と、演算を行う演算手段37とが、別体の装置で構成されている。本実施形態の測定部1は、導電率計11、第1濃度測定手段12、及び密度計13Bを備える。演算手段37は、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計13Bにより測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。   The developing solution management apparatus D of the present embodiment includes the measuring unit 1, the control unit 21, and the calculating unit 37. In the present embodiment, unlike the fourth embodiment, the control means 21 and the arithmetic means 37 for performing calculations are configured as separate devices. The measuring unit 1 of the present embodiment includes a conductivity meter 11, a first concentration measuring unit 12, and a density meter 13B. The calculating means 37 calculates the absorbed carbon dioxide concentration of the developing solution from the density of the developing solution measured by the density meter 13B based on the correspondence between the absorbed carbon dioxide concentration and the density of the developing solution.

制御部31は、測定部1で測定された溶解フォトレジスト濃度と、演算手段37で算出された吸収二酸化炭素濃度とに基づいて、データ記憶部23に記憶されている導電率データのうち、測定された溶解フォトレジスト濃度及び測定された吸収二酸化炭素濃度により特定される濃度領域の導電率値を求める。求めた導電率値を現像液の導電率の制御目標値として設定する。   The control unit 31 measures the conductivity data stored in the data storage unit 23 based on the dissolved photoresist concentration measured by the measurement unit 1 and the absorbed carbon dioxide concentration calculated by the calculation means 37. The conductivity value of the concentration region specified by the dissolved photoresist concentration and the measured absorbed carbon dioxide concentration is determined. The determined conductivity value is set as a control target value of the developer conductivity.

その他の構成、動作などは、第四実施形態と同様であるので、省略する。   Other configurations, operations, and the like are the same as those of the fourth embodiment, and thus the description thereof is omitted.

以上のとおり、本実施形態の現像液管理装置Dによれば、現像液がどのような溶解フォトレジスト濃度及び二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   As described above, according to the developing solution management apparatus D of this embodiment, the component having an activity for developing action in the developing solution is constant regardless of what dissolved photoresist concentration and carbon dioxide concentration the developing solution becomes. Since it is maintained, desired development performance can be maintained, and development processing which can maintain desired line width and residual film thickness can be realized.

次に、本実施形態の現像液管理装置Dの変形例について、説明する。   Next, a modification of the developing solution management device D of the present embodiment will be described.

図1〜4,6では、現像液管理装置Dの測定部1は、制御手段21や演算手段36,37と一体に構成される現像液管理装置Dを描いたが、本実施形態の現像液管理装置Dはこれに限定されない。測定部1を別体の構成とすることもできる。   In FIGS. 1 to 4 and 6, the measurement unit 1 of the developer management device D depicts the developer management device D configured integrally with the control unit 21 and the arithmetic units 36 and 37, but the developer according to the present embodiment The management device D is not limited to this. The measuring unit 1 can be configured separately.

測定部1において、それぞれの採用する測定原理に応じて最適な設置方法があるので、例えば、測定部1を現像液管路80にインライン接続したり、現像液貯留槽61に測定プローブを浸漬するように設置したりするのでもよい。導電率計11、第1濃度測定手段12、第1特性値測定手段12A、第2濃度測定手段13、第2特性値測定手段13A、及び密度計13Bの各測定手段がそれぞれ別個に設置されるのでもよい。本実施形態の現像液管理装置Dは、各測定手段が制御手段21や演算手段36,37との測定データのやり取りができるように相互に連絡した態様となっていれば実現可能である。   In the measurement unit 1, there is an optimum installation method according to the measurement principle adopted, so for example, the measurement unit 1 is connected inline to the developer channel 80 or the measurement probe is immersed in the developer storage tank 61. It may be installed as well. The measuring means of conductivity meter 11, first concentration measuring means 12, first characteristic value measuring means 12A, second concentration measuring means 13, second characteristic value measuring means 13A, and density meter 13B are separately installed. It may be The developing solution management device D of this embodiment can be realized as long as each measuring means communicates with each other so that measurement data can be exchanged with the control means 21 and the arithmetic means 36, 37.

