JP2019070194A - Sintered component - Google Patents

Sintered component Download PDF

Info

Publication number
JP2019070194A
JP2019070194A JP2018224221A JP2018224221A JP2019070194A JP 2019070194 A JP2019070194 A JP 2019070194A JP 2018224221 A JP2018224221 A JP 2018224221A JP 2018224221 A JP2018224221 A JP 2018224221A JP 2019070194 A JP2019070194 A JP 2019070194A
Authority
JP
Japan
Prior art keywords
drill
hole
cutting edge
green compact
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018224221A
Other languages
Japanese (ja)
Inventor
康則 園田
Yasunori Sonoda
康則 園田
亮太 武
Ryota Take
亮太 武
松本 章宏
Akihiro Matsumoto
章宏 松本
次 杉本
Tsuguru SUGIMOTO
次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
NIKKEN TOOL CO Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
NIKKEN TOOL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, NIKKEN TOOL CO Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2018224221A priority Critical patent/JP2019070194A/en
Publication of JP2019070194A publication Critical patent/JP2019070194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)
  • Drilling Tools (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a method for manufacturing a sintered component capable of suppressing occurrences of edge fracture upon forming an open hole in a powdery compact and excellent in productivity.SOLUTION: A method for manufacturing a sintered component comprises a forming step that makes a powdery compact by press-forming a base powder containing a metal powder, a hole opening step that forms a hole in the powdery compact by a drill, and a sintering step that performs sintering for the powdery compact after the hole opening step. The drill used in the hole opening step has an arcuate cutting edge at a tip.SELECTED DRAWING: Figure 2

Description

本発明は、焼結部品の製造方法、焼結部品、並びに圧粉成形体に穴あけ加工を行うドリルに関する。特に、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できると共に、生産性に優れる焼結部品の製造方法に関する。   The present invention relates to a method of manufacturing a sintered part, a sintered part, and a drill for drilling a green compact. In particular, the present invention relates to a method of manufacturing a sintered part which can suppress generation of edge chipping when forming a through hole in a green compact and has excellent productivity.

鉄粉などの金属粉末の成形体を焼結してなる焼結体(焼結合金)が、自動車部品や機械部品などに利用されている。このような焼結合金部品(以下、単に「焼結部品」と呼ぶ)としては、例えばスプロケット、ロータ、ギア、リング、フランジ、プーリー、ベーン、軸受けなどが挙げられる。一般に、焼結部品は、金属粉末を含有する原料粉末をプレス成形して圧粉成形体(圧粉体)を作製し、これを焼結することで製造されており、焼結後、必要に応じて、仕上げ加工として機械加工が行われる。   BACKGROUND ART A sintered body (sintered alloy) obtained by sintering a compact of metal powder such as iron powder is used for automobile parts, machine parts and the like. Examples of such sintered alloy parts (hereinafter simply referred to as "sintered parts") include sprockets, rotors, gears, rings, flanges, pulleys, vanes, bearings and the like. In general, sintered parts are manufactured by press-forming a raw material powder containing metal powder to prepare a green compact (green compact) and sintering it, and after sintering, it is necessary. Accordingly, machining is performed as finishing.

ところで、焼結部品の中には、貫通している通し穴(貫通孔)や貫通していない止まり穴などの穴が形成されたものがある。例えば、外周面から端面や内周面に抜ける貫通孔(例、油孔)が形成された部品がある。このような部品については、成形時に圧粉成形体に対して貫通孔を一体に形成できないことから、焼結後にドリルで穴あけ加工を行っている(特許文献1を参照)。   By the way, there are some sintered parts in which holes such as through holes (through holes) passing through and blind holes not passing through are formed. For example, there is a component in which a through hole (for example, an oil hole) which passes from an outer peripheral surface to an end surface or an inner peripheral surface is formed. With regard to such parts, since a through hole can not be formed integrally with the green compact at the time of molding, drilling is performed with a drill after sintering (see Patent Document 1).

穴あけ加工に使用するドリルとしては、先端部に投影形状がV字状の切れ刃を有するものが代表的である。超硬合金製のドリルの場合、切れ刃の先端角が130°〜140°程度に設定されていることが多い。   As a drill to be used for drilling, one having a V-shaped cutting edge at its tip is typical. In the case of a cemented carbide drill, the tip angle of the cutting edge is often set to about 130 ° to 140 °.

特開2006−336078号公報Unexamined-Japanese-Patent No. 2006-336078

焼結部品に対してドリルで穴あけ加工を行う場合、焼結後の穴あけ加工は困難であり、生産性が低いという問題がある。   When a sintered part is drilled by drilling, it is difficult to make a hole after sintering, and there is a problem that productivity is low.

焼結部品は、金属粉末の粒子同士が焼結により拡散結合ならびに合金化して強固に結合しているため、硬い。そのため、焼結部品にドリルで穴あけ加工を行うと、切削抵抗が高くドリルが進入し難いため、切削が困難で、加工に時間がかかる上、工具寿命も短くなる。また、ドリルの喰い付き時の抵抗も高いため、ドリルが軸振れし易いなど、安定した加工穴精度を得ることが難しい。更に、切削抵抗が高く、スラスト荷重が高いことから、貫通孔を形成する際に、ドリルが抜ける出口側の開口縁に沿ってバリが発生し易い。バリは、ドリルが貫通する際に貫通孔の底部の厚さが薄くなることで、スラスト荷重に対して底部の強度が維持できなくなった場合に底部が切削できずに変形し、出口側に押し出されることで発生する。発生したバリは、後工程で除去する必要があり、その作業に時間と労力とを要する。バリの発生箇所によっては除去し難い、又はできないこともある。したがって、焼結部品の製造において、製造コストを低減する観点から生産性の改善が望まれる。   A sintered part is hard because particles of metal powder are diffusively bonded and alloyed and firmly bonded by sintering. Therefore, if drilling is performed on a sintered part with a drill, cutting resistance is high and the drill is difficult to enter, so cutting is difficult, machining takes time, and the tool life is shortened. In addition, since the resistance at the time of biting the drill is high, it is difficult to obtain a stable drilled hole accuracy, for example, the drill is likely to run out of axis. Furthermore, since the cutting resistance is high and the thrust load is high, when forming the through hole, burrs are likely to be generated along the opening edge on the outlet side from which the drill is removed. Since the thickness of the bottom of the through hole is reduced when the drill penetrates, the burr is deformed so that the bottom can not be cut if the strength of the bottom can not be maintained against the thrust load, and the burr is pushed out to the outlet side Is generated by The generated burrs need to be removed in a later step, which requires time and effort. It may be difficult or impossible to remove depending on the location of the burr. Therefore, in the production of sintered parts, improvement of productivity is desired from the viewpoint of reducing the production cost.

焼結前の圧粉成形体にドリルで穴あけ加工を行い、予め圧粉成形体に貫通孔を形成することが考えられる。圧粉成形体は、成形により原料粉末を固めただけであり、金属粉末の粒子同士が機械的に密着している状態であるので、焼結後のように強固に結合していない。そのため、焼結前の圧粉成形体に穴あけ加工した場合、焼結後に穴あけ加工する場合に比較して、金属粉末の粒子同士の結合が弱く、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減される。圧粉成形体に穴あけ加工した場合、金属粉末の粒子をドリルで削り落としながら切削し、貫通孔を形成していく。しかしながら、圧粉成形体にドリルで穴あけ加工を行うと、貫通孔を形成した際に、ドリルが抜ける出口側の開口縁が欠ける、所謂コバ欠けが発生し易い。   It is conceivable that the green compact before sintering is drilled with a drill to form through holes in the green compact in advance. The powder compact is only a compact of the raw material powder by compacting, and the particles of the metal powder are in a state in which the particles of the metal powder are in close mechanical contact, so they are not firmly bonded as after sintering. Therefore, when drilling is performed on the green compact before sintering, the bonding between the metal powder particles is weak and cutting is easy as compared to the case of drilling after sintering, and the cutting resistance (thrust load) Is greatly reduced. When the green compact is drilled, the metal powder particles are cut with a drill and cut to form through holes. However, when the green compact is drilled with a drill, when the through hole is formed, a so-called edge chipping, in which the opening edge on the outlet side from which the drill is removed is chipped, is likely to occur.

そこで、本発明の目的の一つは、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できると共に、生産性に優れる焼結部品の製造方法を提供することにある。本発明の別の目的は、生産性に優れる焼結部品を提供することにある。本発明の更に別の目的は、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できるドリルを提供することにある。   Therefore, one of the objects of the present invention is to provide a method of manufacturing a sintered part which can suppress the occurrence of chipping when forming a through hole in a green compact and at the same time, has excellent productivity. Another object of the present invention is to provide a sintered part excellent in productivity. Yet another object of the present invention is to provide a drill capable of suppressing the occurrence of chipping when forming a through hole in a green compact.

本発明の一態様に係る焼結部品の製造方法は、成形工程と、穴あけ加工工程と、焼結工程とを備える。成形工程は、金属粉末を含有する原料粉末をプレス成形して圧粉成形体を作製する。穴あけ加工工程は、前記圧粉成形体にドリルで穴を形成する。焼結工程は、前記穴あけ加工後、前記圧粉成形体を焼結する。前記穴あけ加工に使用する前記ドリルは、先端部に円弧状の切れ刃を有する。   The method of manufacturing a sintered part according to an aspect of the present invention includes a forming step, a drilling step, and a sintering step. In the forming step, the raw material powder containing the metal powder is press-formed to produce a green compact. In the drilling process, a hole is formed in the green compact by a drill. The sintering step sinters the green compact after the hole drilling process. The drill used for the drilling has an arc-shaped cutting edge at its tip.

本発明の一態様に係る焼結部品は、穴が形成された焼結部品である。上記焼結部品は、前記穴の内周面が梨地状である。   The sintered component according to an aspect of the present invention is a sintered component in which a hole is formed. In the sintered component, the inner circumferential surface of the hole is textured.

本発明の一態様に係るドリルは、被削物に穴あけ加工を行うドリルである。前記被削物は金属粉末を含有する原料粉末をプレス成形した圧粉成形体である。上記ドリルは、先端部に円弧状の切れ刃を有する。   The drill according to one aspect of the present invention is a drill that performs drilling on a workpiece. The said to-be-cut object is a compacting body which press-formed the raw material powder containing metal powder. The drill has an arc-shaped cutting edge at its tip.

上記焼結部品の製造方法は、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できると共に、生産性に優れる。上記焼結部品は、生産性に優れる。上記ドリルは、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できる。   The manufacturing method of the said sintered component can be excellent in productivity while being able to suppress generation | occurrence | production of edge chipping when forming a through-hole in a compacting body. The said sintered component is excellent in productivity. The said drill can suppress generation | occurrence | production of an edge chipping when forming a through-hole in a compacting body.

円弧状の切れ刃を有するドリルで穴あけ加工した場合とV字状の切れ刃を有するドリルで穴あけ加工した場合の比較説明図である。It is a comparative explanatory view of a case where it is drilled with a drill having an arc-shaped cutting edge and a case where it is drilled with a drill having a V-shaped cutting edge. 実施形態に係る焼結部品の製造方法を説明する工程説明図である。It is process explanatory drawing explaining the manufacturing method of the sintered component which concerns on embodiment. 実施形態に係るドリルの一例を説明する概略図である。It is a schematic diagram explaining an example of the drill concerning an embodiment. 試験例1でRドリルを使用して貫通孔を形成した場合の貫通孔の出口を示す顕微鏡写真である。It is a microscope picture which shows the exit of the through hole at the time of forming a through hole using R drill in Experiment 1. FIG. 試験例1でVドリルを使用して貫通孔を形成した場合の貫通孔の出口を示す顕微鏡写真である。It is a microscope picture which shows the exit of the through hole at the time of forming a through hole using V drill in Experiment 1. FIG. 試験例2でRドリルを使用して貫通孔を形成した場合のすくい角とスラスト荷重及びトルクとの関係を示すグラフである。It is a graph which shows the relationship between the rake angle at the time of forming a through-hole using R drill in Experiment 2, a thrust load, and torque. 試験例3で作製した圧粉成形体の貫通孔の内周面を示す顕微鏡写真である。It is a microscope picture which shows the internal peripheral surface of the through-hole of the compacting body produced by Experiment 3. FIG.