各測定手段が採用した測定原理に応じて、試薬添加が必要であれば、各測定手段がそのための配管を備えていてもよいし、廃液が必要であれば、各測定手段がそのための管路を備えていてもよい。各測定手段が直列に接続されていなくても、本実施形態の現像液管理装置Dは実現可能である。   Depending on the measurement principle adopted by each measuring means, each reagent may be provided with a pipe if it is necessary to add a reagent, and if any waste liquid is required, each pipe may be a pipeline May be provided. The developer management apparatus D of the present embodiment can be realized even if the measurement units are not connected in series.

図1〜4,6では、現像液に補給される補充液を送液する流路に設けられた制御弁41〜43が現像液管理装置Dの内部部品となるように、現像液管理装置Dが補充液用管路81、82及び純水用管路83と接続された態様を描いたが、本実施形態の現像液管理装置Dはこれに限定されない。現像液管理装置は制御弁41〜43を内部部品として備えていなくてもよく、現像液に補充液を補給するための管路81〜83と接続されていなくてもよい。   In FIGS. 1 to 4 and 6, the developer management device D is provided so that the control valves 41 to 43 provided in the flow path for feeding the replenishment liquid to be replenished to the developer become internal components of the developer management device D. Although the aspect drawn in connection with the replenishment solution pipelines 81 and 82 and the pure water pipeline 83 was drawn, the developing solution management apparatus D of the present embodiment is not limited to this. The developer management apparatus may not have the control valves 41 to 43 as internal components, and may not be connected to the pipelines 81 to 83 for replenishing the developer with the replenishment liquid.

本実施形態の現像液管理装置Dにおける制御手段21と、補充液を補給するための管路に設けられた制御弁41〜43とは、制御弁41〜43が現像液管理装置Dの制御手段21により発せられた制御信号を受け取って制御されるように相互に連絡した態様となっていればよい。制御弁が現像液管理装置Dの内部部品となっていなくても、本実施形態の現像液管理装置Dは実現可能である。   The control means 21 in the developing solution management apparatus D of this embodiment and the control valves 41 to 43 provided in the pipeline for replenishing the replenishing solution have the control valves 41 to 43 as control means of the developing solution management apparatus D. It may be in the form of mutual communication so as to be received and controlled by the control signal emitted by 21. Even if the control valve is not an internal part of the developer management device D, the developer management device D of the present embodiment can be realized.

本発明の現像液管理装置は、上記のような各種の変形例が許容されるにもかかわらず、現像液の溶解フォトレジスト濃度及び二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液の導電率値を有する導電率データを備え、現像液の溶解フォトレジスト濃度の測定値及び吸収二酸化炭素濃度の測定値により特定される濃度領域の導電率データの導電率値を制御目標値として、現像液の導電率が前記制御目標値となるように前記現像液に補給される補充液を送液する。   Although the developing solution management apparatus of the present invention allows various modifications as described above, predetermined development is performed for each concentration region specified using the dissolved photoresist concentration and the carbon dioxide concentration as the indicators. Conductivity in the concentration range specified by the measured value of the dissolved photoresist concentration of the developer and the measured value of the absorbed carbon dioxide concentration, provided with the conductivity data having the conductivity value of the developer previously confirmed to be the performance With the conductivity value of the rate data as the control target value, the replenishing solution to be replenished to the developer is fed so that the conductivity of the developer becomes the control target value.

以上のとおり、本発明の現像液の管理方法、及び現像液管理装置によれば、現像液がどのような溶解フォトレジスト濃度及び二酸化炭素濃度となろうとも、現像液中の現像作用に活性を有する成分が一定に維持されるので、所望の現像性能を維持でき、所望の線幅及び残膜厚を維持できる現像処理を実現できる。   As described above, according to the method of managing a developer and the developer management device of the present invention, regardless of what dissolved photoresist concentration and carbon dioxide concentration the developer has, it is active in the developing action in the developer. Since the components possessed are maintained constant, desired development performance can be maintained, and development processing capable of maintaining desired line width and residual film thickness can be realized.

現像液管理装置の好ましい態様として、溶解フォトレジスト濃度、吸収二酸化炭素濃度を多変量解析法により算出するため、溶解フォトレジスト濃度、吸収二酸化炭素濃度を精度良く求めることができる。これらの溶解フォトレジスト濃度、及び吸収二酸化炭素濃度に基づいて導電率データから目標となる導電率値を求めることができる。   In a preferred embodiment of the developer management apparatus, the dissolved photoresist concentration and the absorbed carbon dioxide concentration are calculated by multivariate analysis, so that the dissolved photoresist concentration and the absorbed carbon dioxide concentration can be determined with high accuracy. The target conductivity value can be determined from the conductivity data based on the dissolved photoresist concentration and the absorbed carbon dioxide concentration.

さらに、現像液管理装置の好ましい態様として、現像液の吸収二酸化炭素濃度と密度との間の対応関係に基づいて密度計により測定された現像液の密度から現像液の吸収二酸化炭素濃度を算出する。これにより、より簡便に現像液の吸収二酸化炭素濃度を求めることができる。この吸収二酸化炭素濃度、及び別途と求められた溶解フォトレジスト濃度に基づいて、導電率データから目標となる導電率値を求めることができる。   Furthermore, as a preferred embodiment of the developer management apparatus, the absorbed carbon dioxide concentration of the developer is calculated from the density of the developer measured by the density meter based on the correspondence between the absorbed carbon dioxide concentration and the density of the developer. . Thus, the absorbed carbon dioxide concentration of the developer can be determined more simply. Based on the absorbed carbon dioxide concentration and the separately determined dissolved photoresist concentration, the target conductivity value can be determined from the conductivity data.

A…現像工程設備、B…補充液貯留部、C…循環攪拌機構、D…現像液管理装置
1…測定部
11…導電率計、12…第1濃度測定手段、12A…第1特性値測定手段、13…第2濃度測定手段、13A…第2特性値測定手段、13B…密度計
14…サンプリングポンプ、15…サンプリング配管、16…出口側配管
21…制御手段(例えばコンピュータ)
23…データ記憶部、
31…制御部、32,33…演算部、36,37…演算手段
41〜43…制御弁、44、45、46、47…バルブ
61…現像液貯留槽、62…オーバーフロー槽、63…液面計、64…現像室フード、65…ローラーコンベア、66…基板、67…現像液シャワーノズル
71…廃液ポンプ、72、74…循環ポンプ、73、75…フィルター
80…現像液管路、81、82…補充液(現像原液及び/又は新液)用管路、83…純水用管路、84…合流管路、85…循環管路、86…窒素ガス用管路
91、92…補充液(現像原液及び/又は新液)貯留槽
A: Development process equipment, B: Replenisher storage part, C: Circulating stirring mechanism, D: Developer control device 1: Measurement part 11: Conductivity meter, 12: First concentration measuring means, 12A: First characteristic value measurement Means, 13: second concentration measuring means, 13A: second characteristic value measuring means, 13B: density meter 14: sampling pump, 15: sampling piping, 16: outlet side piping 21: control means (for example, computer)
23: Data storage unit,
Reference Signs List 31 control unit 32, 33 calculation unit 36, 37 calculation unit 41 to 43 control valve 44 45 46 47 47 valve 61 developing solution storage tank 62 overflow tank 63 liquid surface Total, 64: development chamber hood, 65: roller conveyor, 66: substrate, 67: developer shower nozzle 71: waste liquid pump, 72, 74: circulation pump, 73, 75: filter 80: developer channel, 81, 82 ... pipeline for replenisher (developing solution and / or new solution), 83 ... pipeline for pure water, 84 ... merging pipeline, 85 ... circulation pipeline, 86 ... nitrogen gas pipeline 91, 92 ... replenishment fluid ( Developer stock solution and / or new solution) storage tank

Claims (2)