[本発明の実施形態の説明]
本発明者らは、焼結部品の生産性を改善する技術を鋭意研究した結果、焼結後ではなく、焼結前の圧粉成形体に対してドリルで穴あけ加工を行うことで、生産性を向上できることを見出した。これは、圧粉成形体に穴あけ加工した場合、金属粉末の粒子同士の結合が弱く、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減されるからである。そして、従来、焼結後に行われていた穴あけ加工に比較して、加工時間を短縮でき、加工穴精度が向上する他、工具寿命も大幅に改善できる。また、圧粉成形体にドリルで穴あけ加工した場合、バリが発生し難い。たとえバリが発生したとしても、エアブローなどで容易にバリ取りが可能であり、バリ取り作業に要する時間と労力とを削減できる。
Description of the embodiment of the present invention
The inventors of the present invention have intensively studied the technology for improving the productivity of sintered parts, and as a result, the productivity can be achieved by drilling holes in the powder compact before sintering, not after sintering. I found that I could improve. This is because when the powder compact is drilled, the bonding of the metal powder particles is weak, cutting is easy, and cutting resistance (thrust load) is significantly reduced. And compared with the drilling which has conventionally been performed after sintering, the machining time can be shortened, the machining hole accuracy can be improved, and the tool life can be significantly improved. In addition, when the powder compact is drilled with a drill, burrs are less likely to occur. Even if burrs are generated, deburring can be easily performed by air blowing or the like, and the time and labor required for the deburring operation can be reduced.

更に、本発明者らは研究を進めた結果、圧粉成形体の穴あけ加工に使用するドリルの形状、特に先端部の切れ刃の形状を工夫することで、貫通孔を形成する際のコバ欠けの発生を抑制できるとの知見を得た。具体的には、切れ刃の形状を円弧状(R形状)とすることで、コバ欠けの発生を抑制できるとの知見を得た。   Furthermore, as a result of researches by the present inventors, as a result of devising the shape of the drill used for the drilling of the green compact, in particular, the shape of the cutting edge of the tip, an edge chip in forming the through hole We found that we could suppress the occurrence of Specifically, it was found that the generation of the edge chipping can be suppressed by setting the shape of the cutting edge to an arc shape (R shape).

コバ欠けの発生メカニズムは、次のように考えられる。圧粉成形体の場合、金属粉末の粒子同士の結合が弱いため、脆い。そのため、ドリルが貫通する際に貫通孔の底部の厚さが薄くなることで、スラスト荷重に対して底部の強度が維持できなくなった場合、ドリルが貫通するより先に、切削できずに底部が出口側に抜け落ちる(押し出される)。貫通孔の底部が切削されずに抜け落ちる際、底部近傍も一緒に崩れることで、ドリルが抜ける出口側の開口縁に欠けが発生する。   The generation mechanism of edge chipping is considered as follows. In the case of a green compact, it is brittle because the bonding of metal powder particles is weak. Therefore, when the strength of the bottom can not be maintained against the thrust load because the thickness of the bottom of the through hole becomes thin when the drill penetrates, the bottom can not be cut before the drill can penetrate. It falls off to the outlet side (pushed out). When the bottom of the through hole falls without being cut off, the vicinity of the bottom also collapses together, causing a chip at the opening edge on the outlet side from which the drill is removed.

円弧状の切れ刃を有するドリル(以下、「Rドリル」と呼ぶ場合がある)を使用することで、コバ欠けの発生を抑制できる理由は次のように考えられる。図1の左図は、切れ刃の形状が円弧状のドリル(Rドリル)10と、Rドリル10で穴あけ加工を行った被削物(圧粉成形体)Gを示している。図1に例示するRドリル10は、説明を分かり易くするため、溝などを省略して簡易的に図示している。また、Rドリル10は、図1の左側の上図に示すように、切れ刃110の形状が半円状であり、切れ刃110を形成する円弧の中心角αが180°で、かつ、円弧の半径Rがドリルの直径dの半径に等しい。Rドリル10は、ドリルの軸方向に沿った先端部100の長さhが円弧の半径Rに等しい。先端部は、切れ刃110の先端(頂点)から外周コーナ120までの部分である。   The reason why the occurrence of edge chipping can be suppressed by using a drill having an arc-shaped cutting edge (hereinafter sometimes referred to as “R drill”) is considered as follows. The left view of FIG. 1 shows a drill (R drill) 10 whose cutting edge has an arc shape and a work (powder compact) G which has been drilled by the R drill 10. The R drill 10 illustrated in FIG. 1 is illustrated in a simplified manner with grooves and the like omitted for easy understanding of the description. Further, as shown in the upper view on the left side of FIG. 1, in the R drill 10, the shape of the cutting edge 110 is semicircular, and the central angle α of the arc forming the cutting edge 110 is 180 °, and the arc The radius R of is equal to the radius of the diameter d of the drill. In the R drill 10, the length h of the tip 100 along the axial direction of the drill is equal to the radius R of the arc. The tip portion is a portion from the tip (apex) of the cutting edge 110 to the outer peripheral corner 120.

図1の左側の下2図に示すように、Rドリル10で圧粉成形体Gに穴あけ加工した場合(図中の白抜き矢印は、ドリルの送り方向を示す)、切れ刃110の形状が圧粉成形体Gに転写され、底面が断面円弧(半円)状、即ち半球状の穴が圧粉成形体Gに形成されることになる。Rドリル10では、切れ刃110の形状が円弧(半円弧)であるため、図中の実線矢印のように、スラスト荷重が放射状に分散して作用することになる。一方、圧粉成形体Gにおいて、半球状の穴の底面は、図中の実線矢印のように、ドリルのスラスト荷重に対して円弧の辺(半球面)で支えるので、変形に強く、強度が高い。つまり、Rドリル10で圧粉成形体Gに穴あけ加工した場合、スラスト荷重自体が低い上、底部に作用するスラスト荷重が分散されるので、応力集中も少なく、底部の強度が維持される。加えて、穴の底面の最大厚さHtは、先端部100の長さhに等しく、先端部100の長さhが大きいほど、大きくなる。Rドリル10であれば、穴の底面の最大厚さHtを大きくとれるので、その厚さ分、底部の強度が高くなる。したがって、Rドリル10で圧粉成形体Gに穴あけ加工した場合、スラスト荷重が低いことも相まって、ドリルが貫通する際に貫通孔の底部の厚さが薄くなっても、スラスト荷重に対して底部の強度が維持され易く、ドリルが貫通する間際まで切削できる。よって、ドリルが貫通するより先に、切削できずに底部が崩れることを抑制できるので、コバ欠けの発生を抑制できる。これは、貫通孔でなくても、貫通する手前の止まり穴でも効果があることを示している。具体的には、穴の底部の厚さ(穴の底面から対面までの最小厚さ)が薄い止まり穴であっても、Rドリルであれば、穴の底面が半球状に形成されるため、底部の強度が高くなる。つまり、穴の底部の厚さを薄くしても、底部が崩れることを抑制できるので、底部の厚さが薄い止まり穴を形成できる。例えば、底部の厚さがドリル径(穴径)の1/2、更に1/4となるまで加工できる。   As shown in the lower two figures on the left side of FIG. 1, when the green compact G is drilled by using the R drill 10 (white arrows in the figure indicate the feed direction of the drill), the shape of the cutting edge 110 is After being transferred to the green compact G, a hole with a bottom surface shaped like an arc (semicircle) in cross section, that is, a hemispherical shape, is formed in the green compact G. In the R drill 10, since the shape of the cutting edge 110 is a circular arc (semi circular arc), thrust loads are dispersed radially and act as indicated by solid arrows in the figure. On the other hand, in the green compact G, the bottom surface of the hemispherical hole is supported by the side of the arc (hemispherical surface) against the thrust load of the drill as shown by the solid arrow in the figure. high. That is, in the case of drilling the green compact G with the R drill 10, the thrust load itself is low and the thrust load acting on the bottom is dispersed, so that the stress concentration is also small and the strength of the bottom is maintained. In addition, the maximum thickness Ht of the bottom of the hole is equal to the length h of the tip 100, and becomes larger as the length h of the tip 100 is larger. In the case of the R drill 10, the maximum thickness Ht of the bottom of the hole can be made large, so the strength of the bottom becomes high by that thickness. Therefore, when drilling is performed on the green compact G with the R drill 10, the lower thrust load is combined with the lower bottom against the thrust load even if the thickness of the bottom of the through hole is reduced when the drill penetrates. Strength is easily maintained, and it is possible to cut just before the drill penetrates. Therefore, since it can suppress that a bottom part can not be cut without being able to be cut before a drill penetrates, generation | occurrence | production of an edge chip can be suppressed. This indicates that even if it is not a through hole, a blind hole in front of it is effective. Specifically, even in the case of a blind hole in which the thickness of the bottom of the hole (minimum thickness from the bottom of the hole to the opposite surface) is a thin hole, the bottom of the hole is formed in a hemispherical shape with an R drill, Bottom strength increases. That is, even if the thickness of the bottom of the hole is reduced, it is possible to suppress the bottom from being broken, and therefore, it is possible to form a blind hole with a thin bottom. For example, it is possible to process until the thickness of the bottom portion becomes 1/2 or 1/4 of the drill diameter (hole diameter).

一方で、従来多用されているV字状の切れ刃を有するドリル(以下、「Vドリル」と呼ぶ場合がある)を使用した場合、コバ欠けの発生を抑制することが難しい。図1の右図は、切れ刃の形状がV字状のドリル(Vドリル)11と、Vドリル11で穴あけ加工を行った被削物(圧粉成形体)Gを示している。図1に例示するVドリル11は、Rドリル10と同様、溝などを省略して簡易的に図示している。また、この例では、Vドリル11は、切れ刃110の先端角βが130°〜140°程度であり、ドリル径dがRドリル10と同等である。   On the other hand, when a drill having a V-shaped cutting edge (hereinafter sometimes referred to as "V drill") which is widely used conventionally is used, it is difficult to suppress the occurrence of edge chipping. The right view of FIG. 1 shows a drill (V drill) 11 having a V-shaped cutting edge and a workpiece (powder compact) G which has been drilled by the V drill 11. Like the R drill 10, the V drill 11 illustrated in FIG. Moreover, in this example, the tip angle β of the cutting edge 110 of the V drill 11 is about 130 ° to 140 °, and the drill diameter d is equivalent to that of the R drill 10.

図1の右側の下2図に示すように、Vドリル11で圧粉成形体Gに穴あけ加工した場合、切れ刃110の形状が圧粉成形体Gに転写され、底面が断面三角形状、即ち円錐状の穴が圧粉成形体Gに形成されることになる。Vドリル11では、切れ刃110の形状がV字(三角形)であるため、図中の実線矢印のように、スラスト荷重が三角形の辺(円錐面)に直交する方向に作用することになる。一方、圧粉成形体Gにおいて、円錐状の穴の底面は、図中の実線矢印のように、ドリルのスラスト荷重に対して三角形の辺(円錐面)で支えるので、半球状の穴の底面に比較して、応力が集中し、強度も低い。つまり、Vドリル11で圧粉成形体Gに穴あけ加工した場合、Rドリル10に比較して、底部に作用するスラスト荷重を分散できず、底部の強度が維持され難い。加えて、Vドリル11の場合、穴の底面の最大厚さHtが小さいので、その厚さ分、底部の強度が低くなる。したがって、Vドリル11で圧粉成形体Gに穴あけ加工した場合、ドリルが貫通する際に貫通孔の底部の厚さが薄くなることで、ドリルが貫通するより先に、切削できずに底部が崩れ易い。そのため、コバ欠けの発生を抑制することが難しい。   As shown in the lower two figures on the right side of FIG. 1, when drilling into the green compact G with the V drill 11, the shape of the cutting edge 110 is transferred to the green compact G, and the bottom surface is triangular in cross section A conical hole will be formed in the green compact G. In the V drill 11, since the shape of the cutting edge 110 is V-shaped (triangular), the thrust load acts in the direction orthogonal to the side (conical surface) of the triangular as indicated by the solid arrow in the figure. On the other hand, in the green compact G, since the bottom of the conical hole is supported by the side of the triangle (conical surface) against the thrust load of the drill as shown by the solid arrow in the figure, the bottom of the hemispherical hole In comparison with, stress is concentrated and strength is also low. That is, when the green compact G is drilled with the V-drill 11, the thrust load acting on the bottom can not be dispersed as compared with the R-drill 10, and the strength of the bottom is difficult to maintain. In addition, in the case of the V drill 11, since the maximum thickness Ht of the bottom of the hole is small, the strength of the bottom is reduced by that thickness. Therefore, when the green compact G is drilled with the V-drill 11, the thickness of the bottom of the through hole is reduced when the drill penetrates, so that the bottom can not be cut before the drill penetrates. It is easy to collapse. Therefore, it is difficult to suppress the occurrence of chipping.

本発明者らは以上の知見を得て、本発明を完成するに至った、最初に、本発明の実施形態を列挙して説明する。   The inventors obtained the above findings and completed the present invention. First, the embodiments of the present invention will be listed and described.

(1)本発明の一形態に係る焼結部品の製造方法は、成形工程と、穴あけ加工工程と、焼結工程とを備える。成形工程は、金属粉末を含有する原料粉末をプレス成形して圧粉成形体を作製する。穴あけ加工工程は、圧粉成形体にドリルで穴を形成する。焼結工程は、穴あけ加工後、圧粉成形体を焼結する。穴あけ加工に使用するドリルは、先端部に円弧状の切れ刃を有する。   (1) A method of manufacturing a sintered part according to an aspect of the present invention includes a forming step, a drilling step, and a sintering step. In the forming step, the raw material powder containing the metal powder is press-formed to produce a green compact. In the drilling process, holes are formed in the green compact by a drill. A sintering process sinters a compacting body after drilling processing. The drill used for drilling has an arc-shaped cutting edge at the tip.

上記焼結部品の製造方法によれば、焼結前の圧粉成形体に対してドリルで穴あけ加工を行うことから、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減される。そのため、焼結後にドリルで穴あけ加工を行う従来の製造方法に比較して、加工時間を短縮でき、加工穴精度が向上する他、工具寿命も大幅に改善できる。また、圧粉成形体にドリルで穴あけ加工した場合、バリが発生し難い。仮にバリが発生したとしても、例えばエアブローによりバリを容易に除去することが可能であり、バリ取り作業に要する時間と労力とを削減できる。上記「穴」には、貫通している通し穴(貫通孔)、貫通していない止まり穴が含まれる。   According to the above-described method of manufacturing a sintered part, drilling is performed on the green compact before sintering with a drill, so cutting is easy and cutting resistance (thrust load) is significantly reduced. Therefore, compared with the conventional manufacturing method which performs a drilling process with a drill after sintering, machining time can be shortened, machining hole accuracy can be improved, and tool life can be significantly improved. In addition, when the powder compact is drilled with a drill, burrs are less likely to occur. Even if burrs are generated, it is possible to easily remove the burrs by, for example, air blow, and it is possible to reduce the time and labor required for the deburring operation. The above-mentioned "hole" includes a through hole (through hole) passing through and a blind hole not passing through.

更に、上記焼結部品の製造方法によれば、先端部に円弧状の切れ刃を有するドリルを用いることで、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できる。したがって、上記焼結部品の製造方法は、コバ欠けの発生を抑制できると共に、生産性に優れる。ここでいう「切れ刃の形状」とは、ドリルの中心軸を通り、軸に平行な面に対して切れ刃を平行にして、その平行な面に対して直交する方向から投影したときの切れ刃の投影形状のことである。そして、「円弧状の切れ刃」とは、投影形状が円弧状である切れ刃のことを指す(図3の左上図を参照)。切れ刃の形状が円弧状の場合、ドリルを回転させてドリルの回転軸に直交する方向から切れ刃を見たとき、切れ刃の回転軌跡が円弧状に見える。ここでは、切れ刃が水平面に対して平行となるようにドリルを配置して、水平面に直交する方向から見たときの面を平面と呼ぶ。   Furthermore, according to the manufacturing method of the said sintered component, when forming a through-hole in a compacting body by using the drill which has a circular-arc-shaped cutting blade in a front-end | tip part, generation | occurrence | production of an edge chip can be suppressed. Therefore, the manufacturing method of the said sintered component can be excellent in productivity while it can suppress generation | occurrence | production of a chipping. The “shape of the cutting edge” referred to here means the cutting when the cutting edge is parallel to the plane parallel to the axis passing through the central axis of the drill and projected from the direction orthogonal to the parallel plane It is the projection shape of the blade. And "an arc-shaped cutting edge" points out the cutting edge whose projection shape is an arc shape (refer the upper left figure of FIG. 3). When the shape of the cutting edge is arc-shaped, when the drill is rotated and the cutting edge is viewed from the direction orthogonal to the rotation axis of the drill, the rotation trajectory of the cutting edge looks like an arc. Here, the drill is disposed so that the cutting edge is parallel to the horizontal plane, and the plane viewed from the direction orthogonal to the horizontal plane is called a plane.

(2)上記焼結部品の製造方法の一形態として、上記ドリルは、上記切れ刃のすくい角が0°超10°以下であることが挙げられる。   (2) As one mode of the manufacturing method of the above-mentioned sintered part, it is mentioned that the above-mentioned drill has a rake angle of the above-mentioned cutting edge of more than 0 degree and 10 degrees or less.

コバ欠けの発生を抑制する観点からすれば、切削抵抗(スラスト荷重)がより小さい方が有利であると考えられる。切れ刃のすくい角が0°超10°以下であることで、スラスト荷重を低減できるため、コバ欠けの発生をより効果的に抑制できる。すくい角が0°超であることで、刃先が鋭利となり、スラスト荷重が小さくなる。一方で、すくい角を大きくすると、刃先が鋭利となるため刃先強度は低下するが、被削材が圧粉成形体であるので、刃先強度の低下による欠けは生じ難い。しかし、すくい角が10°超であると、スラスト荷重が大きくなることから、すくい角は10°以下が好ましい。すくい角は、スラスト荷重を低減する観点から、例えば5°以上8°以下がより好ましい。ここでいう「すくい角」とは、ドリルの中心軸に平行な面に対して切れ刃を平行にしたとき、その平行な面とすくい面とがなす角度のことである(図3の右下図を参照)。ここでは、切れ刃が水平面に対して平行となるようにドリルを配置して、ドリルの中心軸に直交し、かつ、水平面に平行な方向から見たときの面を側面と呼ぶ。   From the viewpoint of suppressing the occurrence of edge chipping, it is considered that smaller cutting force (thrust load) is advantageous. Since the thrust load can be reduced by the rake angle of the cutting edge being more than 0 ° and 10 ° or less, the occurrence of edge chipping can be suppressed more effectively. When the rake angle is more than 0 °, the cutting edge becomes sharp and the thrust load is reduced. On the other hand, when the rake angle is increased, the cutting edge strength is lowered because the cutting edge becomes sharp. However, since the material to be cut is a powder compact, chipping due to the reduction in cutting edge strength hardly occurs. However, if the rake angle is more than 10 °, the rake angle is preferably 10 ° or less because the thrust load increases. The rake angle is more preferably, for example, 5 ° or more and 8 ° or less from the viewpoint of reducing the thrust load. Here, "rake angle" is the angle between the parallel plane and the rake plane when the cutting edge is parallel to the plane parallel to the central axis of the drill (see the lower right diagram in FIG. 3). See). Here, the drill is disposed so that the cutting edge is parallel to the horizontal plane, and the plane when viewed from a direction perpendicular to the central axis of the drill and parallel to the horizontal plane is called a side plane.

(3)上記焼結部品の製造方法の一形態として、上記ドリルは、上記切れ刃を形成する円弧の中心角が135°以上180°以下であることが挙げられる。   (3) As one mode of the manufacturing method of the above-mentioned sintered part, it is mentioned that the central angle of the circle which forms the above-mentioned cutting edge of the above-mentioned drill is 135 degrees or more and 180 degrees or less.

切れ刃を形成する円弧の中心角が135°以上180°以下であることで、コバ欠けの発生を十分に抑制できる。円弧状の切れ刃の中心角が135°以上であれば、切れ刃の形状が半円状に近づき、スラスト荷重が放射状に分散することによるスラスト荷重の低減効果が高く、穴あけ加工時のスラスト荷重を分散できる。また、穴の底面の形状が半球状に近づくので、スラスト荷重に対する強度を高くでき、加えて、穴の底面の最大厚さHt(図1の左図を参照)も大きくなる分、強度が向上することから、底部の強度を十分に維持できる。円弧の中心角は、例えば150°以上がより好ましく、半円状の切れ刃になるように180°が特に好ましい。   When the central angle of the arc forming the cutting edge is 135 ° or more and 180 ° or less, the occurrence of edge chipping can be sufficiently suppressed. If the central angle of the arc-shaped cutting edge is 135 ° or more, the shape of the cutting edge approaches a semicircular shape, and the thrust load is dispersed radially, so the effect of reducing the thrust load is high, and the thrust load at the time of drilling Can be distributed. In addition, since the shape of the bottom of the hole approaches a hemispherical shape, the strength against a thrust load can be increased, and in addition, the strength is improved as the maximum thickness Ht of the bottom of the hole (see left figure in FIG. 1) increases. Therefore, the strength of the bottom can be sufficiently maintained. The central angle of the arc is, for example, more preferably 150 ° or more, and particularly preferably 180 ° so as to form a semicircular cutting edge.

一方、切れ刃を形成する円弧の半径は、ドリル径の半径と略同等であることが好ましく、例えば、ドリル径の0.4倍以上0.6倍以下が好ましい。特に、切れ刃の形状は半円状であることが好ましく、円弧の中心角が180°で、かつ、円弧の半径がドリル径の0.5倍、即ちドリル径dの半径に等しいことが好ましい。ここでいう「ドリルの直径(ドリル径)」とは、切れ刃が形成される部分(所謂、刃部)の外径寸法のことである。   On the other hand, the radius of the arc forming the cutting edge is preferably substantially equal to the radius of the drill diameter, and for example, it is preferably 0.4 times to 0.6 times the drill diameter. In particular, the shape of the cutting edge is preferably semicircular, the central angle of the arc is 180 °, and the radius of the arc is preferably 0.5 times the drill diameter, ie equal to the radius of the drill diameter d . The "drill diameter (drill diameter)" as used herein refers to the outer diameter of the portion (so-called, blade portion) where the cutting edge is formed.

(4)本発明の一形態に係る焼結部品は、穴が形成された焼結部品である。そして、穴の内周面が梨地状である。   (4) The sintered component according to an aspect of the present invention is a sintered component in which a hole is formed. And, the inner circumferential surface of the hole is like a satin.

上述したように、焼結前の圧粉成形体にドリルで穴あけ加工した場合、金属粉末の粒子同士の結合が弱いため、金属粉末の粒子をドリルで削り落としながら切削し、穴を形成していく。そのため、圧粉成形体に形成された穴の内周面は、粒子による凹凸が全体的に形成され梨地状となる。穴の内周面の表面性状は焼結後も実質的に維持されることから、穴が形成された圧粉成形体を焼結した焼結部品においても穴の内周面は梨地状となる。つまり、焼結部品に形成された穴の内周面が梨地状であるということは、焼結前の圧粉成形体に対してドリルで穴あけ加工したことを表している。したがって、上記焼結部品は、焼結後に穴を形成した従来の焼結部品に比較して、生産性に優れる。   As described above, when the powder compact before sintering is drilled by drilling, since the bonding between the metal powder particles is weak, the metal powder particles are cut while being cut off by a drill to form holes. Go. For this reason, the inner circumferential surface of the hole formed in the green compact has a rough texture due to the formation of irregularities by the particles. Since the surface properties of the inner peripheral surface of the hole are substantially maintained even after sintering, the inner peripheral surface of the hole has a satin-like shape even in a sintered part obtained by sintering a green compact having a hole formed therein. . That is, the fact that the inner circumferential surface of the hole formed in the sintered part is in the form of a satin indicates that the green compact before sintering is drilled with a drill. Therefore, the said sintered component is excellent in productivity compared with the conventional sintered component which formed the hole after sintering.

これに対し、焼結後にドリルで穴あけ加工した場合は、金属粉末の粒子同士が焼結により強固に結合しているため、金属粉末の粒子をドリルで切断しながら切削し、穴を形成していく。そのため、焼結部品に対してドリルで穴あけ加工を行うことによって形成された穴の内周面は全体的に凹凸の少ない平滑な面となり、光沢を有する。   On the other hand, in the case of drilling with a drill after sintering, the particles of the metal powder are firmly bonded by sintering, so the particles of the metal powder are cut while cutting with a drill to form a hole Go. Therefore, the inner peripheral surface of the hole formed by drilling with respect to the sintered part with a drill becomes a smooth surface with little unevenness as a whole and has a gloss.

(5)上記焼結部品の一形態として、上記穴の内周面の十点平均粗さRzが20μm以上であることが挙げられる。   (5) As one form of the above-mentioned sintered part, it is mentioned that the ten-point average roughness Rz of the inner skin of the above-mentioned hole is 20 micrometers or more.

焼結前の圧粉成形体にドリルで穴を形成して焼結した場合、焼結部品に形成された穴の内周面の十点平均粗さRzは、金属粉末の粒子の形状・サイズにもよるが、例えば20μm以上であることが挙げられる。穴の内周面の十点平均粗さRzの上限は、例えば150μm以下であることが挙げられる。一方、焼結後にドリルで穴を形成した場合、焼結部品に形成された穴の内周面の十点平均粗さRzは、通常20μm未満、更に15μm以下である。   When a hole is formed by a drill in a green compact before sintering and sintered, the ten-point average roughness Rz of the inner peripheral surface of the hole formed in the sintered part is the shape and size of the metal powder particles Depending on the kind, for example, it may be 20 μm or more. The upper limit of the ten-point average roughness Rz of the inner circumferential surface of the hole is, for example, 150 μm or less. On the other hand, when forming a hole with a drill after sintering, the ten-point average roughness Rz of the inner peripheral surface of the hole formed in the sintered part is usually less than 20 μm, and further 15 μm or less.

(6)本発明の一形態に係るドリルは、被削物に穴あけ加工を行うドリルである。被削物は金属粉末を含有する原料粉末をプレス成形した圧粉成形体である。ドリルは、先端部に円弧状の切れ刃を有する。   (6) The drill which concerns on one form of this invention is a drill which performs a drilling process to a to-be-cut object. The workpiece is a green compact obtained by press-forming a raw material powder containing a metal powder. The drill has an arc-shaped cutting edge at its tip.

上記ドリルによれば、先端部に円弧状の切れ刃を有することで、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できる。   According to the above-described drill, the formation of the edge chip can be suppressed when forming the through hole in the powder compact by having the arc-shaped cutting edge at the tip end.

[本発明の実施形態の詳細]
本発明の実施形態に係る焼結部品の製造方法、焼結部品、並びにドリルの具体例を、以下図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Details of the Embodiment of the Present Invention
Hereinafter, specific examples of a method of manufacturing a sintered part, a sintered part, and a drill according to an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to these exemplifications, but is shown by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.

<焼結部品の製造方法>
本発明の実施形態に係る焼結部品の製造方法は、圧粉成形体を作製する成形工程と、圧粉成形体にドリルで穴を形成する穴あけ加工工程と、穴あけ加工後、圧粉成形体を焼結する焼結工程とを備える。焼結部品の製造方法は、穴あけ加工工程において、先端部に円弧状の切れ刃を有するドリルを使用することを特徴の1つとする。以下、主に図2を参照しながら、製造方法の各工程について詳しく説明する。
<Method of manufacturing sintered parts>
In the method of manufacturing a sintered part according to an embodiment of the present invention, a compacting process for producing a green compact, a drilling process for forming a hole with a drill in the green compact, and a compact after compacting And sintering the material. One of the features of the method for manufacturing a sintered part is to use a drill having an arc-shaped cutting edge at its tip in the drilling process. Hereinafter, each step of the manufacturing method will be described in detail with reference mainly to FIG.

(成形工程)
成形工程では、金属粉末を含有する原料粉末をプレス成形して圧粉成形体Gを作製する(図2の上図を参照)。圧粉成形体Gは、焼結部品の素材であり、製造する焼結部品S(図2の下図を参照)に対応した形状に成形されている。ここでは、圧粉成形体G(焼結部品S)として、中心に円形状の軸孔30が形成された円筒状のものを例として挙げている。
(Molding process)
In the forming step, the raw material powder containing the metal powder is press-formed to produce a green compact G (see the upper view of FIG. 2). The green compact G is a raw material of a sintered part, and is formed into a shape corresponding to the sintered part S to be manufactured (see the lower diagram in FIG. 2). Here, as the green compact G (sintered part S), a cylindrical one in which a circular axial hole 30 is formed at the center is taken as an example.

〈原料粉末〉
原料粉末は、金属粉末を主体として含有する。金属粉末の材質は、製造する焼結部品の材質に応じて適宜選択でき、代表的には、鉄系材料が挙げられる。「鉄系材料」とは、鉄又は鉄を主成分とする鉄合金のことである。鉄合金としては、例えば、Ni,Cu,Cr,Mo,Mn,C,Si,Al,P,B,N及びCoから選択される1種以上の添加元素を含有するものが挙げられる。具体的な鉄合金としては、ステンレス鋼、Fe−C系合金,Fe−Cu−Ni−Mo系合金,Fe−Ni−Mo−Mn系合金,Fe−P系合金,Fe−Cu系合金,Fe−Cu−C系合金,Fe−Cu−Mo系合金,Fe−Ni−Mo−Cu−C系合金,Fe−Ni−Cu系合金,Fe−Ni−Mo−C系合金,Fe−Ni−Cr系合金,Fe−Ni−Mo−Cr系合金,Fe−Cr系合金,Fe−Mo−Cr系合金,Fe−Cr−C系合金,Fe−Ni−C系合金,Fe−Mo−Mn−Cr−C系合金などが挙げられる。鉄系材料の粉末を主体とすることで、鉄系焼結部品が得られる。鉄系材料の粉末を主体とする場合、その含有量は、原料粉末を100質量%とするとき、例えば90質量%以上、更に95質量%以上とすることが挙げられる。
Raw material powder
The raw material powder mainly contains metal powder. The material of the metal powder can be appropriately selected according to the material of the sintered part to be manufactured, and typically, an iron-based material can be mentioned. The "iron-based material" is iron or an iron alloy containing iron as a main component. Examples of iron alloys include those containing one or more additive elements selected from Ni, Cu, Cr, Mo, Mn, C, Si, Al, P, B, N and Co. Specific iron alloys include stainless steel, Fe-C alloy, Fe-Cu-Ni-Mo alloy, Fe-Ni-Mo-Mn alloy, Fe-P alloy, Fe-Cu alloy, Fe -Cu-C-based alloy, Fe-Cu-Mo-based alloy, Fe-Ni-Mo-Cu-C-based alloy, Fe-Ni-Cu-based alloy, Fe-Ni-Mo-C-based alloy, Fe-Ni-Cr Alloy, Fe-Ni-Mo-Cr alloy, Fe-Cr alloy, Fe-Mo-Cr alloy, Fe-Cr-C alloy, Fe-Ni-C alloy, Fe-Mo-Mn-Cr And -C-based alloys and the like. By mainly using a powder of iron-based material, an iron-based sintered component can be obtained. When the powder of the iron-based material is mainly used, the content thereof is, for example, 90% by mass or more, and further 95% by mass or more when the raw material powder is 100% by mass.

鉄系材料の粉末、特に鉄粉を主体とする場合、合金成分としてCu,Ni,Moなどの金属粉末を添加してもよい。Cu,Ni,Moは、焼入れ性を向上させる元素であり、その添加量は、原料粉末を100質量%とするとき、例えば0質量%超5質量%以下、更に0.1質量%以上2質量%以下とすることが挙げられる。また、炭素(黒鉛)粉などの非金属無機材料を添加してもよい。Cは、焼結体やその熱処理体の強度を向上させる元素であり、その含有量は、原料粉末を100質量%とするとき、例えば0質量%超2質量%以下、更に0.1質量%以上1質量%以下とすることが挙げられる。   When the powder of the iron-based material, particularly iron powder, is mainly used, metal powder such as Cu, Ni, Mo may be added as an alloy component. Cu, Ni, and Mo are elements for improving the hardenability, and the addition amount thereof is, for example, more than 0% by mass and 5% by mass or less and 0.1% by mass or more and 2% by mass, when the raw material powder is 100% by mass. % Or less. In addition, non-metallic inorganic materials such as carbon (graphite) powder may be added. C is an element that improves the strength of a sintered body or its heat-treated body, and the content thereof is, for example, more than 0% by mass and 2% by mass or less, and further 0.1% by mass, when the raw material powder is 100% by mass. The above content is 1% by mass or less.

原料粉末は、潤滑剤を含有することが好ましい。原料粉末が潤滑剤を含有することで、原料粉末をプレス成形して圧粉成形体Gを作製する際に成形時の潤滑性が高められ、成形性が向上する。よって、プレス成形の圧力を低くしても、緻密な圧粉成形体Gを得易く、圧粉成形体Gの密度を高めることで、高密度の焼結部品Sを得易い。更に、原料粉末に潤滑剤を混合すると、圧粉成形体G中に潤滑剤が分散することになるため、後工程で圧粉成形体Gにドリル10で穴あけ加工する(図2の中図を参照)際にドリルの潤滑剤としても機能する。したがって、切削抵抗(スラスト荷重)を低減したり、工具寿命を改善できる。潤滑剤としては、例えば、ステアリン酸亜鉛、ステアリン酸リチウムなどの金属石鹸、ステアリン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどの高級脂肪酸アミドなどが挙げられる。潤滑剤は、固体状や粉末状、液体状など形態を問わない。潤滑剤の含有量は、原料粉末を100質量%とするとき、例えば2質量%以下、更に1質量%以下とすることが挙げられる。潤滑剤の含有量が2質量%以下であれば、圧粉成形体Gに含まれる金属粉末の割合を多くできる。そのため、プレス成形の圧力を低くしても、緻密な圧粉成形体Gを得易い。更に、後工程で圧粉成形体Gを焼結した際に潤滑剤が消失することによる体積収縮を抑制でき、寸法精度が高く、高密度の焼結部品Sを得易い。潤滑剤の含有量は、潤滑性の向上効果を得る観点から、0.1質量%以上、更に0.5質量%以上が好ましい。   The raw material powder preferably contains a lubricant. When the raw material powder contains a lubricant, the lubricity at the time of molding is enhanced when the green body G is produced by press-molding the raw material powder, and the moldability is improved. Therefore, even if the pressure for press molding is lowered, it is easy to obtain a compact green compact G, and by increasing the density of the green compact G, it is easy to obtain a high-density sintered component S. Furthermore, if a lubricant is mixed with the raw material powder, the lubricant will be dispersed in the green compact G. Therefore, the green compact G is drilled with a drill 10 in a later step (see the middle view of FIG. 2). Also functions as a lubricant for drills. Therefore, cutting resistance (thrust load) can be reduced and tool life can be improved. Examples of the lubricant include metal soaps such as zinc stearate and lithium stearate, fatty acid amides such as stearic acid amide, and higher fatty acid amides such as ethylenebisstearic acid amide. The lubricant may be in any form such as solid, powder or liquid. The content of the lubricant is, for example, 2% by mass or less, and further 1% by mass or less when the raw material powder is 100% by mass. If the content of the lubricant is 2% by mass or less, the proportion of the metal powder contained in the green compact G can be increased. Therefore, even when the pressure for press molding is lowered, a compact green compact G can be easily obtained. Furthermore, when the green compact G is sintered in a later step, volume shrinkage due to disappearance of the lubricant can be suppressed, and dimensional accuracy is high, and a sintered component S with high density can be easily obtained. The content of the lubricant is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more from the viewpoint of obtaining the effect of improving the lubricity.

原料粉末は、有機バインダーを含有していない。原料粉末に有機バインダーを含有しないことで、圧粉成形体Gに含まれる金属粉末の割合を多くできるため、プレス成形の圧力を低くしても、緻密な圧粉成形体Gを得易い。更に、圧粉成形体Gを後工程で脱脂する必要もない。   The raw material powder does not contain an organic binder. Since the ratio of the metal powder contained in the green compact G can be increased by not containing the organic binder in the raw material powder, a compact green compact G can be easily obtained even if the pressure of press molding is lowered. Furthermore, it is not necessary to degrease the green compact G in a later step.

原料粉末は、上述した金属粉末を主体とし、不可避不純物を含むことを許容する。   The raw material powder is mainly composed of the above-mentioned metal powder, and allows inclusion of unavoidable impurities.

上述した金属粉末は、水アトマイズ粉、還元粉、ガスアトマイズ粉などが利用でき、中でも、水アトマイズ粉又は還元粉が好適である。水アトマイズ粉や還元粉は、粒子表面に凹凸が多く形成されていることから、成形時に粒子同士の凹凸が噛み合って、圧粉成形体Gの保形力を高められる。一般に、ガスアトマイズ粉では、表面に凹凸の少ない粒子が得られ易いのに対し、水アトマイズ粉又は還元粉では、表面に凹凸が多い粒子が得られ易い。また、金属粉末の平均粒径は、例えば20μm以上、50μm以上150μm以下とすることが挙げられる。「金属粉末の平均粒径」とは、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒径(D50)のことである。金属粉末の平均粒径が上記範囲内であれば、取り扱い易く、プレス成形が行い易い。   As the metal powder described above, water atomized powder, reduced powder, gas atomized powder and the like can be used, and among them, water atomized powder or reduced powder is preferable. Since the water atomized powder and the reduced powder have many irregularities formed on the particle surface, the irregularities of the particles are engaged at the time of molding, and the shape retention ability of the green compact G can be enhanced. In general, in the gas atomized powder, particles with less unevenness are easily obtained on the surface, while in the water atomized powder or reduced powder, particles with more unevenness are easily obtained. Moreover, it is mentioned that the average particle diameter of a metal powder shall be 20 micrometers or more and 50 micrometers or more and 150 micrometers or less, for example. The "average particle diameter of metal powder" is a particle diameter (D50) at which the cumulative volume in the volume particle size distribution measured by the laser diffraction type particle size distribution measuring device is 50%. If the average particle size of the metal powder is within the above range, it is easy to handle and press-form.

〈プレス成形〉
プレス成形は、最終製品である焼結部品に対応した形状に成形できる成形装置(成形用金型)を用いる。図2に例示する円筒状の圧粉成形体Gでは、軸孔30を成形時に一体に形成している。この圧粉成形体Gは、例えば、圧粉成形体Gの両端面を形成する円環状のプレス面を有する上下のパンチと、上下パンチの内側に挿通されて、圧粉成形体Gの内周面を形成する円柱状の内側ダイと、上下パンチの外周を囲み、圧粉成形体Gの外周面を形成する円形状の挿通孔が形成された外側ダイとを用いて形成できる。この圧粉成形体Gの軸方向両端面は上下のパンチでプレスされたプレス面、内周面と外周面とは内外のダイとの摺接面であり、軸孔30は成形時に一体に形成される。プレス成形の圧力は、例えば250MPa以上800MPa以下とすることが挙げられる。
<Press molding>
In press molding, a molding apparatus (molding die) capable of molding into a shape corresponding to a sintered part as a final product is used. In the cylindrical green compact G illustrated in FIG. 2, the axial hole 30 is integrally formed at the time of molding. The green compact G is, for example, inserted into the upper and lower punches having an annular press surface forming both end surfaces of the green compact G, and the upper and lower punches, and the inner circumference of the green compact G is obtained. It can form using the cylindrical inner die which forms a surface, and the outer die in which the circular insertion hole which surrounded the outer periphery of an upper and lower punch and formed the outer peripheral surface of the compacting body G was formed. Both axial end surfaces of the green compact G are press surfaces pressed by the upper and lower punches, and the inner and outer peripheral surfaces are sliding contact surfaces with the inner and outer dies, and the axial hole 30 is integrally formed at the time of molding Be done. The pressure of press molding is, for example, 250 MPa or more and 800 MPa or less.

(穴あけ加工工程)
穴あけ加工工程では、圧粉成形体Gにドリル10で穴50を形成する(図2の中図を参照)。穴50は、貫通孔又は止まり穴である。ここでは、ドリル10によって、圧粉成形体Gの外周面から内周面に抜ける貫通孔を形成している。つまり、圧粉成形体Gに成形された軸孔(成形孔)30とドリル10で形成した貫通孔(ドリル孔)50とが繋がっており、貫通孔50の出口側の開口が圧粉成形体Gの内周面(軸孔30の内周面)に設けられている。この例では、貫通孔50の内周面と圧粉成形体Gの外側面(端面)との距離(厚さ)が貫通孔50の径と同じ以上になる箇所に貫通孔50を形成している。図3を参照して、圧粉成形体Gの穴あけ加工に使用するドリル10について説明する。
(Drilling process)
In the drilling process, a hole 50 is formed in the green compact G with a drill 10 (see the middle view in FIG. 2). The holes 50 are through holes or blind holes. Here, through holes are formed by the drill 10 so as to pass from the outer peripheral surface of the green compact G to the inner peripheral surface. That is, the axial hole (forming hole) 30 formed in the powder compacting body G and the through hole (drilling hole) 50 formed by the drill 10 are connected, and the opening on the outlet side of the through hole 50 is a powder compacting body It is provided on the inner peripheral surface of G (the inner peripheral surface of the shaft hole 30). In this example, the through hole 50 is formed at a location where the distance (thickness) between the inner circumferential surface of the through hole 50 and the outer surface (end face) of the powder compact G is equal to or greater than the diameter of the through hole 50 There is. With reference to FIG. 3, the drill 10 used for the drilling process of the compacting body G is demonstrated.

〈ドリル〉
図3の左上図はドリルの概略平面図であり、図3の左下図はドリルを先端側から見た概略正面図であり、図3の右下図はドリルの先端部を部分的に示す概略側面図である。ドリル10は被削物に穴あけ加工を行うものであり、被削物は金属粉末を含有する原料粉末をプレス成形した圧粉成形体G(図2の中図を参照)である。ドリル10は、本発明の実施形態に係るものである。
<drill>
The upper left of FIG. 3 is a schematic plan view of the drill, the lower left of FIG. 3 is a schematic front view of the drill viewed from the tip side, and the lower right of FIG. 3 is a schematic side view partially showing the tip of the drill FIG. The drill 10 is for drilling a hole in a workpiece, and the workpiece is a green compact G (see the middle view in FIG. 2) obtained by press-forming a raw material powder containing a metal powder. The drill 10 is according to an embodiment of the present invention.

図3に例示するドリル10は、先端部100に円弧状の切れ刃110を有する、所謂Rドリルである。先端部100は、切れ刃110の先端(頂点)から外周コーナ120までの部分である。   The drill 10 illustrated in FIG. 3 is a so-called R drill having an arc-shaped cutting edge 110 at the tip end portion 100. The tip portion 100 is a portion from the tip (apex) of the cutting edge 110 to the outer peripheral corner 120.

〈切れ刃の形状〉
ドリル10は、図3の左上図に示すように、ドリル10の中心軸に平行な面に対して切れ刃110を平行にして、その平行な面に対して直交する方向から平面視したとき、切れ刃110の投影形状が円弧状である。切れ刃110を形成する円弧の中心角αは、例えば130°以上であり、好ましくは135°以上180°以下、より好ましくは150°以上である。この例では、円弧の中心角αが180°である。一方、切れ刃を形成する円弧の半径Rは、例えばドリルの直径dの0.4倍以上0.6倍以下であり、好ましくはドリル径dの0.5倍、即ちドリル径dの半径(d/2)と同等である。この例では、切れ刃の形状が半円状であり、円弧の中心角αが180°で、かつ、円弧の半径Rがドリル径dの半径に等しい。ドリル10の直径dは、特に限定されないが、例えば1.0mm以上20.0mm以下である。
<Shape of cutting edge>
When the drill 10 has the cutting edge 110 parallel to the plane parallel to the central axis of the drill 10 as shown in the upper left view of FIG. The projected shape of the cutting edge 110 is arc-shaped. The central angle α of the arc forming the cutting edge 110 is, for example, 130 ° or more, preferably 135 ° or more and 180 ° or less, more preferably 150 ° or more. In this example, the central angle α of the arc is 180 °. On the other hand, the radius R of the arc forming the cutting edge is, for example, not less than 0.4 times and not more than 0.6 times the diameter d of the drill, preferably 0.5 times the diameter d of the drill, It is equivalent to d / 2). In this example, the shape of the cutting edge is semicircular, the central angle α of the arc is 180 °, and the radius R of the arc is equal to the radius of the drill diameter d. Although the diameter d of the drill 10 is not specifically limited, For example, they are 1.0 mm or more and 20.0 mm or less.

〈切れ刃のすくい角〉
切れ刃110のすくい角は、例えば0°以上であり、好ましくは0°超10°以下、より好ましくは5°以上8°以下である。切れ刃110のすくい角は、図3の右下図に示すように、ドリル10の中心軸に平行な面に対して切れ刃110を平行にして、ドリル10の中心軸に直交し、かつ、水平面に平行な方向から側面視したとき、軸に平行な面Pと切れ刃110を構成するすくい面111とがなす角度γのことである。この例では、切れ刃110のすくい角が7°である。
<Rake angle of cutting edge>
The rake angle of the cutting edge 110 is, for example, 0 ° or more, preferably more than 0 ° and 10 ° or less, and more preferably 5 ° or more and 8 ° or less. The rake angle of the cutting edge 110 is perpendicular to the central axis of the drill 10 with the cutting edge 110 parallel to the plane parallel to the central axis of the drill 10, as shown in the lower right view of FIG. When viewed from the side parallel to the direction, the angle γ between the plane P parallel to the axis and the rake face 111 constituting the cutting edge 110. In this example, the rake angle of the cutting edge 110 is 7 °.

〈切削条件〉
ドリル10の回転数や送り速度(送り量)といった切削条件は、圧粉成形体G(金属粉末)の材質、形成する貫通孔50の深さやドリル10の直径などに応じて適宜設定すればよい(図2も参照)。例えば、回転数は1000rpm以上、更に2000rpm以上、送り速度は100mm/min以上、更に200mm/min以上、送り量は0.01mm/rev.以上、更に0.1mm/rev.以上、とすることが挙げられる。圧粉成形体に対して加工する方が、焼結体を加工するよりも、より高速での加工が可能であることが、実験を通して判明している。
<Cutting conditions>
The cutting conditions such as the rotation speed and feed rate (feed amount) of the drill 10 may be appropriately set according to the material of the powder compact G (metal powder), the depth of the through hole 50 to be formed, the diameter of the drill 10, etc. (See also Figure 2). For example, the rotational speed is 1000 rpm or more, further 2000 rpm or more, the feed rate is 100 mm / min or more, further 200 mm / min or more, and the feed amount is 0.01 mm / rev. The above, further 0.1 mm / rev. Above, it can be mentioned. Through experiments, it has been found that processing at a compacted body enables processing at a higher speed than processing a sintered body.

圧粉成形体Gにドリル10で形成した穴(貫通孔)50の内周面は梨地状である。圧粉成形体Gでは金属粉末の粒子同士の結合が弱いため、ドリルで穴あけ加工した場合、金属粉末の粒子をドリルで削り落としながら切削して貫通孔50を形成していく。そのため、圧粉成形体Gに形成された貫通孔50の内周面は、粒子による凹凸が全体的に形成され梨地状となる。   The inner peripheral surface of the hole (through hole) 50 formed in the green compact G with the drill 10 is in a satin shape. In the green compact G, since the bonding between the metal powder particles is weak, when drilling is performed with a drill, the metal powder particles are cut off with a drill and cut to form the through holes 50. For this reason, the inner circumferential surface of the through hole 50 formed in the green compact G has a concavo-convex shape in which unevenness due to particles is entirely formed.

(焼結工程)
焼結工程では、穴あけ加工後、圧粉成形体Gを焼結する。焼結には、温度雰囲気制御が可能な適宜な焼結炉(図示略)を用いる。焼結条件は、圧粉成形体G(金属粉末)の材質などに応じて、焼結に必要な条件を適宜設定すればよい。焼結温度は、例えば1000℃以上、更に1100℃以上、1200℃以上とし、主たる金属粉末の融点以下(例えば1400℃以下)とすることが挙げられる。焼結時間は、例えば15分以上150分以下、更に20分以上60分以下とすることが挙げられる。焼結により、穴(貫通孔)50Sが形成された焼結部品Sが得られる(図2の下図を参照)。焼結部品Sは、本発明の実施形態に係るものである。
(Sintering process)
In the sintering step, the green compact G is sintered after drilling. For sintering, a suitable sintering furnace (not shown) capable of temperature atmosphere control is used. As the sintering conditions, conditions necessary for sintering may be appropriately set according to the material of the green compact G (metal powder) and the like. The sintering temperature may be, for example, 1000 ° C. or more, and further, 1100 ° C. or more, 1200 ° C. or more, and may be equal to or less than the melting point of the main metal powder (eg, 1400 ° C. or less). The sintering time is, for example, 15 minutes or more and 150 minutes or less, and further 20 minutes or more and 60 minutes or less. By sintering, a sintered component S in which the holes (through holes) 50S are formed is obtained (see the lower view of FIG. 2). The sintered part S relates to an embodiment of the present invention.

〈焼結部品〉
焼結部品Sには、穴(貫通孔)50Sが形成されている。この貫通孔50Sは、焼結前の穴あけ加工によって、圧粉成形体Gに対してドリル10で形成した貫通孔50である(図2の中図を参照)。上述したように、圧粉成形体Gにドリル10で形成した貫通孔50の内周面は梨地状である。焼結後も貫通孔50の内周面の表面性状は実質的に維持されることになるから、圧粉成形体Gを焼結した焼結部品Sの貫通孔50Sの内周面も梨地状となる。換言すれば、焼結部品Sに形成された貫通孔50Sの内周面が梨地状であるということは、焼結前の圧粉成形体Gに対してドリル10で穴あけ加工したことを表している。焼結部品Sにおいて、貫通孔50Sの内周面の十点平均粗さRzは、例えば20μm以上150μm以下であることが挙げられる。
<Sintered parts>
In the sintered component S, a hole (through hole) 50S is formed. The through holes 50S are through holes 50 formed by the drill 10 in the green compact G by drilling before sintering (see the middle view in FIG. 2). As described above, the inner circumferential surface of the through hole 50 formed in the green compact G with the drill 10 is in a satin-like shape. Since the surface properties of the inner peripheral surface of the through hole 50 are substantially maintained even after sintering, the inner peripheral surface of the through hole 50S of the sintered component S obtained by sintering the green compact G is also textured. It becomes. In other words, the fact that the inner peripheral surface of the through hole 50S formed in the sintered component S is in the shape of a satin indicates that the powder compact G before sintering is drilled by the drill 10 There is. In the sintered component S, the ten-point average roughness Rz of the inner peripheral surface of the through hole 50S may be, for example, 20 μm or more and 150 μm or less.

この例では、貫通孔50Sが、貫通孔50Sの内周面と焼結部品Sの外側面(端面)との距離(厚さ)が貫通孔50Sの径と同じ以上になる箇所に形成されている。   In this example, the through hole 50S is formed at a location where the distance (thickness) between the inner peripheral surface of the through hole 50S and the outer surface (end face) of the sintered component S is equal to or larger than the diameter of the through hole 50S There is.

<作用効果>
上記実施形態に係る焼結部品の製造方法は、焼結前の圧粉成形体に対してドリルで穴あけ加工を行うことから、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減される。そのため、焼結後にドリルで穴あけ加工を行う従来の製造方法に比較して、加工時間を短縮でき、加工穴精度が向上する他、工具寿命も大幅に改善できる。更に、上記実施形態に係る焼結部品の製造方法は、先端部に円弧状の切れ刃を有するドリルを用いて穴あけ加工を行うことから、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できる。したがって、上記焼結部品の製造方法は、コバ欠けの発生を抑制できると共に、生産性に優れる。
<Function effect>
In the method of manufacturing a sintered component according to the above-described embodiment, since the drilling process is performed on the green compact before sintering with a drill, cutting is easy and cutting resistance (thrust load) is significantly reduced. Ru. Therefore, compared with the conventional manufacturing method which performs a drilling process with a drill after sintering, machining time can be shortened, machining hole accuracy can be improved, and tool life can be significantly improved. Furthermore, in the method of manufacturing a sintered component according to the above-described embodiment, since the drilling is performed using a drill having an arc-shaped cutting edge at the tip end, an edge chip is formed when forming a through hole in the powder compact. Can be suppressed. Therefore, the manufacturing method of the said sintered component can be excellent in productivity while it can suppress generation | occurrence | production of a chipping.

上記実施形態に係る焼結部品は、穴(貫通孔)が形成され、その穴の内周面が梨地状であることから、焼結前の圧粉成形体に対してドリルで穴あけ加工しており、生産性に優れる。   In the sintered component according to the above embodiment, a hole (through hole) is formed, and the inner peripheral surface of the hole is in a satin-like shape, so drilling is performed on the green compact before sintering using a drill. Good productivity.

上記実施形態に係るドリルは、先端部に円弧状の切れ刃を有することから、圧粉成形体に貫通孔を形成する際にコバ欠けの発生を抑制できる。   The drill according to the above-described embodiment has the arc-shaped cutting edge at the tip end, so that the occurrence of edge chipping can be suppressed when forming the through hole in the powder compact.

上記実施形態では、圧粉成形体にドリルで貫通孔を形成する場合を例に挙げて説明したが、形成する穴は、止まり穴であってもよい。止まり穴の場合、穴の底部の厚さを薄くできる。例えば、底部の厚さがドリル径(穴径)の2倍以下の止まり穴を形成する場合に好適である。底部の厚さの下限は、ドリル径(穴径)の1/4以上、1/2以上程度とすることが挙げられる。   Although the case where a through-hole is formed with a drill in a compacting body was mentioned as the example and demonstrated in the said embodiment, the hole to form may be a blind hole. In the case of a blind hole, the thickness of the bottom of the hole can be reduced. For example, it is suitable when forming the blind hole whose thickness of the bottom is twice or less of the drill diameter (hole diameter). The lower limit of the thickness of the bottom portion may be about 1⁄4 to 1⁄2 or more of the drill diameter (hole diameter).

[試験例1]
金属粉末を含有する原料粉末をプレス成形して圧粉成形体を作製し、切れ刃の形状が異なるドリルを使用して圧粉成形体に穴あけ加工試験を行った。
[Test Example 1]
A raw material powder containing a metal powder was press-formed to prepare a green compact, and a drilling test was performed on the green compact using a drill having a different shape of the cutting edge.

(圧粉成形体)
水アトマイズ鉄粉(平均粒径(D50)100μm)と、水アトマイズ銅粉(平均粒径(D50)30μm)と、炭素(黒鉛)粉(平均粒径(D50)20μm)と、潤滑剤としてエチレンビスステアリン酸アミドを用意し、これらを混合して原料粉末を準備した。
(Compacted compact)
Water atomized iron powder (average particle diameter (D50) 100 μm), water atomized copper powder (average particle diameter (D50) 30 μm), carbon (graphite) powder (average particle diameter (D50) 20 μm), ethylene as a lubricant The bis-stearic-acid amide was prepared, these were mixed and the raw material powder was prepared.

準備した原料粉末を所定の成形用金型に充填し、600MPaの圧力でプレス成形して、縦50mm×横20mm×厚さ10mmの板状の圧粉成形体を作製した。この圧粉成形体の密度は6.9g/cmであった。この密度は圧粉成形体の体積と質量とから算出した見かけ密度である。 The prepared raw material powder was filled in a predetermined molding die and press molded at a pressure of 600 MPa to produce a plate-like compact of 50 mm long × 20 mm wide × 10 mm thickness. The density of this green compact was 6.9 g / cm 3 . This density is an apparent density calculated from the volume and the mass of the green compact.

次に、作製した圧粉成形体にドリルで穴あけ加工を行い、圧粉成形体の厚さ方向に貫通孔を形成した。そして、貫通孔の出口側の開口部を観察し、コバ欠けの発生状況を調べた。   Next, drilling processing was performed to the produced compacting body with a drill, and a through hole was formed in the thickness direction of the compacting body. And the opening part by the side of the exit of a penetration hole was observed, and the generating situation of edge chipping was investigated.

ドリルには、図3に示すような、切れ刃の形状が半円状のRドリルを用意した。用意したRドリルは、ドリル径dが8.0mmであり、切れ刃を形成する円弧の中心角αが180°で、かつ、円弧の半径Rが4.0mm(ドリル径dの0.5倍)である。また、切れ刃のすくい角が0°である。このRドリルは、住友電工ハードメタル株式会社製のドリル(型番:MDW0800GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。   For the drill, an R drill having a semicircular shape as shown in FIG. 3 was prepared. The prepared R drill has a drill diameter d of 8.0 mm, a central angle α of the arc forming the cutting edge is 180 °, and a radius R of the arc of 4.0 mm (0.5 times the drill diameter d ). Also, the rake angle of the cutting edge is 0 °. The R drill was manufactured by polishing the cutting edge at the tip of a drill (model number: MDW0800GS4, material: cemented carbide) manufactured by Sumitomo Electric Hard Metal Co., Ltd.

更に、切れ刃の形状がV字状のVドリルを用意した。用意したVドリルは、日立ツール株式会社製のドリル(型番:05WHNSB0400−TH、材質:超硬合金)である。このVドリルは、ドリル径dが4.0mm、切れ刃の先端角が140°である。   Furthermore, the shape of a cutting blade prepared V-shaped V drill. The prepared V drill is a drill manufactured by Hitachi Tool Co., Ltd. (model number: 05WHNSB0400-TH, material: cemented carbide). The V-drill has a drill diameter d of 4.0 mm and a tip angle of 140 °.

上記Rドリル及びVドリルを使用して圧粉成形体に穴あけ加工を行い、貫通孔を形成した。Rドリルを使用した場合の切削条件は、回転数4000rpm、送り速度1600mm/minとした。Vドリルを使用した場合の切削条件は、回転数4000rpm、入口側から穴深さが5mmに達するまでの送り速度800mm/min、穴深さが5mmの位置から貫通するまでの送り速度1600mm/minとした。   The green compact was drilled using the above-mentioned R drill and V drill to form a through hole. The cutting conditions in the case of using the R drill were a rotational speed of 4000 rpm and a feed rate of 1600 mm / min. When using a V-drill, the cutting conditions are: rotation speed 4000rpm, feedrate 800mm / min from the inlet side to reach a hole depth of 5mm, feedrate 1600mm / min from a hole depth of 5mm to penetration And

穴あけ加工後、各ドリルで貫通孔を形成した圧粉成形体について、貫通孔の出口側の開口部を光学顕微鏡で観察した。その結果を図4及び図5に示す。図4はRドリルを使用した場合、図5はVドリルを使用した場合である。図4及び図5の顕微鏡写真において、中央の円形部分が貫通孔である。図4において、中央の円形部分(貫通孔)の周囲を縁取るような一定幅の黒い環状部分は、貫通孔の内周面が見えている部分である。図5において、貫通孔の周囲に広がっているグレーの部分は、コバ欠けである。図4に示すように、上記Rドリルで貫通孔を形成した場合、貫通孔の出口側の開口においてコバ欠けが非常に少なく、この例ではコバ欠けが確認できなかった。一方、上記Vドリルで貫通孔を形成した場合、図5に示すように、貫通孔の出口側の開口に大きなコバ欠けが発生していることが分かる。また、Vドリルで貫通孔を形成した場合のコバ欠け量を測定したところ1.55mmであった。コバ欠け量は、図5の顕微鏡写真から、コバ欠け部分の輪郭上に位置する点のうち、貫通孔の中心から最も離れた点までの距離を計測し、その長さと貫通孔の直径との差を算出することで求めた。この結果から、円弧状の切れ刃を有するRドリルを使用することで、コバ欠けの発生を抑制できることが分かる。   About the compacting body which formed the through-hole by each drill after drilling processing, the opening part at the exit side of the through-hole was observed with the optical microscope. The results are shown in FIG. 4 and FIG. FIG. 4 shows the case where an R drill is used, and FIG. 5 shows the case where a V drill is used. In the photomicrographs of FIGS. 4 and 5, the central circular portion is a through hole. In FIG. 4, a black annular portion with a certain width that encloses the periphery of the central circular portion (through hole) is a portion where the inner peripheral surface of the through hole is visible. In FIG. 5, the gray portion extending around the through hole is a chipped edge. As shown in FIG. 4, when the through hole is formed by the R drill, the edge chipping is very small at the opening on the outlet side of the through hole, and in this example, the edge chipping could not be confirmed. On the other hand, when the through hole is formed by the V drill, as shown in FIG. 5, it can be seen that a large edge chipping occurs at the opening on the outlet side of the through hole. Moreover, it was 1.55 mm when the amount of edge chippings at the time of forming a through-hole with V drill was measured. The edge chipping amount is obtained by measuring the distance from the center of the through hole to the point farthest from the center of the through hole from the photomicrograph of FIG. It calculated | required by calculating the difference. From this result, it is understood that the occurrence of edge chipping can be suppressed by using an R drill having an arc-shaped cutting edge.

[試験例2]
切れ刃のすくい角が異なるRドリルを使用して圧粉成形体に穴あけ加工を行い、貫通孔を形成する際のスラスト荷重を比較した。
[Test Example 2]
Drilling was performed on the green compact using an R drill with different rake angles of the cutting edge, and the thrust loads at the time of forming the through holes were compared.

加工対象の圧粉成形体には、試験例1と同じものを用いた。   The same compacting body as that of Test Example 1 was used as a green compact for processing.

使用したRドリルは、試験例1と同様、切れ刃の形状が半円状であり、住友電工ハードメタル株式会社製のドリル(型番:MDW0800GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。このRドリルは、ドリル径dが8.0mm、切れ刃を形成する円弧の中心角αが180°、円弧の半径Rが4.0mm(ドリル径dの0.5倍)である。そして、すくい角が0°,7°,10°の3種類のRドリルを作製し、すくい角が0°のRドリルをR0、すくい角が7°のRドリルをR7、すくい角が10°のRドリルをR10とした。   The R drill used has a semicircular shape as in Test Example 1, and has a cutting edge at the tip of a drill (model number: MDW0800GS4, material: cemented carbide) manufactured by Sumitomo Electric Hard Metal Co., Ltd. It was polished and produced. In this R drill, the drill diameter d is 8.0 mm, the central angle α of the arc forming the cutting edge is 180 °, and the radius R of the arc is 4.0 mm (0.5 times the drill diameter d). Then, three types of R drills with rake angles of 0 °, 7 ° and 10 ° are prepared, R drills with a rake angle of 0 ° are R0, R drills with a rake angle of 7 ° are R7, and rake angles of 10 ° The R drill is called R10.

上記3種類の各ドリル(R0,R7,R10)で圧粉成形体に穴あけ加工を3回行い、圧粉成形体の厚さ方向に貫通孔を3つ形成した。切削条件は、回転数2000rpm、送り速度200mm/min(送り量0.1mm/rev.)とした。そして、1回目から3回目までのそれぞれの穴あけ加工において、貫通孔を形成する際のスラスト荷重及びトルクを測定した。スラスト荷重及びトルクは、切削動力計(日本キスラー株式会社製、型番9272)を使用して、穴あけ加工の開始から貫通孔が形成されるまで測定し、その最大値を求めた。また、各回の穴あけ加工における各スラスト荷重及びトルクからその平均値も求めた。   The green compact was drilled three times with each of the three types of drills (R0, R7, R10) to form three through holes in the thickness direction of the green compact. The cutting conditions were a rotational speed of 2000 rpm and a feed rate of 200 mm / min (feed amount: 0.1 mm / rev.). And thrust load and torque at the time of forming a penetration hole were measured in each drilling processing from the 1st to the 3rd. The thrust load and torque were measured from the start of drilling until the formation of a through hole using a cutting dynamometer (manufactured by Japan Kistler Co., Ltd., Model No. 9272), and the maximum value was determined. Moreover, the average value was also calculated from each thrust load and torque in each drilling process.

R0,R7,R10のドリルを使用して穴あけ加工した場合のスラスト荷重及びトルクを表1〜表3にそれぞれ示す。例えば表1中、「R0−1」とは、R0のドリルを使用した1回目の穴あけ加工であることを示しており、前半の記号は使用したドリル、後半の数字は何回目の加工であるかを表している(表2、表3も同じ)。更に、各ドリルにおけるスラスト荷重及びトルクの平均値を元に、すくい角とスラスト荷重及びトルクとの関係を図6に示す。図6のグラフにおいて、横軸がすくい角の角度(°)、左側の縦軸がスラスト荷重(N)、右側の縦軸がトルク(N・m)を示し、■印がスラスト荷重、◇印がトルクである。   The thrust load and the torque in the case of drilling using the drill of R0, R7 and R10 are shown in Tables 1 to 3, respectively. For example, in Table 1, "R0-1" indicates that it is the first drilling process using the drill of R0, the first half of the symbol is the drill used, and the second half is the number of processes. (See also Table 2 and Table 3). Furthermore, based on the average value of thrust load and torque in each drill, the relationship between the rake angle and the thrust load and torque is shown in FIG. In the graph of FIG. 6, the abscissa represents the rake angle (°), the left ordinate represents the thrust load (N), the right ordinate represents the torque (N · m), and ■ represents the thrust load Is the torque.

表1〜表3及び図6の結果から、すくい角が7°のRドリルの方が、すくい角が0°又は10°のRドリルに比較して、スラスト荷重が小さいことが分かる。すくい角が0°超10°以下の範囲内であれば、すくい角が0°の場合に比較して、スラスト荷重を低減できると考えられる。したがって、すくい角が0°超10°以下のRドリルを使用することで、コバ欠けの発生をより効果的に抑制できると考えられる。一方、トルクは、すくい角が大きくなるほど小さくなる傾向があることが分かる。   From the results of Tables 1 to 3 and FIG. 6, it can be seen that the R drill having a rake angle of 7 ° has a smaller thrust load as compared to the R drill having a rake angle of 0 ° or 10 °. If the rake angle is in the range of more than 0 ° and 10 ° or less, it is considered that the thrust load can be reduced as compared with the case where the rake angle is 0 °. Therefore, it is considered that the occurrence of edge chipping can be more effectively suppressed by using an R drill having a rake angle of more than 0 ° and 10 ° or less. On the other hand, it can be seen that the torque tends to decrease as the rake angle increases.

[試験例3]
Rドリルを使用して圧粉成形体に穴あけ加工した後、Rドリルで貫通孔を形成した圧粉成形体を焼結して焼結部品を作製した。
[Test Example 3]
After drilling into a green compact using an R drill, the green compact having through holes formed by the R drill is sintered to produce a sintered part.

加工対象の圧粉成形体には、試験例1と同じものを用いた。   The same compacting body as that of Test Example 1 was used as a green compact for processing.

ここでは、切れ刃の形状が半円状であり、ドリル径dが3.5mmのRドリルを使用した。このRドリルは、住友電工ハードメタル株式会社製のドリル(型番:MDW0350GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。このRドリルは、切れ刃を形成する円弧の中心角αが180°、円弧の半径Rが1.75mm(ドリル径dの0.5倍)、すくい角が0°である。   Here, an R drill having a semicircular shape and a drill diameter d of 3.5 mm was used. The R drill was manufactured by polishing the cutting edge at the tip of a drill (model number: MDW 0350 GS4, material: cemented carbide) manufactured by Sumitomo Electric Hard Metal Co., Ltd. In this R drill, the central angle α of the arc forming the cutting edge is 180 °, the radius R of the arc is 1.75 mm (0.5 times the drill diameter d), and the rake angle is 0 °.

上記Rドリルを使用して圧粉成形体に穴あけ加工を行い、圧粉成形体の厚さ方向に貫通孔を形成した。切削条件は、回転数2000rpm、送り速度200mm/min(送り量0.1mm/rev.)とした。穴あけ加工後、貫通孔を形成した圧粉成形体を1130℃×20分で焼結して焼結部品を作製した。   The green compact was drilled using the above-mentioned R drill to form a through hole in the thickness direction of the green compact. The cutting conditions were a rotational speed of 2000 rpm and a feed rate of 200 mm / min (feed amount: 0.1 mm / rev.). After drilling, the green compact having the through holes was sintered at 1130 ° C. for 20 minutes to produce a sintered part.

同様にして貫通孔を形成した圧粉成形体を貫通孔の中心軸を通るように厚さ方向に切断し、貫通孔の内周面を光学顕微鏡で観察した。その断面写真を図7に示す。図7において、中央の左右方向に延びる帯状部分が貫通孔の内周面である。図7に示すように、貫通孔の内周面は梨地状であった。また、この貫通孔の内周面の十点平均粗さRzを測定したところ、40μmであった。更に、上記作製した焼結部品を貫通孔の中心軸を通るように厚さ方向に切断し、貫通孔の内周面を光学顕微鏡で観察したところ、上述した圧粉成形体における貫通孔の内周面の表面性状と同様であり、内周面の十点平均粗さRzも同等であった。十点平均粗さRzは、「製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語、定義及び表面性状パラメータ JIS B 0601:2013」に準拠して測定した値である。   Similarly, a green compact having a through hole formed therein was cut in the thickness direction so as to pass through the central axis of the through hole, and the inner peripheral surface of the through hole was observed with an optical microscope. The cross-sectional photograph is shown in FIG. In FIG. 7, a band portion extending in the left and right direction at the center is the inner peripheral surface of the through hole. As shown in FIG. 7, the inner circumferential surface of the through hole was in a textured form. Moreover, when the ten-point average roughness Rz of the inner peripheral surface of this through-hole was measured, it was 40 micrometers. Furthermore, when the sintered component produced above was cut in the thickness direction so as to pass through the central axis of the through hole, and the inner peripheral surface of the through hole was observed with an optical microscope, The surface texture was the same as that of the peripheral surface, and the ten-point average roughness Rz of the inner peripheral surface was also equivalent. The ten-point average roughness Rz is a value measured in accordance with "Geometrical Product Specification (GPS)-Surface Properties: Contour Curve Method-Terms, Definitions, and Surface Properties Parameters JIS B 0601: 2013".

焼結後の焼結部品に対してドリルで貫通孔を形成し、同じように貫通孔の内周面を観察した結果、図示は省略するが、貫通孔の内周面は凹凸の少ない平滑な面となっており、光沢を有していた。また、この貫通孔の内周面の十点平均粗さRzを測定したところ、11μmであった。焼結部品の穴あけ加工に使用したドリルは、住友電工ハードメタル株式会社製のMDW0350GS4であり、切れ刃の形状がV字状で、ドリル径dが3.5mm、切れ刃の先端角が135°である。   As a result of forming a through hole with a drill on a sintered part after sintering and observing the inner peripheral surface of the through hole in the same manner, the illustration is omitted, but the inner peripheral surface of the through hole is smooth with few irregularities. It had a surface and had a gloss. Moreover, when the ten-point average roughness Rz of the inner peripheral surface of this through-hole was measured, it was 11 micrometers. The drill used for drilling sintered parts is MDW0350GS4 manufactured by Sumitomo Electric Hard Metal Co., Ltd., with a V-shaped cutting edge, drill diameter d of 3.5 mm, and cutting edge angle of 135 ° It is.

本発明の一態様に係る焼結部品の製造方法は、自動車部品や機械部品などの各種焼結部品(例、スプロケット、ロータ、ギア、リング、フランジ、プーリー、ベーン、軸受けなど)の製造に利用可能である。本発明の一態様に係る焼結部品は、自動車部品や機械部品などの各種焼結部品に利用可能である。本発明の一態様に係るドリルは、圧粉成形体の穴あけ加工に利用可能である。   The method of manufacturing a sintered part according to an aspect of the present invention is used to manufacture various sintered parts such as automobile parts and machine parts (eg, sprockets, rotors, gears, rings, flanges, pulleys, vanes, bearings, etc.) It is possible. The sintered parts according to an aspect of the present invention can be used for various sintered parts such as automobile parts and machine parts. The drill according to one aspect of the present invention can be used for drilling of a green compact.

10 ドリル(Rドリル) 11 ドリル(Vドリル)
100 先端部
110 切れ刃 111 すくい面
120 外周コーナ
30 軸孔
50 穴(貫通孔)
50S 穴(貫通孔)
G 圧粉成形体(被削物)
S 焼結部品
10 drill (R drill) 11 drill (V drill)
100 tip 110 cutting edge 111 rake face 120 peripheral corner 30 axial hole 50 hole (through hole)
50S hole (through hole)
G Powder compact (cut)
S sintered parts

Claims (6)

金属粉末を含有する原料粉末をプレス成形して圧粉成形体を作製する成形工程と、
前記圧粉成形体にドリルで穴を形成する穴あけ加工工程と、
前記穴あけ加工後、前記圧粉成形体を焼結する焼結工程と、を備え、
前記穴あけ加工に使用する前記ドリルは、先端部に円弧状の切れ刃を有する焼結部品の製造方法。
A forming step of press-forming a raw material powder containing a metal powder to produce a green compact;
A drilling process step of forming a hole in the powder compact by a drill;
And Sintering the sintered compact after sintering.
The said drill used for the said drilling process is a manufacturing method of the sintered components which have an arc-shaped cutting blade in a front-end | tip part.
前記ドリルは、前記切れ刃のすくい角が0°超10°以下である請求項1に記載の焼結部品の製造方法。   The method according to claim 1, wherein a rake angle of the cutting edge of the drill is more than 0 ° and 10 ° or less. 前記ドリルは、前記切れ刃を形成する円弧の中心角が135°以上180°以下である請求項1又は請求項2に記載の焼結部品の製造方法。   The method for manufacturing a sintered part according to claim 1, wherein a central angle of an arc forming the cutting edge of the drill is 135 ° or more and 180 ° or less. 穴が形成された焼結部品であって、
前記穴の内周面が梨地状である焼結部品。
A sintered part having a hole formed therein,
The sintered component whose inner peripheral surface of the said hole is in the shape of a satin.
前記穴の内周面の十点平均粗さRzが20μm以上である請求項4に記載の焼結部品。   The sintered part according to claim 4, wherein a ten-point average roughness Rz of the inner peripheral surface of the hole is 20 μm or more. 被削物に穴あけ加工を行うドリルであって、
前記被削物は金属粉末を含有する原料粉末をプレス成形した圧粉成形体であり、
先端部に円弧状の切れ刃を有するドリル。
A drill that drills a workpiece,
The said to-be-cut object is a compacting body which press-formed the raw material powder containing metal powder,
A drill with an arc-shaped cutting edge at the tip.
JP2018224221A 2018-11-29 2018-11-29 Sintered component Pending JP2019070194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018224221A JP2019070194A (en) 2018-11-29 2018-11-29 Sintered component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018224221A JP2019070194A (en) 2018-11-29 2018-11-29 Sintered component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014252531A Division JP6445858B2 (en) 2014-12-12 2014-12-12 Sintered part manufacturing method and drill

Publications (1)

Publication Number Publication Date
JP2019070194A true JP2019070194A (en) 2019-05-09

Family

ID=66441126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018224221A Pending JP2019070194A (en) 2018-11-29 2018-11-29 Sintered component

Country Status (1)

Country Link
JP (1) JP2019070194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230025240A (en) * 2021-08-13 2023-02-21 현대자동차주식회사 Outer ring for oil pump and methods for producing the same

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990969A (en) * 1972-12-28 1974-08-30
JPS58189305A (en) * 1982-04-28 1983-11-05 Teikoku Piston Ring Co Ltd Production of sintered body having through-hole or the like
JPS61264102A (en) * 1985-05-17 1986-11-22 Mitsubishi Metal Corp Production of sintered member formed with satin pattern on surface and sintering furnace for producing sintered member thereof
JPS6296601A (en) * 1985-10-24 1987-05-06 Nippon Yakin Kogyo Co Ltd Metallic powder for shot
JPS62208527A (en) * 1986-03-07 1987-09-12 Toho Kinzoku Kk Manufacture of end cap for magnetron
JPH05171334A (en) * 1991-05-31 1993-07-09 Sumitomo Electric Ind Ltd Hard sintered part and its manufacture
JPH05171205A (en) * 1991-12-24 1993-07-09 Mitsubishi Materials Corp Method for forming rugged pattern on surface of noble metal product and noble metal plastic composition
JPH06145703A (en) * 1992-11-11 1994-05-27 Seiko Epson Corp Ti-ag alloy parts
JPH1073132A (en) * 1996-08-30 1998-03-17 Nippon Piston Ring Co Ltd Synchronizer ring
JP2002249887A (en) * 2000-12-20 2002-09-06 Seiko Epson Corp Surface treatment method for ornament, and the ornament
JP2004346358A (en) * 2003-05-21 2004-12-09 Toyota Motor Corp Method for producing metal sintered compact provided with micropore
JP2007510895A (en) * 2003-11-04 2007-04-26 リシュモン アンテルナシオナル ソシエテ アノニム Timer with reversible watch case
JP2009185328A (en) * 2008-02-05 2009-08-20 Hitachi Powdered Metals Co Ltd Iron-based sintered alloy and production method therefor
JP2011069372A (en) * 2010-12-24 2011-04-07 Fuji Heavy Ind Ltd Iron-base preform for forming metal matrix composite and journal part structure
JP2011144419A (en) * 2010-01-14 2011-07-28 Ihi Corp Sintering method
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
CN102825255A (en) * 2012-09-21 2012-12-19 常熟市华德粉末冶金有限公司 Production method for drive shaft of powder metallurgy planetary gear
JP2012254501A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Device and method for machining of green compact
JP2016113657A (en) * 2014-12-12 2016-06-23 住友電工焼結合金株式会社 Method for producing sintered component, sintered component and drill

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990969A (en) * 1972-12-28 1974-08-30
JPS58189305A (en) * 1982-04-28 1983-11-05 Teikoku Piston Ring Co Ltd Production of sintered body having through-hole or the like
JPS61264102A (en) * 1985-05-17 1986-11-22 Mitsubishi Metal Corp Production of sintered member formed with satin pattern on surface and sintering furnace for producing sintered member thereof
JPS6296601A (en) * 1985-10-24 1987-05-06 Nippon Yakin Kogyo Co Ltd Metallic powder for shot
JPS62208527A (en) * 1986-03-07 1987-09-12 Toho Kinzoku Kk Manufacture of end cap for magnetron
JPH05171334A (en) * 1991-05-31 1993-07-09 Sumitomo Electric Ind Ltd Hard sintered part and its manufacture
JPH05171205A (en) * 1991-12-24 1993-07-09 Mitsubishi Materials Corp Method for forming rugged pattern on surface of noble metal product and noble metal plastic composition
JPH06145703A (en) * 1992-11-11 1994-05-27 Seiko Epson Corp Ti-ag alloy parts
JPH1073132A (en) * 1996-08-30 1998-03-17 Nippon Piston Ring Co Ltd Synchronizer ring
JP2002249887A (en) * 2000-12-20 2002-09-06 Seiko Epson Corp Surface treatment method for ornament, and the ornament
JP2004346358A (en) * 2003-05-21 2004-12-09 Toyota Motor Corp Method for producing metal sintered compact provided with micropore
JP2007510895A (en) * 2003-11-04 2007-04-26 リシュモン アンテルナシオナル ソシエテ アノニム Timer with reversible watch case
JP2009185328A (en) * 2008-02-05 2009-08-20 Hitachi Powdered Metals Co Ltd Iron-based sintered alloy and production method therefor
JP2011144419A (en) * 2010-01-14 2011-07-28 Ihi Corp Sintering method
JP2011069372A (en) * 2010-12-24 2011-04-07 Fuji Heavy Ind Ltd Iron-base preform for forming metal matrix composite and journal part structure
JP2012241728A (en) * 2011-05-16 2012-12-10 Ntn Corp Sintered bearing and fluid dynamic pressure bearing device including the same
JP2012254501A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Device and method for machining of green compact
CN102825255A (en) * 2012-09-21 2012-12-19 常熟市华德粉末冶金有限公司 Production method for drive shaft of powder metallurgy planetary gear
JP2016113657A (en) * 2014-12-12 2016-06-23 住友電工焼結合金株式会社 Method for producing sintered component, sintered component and drill

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.M.GERMAN著/三浦秀士ほか訳, 粉末冶金の科学, vol. 第1版, JPN6020049116, 25 June 1996 (1996-06-25), pages 247 - 300, ISSN: 0004411486 *
黒木英憲: "金属圧粉体の焼結に伴う膨張と収縮", 日本金属学会会報, vol. 第26巻、第9号, JPN7020004107, 1987, pages 842 - 846, ISSN: 0004411487 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230025240A (en) * 2021-08-13 2023-02-21 현대자동차주식회사 Outer ring for oil pump and methods for producing the same
KR102586490B1 (en) 2021-08-13 2023-10-06 현대자동차주식회사 Outer ring for oil pump and methods for producing the same
US11852139B2 (en) 2021-08-13 2023-12-26 Hyundai Motor Company Outer ring for an oil pump and a method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6445858B2 (en) Sintered part manufacturing method and drill
US20180236548A1 (en) Method for manufacturing sintered body and sintered body
JP6918281B2 (en) Manufacturing method of sintered parts
JP6555679B2 (en) Manufacturing method of iron-based sintered parts and iron-based sintered parts
JP2023075154A (en) Sintered component
WO2016093245A1 (en) Method for manufacturing sintered component and sintered component
US7246439B2 (en) Process for mechanically forming undercuts on sintered shaped parts based on iron
JP7116928B2 (en) Processing method, manufacturing method of planetary carrier, and planetary carrier
JP2019070194A (en) Sintered component
JPWO2018216461A1 (en) Manufacturing method of sintered member
JP2004323939A (en) Method for manufacturing sintered part
JPWO2019026783A1 (en) Sintered part manufacturing method and sintered part
JP7512367B2 (en) Tool body and manufacturing method thereof
JP6573245B2 (en) Sintered part manufacturing method and sintered part
JP2017106085A (en) Manufacturing method of sintered compact
JP6842345B2 (en) Abrasion-resistant iron-based sintered alloy manufacturing method
Liu et al. Green machining for conventional P/M processes
Danaher et al. Case Studies: Green Machining For P/M Applications

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201221