繰り返し使用される、アルカリ性を示す現像液の導電率に基づいてアルカリ濃度を測定し、前記現像液の溶解フォトレジスト濃度と相関関係のある吸光度を測定し、前記現像液の吸収二酸化炭素濃度を測定し、
前記現像液の吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ濃度値を有するアルカリ濃度データのうち、測定された吸光度及び測定された吸収二酸化炭素濃度により特定される濃度領域の前記アルカリ濃度値を、前記現像液のアルカリ濃度の制御目標値に設定し、
前記現像液のアルカリ濃度が前記制御目標値となるように、前記現像液に補充液を補給する現像液の管理方法。
The alkali concentration is measured based on the conductivity of the developer exhibiting alkalinity, which is repeatedly used, and the absorbance which is correlated with the concentration of the dissolved photoresist of the developer is measured, and the absorbed carbon dioxide concentration of the developer is measured. And
Of the alkali concentration data having the alkali concentration value of the developer which has been previously confirmed to be a predetermined development performance for each concentration range specified using the absorbance of the developer and the absorbed carbon dioxide concentration as an index The alkali concentration value of the concentration range specified by the absorbance and the measured absorbed carbon dioxide concentration is set as a control target value of the alkali concentration of the developer,
A management method of a developer, wherein the developer is replenished with a replenishment liquid so that the alkali concentration of the developer becomes the control target value.
繰り返し使用される、アルカリ性を示す現像液の溶解フォトレジスト濃度と相関関係のある吸光度及び吸収二酸化炭素濃度を指標として特定される濃度領域ごとに所定の現像性能となることが予め確認された前記現像液のアルカリ濃度値を有するアルカリ濃度データが格納されているデータ記憶部と、
前記現像液の吸光度及び吸収二酸化炭素濃度の測定値により特定される濃度領域の前記データ記憶部に格納された前記アルカリ濃度値を制御目標値として、前記現像液のアルカリ濃度が前記制御目標値となるように前記現像液に補給される補充液を送液する流路に設けられた制御弁に制御信号を発する制御部と、
を備えた制御手段、
を備える現像液管理装置。
The above-mentioned development in which it is confirmed in advance that predetermined development performance is obtained for each concentration range specified using the absorbance and the absorbed carbon dioxide concentration that are correlated with the dissolved photoresist concentration of the developer exhibiting alkalinity, which is repeatedly used. A data storage unit in which alkali concentration data having a solution alkali concentration value is stored;
With the alkali concentration value stored in the data storage unit of the concentration range specified by the measured value of the absorbance of the developer and the absorbed carbon dioxide concentration as a control target value, the alkali concentration of the developer is the control target value And a control unit which issues a control signal to a control valve provided in a flow path for feeding the replenishing solution to be replenished to the developing solution.
Control means comprising
Developer management apparatus comprising:
JP2019014496A 2019-01-30 2019-01-30 Method and apparatus for managing developer Expired - Fee Related JP6624762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014496A JP6624762B2 (en) 2019-01-30 2019-01-30 Method and apparatus for managing developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014496A JP6624762B2 (en) 2019-01-30 2019-01-30 Method and apparatus for managing developer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015144971A Division JP6505534B2 (en) 2015-07-22 2015-07-22 Method and apparatus for managing developer

Publications (2)

Publication Number Publication Date
JP2019071482A true JP2019071482A (en) 2019-05-09
JP6624762B2 JP6624762B2 (en) 2019-12-25

Family

ID=66441351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014496A Expired - Fee Related JP6624762B2 (en) 2019-01-30 2019-01-30 Method and apparatus for managing developer

Country Status (1)

Country Link
JP (1) JP6624762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960897A (en) * 2021-11-03 2022-01-21 中国科学院光电技术研究所 Developing device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960897A (en) * 2021-11-03 2022-01-21 中国科学院光电技术研究所 Developing device and method
CN113960897B (en) * 2021-11-03 2023-09-19 中国科学院光电技术研究所 Developing device and method

Also Published As

Publication number Publication date
JP6624762B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6505534B2 (en) Method and apparatus for managing developer
JP6721157B2 (en) Method and apparatus for measuring component concentration of developer, and method and apparatus for managing developer
TWI453548B (en) A method for adjusting the density of the developing solution, a regulating device, and a developing solution
JP5058560B2 (en) Etching solution management device
TWI278898B (en) Processing solution preparation and supply method and apparatus
KR20170011961A (en) Component concentration measuring apparatus for developing solution, component concentration measuring method, developing solution managing apparatus and developing solution managing method
JP6712415B2 (en) Developer management device
JP6624762B2 (en) Method and apparatus for managing developer
JP2018120901A (en) Development device
JP2018120900A (en) Developer management device
JP2012127004A (en) Device for managing etchant
JP2018120893A (en) Device for measuring component concentration of developer, and developer management device
KR20180087119A (en) Concentration monitoring apparatus for developing solution and developing solution management apparatus
JP2018120895A (en) Developing device
JP2009019877A (en) Concentration measuring device and concentration measuring method of etching liquid component
KR20180087122A (en) Concentration monitoring apparatus for developing solution and developing solution management apparatus
JPH10123720A (en) Method for developing photosensitive resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6624762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees