JP6555679B2 - Manufacturing method of iron-based sintered parts and iron-based sintered parts - Google Patents
Manufacturing method of iron-based sintered parts and iron-based sintered parts Download PDFInfo
- Publication number
- JP6555679B2 JP6555679B2 JP2014252533A JP2014252533A JP6555679B2 JP 6555679 B2 JP6555679 B2 JP 6555679B2 JP 2014252533 A JP2014252533 A JP 2014252533A JP 2014252533 A JP2014252533 A JP 2014252533A JP 6555679 B2 JP6555679 B2 JP 6555679B2
- Authority
- JP
- Japan
- Prior art keywords
- hole
- drill
- green compact
- peripheral surface
- inner peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 57
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 43
- 229910052742 iron Inorganic materials 0.000 title claims description 19
- 238000005520 cutting process Methods 0.000 claims description 134
- 230000002093 peripheral effect Effects 0.000 claims description 123
- 239000000843 powder Substances 0.000 claims description 73
- 238000005553 drilling Methods 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 56
- 238000005245 sintering Methods 0.000 claims description 48
- 230000008569 process Effects 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 238000000465 moulding Methods 0.000 claims description 31
- 239000002994 raw material Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 239000000314 lubricant Substances 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 description 25
- 238000010586 diagram Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000005498 polishing Methods 0.000 description 10
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910001339 C alloy Inorganic materials 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910017263 Mo—C Inorganic materials 0.000 description 1
- 229910017309 Mo—Mn Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 229910018106 Ni—C Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ZJOLCKGSXLIVAA-UHFFFAOYSA-N ethene;octadecanamide Chemical compound C=C.CCCCCCCCCCCCCCCCCC(N)=O.CCCCCCCCCCCCCCCCCC(N)=O ZJOLCKGSXLIVAA-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- -1 is mainly used Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Drilling And Boring (AREA)
- Drilling Tools (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、焼結部品の製造方法、及び焼結部品に関する。特に、生産性に優れる焼結部品の製造方法に関する。 The present invention relates to a method for manufacturing a sintered part and a sintered part. In particular, the present invention relates to a method for manufacturing a sintered part having excellent productivity.
鉄粉などの金属粉末の成形体を焼結してなる焼結体(焼結合金)が、自動車部品や機械部品などに利用されている。このような焼結合金部品(以下、単に「焼結部品」と呼ぶ)としては、例えばスプロケット、ロータ、ギア、リング、フランジ、プーリー、ベーン、軸受けなどが挙げられる。一般に、焼結部品は、金属粉末を含有する原料粉末をプレス成形して圧粉成形体(圧粉体)を作製し、これを焼結することで製造されており、焼結後、必要に応じて、仕上げ加工として機械加工が行われる。 Sintered bodies (sintered alloys) formed by sintering compacts of metal powders such as iron powder are used for automobile parts and machine parts. Examples of such sintered alloy parts (hereinafter simply referred to as “sintered parts”) include sprockets, rotors, gears, rings, flanges, pulleys, vanes, bearings, and the like. In general, sintered parts are manufactured by pressing a raw material powder containing metal powder to produce a green compact (green compact) and sintering it. Accordingly, machining is performed as a finishing process.
ところで、焼結部品の中には、貫通孔を有するものがある。例えば、外周面から端面や内周面に抜ける貫通孔(例、油孔)が形成された部品がある。このような部品については、成形時に圧粉成形体に対して貫通孔を一体に形成できないことから、焼結後にドリルで穴あけ加工を行っている(特許文献1を参照)。 By the way, some sintered parts have through holes. For example, there is a part in which a through hole (eg, an oil hole) extending from an outer peripheral surface to an end surface or an inner peripheral surface is formed. About such components, since a through-hole cannot be integrally formed with respect to a compacting body at the time of shaping | molding, it drills with a drill after sintering (refer patent document 1).
穴あけ加工に使用するドリルとしては、先端部に投影形状がV字状の切れ刃を有するものが代表的である。超硬合金製のドリルの場合、切れ刃の先端角が130°〜140°程度に設定されていることが多い。 A typical drill used for drilling has a V-shaped cutting edge at the tip. In the case of a cemented carbide drill, the tip angle of the cutting edge is often set to about 130 ° to 140 °.
焼結部品に対してドリルで穴あけ加工を行う場合、焼結後の穴あけ加工は困難であり、生産性が低いという問題がある。 When drilling a sintered part with a drill, drilling after sintering is difficult, and productivity is low.
焼結部品は、金属粉末の粒子同士が焼結により拡散結合ならびに合金化して強固に結合しているため、硬い。そのため、焼結部品にドリルで穴あけ加工を行うと、切削抵抗が高くドリルが進入し難いため、切削が困難で、加工に時間がかかる上、工具寿命も短くなる。また、ドリルの喰い付き時の抵抗も高いため、ドリルが軸振れし易いなど、安定した加工穴精度を得ることが難しい。更に、切削抵抗が高く、スラスト荷重が高いことから、貫通孔を形成する際に、ドリルが抜ける出口側の開口縁に沿ってバリが発生し易い。バリは、ドリルが貫通する際に貫通孔の底部の厚さが薄くなることで、スラスト荷重に対して底部の強度が維持できなくなった場合に底部が切削できずに変形し、出口側に押し出されることで発生する。発生したバリは、後工程で除去する必要があり、その作業に時間と労力とを要する。バリの発生箇所によっては除去し難い、又はできないこともある。したがって、焼結部品の製造において、製造コストを低減する観点から生産性の改善が望まれる。 Sintered parts are hard because the metal powder particles are firmly bonded by diffusion bonding and alloying by sintering. Therefore, when drilling a sintered part with a drill, the cutting resistance is high and it is difficult for the drill to enter. Therefore, cutting is difficult, processing takes time, and the tool life is shortened. In addition, since the resistance when the drill bites is high, it is difficult to obtain a stable machining hole accuracy such as the drill is likely to swing. Further, since the cutting resistance is high and the thrust load is high, burrs are likely to occur along the opening edge on the outlet side from which the drill comes out when the through hole is formed. When the drill penetrates, the thickness of the bottom of the through-hole becomes thinner, so if the strength of the bottom cannot be maintained against the thrust load, the bottom will not be cut and will be deformed and pushed out to the outlet side. It occurs by being. The generated burrs need to be removed in a later process, and the work requires time and labor. Depending on the location of burrs, it may be difficult or impossible to remove. Therefore, in the production of sintered parts, improvement in productivity is desired from the viewpoint of reducing manufacturing costs.
焼結部品の曲面のある面に抜けるように貫通孔を形成し、貫通孔の少なくとも一方の開口(特に、出口側の開口)が曲面に設けられている場合、貫通孔の開口に発生したバリを除去することが難しい。焼結部品に穴あけ加工して形成されたバリは硬いため、通常、バリ取りは研磨加工によって行われる。しかしながら、研磨工具を曲面に沿って均一に接触させることが難しく、曲面に対して均一に研磨することは困難である。 When a through hole is formed so as to pass through a curved surface of the sintered part and at least one opening (especially, an opening on the outlet side) is provided on the curved surface, the burr generated at the opening of the through hole Difficult to remove. Since burrs formed by drilling a sintered part are hard, deburring is usually performed by polishing. However, it is difficult to uniformly contact the polishing tool along the curved surface, and it is difficult to polish the curved surface uniformly.
特に、焼結部品に次のような貫通孔を形成する場合は、バリ取りが行い難い。
(A)2つ以上の貫通孔を形成し、少なくとも1つの貫通孔を別の貫通孔の内周面に抜けるように形成する場合
(B)曲面の内周面を有する溝又は穴が焼結部品に形成されており、貫通孔を溝又は穴の内周面に抜けるように形成する場合
(C)焼結部品が曲面の内周面を有する筒状体であり、貫通孔を筒状体の内周面に抜けるように形成する場合
In particular, deburring is difficult when the following through-hole is formed in the sintered part.
(A) When two or more through holes are formed, and at least one through hole is formed so as to pass through the inner peripheral surface of another through hole. (B) A groove or hole having a curved inner peripheral surface is sintered. (C) The sintered part is a cylindrical body having a curved inner peripheral surface, and the through hole is formed into a cylindrical body. When forming so as to come out on the inner peripheral surface of
上記(A)〜(C)のいずれの場合も、貫通孔の少なくとも一方の開口が曲面に設けられる。その他、(A)の場合、貫通孔の一方の開口が別の貫通孔の内周面(曲面)に設けられ、バリは別の貫通孔の内周面から突出するように形成される。別の貫通孔の開口が小さかったり、貫通孔の開口が別の貫通孔の開口から離れた位置の内周面に設けられていると、研磨工具が挿入できなかったり、研磨工具が届かないなどバリ取りが行い難い。(B)の場合、貫通孔の開口が溝又は穴の内周面(曲面)に設けられ、バリは溝又は穴の内周面から突出するように形成される。溝又は穴の開口が小さかったり、貫通孔の一方の開口が溝又は穴の開口から離れた位置の内周面に設けられていると、バリ取りが行い難い。(C)の場合、貫通孔の開口が筒状体の内周面(曲面)に設けられ、バリは筒状体の内周面から突出するように形成される。筒状体の開口内径が小さかったり、貫通孔の一方の開口が筒状体の開口から離れた位置の内周面に設けられていると、バリ取りが行い難い。よって、従来の製造方法では、上記(A)〜(C)のような貫通孔を焼結部品に形成する場合、バリ取りが行い難く、貫通孔の開口にバリが多く残り易い。 In any of the cases (A) to (C), at least one opening of the through hole is provided on the curved surface. In addition, in the case of (A), one opening of the through hole is provided on the inner peripheral surface (curved surface) of another through hole, and the burr is formed so as to protrude from the inner peripheral surface of the other through hole. If the opening of another through hole is small, or if the opening of the through hole is provided on the inner peripheral surface at a position away from the opening of another through hole, the polishing tool cannot be inserted or the polishing tool cannot reach. Deburring is difficult. In the case of (B), the opening of the through hole is provided on the inner peripheral surface (curved surface) of the groove or hole, and the burr is formed so as to protrude from the inner peripheral surface of the groove or hole. If the opening of the groove or hole is small, or if one opening of the through hole is provided on the inner peripheral surface at a position away from the opening of the groove or hole, deburring is difficult. In the case of (C), the opening of the through hole is provided on the inner peripheral surface (curved surface) of the cylindrical body, and the burr is formed so as to protrude from the inner peripheral surface of the cylindrical body. Deburring is difficult if the inner diameter of the cylindrical body is small or if one opening of the through hole is provided on the inner peripheral surface at a position away from the opening of the cylindrical body. Therefore, in the conventional manufacturing method, when the through holes as in the above (A) to (C) are formed in the sintered part, it is difficult to deburr, and a lot of burrs are likely to remain in the openings of the through holes.
そこで、本発明の目的の一つは、貫通孔の開口のバリを低減できながら、生産性に優れる焼結部品の製造方法を提供することにある。本発明の別の目的は、貫通孔の開口にバリが少なく、生産性に優れる焼結部品を提供することにある。 Then, one of the objectives of this invention is providing the manufacturing method of the sintered component which is excellent in productivity, being able to reduce the burr | flash of opening of a through-hole. Another object of the present invention is to provide a sintered part that has few burrs at the opening of the through hole and is excellent in productivity.
本発明の一態様に係る焼結部品の製造方法は、成形工程と、穴あけ加工工程と、焼結工程とを備える。成形工程は、金属粉末を含有する原料粉末のプレス成形を経て、曲面を有する圧粉成形体を作製する。穴あけ加工工程は、前記圧粉成形体にドリルで穴あけ加工を行い、少なくとも1つの貫通孔を形成する。焼結工程は、前記穴あけ加工後、前記圧粉成形体を焼結する。上記焼結部品の製造方法は、前記穴あけ加工工程において、少なくとも1つの前記貫通孔を前記圧粉成形体の前記曲面に抜けるように形成し、前記貫通孔の少なくとも一方の開口を前記曲面に設ける。 The manufacturing method of the sintered component which concerns on 1 aspect of this invention is equipped with a formation process, a drilling process, and a sintering process. In the molding step, a green compact having a curved surface is produced through press molding of a raw material powder containing metal powder. In the drilling step, the green compact is drilled to form at least one through hole. A sintering process sinters the said compacting body after the said drilling process. In the method for manufacturing a sintered part, in the drilling step, at least one through hole is formed so as to pass through the curved surface of the green compact, and at least one opening of the through hole is provided on the curved surface. .
本発明の一態様に係る焼結部品は、曲面を有し、少なくとも1つの貫通孔が形成された焼結部品である。上記焼結部品は、前記貫通孔の内周面が梨地状である。また、上記焼結部品は、少なくとも1つの前記貫通孔が前記焼結部品の前記曲面に抜けるように形成され、前記貫通孔の少なくとも一方の開口が前記曲面に設けられている。 A sintered part according to one embodiment of the present invention is a sintered part having a curved surface and having at least one through hole formed therein. As for the said sintered component, the internal peripheral surface of the said through-hole is a satin-like shape. Further, the sintered part is formed so that at least one of the through holes passes through the curved surface of the sintered part, and at least one opening of the through hole is provided on the curved surface.
上記焼結部品の製造方法は、貫通孔の開口のバリを低減できながら、生産性に優れる。上記焼結部品は、貫通孔の開口にバリが少なく、生産性に優れる。 The method for manufacturing a sintered part is excellent in productivity while reducing the burr at the opening of the through hole. The sintered part has few burrs at the opening of the through hole, and is excellent in productivity.
[本発明の実施形態の説明]
本発明者らは、焼結部品の生産性を改善する技術を鋭意研究した結果、焼結後ではなく、焼結前の圧粉成形体に対してドリルで穴あけ加工を行うことで、生産性を向上できることを見出した。圧粉成形体は、成形により原料粉末を固めただけであり、金属粉末の粒子同士が機械的に密着している状態であるので、焼結後のように強固に結合していない。そのため、焼結前の圧粉成形体に穴あけ加工した場合、焼結後に穴あけ加工する場合に比較して、金属粉末の粒子同士の結合が弱く、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減される。そして、本発明者らは、圧粉成形体に穴あけ加工すれば、高効率でバリの少ない貫通孔の形成が可能であり、たとえバリが発生しても研磨工具を用いることなく、エアブローなどで容易にバリ取りが可能であるとの知見を得て、本発明を完成するに至った。最初に、本発明の実施形態を列挙して説明する。
[Description of Embodiment of the Present Invention]
As a result of diligent research on the technology for improving the productivity of sintered parts, the inventors of the present invention have achieved productivity by drilling with a green compact before sintering rather than after sintering. It was found that can be improved. The compacted body is only a material powder that has been hardened by molding and is in a state where the particles of the metal powder are in mechanical contact with each other, and thus is not firmly bonded as after sintering. Therefore, when drilling is performed on the green compact before sintering, compared to drilling after sintering, the metal powder particles are weakly bonded to each other, cutting is easy, and cutting resistance (thrust load) Is greatly reduced. Then, the present inventors can form a through-hole with high efficiency and few burrs by drilling in the green compact, and even if burrs occur, without using a polishing tool, The inventors have obtained knowledge that deburring can be easily performed, and have completed the present invention. First, embodiments of the present invention will be listed and described.
(1)本発明の一形態に係る焼結部品の製造方法は、成形工程と、穴あけ加工工程と、焼結工程とを備える。成形工程は、金属粉末を含有する原料粉末のプレス成形を経て、曲面を有する圧粉成形体を作製する。穴あけ加工工程は、圧粉成形体にドリルで穴あけ加工を行い、少なくとも1つの貫通孔を形成する。焼結工程は、穴あけ加工後、圧粉成形体を焼結する。上記焼結部品の製造方法は、穴あけ加工工程において、少なくとも1つの貫通孔を圧粉成形体の曲面に抜けるように形成し、貫通孔の少なくとも一方の開口を曲面に設ける。 (1) The manufacturing method of the sintered component which concerns on one form of this invention is equipped with a formation process, a drilling process, and a sintering process. In the molding step, a green compact having a curved surface is produced through press molding of a raw material powder containing metal powder. In the drilling process, the green compact is drilled with a drill to form at least one through hole. In the sintering step, the green compact is sintered after drilling. In the manufacturing method of the sintered part, in the drilling step, at least one through hole is formed so as to pass through the curved surface of the green compact, and at least one opening of the through hole is provided on the curved surface.
上記焼結部品の製造方法によれば、焼結前の圧粉成形体に対してドリルで穴あけ加工を行うことから、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減される。そのため、焼結後にドリルで穴あけ加工を行う従来の製造方法に比較して、加工時間を短縮でき、加工穴精度が向上する他、工具寿命も大幅に改善できる。また、圧粉成形体にドリルで穴あけ加工した場合、バリが発生し難い。仮にバリが発生したとしても、例えばエアブローによりバリを容易に除去することが可能であり、バリ取り作業に要する時間と労力とを削減できる。 According to the method for manufacturing a sintered part, since a drilling process is performed on a green compact before sintering, cutting is easy and cutting resistance (thrust load) is greatly reduced. Therefore, compared with the conventional manufacturing method which drills with a drill after sintering, processing time can be shortened, the hole accuracy can be improved, and the tool life can be greatly improved. In addition, burrs are unlikely to occur when a green compact is drilled with a drill. Even if burrs are generated, the burrs can be easily removed by, for example, air blowing, and the time and labor required for the deburring operation can be reduced.
特に、焼結部品の曲面に抜けるように貫通孔が形成された焼結部品を製造する場合、バリ取りのために曲面を研磨しなくても、貫通孔の開口にバリが少ない又はバリのない焼結部品が得られる。したがって、上記焼結部品の製造方法は、貫通孔の開口のバリを低減できながら、生産性に優れる。ここで、成形工程において作製する圧粉成形体は、成形により曲面を形成したものだけでなく、成形後、切削加工などにより曲面を形成したものも含まれる。 In particular, when manufacturing a sintered part in which through holes are formed so as to come out to the curved surface of the sintered part, even if the curved surface is not polished for deburring, there are few or no burrs in the opening of the through hole. A sintered part is obtained. Therefore, the method for manufacturing a sintered part is excellent in productivity while reducing the burr at the opening of the through hole. Here, the compacting body produced in the molding step includes not only one having a curved surface formed by molding, but also one having a curved surface formed by cutting after molding.
(2)上記焼結部品の製造方法の一形態として、穴あけ加工に使用するドリルは、先端部に円弧状の切れ刃を有するRドリル、又は、先端部に複数の切れ刃を有し、かつ切れ刃の先端角が中心側から外周側にかけて段階的に小さくなるマルチアングルドリルであることが挙げられる。 (2) As one form of the manufacturing method of the sintered part, the drill used for drilling has an R drill having an arcuate cutting edge at the tip, or a plurality of cutting edges at the tip, and The tip angle of the cutting edge is a multi-angle drill that gradually decreases from the center side to the outer peripheral side.
圧粉成形体にドリルで穴あけ加工を行うと、貫通孔を形成した際に、ドリルが抜ける出口側の開口縁が欠ける、所謂コバ欠けが発生し易い。本発明者らが検討を重ねた結果、圧粉成形体の穴あけ加工に上記Rドリル又はマルチアングルドリルを使用することで、貫通孔を形成する際のコバ欠けの発生を抑制できるとの知見を得た。Rドリルとは、切れ刃の形状が円弧状(R形状)のドリルであり、マルチアングルドリルとは、切れ刃の形状が中心側から外周側にかけて先端角が段階的に減少する形状のドリルである。ここでいう「切れ刃の形状」とは、ドリルの中心軸を通り、軸に平行な面に対して切れ刃を平行にして、その平行な面に対して直交する方向から投影したときの切れ刃の投影形状のことである。切れ刃の形状が円弧状の場合、ドリルを回転させてドリルの回転軸に直交する方向から切れ刃を見たとき、切れ刃の回転軌跡が円弧状に見える。 When drilling is performed on the green compact with a drill, when the through hole is formed, a so-called edge chipping occurs in which the opening edge on the outlet side from which the drill comes out is chipped. As a result of repeated studies by the present inventors, it has been found that by using the R drill or the multi-angle drill for drilling a green compact, it is possible to suppress the occurrence of edge chipping when forming a through hole. Obtained. The R drill is a drill whose shape of the cutting edge is an arc (R shape), and the multi-angle drill is a drill whose shape of the cutting edge gradually decreases from the center side to the outer peripheral side. is there. The “shape of the cutting edge” as used herein refers to the cutting edge when projected from a direction perpendicular to the parallel plane passing through the center axis of the drill, with the cutting edge parallel to the plane parallel to the axis. It is the projected shape of the blade. When the shape of the cutting edge is an arc, when the drill is rotated and the cutting edge is viewed from a direction orthogonal to the rotation axis of the drill, the rotation locus of the cutting edge appears to be an arc.
(3)上記焼結部品の製造方法の一形態として、穴あけ加工工程において、2つ以上の貫通孔を形成し、少なくとも1つの貫通孔を別の貫通孔の内周面に抜けるように形成することが挙げられる。 (3) As one form of the manufacturing method of the said sintered component, in a drilling process, 2 or more through-holes are formed, and at least 1 through-hole is formed so that it may pass out to the internal peripheral surface of another through-hole. Can be mentioned.
上記焼結部品の製造方法によれば、2つ以上の貫通孔が形成され、少なくとも1つの貫通孔が別の貫通孔の内周面に抜けるように形成された焼結部品を製造できる。上記焼結部品の製造方法によれば、従来の製造方法では実現困難であった、別の貫通孔の内周面に設けられた貫通孔の開口にバリが少ない又はバリのない焼結部品を得ることができる。 According to the method for manufacturing a sintered part, a sintered part can be manufactured in which two or more through holes are formed and at least one through hole passes through the inner peripheral surface of another through hole. According to the method for manufacturing a sintered part, a sintered part having few or no burrs at the opening of a through hole provided on the inner peripheral surface of another through hole, which is difficult to realize by a conventional manufacturing method. Can be obtained.
(4)上記焼結部品の製造方法の一形態として、曲面の内周面を有する溝又は穴が圧粉成形体に形成されている。そして、穴あけ加工工程において、貫通孔を溝又は穴の内周面に抜けるように形成することが挙げられる。 (4) As one form of the manufacturing method of the said sintered component, the groove | channel or hole which has a curved inner peripheral surface is formed in the compacting body. And in a drilling process, forming a through-hole so that it may pass out to the inner peripheral surface of a groove | channel or a hole is mentioned.
上記焼結部品の製造方法によれば、曲面の内周面を有する溝又は穴が形成され、貫通孔が溝又は穴の内周面に抜けるように形成された焼結部品を製造できる。上記焼結部品の製造方法によれば、従来の製造方法では実現困難であった、溝又は穴の内周面に設けられた貫通孔の開口にバリが少ない又はバリのない焼結部品を得ることができる。 According to the method for manufacturing a sintered part, a groove or hole having a curved inner peripheral surface is formed, and a sintered part formed so that a through hole passes through the inner peripheral surface of the groove or hole can be manufactured. According to the above method for manufacturing a sintered part, a sintered part having few or no burrs in the opening of the through hole provided on the inner peripheral surface of the groove or hole, which is difficult to realize by the conventional manufacturing method, is obtained. be able to.
(5)上記焼結部品の製造方法の一形態として、成形工程において、圧粉成形体を曲面の内周面を有する筒状体とする。そして、穴あけ加工工程において、貫通孔を筒状体の内周面に抜けるように形成することが挙げられる。 (5) As one form of the manufacturing method of the said sintered component, let a compacting body be a cylindrical body which has a curved inner peripheral surface in a formation process. And in a drilling process, forming a through-hole so that it may pass out to the internal peripheral surface of a cylindrical body is mentioned.
上記焼結部品の製造方法によれば、曲面の内周面を有する筒状体であり、貫通孔が筒状体の内周面に抜けるように形成された焼結部品を製造できる。上記焼結部品の製造方法によれば、従来の製造方法では実現困難であった、筒状体の内周面に設けられた貫通孔の開口にバリが少ない又はバリのない焼結部品を得ることができる。 According to the method for manufacturing a sintered part, it is possible to manufacture a sintered part that is a cylindrical body having a curved inner peripheral surface and is formed so that a through hole passes through the inner peripheral surface of the cylindrical body. According to the method for manufacturing a sintered part, a sintered part having few or no burrs at the opening of the through hole provided in the inner peripheral surface of the cylindrical body, which is difficult to realize by the conventional manufacturing method, is obtained. be able to.
(6)本発明の一形態に係る焼結部品は、曲面を有し、少なくとも1つの貫通孔が形成された焼結部品である。そして、貫通孔の内周面が梨地状である。また、少なくとも1つの貫通孔が焼結部品の曲面に抜けるように形成され、貫通孔の少なくとも一方の開口が曲面に設けられている。 (6) A sintered part according to an embodiment of the present invention is a sintered part having a curved surface and having at least one through hole formed therein. And the inner peripheral surface of a through-hole is satin-like. Further, at least one through hole is formed so as to pass through the curved surface of the sintered part, and at least one opening of the through hole is provided on the curved surface.
上述したように、焼結前の圧粉成形体にドリルで穴あけ加工した場合、金属粉末の粒子同士の結合が弱いため、金属粉末の粒子をドリルで削り落としながら切削し、貫通孔を形成していく。そのため、圧粉成形体に形成された貫通孔の内周面は、粒子による凹凸が全体的に形成され梨地状となる。貫通孔の内周面の表面性状は焼結後も実質的に維持されることから、貫通孔が形成された圧粉成形体を焼結した焼結部品においても貫通孔の内周面は梨地状となる。つまり、焼結部品に形成された貫通孔の内周面が梨地状であるということは、焼結前の圧粉成形体に対してドリルで穴あけ加工したことを表している。したがって、上記焼結部品は、焼結後に貫通孔を形成した従来の焼結部品に比較して、生産性に優れる。 As mentioned above, when drilling a green compact before sintering, the metal powder particles are weakly bonded, so the metal powder particles are cut off with a drill to form through holes. To go. Therefore, the inner peripheral surface of the through-hole formed in the green compact has a textured shape with the overall irregularities formed by the particles. Since the surface properties of the inner peripheral surface of the through hole are substantially maintained after sintering, the inner peripheral surface of the through hole is satin-finished even in sintered parts obtained by sintering the green compact formed with the through hole. It becomes a shape. In other words, the fact that the inner peripheral surface of the through hole formed in the sintered part has a satin shape indicates that the green compact before sintering has been drilled. Therefore, the sintered part is excellent in productivity as compared with a conventional sintered part in which a through hole is formed after sintering.
更に、上記焼結部品によれば、焼結前の圧粉成形体に穴あけ加工を行い、圧粉成形体の段階で貫通孔を形成していることから、貫通孔の開口にバリが発生し難く、たとえバリが発生しても圧粉成形体の段階であれば容易に除去できるため、貫通孔の開口にバリが少ない又はバリのない焼結部品が得られる。特に、焼結部品の曲面に抜けるように貫通孔が形成されている場合であっても、バリ取りのために曲面を研磨する必要もない。よって、上記焼結部品は、貫通孔のバリが少なく、生産性に優れる。 Furthermore, according to the above sintered parts, since the through-holes are formed in the green compact before sintering and the through holes are formed at the stage of the green compact, burrs are generated at the openings of the through holes. It is difficult, and even if burrs are generated, they can be easily removed at the stage of the green compact, so that a sintered part with few or no burrs can be obtained at the openings of the through holes. In particular, even when the through-hole is formed so as to pass through the curved surface of the sintered part, it is not necessary to polish the curved surface for deburring. Therefore, the sintered part has fewer through-hole burrs and is excellent in productivity.
これに対し、焼結後にドリルで穴あけ加工した場合は、金属粉末の粒子同士が焼結により強固に結合しているため、金属粉末の粒子をドリルで切断しながら切削し、貫通孔を形成していく。そのため、焼結部品に対してドリルで穴あけ加工を行うことによって形成された貫通孔の内周面は全体的に凹凸の少ない平滑な面となり、光沢を有する。 In contrast, when drilling with a drill after sintering, the metal powder particles are firmly bonded together by sintering, so the metal powder particles are cut while being drilled to form through holes. To go. Therefore, the inner peripheral surface of the through-hole formed by drilling a sintered part with a drill is a smooth surface with little unevenness as a whole, and has gloss.
(7)上記焼結部品の一形態として、上記貫通孔の内周面の十点平均粗さRzが20μm以上であることが挙げられる。 (7) As one form of the sintered part, the ten-point average roughness Rz of the inner peripheral surface of the through hole is 20 μm or more.
焼結前の圧粉成形体にドリルで貫通孔を形成して焼結した場合、焼結部品に形成された貫通孔の内周面の十点平均粗さRzは、金属粉末の粒子の形状・サイズにもよるが、例えば20μm以上であることが挙げられる。貫通孔の内周面の十点平均粗さRzの上限は、例えば150μm以下であることが挙げられる。一方、焼結後にドリルで貫通孔を形成した場合、焼結部品に形成された貫通孔の内周面の十点平均粗さRzは、通常20μm未満、更に15μm以下である。 When forming a through-hole with a drill in a green compact before sintering and sintering, the ten-point average roughness Rz of the inner peripheral surface of the through-hole formed in the sintered part is the shape of the metal powder particles -Depending on the size, for example, it may be 20 μm or more. The upper limit of the ten-point average roughness Rz of the inner peripheral surface of the through hole is, for example, 150 μm or less. On the other hand, when a through-hole is formed with a drill after sintering, the ten-point average roughness Rz of the inner peripheral surface of the through-hole formed in the sintered part is usually less than 20 μm and further 15 μm or less.
(8)上記焼結部品の一形態として、2つ以上の貫通孔が形成され、少なくとも1つの貫通孔が別の貫通孔の内周面に抜けるように形成されていることが挙げられる。 (8) As one form of the sintered component, two or more through-holes are formed, and at least one through-hole is formed so as to come out to the inner peripheral surface of another through-hole.
上記焼結部品は、別の貫通孔の内周面に設けられた貫通孔の開口にバリが少ない又はバリがない。 The sintered component has few or no burrs at the opening of the through hole provided on the inner peripheral surface of another through hole.
(9)上記焼結部品の一形態として、曲面の内周面を有する溝又は穴が形成されており、貫通孔が溝又は穴の内周面に抜けるように形成されていることが挙げられる。 (9) As one form of the sintered part, a groove or a hole having a curved inner peripheral surface is formed, and the through hole is formed so as to come out to the inner peripheral surface of the groove or hole. .
上記焼結部品は、溝又は穴の内周面に設けられた貫通孔の開口にバリが少ない又はバリがない。 In the sintered part, there are few or no burrs at the openings of the through holes provided on the inner peripheral surface of the groove or hole.
(10)上記焼結部品の一形態として、曲面の内周面を有する筒状体であり、貫通孔が筒状体の内周面に抜けるように形成されていることが挙げられる。 (10) As one form of the sintered component, it is a cylindrical body having a curved inner peripheral surface, and the through hole is formed so as to come out to the inner peripheral surface of the cylindrical body.
上記焼結部品は、筒状体の内周面に設けられた貫通孔の開口にバリが少ない又はバリがない。 In the sintered part, there are few or no burrs at the openings of the through holes provided on the inner peripheral surface of the cylindrical body.
[本発明の実施形態の詳細]
本発明の実施形態に係る焼結部品の製造方法、及び焼結部品の具体例を、以下図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A method for manufacturing a sintered part according to an embodiment of the present invention and a specific example of the sintered part will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
<焼結部品の製造方法>
本発明の実施形態に係る焼結部品の製造方法は、圧粉成形体を作製する成形工程と、圧粉成形体にドリルで穴あけ加工を行う穴あけ加工工程と、穴あけ加工後、圧粉成形体を焼結する焼結工程とを備える。焼結部品の製造方法は、穴あけ加工工程において、少なくとも1つの貫通孔を圧粉成形体の曲面に抜けるように形成し、貫通孔の少なくとも一方の開口を曲面に設けることを特徴の1つとする。以下、主に図1を参照しながら、製造方法の各工程について詳しく説明する。
<Method for manufacturing sintered parts>
A method for manufacturing a sintered part according to an embodiment of the present invention includes a forming step for producing a green compact, a drilling step for drilling a green compact with a drill, and a green compact after drilling. And a sintering step of sintering. The method for producing a sintered part is characterized in that, in the drilling step, at least one through hole is formed so as to pass through the curved surface of the green compact, and at least one opening of the through hole is provided on the curved surface. . Hereinafter, each process of the manufacturing method will be described in detail with reference mainly to FIG.
(成形工程)
成形工程では、金属粉末を含有する原料粉末のプレス成形を経て、曲面を有する圧粉成形体Gを作製する(図1の上図を参照)。圧粉成形体Gは、焼結部品の素材であり、製造する焼結部品S(図1の下図を参照)に対応した形状に成形されている。ここでは、圧粉成形体G(焼結部品S)として、中心に円形状の軸孔30が形成された円筒状のものを例として挙げている。つまり、図1に例示する圧粉成形体G(焼結部品S)は、円柱形(曲面)の内周面を有する円筒体(筒状体)である。
(Molding process)
In the molding step, a green compact G having a curved surface is produced through press molding of a raw material powder containing metal powder (see the upper diagram of FIG. 1). The green compact G is a raw material of a sintered part, and is molded into a shape corresponding to the sintered part S to be manufactured (see the lower diagram of FIG. 1). Here, as the green compact G (sintered part S), a cylindrical one having a circular shaft hole 30 formed at the center is taken as an example. That is, the green compact G (sintered part S) illustrated in FIG. 1 is a cylindrical body (cylindrical body) having a cylindrical (curved surface) inner peripheral surface.
〈原料粉末〉
原料粉末は、金属粉末を主体として含有する。金属粉末の材質は、製造する焼結部品の材質に応じて適宜選択でき、代表的には、鉄系材料が挙げられる。「鉄系材料」とは、鉄又は鉄を主成分とする鉄合金のことである。鉄合金としては、例えば、Ni,Cu,Cr,Mo,Mn,C,Si,Al,P,B,N及びCoから選択される1種以上の添加元素を含有するものが挙げられる。具体的な鉄合金としては、ステンレス鋼、Fe−C系合金,Fe−Cu−Ni−Mo系合金,Fe−Ni−Mo−Mn系合金,Fe−P系合金,Fe−Cu系合金,Fe−Cu−C系合金,Fe−Cu−Mo系合金,Fe−Ni−Mo−Cu−C系合金,Fe−Ni−Cu系合金,Fe−Ni−Mo−C系合金,Fe−Ni−Cr系合金,Fe−Ni−Mo−Cr系合金,Fe−Cr系合金,Fe−Mo−Cr系合金,Fe−Cr−C系合金,Fe−Ni−C系合金,Fe−Mo−Mn−Cr−C系合金などが挙げられる。鉄系材料の粉末を主体とすることで、鉄系焼結部品が得られる。鉄系材料の粉末を主体とする場合、その含有量は、原料粉末を100質量%とするとき、例えば90質量%以上、更に95質量%以上とすることが挙げられる。
<Raw material powder>
The raw material powder contains a metal powder as a main component. The material of the metal powder can be appropriately selected according to the material of the sintered part to be manufactured, and typically includes an iron-based material. “Iron-based material” is iron or an iron alloy containing iron as a main component. Examples of the iron alloy include those containing one or more additive elements selected from Ni, Cu, Cr, Mo, Mn, C, Si, Al, P, B, N, and Co. Specific iron alloys include stainless steel, Fe-C alloy, Fe-Cu-Ni-Mo alloy, Fe-Ni-Mo-Mn alloy, Fe-P alloy, Fe-Cu alloy, Fe -Cu-C alloy, Fe-Cu-Mo alloy, Fe-Ni-Mo-Cu-C alloy, Fe-Ni-Cu alloy, Fe-Ni-Mo-C alloy, Fe-Ni-Cr Alloy, Fe-Ni-Mo-Cr alloy, Fe-Cr alloy, Fe-Mo-Cr alloy, Fe-Cr-C alloy, Fe-Ni-C alloy, Fe-Mo-Mn-Cr -C system alloy etc. are mentioned. An iron-based sintered part can be obtained by mainly using powder of iron-based material. When the powder of iron-based material is mainly used, the content is, for example, 90% by mass or more, and further 95% by mass or more when the raw material powder is 100% by mass.
鉄系材料の粉末、特に鉄粉を主体とする場合、合金成分としてCu,Ni,Moなどの金属粉末を添加してもよい。Cu,Ni,Moは、焼入れ性を向上させる元素であり、その添加量は、原料粉末を100質量%とするとき、例えば0質量%超5質量%以下、更に0.1質量%以上2質量%以下とすることが挙げられる。また、炭素(黒鉛)粉などの非金属無機材料を添加してもよい。Cは、焼結体やその熱処理体の強度を向上させる元素であり、その含有量は、原料粉末を100質量%とするとき、例えば0質量%超2質量%以下、更に0.1質量%以上1質量%以下とすることが挙げられる。 When iron-based material powder, particularly iron powder, is mainly used, metal powder such as Cu, Ni, and Mo may be added as an alloy component. Cu, Ni, and Mo are elements that improve the hardenability. The amount of addition is, for example, more than 0% by mass and 5% by mass or less, and further 0.1% by mass to 2% by mass when the raw material powder is 100% by mass. % Or less. Moreover, you may add nonmetallic inorganic materials, such as carbon (graphite) powder. C is an element that improves the strength of the sintered body and the heat-treated body, and the content thereof is, for example, more than 0% by mass and 2% by mass or less, further 0.1% by mass when the raw material powder is 100% by mass. For example, the content may be 1% by mass or less.
原料粉末は、潤滑剤を含有することが好ましい。原料粉末が潤滑剤を含有することで、原料粉末をプレス成形して圧粉成形体Gを作製する際に成形時の潤滑性が高められ、成形性が向上する。よって、プレス成形の圧力を低くしても、緻密な圧粉成形体Gを得易く、圧粉成形体Gの密度を高めることで、高密度の焼結部品Sを得易い。更に、原料粉末に潤滑剤を混合すると、圧粉成形体G中に潤滑剤が分散することになるため、後工程で圧粉成形体Gにドリル10で穴あけ加工する(図1の中図を参照)際にドリルの潤滑剤としても機能する。したがって、切削抵抗(スラスト荷重)を低減したり、工具寿命を改善できる。潤滑剤としては、例えば、ステアリン酸亜鉛、ステアリン酸リチウムなどの金属石鹸、ステアリン酸アミドなどの脂肪酸アミド、エチレンビスステアリン酸アミドなどの高級脂肪酸アミドなどが挙げられる。潤滑剤は、固体状や粉末状、液体状など形態を問わない。潤滑剤の含有量は、原料粉末を100質量%とするとき、例えば2質量%以下、更に1質量%以下とすることが挙げられる。潤滑剤の含有量が2質量%以下であれば、圧粉成形体Gに含まれる金属粉末の割合を多くできる。そのため、プレス成形の圧力を低くしても、緻密な圧粉成形体Gを得易い。更に、後工程で圧粉成形体Gを焼結した際に潤滑剤が消失することによる体積収縮を抑制でき、寸法精度が高く、高密度の焼結部品Sを得易い。潤滑剤の含有量は、潤滑性の向上効果を得る観点から、0.1質量%以上、更に0.5質量%以上が好ましい。 The raw material powder preferably contains a lubricant. When the raw material powder contains a lubricant, when the raw material powder is press-molded to produce the green compact G, the lubricity at the time of molding is enhanced, and the moldability is improved. Therefore, even if the pressure of press molding is lowered, it is easy to obtain a dense green compact G, and by increasing the density of the green compact G, it is easy to obtain a high-density sintered part S. Further, when the lubricant is mixed with the raw material powder, the lubricant is dispersed in the green compact G, so that the green compact G is drilled with a drill 10 in the subsequent process (see the middle diagram in FIG. 1). It also functions as a drill lubricant. Therefore, cutting resistance (thrust load) can be reduced and tool life can be improved. Examples of the lubricant include metal soaps such as zinc stearate and lithium stearate, fatty acid amides such as stearic acid amide, and higher fatty acid amides such as ethylene bis stearic acid amide. The lubricant may be in the form of a solid, powder, liquid or the like. The content of the lubricant is, for example, 2% by mass or less, further 1% by mass or less when the raw material powder is 100% by mass. If the content of the lubricant is 2% by mass or less, the proportion of the metal powder contained in the green compact G can be increased. Therefore, even if the pressure of press molding is lowered, it is easy to obtain a dense green compact G. Furthermore, volume shrinkage due to the disappearance of the lubricant when the green compact G is sintered in the subsequent process can be suppressed, and the dimensional accuracy is high and the high-density sintered part S can be easily obtained. The content of the lubricant is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more from the viewpoint of obtaining an effect of improving lubricity.
原料粉末は、有機バインダーを含有していない。原料粉末に有機バインダーを含有しないことで、圧粉成形体Gに含まれる金属粉末の割合を多くできるため、プレス成形の圧力を低くしても、緻密な圧粉成形体Gを得易い。更に、圧粉成形体Gを後工程で脱脂する必要もない。 The raw material powder does not contain an organic binder. Since the ratio of the metal powder contained in the green compact G can be increased by not containing the organic binder in the raw material powder, it is easy to obtain a dense green compact G even if the pressure of the press molding is lowered. Furthermore, it is not necessary to degrease the green compact G in a subsequent process.
原料粉末は、上述した金属粉末を主体とし、不可避不純物を含むことを許容する。 The raw material powder is mainly composed of the above-described metal powder, and is allowed to contain inevitable impurities.
上述した金属粉末は、水アトマイズ粉、還元粉、ガスアトマイズ粉などが利用でき、中でも、水アトマイズ粉又は還元粉が好適である。水アトマイズ粉や還元粉は、粒子表面に凹凸が多く形成されていることから、成形時に粒子同士の凹凸が噛み合って、圧粉成形体Gの保形力を高められる。一般に、ガスアトマイズ粉では、表面に凹凸の少ない粒子が得られ易いのに対し、水アトマイズ粉又は還元粉では、表面に凹凸が多い粒子が得られ易い。また、金属粉末の平均粒径は、例えば20μm以上、50μm以上150μm以下とすることが挙げられる。「金属粉末の平均粒径」とは、レーザ回折式粒度分布測定装置により測定した体積粒度分布における累積体積が50%となる粒径(D50)のことである。金属粉末の平均粒径が上記範囲内であれば、取り扱い易く、プレス成形が行い易い。 As the metal powder, water atomized powder, reduced powder, gas atomized powder, and the like can be used, and among them, water atomized powder or reduced powder is preferable. Since the water atomized powder and the reduced powder have many irregularities formed on the particle surface, the irregularities between the particles are meshed during molding, and the shape retention of the green compact G can be increased. In general, with gas atomized powder, particles with less unevenness are easily obtained, whereas with water atomized powder or reduced powder, particles with more unevenness are more likely to be obtained. The average particle size of the metal powder is, for example, 20 μm or more and 50 μm or more and 150 μm or less. The “average particle diameter of the metal powder” is a particle diameter (D50) at which the cumulative volume in the volume particle size distribution measured by a laser diffraction particle size distribution measuring device is 50%. If the average particle diameter of the metal powder is within the above range, it is easy to handle and press forming.
〈プレス成形〉
プレス成形は、最終製品である焼結部品に対応した形状に成形できる成形装置(成形用金型)を用いる。図1に例示する圧粉成形体Gでは、軸孔30を成形時に一体に形成しており、円柱形(曲面)の内周面を有する円筒体(筒状体)に成形している。この圧粉成形体Gは、例えば、圧粉成形体Gの両端面を形成する円環状のプレス面を有する上下のパンチと、上下パンチの内側に挿通されて、圧粉成形体Gの内周面を形成する円柱状の内側ダイと、上下パンチの外周を囲み、圧粉成形体Gの外周面を形成する円形状の挿通孔が形成された外側ダイとを用いて形成できる。この圧粉成形体Gの軸方向両端面は上下のパンチでプレスされたプレス面、内周面と外周面とは内外のダイとの摺接面であり、軸孔30は成形時に一体に形成される。プレス成形の圧力は、例えば250MPa以上800MPa以下とすることが挙げられる。
<Press molding>
In press molding, a molding apparatus (molding die) that can be molded into a shape corresponding to a sintered part as a final product is used. In the green compact G illustrated in FIG. 1, the shaft hole 30 is integrally formed at the time of molding, and is formed into a cylindrical body (tubular body) having a cylindrical (curved surface) inner peripheral surface. The green compact G is inserted into, for example, upper and lower punches having annular press surfaces that form both end faces of the green compact G, and the upper and lower punches. It can be formed using a cylindrical inner die that forms a surface and an outer die that surrounds the outer peripheries of the upper and lower punches and is formed with circular insertion holes that form the outer peripheral surface of the green compact G. Both end surfaces in the axial direction of the green compact G are press surfaces pressed by upper and lower punches, the inner peripheral surface and the outer peripheral surface are slidable contact surfaces with the inner and outer dies, and the shaft hole 30 is formed integrally during molding. Is done. The press molding pressure is, for example, 250 MPa or more and 800 MPa or less.
(穴あけ加工工程)
穴あけ加工工程では、圧粉成形体Gにドリル10で穴あけ加工を行い、少なくとも1つの貫通孔50を形成する(図1の中図を参照)。ここでは、ドリル10によって、圧粉成形体Gの外周面から内周面(曲面)に抜ける貫通孔50を1つ形成している。つまり、圧粉成形体Gに成形された軸孔(成形孔)30とドリル10で形成した貫通孔(ドリル孔)50とが繋がっており、貫通孔50の出口側の開口が圧粉成形体Gの内周面(軸孔30の内周面)に設けられている。この例では、貫通孔50の内周面と圧粉成形体Gの外側面(端面)との距離(厚さ)が貫通孔50の径と同じ以上になる箇所に貫通孔50を形成している。
(Drilling process)
In the drilling process, the green compact G is drilled with a drill 10 to form at least one through hole 50 (see the middle diagram of FIG. 1). Here, the drill 10 forms one through-hole 50 that passes from the outer peripheral surface of the green compact G to the inner peripheral surface (curved surface). That is, the shaft hole (molding hole) 30 formed in the green compact G is connected to the through hole (drill hole) 50 formed by the drill 10, and the opening on the outlet side of the through hole 50 is the green compact. It is provided on the inner peripheral surface of G (the inner peripheral surface of the shaft hole 30). In this example, the through hole 50 is formed at a location where the distance (thickness) between the inner peripheral surface of the through hole 50 and the outer surface (end surface) of the green compact G is equal to or larger than the diameter of the through hole 50. Yes.
〈ドリル〉
圧粉成形体Gの穴あけ加工に使用するドリル10は、圧粉成形体Gを穴あけ加工できるものであれば、特に問わないが、コバ欠けの発生を抑制する観点から、以下に述べるRドリル(図2を参照)又はマルチアングルドリル(図4を参照)であることが好ましい。Rドリル及びマルチアングルドリルについて説明する。
<drill>
The drill 10 used for drilling the green compact G is not particularly limited as long as the green compact G can be drilled. From the viewpoint of suppressing the occurrence of edge chipping, the drill 10 described below is used. 2) or a multi-angle drill (see FIG. 4). The R drill and multi-angle drill will be described.
〈Rドリル〉
図2を参照して、Rドリルについて説明する。Rドリル10Rは、先端部100に円弧状の切れ刃110を有するドリルである。先端部100は、切れ刃110の先端(頂点)から外周コーナ120までの部分である。ここでは、切れ刃が水平面に対して平行となるようにドリルを配置して、水平面に直交する方向から見たときの面を平面と呼ぶ。また、切れ刃が水平面に対して平行となるようにドリルを配置して、ドリルの中心軸に直交し、かつ、水平面に平行な方向から見たときの面を側面と呼ぶ。図2の左上図はドリルの概略平面図であり、図2の左下図はドリルを先端側から見た概略正面図であり、図2の右下図はドリルの先端部を部分的に示す概略側面図である。
<R drill>
The R drill will be described with reference to FIG. The R drill 10 </ b> R is a drill having an arcuate cutting edge 110 at the distal end portion 100. The tip portion 100 is a portion from the tip (vertex) of the cutting edge 110 to the outer periphery corner 120. Here, the surface when the drill is arranged so that the cutting edge is parallel to the horizontal plane and viewed from the direction orthogonal to the horizontal plane is referred to as a plane. Further, a surface when the drill is arranged so that the cutting edge is parallel to the horizontal plane and is viewed from a direction orthogonal to the central axis of the drill and parallel to the horizontal plane is referred to as a side surface. 2 is a schematic plan view of the drill, the lower left diagram of FIG. 2 is a schematic front view of the drill viewed from the tip side, and the lower right diagram of FIG. 2 is a schematic side view partially showing the tip of the drill. FIG.
〈切れ刃の形状〉
図2に例示するRドリル10Rは、図2の左上図に示すように、Rドリル10Rの中心軸に平行な面に対して切れ刃110を平行にして、その平行な面に対して直交する方向から平面視したとき、切れ刃110の投影形状が円弧状である。切れ刃110を形成する円弧の中心角αは、例えば130°以上であり、好ましくは135°以上180°以下、より好ましくは150°以上である。この例では、円弧の中心角αが180°である。一方、切れ刃を形成する円弧の半径Rは、例えばドリルの直径dの0.4倍以上0.6倍以下であり、好ましくはドリル径dの0.5倍、即ちドリル径dの半径(d/2)と同等である。この例では、切れ刃の形状が半円状であり、円弧の中心角αが180°で、かつ、円弧の半径Rがドリル径dの半径に等しい。つまり、ドリルの軸方向に沿った先端部100の長さhが円弧の半径Rに等しい。Rドリル10Rの直径dは、特に限定されないが、例えば1.0mm以上20.0mm以下である。ここでいう「ドリルの直径(ドリル径)」とは、切れ刃が形成される部分(所謂、刃部)の外径寸法のことである。
<Shape of cutting edge>
The R drill 10R illustrated in FIG. 2 has a cutting edge 110 parallel to a plane parallel to the central axis of the R drill 10R and is orthogonal to the parallel plane, as shown in the upper left diagram of FIG. When viewed in plan from the direction, the projected shape of the cutting edge 110 is arcuate. The central angle α of the arc forming the cutting edge 110 is, for example, 130 ° or more, preferably 135 ° or more and 180 ° or less, and more preferably 150 ° or more. In this example, the central angle α of the arc is 180 °. On the other hand, the radius R of the arc forming the cutting edge is, for example, not less than 0.4 times and not more than 0.6 times the diameter d of the drill, preferably 0.5 times the drill diameter d, that is, the radius of the drill diameter d ( d / 2). In this example, the shape of the cutting edge is semicircular, the center angle α of the arc is 180 °, and the radius R of the arc is equal to the radius of the drill diameter d. That is, the length h of the tip 100 along the axial direction of the drill is equal to the radius R of the arc. Although the diameter d of R drill 10R is not specifically limited, For example, they are 1.0 mm or more and 20.0 mm or less. The “drill diameter (drill diameter)” as used herein refers to the outer diameter of the portion where the cutting edge is formed (so-called blade portion).
〈切れ刃のすくい角〉
切れ刃110のすくい角は、例えば0°以上であり、好ましくは0°超10°以下、より好ましくは5°以上8°以下である。ここでいう「すくい角」とは、ドリルの中心軸に平行な面に対して切れ刃を平行にしたとき、その平行な面とすくい面とがなす角度のことである。具体的には、切れ刃110のすくい角は、図2の右下図に示すように、Rドリル10Rの中心軸に平行な面に対して切れ刃110を平行にして、Rドリル10Rの中心軸に直交し、かつ、水平面に平行な方向から側面視したとき、軸に平行な面Pと切れ刃110を構成するすくい面111とがなす角度γのことである。この例では、切れ刃110のすくい角が7°である。
<Rake angle of cutting edge>
The rake angle of the cutting edge 110 is, for example, 0 ° or more, preferably more than 0 ° and 10 ° or less, more preferably 5 ° or more and 8 ° or less. The “rake angle” here is an angle formed between the parallel surface and the rake surface when the cutting edge is made parallel to the surface parallel to the center axis of the drill. Specifically, as shown in the lower right diagram of FIG. 2, the rake angle of the cutting edge 110 is such that the cutting edge 110 is parallel to the plane parallel to the central axis of the R drill 10R, and the central axis of the R drill 10R. Is an angle γ formed by the plane P parallel to the axis and the rake face 111 constituting the cutting edge 110 when viewed from the side parallel to the horizontal plane. In this example, the rake angle of the cutting edge 110 is 7 °.
ここで、圧粉成形体Gの穴あけ加工に上述した円弧状の切れ刃を有するRドリル10Rを使用することで、コバ欠けの発生を抑制できる理由は次のように考えられる。 Here, the reason why the occurrence of edge chipping can be suppressed by using the above-described R drill 10R having the arc-shaped cutting edge for drilling the green compact G is considered as follows.
まず、コバ欠けの発生メカニズムは、次のように考えられる。圧粉成形体Gの場合、金属粉末の粒子同士の結合が弱いため、脆い。そのため、ドリル10が貫通する際に貫通孔50の底部の厚さが薄くなることで、スラスト荷重に対して底部の強度が維持できなくなった場合、ドリル10が貫通するより先に、切削できずに底部が出口側に抜け落ちる(押し出される)。貫通孔50の底部が切削されずに抜け落ちる際、底部近傍も一緒に崩れることで、ドリル10が抜ける出口側の開口縁に欠けが発生する。 First, the mechanism of the occurrence of edge cracks is considered as follows. In the case of the green compact G, since the bond between the metal powder particles is weak, it is brittle. Therefore, when the drill 10 penetrates, the thickness of the bottom portion of the through hole 50 becomes thin, and when the strength of the bottom portion cannot be maintained against the thrust load, cutting cannot be performed before the drill 10 penetrates. The bottom part falls out to the outlet side (extruded). When the bottom portion of the through hole 50 falls out without being cut, the vicinity of the bottom portion collapses together, so that the opening edge on the outlet side through which the drill 10 comes out is chipped.
図3の左図は、切れ刃の形状が円弧状(半円状)のRドリル10Rと、Rドリル10Rで穴あけ加工を行った圧粉成形体Gを示している。図3に示すRドリル10Rは、説明を分かり易くするため、溝などを省略して簡易的に図示している。 The left diagram in FIG. 3 shows an R drill 10R whose cutting edge has an arc shape (semicircular shape) and a green compact G that has been drilled with the R drill 10R. The R drill 10 </ b> R shown in FIG. 3 is simply illustrated by omitting grooves and the like for easy understanding.
Rドリル10Rは、図3の左側の上図に示すように、切れ刃110の形状が半円状である。図3の左側の下2図に示すように、Rドリル10Rで圧粉成形体Gに穴あけ加工した場合(図中の白抜き矢印は、ドリルの送り方向を示す)、切れ刃110の形状が圧粉成形体Gに転写され、底面が断面円弧(半円)状、即ち半球状の穴が圧粉成形体Gに形成されることになる。Rドリル10Rでは、切れ刃110の形状が円弧(半円弧)であるため、図中の実線矢印のように、スラスト荷重が放射状に分散して作用することになる。一方、圧粉成形体Gにおいて、半球状の穴の底面は、図中の実線矢印のように、ドリルのスラスト荷重に対して円弧の辺(半球面)で支えるので、変形に強く、強度が高い。つまり、Rドリル10Rで圧粉成形体Gに穴あけ加工した場合、スラスト荷重自体が低い上、底部に作用するスラスト荷重が分散されるので、応力集中も少なく、底部の強度が維持される。加えて、穴の底面の最大厚さHtは、先端部100の長さhに等しく、先端部100の長さhが大きいほど、大きくなる。Rドリル10Rであれば、穴の底面の最大厚さHtを大きくとれるので、その厚さ分、底部の強度が高くなる。したがって、Rドリル10Rで圧粉成形体Gに穴あけ加工した場合、スラスト荷重が低いことも相まって、ドリルが貫通する際に貫通孔の底部の厚さが薄くなっても、スラスト荷重に対して底部の強度が維持され易く、ドリルが貫通する間際まで切削できる。よって、ドリルが貫通するより先に、切削できずに底部が崩れることを抑制できるので、コバ欠けの発生を抑制できる。 In the R drill 10R, the shape of the cutting edge 110 is semicircular as shown in the upper diagram on the left side of FIG. As shown in FIG. 2 on the left side of FIG. 3, when the green compact G is drilled with an R drill 10R (the white arrow in the figure indicates the feed direction of the drill), the shape of the cutting edge 110 is Transferred to the green compact G, and the bottom surface has a circular arc shape (semicircle), that is, a semispherical hole is formed in the green compact G. In the R drill 10R, since the shape of the cutting edge 110 is a circular arc (semi-circular arc), the thrust load acts in a radially distributed manner as indicated by solid arrows in the figure. On the other hand, in the green compact G, the bottom surface of the hemispherical hole is supported by the side of the arc (hemispherical surface) with respect to the thrust load of the drill as indicated by the solid line arrow in the figure, so that it is strong against deformation and has high strength. high. That is, when the green compact G is drilled with the R drill 10R, the thrust load itself is low and the thrust load acting on the bottom is dispersed, so that stress concentration is small and the strength of the bottom is maintained. In addition, the maximum thickness Ht of the bottom surface of the hole is equal to the length h of the tip portion 100, and increases as the length h of the tip portion 100 increases. In the case of the R drill 10R, the maximum thickness Ht of the bottom surface of the hole can be increased, so that the strength of the bottom portion is increased by the thickness. Therefore, when the green compact G is drilled with the R drill 10R, even if the thickness of the bottom of the through hole is reduced when the drill penetrates, the bottom of the thrust load is reduced. The strength of the steel is easily maintained, and cutting is possible just before the drill penetrates. Therefore, since it can suppress that a bottom part collapses without being able to cut before a drill penetrates, generation | occurrence | production of an edge chip | tip can be suppressed.
一方で、従来多用されているV字状の切れ刃を有するドリル(以下、「Vドリル」と呼ぶ場合がある)を使用した場合、コバ欠けの発生を抑制することが難しい。図3の右図は、切れ刃の形状がV字状のVドリル11と、Vドリル11で穴あけ加工を行った圧粉成形体Gを示している。図3に例示するVドリル11は、Rドリル10Rと同様、溝などを省略して簡易的に図示している。また、この例では、Vドリル11は、切れ刃110の先端角βが130°〜140°程度であり、ドリル径dがRドリル10Rと同等である。 On the other hand, when using a drill having a V-shaped cutting edge that has been widely used in the past (hereinafter sometimes referred to as “V drill”), it is difficult to suppress the occurrence of edge chipping. The right view of FIG. 3 shows a V-shaped drill 11 having a V-shaped cutting edge and a green compact G that has been drilled with the V-drill 11. The V drill 11 illustrated in FIG. 3 is simply illustrated with grooves and the like omitted as in the R drill 10R. In this example, the V drill 11 has a tip angle β of the cutting edge 110 of about 130 ° to 140 ° and a drill diameter d equivalent to that of the R drill 10R.
図3の右側の下2図に示すように、Vドリル11で圧粉成形体Gに穴あけ加工した場合、切れ刃110の形状が圧粉成形体Gに転写され、底面が断面三角形状、即ち円錐状の穴が圧粉成形体Gに形成されることになる。Vドリル11では、切れ刃110の形状がV字(三角形)であるため、図中の実線矢印のように、スラスト荷重が三角形の辺(円錐面)に直交する方向に作用することになる。一方、圧粉成形体Gにおいて、円錐状の穴の底面は、図中の実線矢印のように、ドリルのスラスト荷重に対して三角形の辺(円錐面)で支えるので、半球状の穴の底面に比較して、応力が集中し、強度も低い。つまり、Vドリル11で圧粉成形体Gに穴あけ加工した場合、Rドリル10Rに比較して、底部に作用するスラスト荷重を分散できず、底部の強度が維持され難い。加えて、Vドリル11の場合、穴の底面の最大厚さHtが小さいので、その厚さ分、底部の強度が低くなる。したがって、Vドリル11で圧粉成形体Gに穴あけ加工した場合、ドリルが貫通する際に貫通孔の底部の厚さが薄くなることで、ドリルが貫通するより先に、切削できずに底部が崩れ易い。そのため、コバ欠けの発生を抑制することが難しい。 As shown in FIG. 2 on the right side of FIG. 3, when the green compact G is drilled with the V drill 11, the shape of the cutting edge 110 is transferred to the green compact G, and the bottom surface is triangular in shape, A conical hole is formed in the green compact G. In the V drill 11, since the shape of the cutting edge 110 is V-shaped (triangle), the thrust load acts in the direction orthogonal to the side (conical surface) of the triangle as indicated by the solid line arrow in the figure. On the other hand, in the green compact G, the bottom surface of the conical hole is supported by a triangular side (conical surface) with respect to the thrust load of the drill as indicated by the solid arrow in the figure. Compared with, stress is concentrated and the strength is low. That is, when the green compact G is drilled with the V drill 11, the thrust load acting on the bottom cannot be dispersed compared to the R drill 10R, and the strength of the bottom is difficult to be maintained. In addition, in the case of the V drill 11, since the maximum thickness Ht of the bottom surface of the hole is small, the strength of the bottom portion is lowered by the thickness. Therefore, when the green compact G is drilled with the V drill 11, the thickness of the bottom portion of the through hole is reduced when the drill penetrates, so that the bottom portion cannot be cut before the drill penetrates. Easy to collapse. Therefore, it is difficult to suppress the occurrence of edge chipping.
以上の理由から、切れ刃を形成する円弧の中心角が135°以上180°以下であることで、コバ欠けの発生を効果的に抑制できる。円弧状の切れ刃の中心角が135°以上であれば、切れ刃の形状が半円状に近づき、スラスト荷重が放射状に分散することによるスラスト荷重の低減効果が高く、穴あけ加工時のスラスト荷重を分散できる。また、穴の底面の形状が半球状に近づくので、スラスト荷重に対する強度を高くでき、加えて、穴の底面の最大厚さHt(図3の左図を参照)も大きくなる分、強度が向上することから、底部の強度を十分に維持できる。円弧の中心角は、例えば150°以上がより好ましく、半円状の切れ刃になるように180°が特に好ましい。一方、切れ刃を形成する円弧の半径は、ドリル径の半径と略同等であることが好ましく、例えば、ドリル径の0.4倍以上0.6倍以下が好ましい。特に、切れ刃の形状は半円状であることが好ましく、円弧の中心角が180°で、かつ、円弧の半径がドリル径の0.5倍、即ちドリル径dの半径に等しいことが好ましい。 For the above reasons, the occurrence of edge chipping can be effectively suppressed when the central angle of the arc forming the cutting edge is 135 ° or more and 180 ° or less. If the center angle of the arcuate cutting edge is 135 ° or more, the cutting edge shape approaches a semicircular shape, and the thrust load is greatly reduced by the radial distribution of the thrust load. Thrust load during drilling Can be distributed. In addition, since the shape of the bottom surface of the hole approaches a hemispherical shape, the strength against thrust load can be increased, and in addition, the maximum thickness Ht of the bottom surface of the hole (see the left figure in FIG. 3) is increased and the strength is improved. Therefore, the strength of the bottom can be sufficiently maintained. The central angle of the arc is more preferably, for example, 150 ° or more, and particularly preferably 180 ° so as to form a semicircular cutting edge. On the other hand, the radius of the arc that forms the cutting edge is preferably substantially equal to the radius of the drill diameter, and is preferably 0.4 times or more and 0.6 times or less of the drill diameter, for example. In particular, the shape of the cutting edge is preferably a semicircular shape, the center angle of the arc is 180 °, and the radius of the arc is preferably 0.5 times the drill diameter, that is, equal to the radius of the drill diameter d. .
コバ欠けの発生を抑制する観点からすれば、切削抵抗(スラスト荷重)がより小さい方が有利であると考えられる。切れ刃のすくい角が0°超10°以下であることで、スラスト荷重を低減できるため、コバ欠けの発生をより効果的に抑制できる。すくい角が0°超であることで、刃先が鋭利となり、スラスト荷重が小さくなる。一方で、すくい角を大きくすると、刃先が鋭利となるため刃先強度は低下するが、被削材が圧粉成形体であるので、刃先強度の低下による欠けは生じ難い。しかし、すくい角が10°超であると、スラスト荷重が大きくなることから、すくい角は10°以下が好ましい。すくい角は、スラスト荷重を低減する観点から、例えば5°以上8°以下がより好ましい。 From the viewpoint of suppressing the occurrence of edge chipping, it is considered that a smaller cutting resistance (thrust load) is advantageous. Since the rake angle of the cutting edge is more than 0 ° and not more than 10 °, the thrust load can be reduced, so that the occurrence of edge chipping can be more effectively suppressed. When the rake angle is greater than 0 °, the cutting edge becomes sharp and the thrust load is reduced. On the other hand, when the rake angle is increased, the cutting edge becomes sharp and the cutting edge strength decreases. However, since the work material is a green compact, chipping due to a decrease in cutting edge strength is unlikely to occur. However, if the rake angle is more than 10 °, the thrust load increases, so the rake angle is preferably 10 ° or less. The rake angle is more preferably 5 ° or more and 8 ° or less, for example, from the viewpoint of reducing the thrust load.
〈マルチアングルドリル〉
図4を参照して、マルチアングルドリルについて説明する。マルチアングルドリル10Wは、先端部100に複数の切れ刃110を有し、かつ切れ刃110の先端角が中心側から外周側にかけて段階的に小さくなるドリルである。図4はドリルの概略平面図である。
<Multi-angle drill>
The multi-angle drill will be described with reference to FIG. The multi-angle drill 10 </ b> W is a drill having a plurality of cutting edges 110 at the tip portion 100, and the tip angle of the cutting edge 110 gradually decreases from the center side to the outer peripheral side. FIG. 4 is a schematic plan view of the drill.
〈切れ刃の形状〉
図4に例示するマルチアングルドリル10Wは、2つの切れ刃110a,110bを有し、切れ刃110が先端中心から外周コーナ120にかけて1次切れ刃110aと2次切れ刃110bとで構成されている。そして、図4に示すように、マルチアングルドリル10Wの中心軸に平行な面に対して切れ刃110を平行にして、その平行な面に対して直交する方向から平面視したとき、切れ刃110の投影形状が、中心側から外周側にかけて先端角(β1,β2)が段階的に減少する形状である。1次切れ刃110aの先端角β1は、例えば100°以上160°以下であり、好ましくは115°以上145°以下である。2次切れ刃110bの先端角β2は、例えば20°以上100°以下であり、好ましくは40°以上80°以下である。但し、先端角β2は、先端角β1より小さい(β1>β2)。この例では、先端角β1が135°、先端角β2が60°である。図4に示すマルチアングルドリル10Wは、先端角を2段にした、所謂ダブルアングルドリルである。
<Shape of cutting edge>
The multi-angle drill 10W illustrated in FIG. 4 has two cutting edges 110a and 110b, and the cutting edge 110 is composed of a primary cutting edge 110a and a secondary cutting edge 110b from the center of the tip to the outer peripheral corner 120. . As shown in FIG. 4, when the cutting edge 110 is parallel to a plane parallel to the central axis of the multi-angle drill 10 </ b> W and viewed from a direction orthogonal to the parallel plane, the cutting edge 110 is viewed. Is a shape in which the tip angles (β1, β2) gradually decrease from the center side to the outer peripheral side. The tip angle β1 of the primary cutting edge 110a is, for example, not less than 100 ° and not more than 160 °, and preferably not less than 115 ° and not more than 145 °. The tip angle β2 of the secondary cutting edge 110b is, for example, 20 ° to 100 °, and preferably 40 ° to 80 °. However, the tip angle β2 is smaller than the tip angle β1 (β1> β2). In this example, the tip angle β1 is 135 ° and the tip angle β2 is 60 °. The multi-angle drill 10W shown in FIG. 4 is a so-called double-angle drill with two tip angles.
また、1次切れ刃110aの最外周部の直径d1は、例えば直径dの0.3倍以上0.9倍以下であり、好ましくはドリル径dの0.5倍以上0.9倍以下である。この例では、1次切れ刃110aの最外周部の直径d1が、ドリル径dの0.8倍である。切れ刃110(1次切れ刃110a及び2次切れ刃110b)のすくい角は、例えば0°以上30°以下であり、この例では、1次切れ刃110aのすくい角が0°、2次切れ刃110bのすくい角が0°である。 The diameter d1 of the outermost peripheral portion of the primary cutting edge 110a is, for example, not less than 0.3 times and not more than 0.9 times the diameter d, preferably not less than 0.5 times and not more than 0.9 times the drill diameter d. is there. In this example, the diameter d1 of the outermost peripheral portion of the primary cutting edge 110a is 0.8 times the drill diameter d. The rake angle of the cutting edge 110 (the primary cutting edge 110a and the secondary cutting edge 110b) is, for example, 0 ° or more and 30 ° or less. In this example, the rake angle of the primary cutting edge 110a is 0 °, or the secondary cutting edge. The rake angle of the blade 110b is 0 °.
ここで、上述したマルチアングルドリル10Wを使用することで、先端角を1段にした上述のVドリル(図3を参照)に比較して、コバ欠けの発生を抑制できる理由は次のように考えられる。 Here, the use of the multi-angle drill 10W described above can suppress the occurrence of edge cracks as compared with the above-described V drill (see FIG. 3) having a single tip angle as follows. Conceivable.
図5の左図は、マルチアングルドリル(ダブルアングルドリル)10Wと、ダブルアングルドリル10Wで穴あけ加工を行った圧粉成形体Gを示している。図5に示すダブルアングルドリル10Wは、説明を分かり易くするため、溝などを省略して簡易的に図示している。図5の右図は、Vドリルで穴あけ加工した場合を示しており、図3の右図と同じであるので説明を省略する。 The left figure of FIG. 5 has shown the compacting body G which drilled with the multi-angle drill (double angle drill) 10W and the double angle drill 10W. The double angle drill 10 </ b> W shown in FIG. 5 is simply illustrated with grooves and the like omitted for easy understanding. The right diagram in FIG. 5 shows a case where a drilling process is performed with a V drill, which is the same as the right diagram in FIG.
ダブルアングルドリル10Wは、図5の左側の上図に示すように、切れ刃110の先端角が段階的に小さくなる形状である。ダブルアングルドリル10Wは、Vドリル11(図5の右図を参照)に比較して、ダブルアングルドリル10Wの先端角β1とVドリル11の先端角βが等しい場合、先端部100の長さhが大きくなる。そのため、図5の下2図に示すように、ダブルアングルドリル10Wで圧粉成形体Gに穴あけ加工した場合、Vドリル11に比較して、穴の底面の最大厚さHtを大きくとれるので、その厚さ分、底部の強度が高くなる。したがって、ダブルアングルドリル10Wを使用した場合、スラスト荷重に対して底部の強度が維持され易く、ドリルが貫通する間際まで切削し易い。また、ダブルアングルドリル10Wでは、先端角を異ならせたことで、図中の実線矢印のように、底部に作用するスラスト荷重を分散できる。よって、Vドリル11に比較すれば、ドリルが貫通するより先に、切削できずに底部が崩れることを抑制できるので、コバ欠けの発生を抑制できる。 As shown in the upper diagram on the left side of FIG. 5, the double angle drill 10 </ b> W has a shape in which the tip angle of the cutting edge 110 decreases stepwise. The double angle drill 10W has a length h of the tip 100 when the tip angle β1 of the double angle drill 10W and the tip angle β of the V drill 11 are equal to those of the V drill 11 (see the right figure in FIG. 5). Becomes larger. Therefore, as shown in the lower two figures of FIG. 5, when drilling the green compact G with the double angle drill 10W, the maximum thickness Ht of the bottom surface of the hole can be increased compared to the V drill 11, so The strength of the bottom is increased by the thickness. Therefore, when the double-angle drill 10W is used, the strength of the bottom is easily maintained against the thrust load, and it is easy to cut until just before the drill penetrates. Moreover, in the double angle drill 10W, the thrust load acting on the bottom can be dispersed as shown by the solid line arrow in the figure by changing the tip angle. Therefore, as compared with the V drill 11, it is possible to suppress the bottom portion from collapsing without being cut before the drill penetrates, and thus it is possible to suppress the occurrence of chipping.
〈切削条件〉
ドリル10の回転数や送り速度(送り量)といった切削条件は、圧粉成形体G(金属粉末)の材質、形成する貫通孔50の深さやドリル10の直径などに応じて適宜設定すればよい。例えば、回転数は1000rpm以上、更に2000rpm以上、送り速度は100mm/min以上、更に200mm/min以上、送り量は0.01mm/rev.以上、更に0.1mm/rev.以上、とすることが挙げられる。圧粉成形体に対して加工する方が、焼結体を加工するよりも、より高速での加工が可能であることが、実験を通して判明している。
<Cutting conditions>
Cutting conditions such as the rotational speed and feed rate (feed amount) of the drill 10 may be set as appropriate according to the material of the green compact G (metal powder), the depth of the through-hole 50 to be formed, the diameter of the drill 10, and the like. . For example, the rotational speed is 1000 rpm or more, further 2000 rpm or more, the feeding speed is 100 mm / min or more, further 200 mm / min or more, and the feeding amount is 0.01 mm / rev. Further, 0.1 mm / rev. The above is mentioned. Through experiments, it has been found that processing at a compacted body can be performed at a higher speed than processing a sintered body.
圧粉成形体Gにドリル10で形成した貫通孔50の内周面は梨地状である。圧粉成形体Gでは金属粉末の粒子同士の結合が弱いため、ドリルで穴あけ加工した場合、金属粉末の粒子をドリルで削り落としながら切削して貫通孔50を形成していく。そのため、圧粉成形体Gに形成された貫通孔50の内周面は、粒子による凹凸が全体的に形成され梨地状となる。 The inner peripheral surface of the through-hole 50 formed in the green compact G with the drill 10 is a satin finish. In the green compact G, since the bonding between the metal powder particles is weak, when drilling with a drill, the metal powder particles are cut off with the drill to form the through holes 50. Therefore, the inner peripheral surface of the through-hole 50 formed in the green compact G is formed into a satin-like shape as a whole with unevenness due to particles.
(焼結工程)
焼結工程では、穴あけ加工後、圧粉成形体Gを焼結する。焼結には、温度雰囲気制御が可能な適宜な焼結炉(図示略)を用いる。焼結条件は、圧粉成形体G(金属粉末)の材質などに応じて、焼結に必要な条件を適宜設定すればよい。焼結温度は、例えば1000℃以上、更に1100℃以上、1200℃以上とし、主たる金属粉末の融点以下(例えば1400℃以下)とすることが挙げられる。焼結時間は、例えば15分以上150分以下、更に20分以上60分以下とすることが挙げられる。焼結により、曲面を有し、貫通孔50Sが形成された焼結部品Sが得られる(図1の下図を参照)。焼結部品Sは、本発明の実施形態に係るものである。
(Sintering process)
In the sintering step, the green compact G is sintered after drilling. For sintering, an appropriate sintering furnace (not shown) capable of controlling the temperature atmosphere is used. The sintering conditions may be set as appropriate according to the material of the green compact G (metal powder) and the like. The sintering temperature is, for example, 1000 ° C. or higher, further 1100 ° C. or higher and 1200 ° C. or higher, and is not higher than the melting point of the main metal powder (for example, 1400 ° C. or lower). Examples of the sintering time include 15 minutes to 150 minutes, and further, 20 minutes to 60 minutes. By sintering, a sintered part S having a curved surface and having a through hole 50S is obtained (see the lower diagram of FIG. 1). The sintered part S relates to the embodiment of the present invention.
〈焼結部品〉
焼結部品Sには、貫通孔50Sが形成されている。この貫通孔50Sは、焼結前の穴あけ加工によって、圧粉成形体Gに対してドリル10で形成した貫通孔50である(図1の中図を参照)。上述したように、圧粉成形体Gにドリル10で形成した貫通孔50の内周面は梨地状である。焼結後も貫通孔50の内周面の表面性状は実質的に維持されることになるから、圧粉成形体Gを焼結した焼結部品Sの貫通孔50Sの内周面も梨地状となる。換言すれば、焼結部品Sに形成された貫通孔50Sの内周面が梨地状であるということは、焼結前の圧粉成形体Gに対してドリル10で穴あけ加工したことを表している。焼結部品Sにおいて、貫通孔50Sの内周面の十点平均粗さRzは、例えば20μm以上150μm以下であることが挙げられる。
<Sintered parts>
A through hole 50S is formed in the sintered part S. This through-hole 50S is the through-hole 50 formed with the drill 10 with respect to the compacting body G by the drilling process before sintering (refer the middle figure of FIG. 1). As above-mentioned, the internal peripheral surface of the through-hole 50 formed in the compacting body G with the drill 10 is a satin finish. Since the surface property of the inner peripheral surface of the through-hole 50 is substantially maintained even after sintering, the inner peripheral surface of the through-hole 50S of the sintered part S obtained by sintering the green compact G is also satin-like. It becomes. In other words, the fact that the inner peripheral surface of the through-hole 50S formed in the sintered part S is a satin finish indicates that the drilling process has been performed on the green compact G before sintering. Yes. In the sintered part S, the ten-point average roughness Rz of the inner peripheral surface of the through hole 50S is, for example, 20 μm or more and 150 μm or less.
また、貫通孔50Sは、焼結部品Sの外周面から内周面(曲面)に抜けるように形成され、貫通孔50Sの出口側の開口が焼結部品Sの内周面(軸孔30の内周面)に設けられている。この例では、貫通孔50Sが、貫通孔50Sの内周面と焼結部品Sの外側面(端面)との距離(厚さ)が貫通孔50Sの径と同じ以上になる箇所に形成されている。 The through hole 50S is formed so as to pass from the outer peripheral surface of the sintered component S to the inner peripheral surface (curved surface), and the opening on the outlet side of the through hole 50S is the inner peripheral surface of the sintered component S (the shaft hole 30). (Inner peripheral surface). In this example, the through hole 50S is formed at a location where the distance (thickness) between the inner peripheral surface of the through hole 50S and the outer surface (end surface) of the sintered part S is equal to or larger than the diameter of the through hole 50S. Yes.
<作用効果>
上記実施形態に係る焼結部品の製造方法は、焼結前の圧粉成形体に対してドリルで穴あけ加工を行うことから、切削が容易であり、切削抵抗(スラスト荷重)が大幅に低減される。そのため、焼結後にドリルで穴あけ加工を行う従来の製造方法に比較して、加工時間を短縮でき、加工穴精度が向上する他、工具寿命も大幅に改善できる。更に、上記実施形態に係る焼結部品の製造方法によれば、圧粉成形体に貫通孔を形成することから、貫通孔の開口にバリが発生し難く、たとえバリが発生しても圧粉成形体の段階であれば容易に除去できるため、貫通孔の開口のバリを低減できる。特に、焼結部品の曲面に抜けるように貫通孔が形成された焼結部品を製造する場合、バリ取りのために曲面を研磨しなくても、貫通孔の開口にバリが少ない又はバリのない焼結部品が得られる。したがって、上記焼結部品の製造方法は、貫通孔の開口のバリを低減できながら、生産性に優れる。
<Effect>
Since the method for manufacturing a sintered part according to the above embodiment performs drilling with a drill on the green compact before sintering, cutting is easy and cutting resistance (thrust load) is greatly reduced. The Therefore, compared with the conventional manufacturing method which drills with a drill after sintering, processing time can be shortened, the hole accuracy can be improved, and the tool life can be greatly improved. Furthermore, according to the method for manufacturing a sintered part according to the above embodiment, since the through hole is formed in the green compact, it is difficult for the burr to be generated at the opening of the through hole. Since it can be easily removed at the stage of the molded body, burrs at the opening of the through hole can be reduced. In particular, when manufacturing a sintered part in which through holes are formed so as to come out to the curved surface of the sintered part, even if the curved surface is not polished for deburring, there are few or no burrs in the opening of the through hole. A sintered part is obtained. Therefore, the method for manufacturing a sintered part is excellent in productivity while reducing the burr at the opening of the through hole.
上記実施形態に係る焼結部品は、貫通孔が形成され、その貫通孔の内周面が梨地状であることから、焼結前の圧粉成形体に対してドリルで穴あけ加工しており、生産性に優れる。更に、上記焼結部品によれば、焼結前の圧粉成形体に穴あけ加工を行い、圧粉成形体に貫通孔を形成していることから、貫通孔の開口にバリが発生し難く、たとえバリが発生しても圧粉成形体の段階であれば容易に除去できるため、貫通孔の開口にバリが少ない又はバリのない焼結部品が得られる。特に、焼結部品の曲面に抜けるように貫通孔が形成されている場合であっても、バリ取りのために曲面を研磨する必要もない。よって、上記焼結部品は、貫通孔のバリが少なく、生産性に優れる。 In the sintered part according to the above embodiment, a through hole is formed, and since the inner peripheral surface of the through hole is a satin-like shape, drilling is performed on the green compact before sintering, Excellent productivity. Furthermore, according to the sintered part, since the hole forming is performed on the green compact before sintering and the through hole is formed in the green compact, it is difficult for burrs to occur at the opening of the through hole. Even if burrs are generated, they can be easily removed at the stage of the green compact, so that sintered parts with little or no burrs can be obtained at the openings of the through holes. In particular, even when the through-hole is formed so as to pass through the curved surface of the sintered part, it is not necessary to polish the curved surface for deburring. Therefore, the sintered part has fewer through-hole burrs and is excellent in productivity.
[変形例1]
上述の実施形態(図1を参照)では、円筒体(筒状体)の圧粉成形体Gに対して内周面(曲面)に抜ける貫通孔50を形成し、これを焼結することで、円筒体(筒状体)であって、貫通孔50Sが円筒体(筒状体)の内周面(曲面)に抜けるように形成された焼結部品Sを製造する例を説明した。実施形態1では、圧粉成形体Gに貫通孔50を1つ形成する場合を例に挙げて説明したが、貫通孔50を複数形成してもよく、この場合、複数の貫通孔50Sが形成された焼結部品Sが得られる。また、圧粉成形体Gを筒状体とする場合、軸方向断面視において、例えば、外周形状が円形状以外の楕円形状や多角形状などであってもよく、内周形状(軸孔30の形状)が円形状や楕円形状である種々の筒状に成形することが可能である。
[Modification 1]
In the above-described embodiment (see FIG. 1), the through-hole 50 that passes through the inner peripheral surface (curved surface) is formed on the green compact G of the cylindrical body (tubular body), and this is sintered. An example of manufacturing a sintered part S that is a cylindrical body (cylindrical body) and is formed so that the through hole 50S passes through the inner peripheral surface (curved surface) of the cylindrical body (cylindrical body) has been described. In the first embodiment, the case where one through hole 50 is formed in the green compact G has been described as an example, but a plurality of through holes 50 may be formed. In this case, a plurality of through holes 50S are formed. The sintered part S thus obtained is obtained. When the green compact G is a cylindrical body, the outer peripheral shape may be, for example, an elliptical shape or a polygonal shape other than a circular shape in the axial cross-sectional view. It is possible to form various cylindrical shapes whose shapes are circular or elliptical.
[変形例2]
上述の実施形態(図1を参照)では、圧粉成形体Gを円柱形(曲面)の内周面を有する円筒体(筒状体)とする場合を例に挙げて説明した。別の例としては、図6に示すように、圧粉成形体Gに2つ以上の貫通孔50,51を形成し、貫通孔50を別の貫通孔51の内周面に抜けるように形成することが挙げられる。図6に例示する圧粉成形体Gは、円柱状に成形したものであり、一方の端面から他方の端面に向かって貫通孔51を形成した後、圧粉成形体Gの外周面から貫通孔51の内周面に抜けるように貫通孔50を形成している。貫通孔50だけでなく、貫通孔51も圧粉成形体Gにドリル(図示せず)で穴あけ加工して形成したものであり、貫通孔51は円柱形(曲面)の内周面を有する。つまり、貫通孔50の出口側の開口が貫通孔51の内周面(曲面)に設けられている。この例では、貫通孔51の方が貫通孔50よりも径が大きく、貫通孔51に使用したドリル径は、貫通孔50に使用したドリル径よりも大きい。
[Modification 2]
In the above-described embodiment (see FIG. 1), the case where the green compact G is a cylindrical body (cylindrical body) having a cylindrical (curved) inner peripheral surface has been described as an example. As another example, as shown in FIG. 6, two or more through holes 50 and 51 are formed in the green compact G, and the through hole 50 is formed so as to pass through the inner peripheral surface of another through hole 51. To do. The green compact G illustrated in FIG. 6 is formed in a columnar shape, and after forming the through hole 51 from one end surface toward the other end surface, the through hole is formed from the outer peripheral surface of the green compact G. A through hole 50 is formed so as to pass through the inner peripheral surface of 51. Not only the through hole 50 but also the through hole 51 is formed by drilling the green compact G with a drill (not shown), and the through hole 51 has a cylindrical (curved) inner peripheral surface. That is, the opening on the outlet side of the through hole 50 is provided on the inner peripheral surface (curved surface) of the through hole 51. In this example, the through hole 51 has a larger diameter than the through hole 50, and the drill diameter used for the through hole 51 is larger than the drill diameter used for the through hole 50.
上記変形例2によれば、2つ以上の貫通孔50,51が形成され、貫通孔50が貫通孔51の内周面(曲面)に抜けるように形成された焼結部品Sが得られる。 According to the second modified example, the sintered part S is obtained in which two or more through holes 50 and 51 are formed and the through hole 50 is formed so as to come out to the inner peripheral surface (curved surface) of the through hole 51.
[変形例3]
更に別の例としては、図7に示すように、圧粉成形体Gに曲面の内周面を有する溝53が形成されており、貫通孔50を溝53の内周面に抜けるように形成することが挙げられる。図7に例示する圧粉成形体Gは、四角柱状体で、上面に一端側から他端側に向かって長手方向に断面半円形状の溝53が形成されている。溝53は半円柱形(曲面)の内周面を有する。ここでは、圧粉成形体Gに溝53を成形時に一体に形成しているが、溝53は、圧粉成形体Gを四角柱状に成形した後、切削加工により形成することも可能である。そして、図7に例示する圧粉成形体Gは、圧粉成形体Gの外周面(側面や下面)から溝53の内周面(曲面)に抜けるように貫通孔50を形成しており、貫通孔50の出口側の開口が溝53の内周面(曲面)に設けられている。
[Modification 3]
As another example, as shown in FIG. 7, a groove 53 having a curved inner peripheral surface is formed in the green compact G, and the through hole 50 is formed so as to pass through the inner peripheral surface of the groove 53. To do. The green compact G illustrated in FIG. 7 is a quadrangular columnar body, and a groove 53 having a semicircular cross section in the longitudinal direction is formed on the upper surface from one end side to the other end side. The groove 53 has a semicylindrical (curved) inner peripheral surface. Here, the groove 53 is formed integrally with the green compact G at the time of molding, but the groove 53 can also be formed by cutting after the green compact G is formed into a quadrangular prism shape. And the compacting body G illustrated in FIG. 7 forms the through-hole 50 so that it may come out from the outer peripheral surface (side surface or lower surface) of the compacting body G to the inner peripheral surface (curved surface) of the groove 53, An opening on the outlet side of the through hole 50 is provided on the inner peripheral surface (curved surface) of the groove 53.
上記変形例3によれば、曲面の内周面を有する溝53が形成され、貫通孔50が溝53の内周面(曲面)に抜けるように形成された焼結部品Sが得られる。 According to the third modified example, the sintered part S is formed in which the groove 53 having the curved inner peripheral surface is formed and the through hole 50 is formed so as to come out to the inner peripheral surface (curved surface) of the groove 53.
[変形例4]
更に別の例としては、図8に示すように、圧粉成形体Gに曲面の内周面を有する穴55が形成されており、貫通孔50を穴55の内周面に抜けるように形成することが挙げられる。図8に例示する圧粉成形体Gは、四角柱状体で、上面から下面に向かって断面円形状の穴55が形成されており、穴55は下面にまでは貫通していない。穴55は円柱形(曲面)の内周面を有する。ここでは、圧粉成形体Gに穴55を成形時に一体に形成しているが、穴55は、圧粉成形体Gを四角柱状に成形した後、切削加工により形成することも可能である。そして、図8に例示する圧粉成形体Gは、圧粉成形体Gの外周面(側面)から穴55の内周面(曲面)に抜けるように貫通孔50を形成しており、貫通孔50の出口側の開口が穴55の内周面(曲面)に設けられている。
[Modification 4]
As another example, as shown in FIG. 8, a hole 55 having a curved inner peripheral surface is formed in the green compact G, and the through hole 50 is formed so as to pass through the inner peripheral surface of the hole 55. To do. The green compact G illustrated in FIG. 8 is a quadrangular columnar body, in which a hole 55 having a circular cross section is formed from the upper surface to the lower surface, and the hole 55 does not penetrate to the lower surface. The hole 55 has a cylindrical (curved surface) inner peripheral surface. Here, the hole 55 is integrally formed in the green compact G at the time of molding. However, the hole 55 may be formed by cutting after the green compact G is formed into a quadrangular prism shape. And the compacting body G illustrated in FIG. 8 forms the through-hole 50 so that it may come out from the outer peripheral surface (side surface) of the compacting body G to the inner peripheral surface (curved surface) of the hole 55, and the through-hole 50 openings on the outlet side are provided on the inner peripheral surface (curved surface) of the hole 55.
上記変形例4によれば、曲面の内周面を有する穴55が形成され、貫通孔50が穴55の内周面(曲面)に抜けるように形成された焼結部品Sが得られる。 According to the modification 4, the hole 55 having the curved inner peripheral surface is formed, and the sintered part S formed so that the through hole 50 passes through the inner peripheral surface (curved surface) of the hole 55 is obtained.
[試験例1]
金属粉末を含有する原料粉末をプレス成形して圧粉成形体を作製し、切れ刃の形状が異なるドリルを使用して圧粉成形体に穴あけ加工試験を行った。
[Test Example 1]
A raw powder containing metal powder was press-molded to produce a green compact, and a drilling test was performed on the green compact using a drill having a different cutting edge shape.
(圧粉成形体)
水アトマイズ鉄粉(平均粒径(D50)100μm)と、水アトマイズ銅粉(平均粒径(D50)30μm)と、炭素(黒鉛)粉(平均粒径(D50)20μm)と、潤滑剤としてエチレンビスステアリン酸アミドを用意し、これらを混合して原料粉末を準備した。
(Green compact)
Water atomized iron powder (average particle size (D50) 100 μm), water atomized copper powder (average particle size (D50) 30 μm), carbon (graphite) powder (average particle size (D50) 20 μm), and ethylene as a lubricant Bistearic acid amide was prepared and mixed to prepare a raw material powder.
準備した原料粉末を所定の成形用金型に充填し、600MPaの圧力でプレス成形して、縦50mm×横20mm×厚さ10mmの板状の圧粉成形体を作製した。この圧粉成形体の密度は6.9g/cm3であった。この密度は圧粉成形体の体積と質量とから算出した見かけ密度である。 The prepared raw material powder was filled into a predetermined molding die and press-molded at a pressure of 600 MPa to produce a plate-like compacted body of 50 mm long × 20 mm wide × 10 mm thick. The density of the green compact was 6.9 g / cm 3 . This density is an apparent density calculated from the volume and mass of the green compact.
次に、作製した圧粉成形体にドリルで穴あけ加工を行い、圧粉成形体の厚さ方向に貫通孔を形成した。そして、貫通孔の出口側の開口部を観察し、コバ欠けの発生状況を調べた。 Next, the produced compacted body was drilled with a drill to form through holes in the thickness direction of the compacted body. And the opening part by the side of the exit of a through-hole was observed, and the generation | occurrence | production state of edge chipping was investigated.
ドリルには、図2に示すような、切れ刃の形状が半円状のRドリルを用意した。用意したRドリルは、ドリル径dが8.0mmであり、切れ刃を形成する円弧の中心角αが180°で、かつ、円弧の半径Rが4.0mm(ドリル径dの0.5倍)である。また、切れ刃のすくい角が0°である。このRドリルは、住友電工ハードメタル株式会社製のドリル(型番:MDW0800GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。 As the drill, an R drill having a semicircular cutting edge shape as shown in FIG. 2 was prepared. The prepared R drill has a drill diameter d of 8.0 mm, a center angle α of the arc forming the cutting edge is 180 °, and an arc radius R of 4.0 mm (0.5 times the drill diameter d). ). The rake angle of the cutting edge is 0 °. This R drill was produced by polishing the cutting edge of the tip of a drill (model number: MDW0800GS4, material: cemented carbide) manufactured by Sumitomo Electric Hardmetal Co., Ltd.
また、図4に示すような、先端角を2段にしたダブルアングルドリルを用意した。用意したダブルアングルドリルは、ドリル径dが4.0mmであり、1次切れ刃の先端角β1が135°、2次切れ刃の先端角β2が60°である。また、切れ刃(1次切れ刃及び2次切れ刃)のすくい角が0°である。このダブルアングルドリルは、住友電工ハードメタル株式会社製のドリル(型番:MDW0400HGS5、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。 Further, a double angle drill having two tip angles as shown in FIG. 4 was prepared. The prepared double angle drill has a drill diameter d of 4.0 mm, a primary cutting edge angle β1 of 135 °, and a secondary cutting edge angle β2 of 60 °. Moreover, the rake angle of the cutting edge (primary cutting edge and secondary cutting edge) is 0 °. This double angle drill was manufactured by polishing the cutting edge at the tip of a drill (model number: MDW0400HGS5, material: cemented carbide) manufactured by Sumitomo Electric Hardmetal Co., Ltd.
更に、切れ刃の形状がV字状のVドリルを用意した。用意したVドリルは、日立ツール株式会社製のドリル(型番:05WHNSB0400−TH、材質:超硬合金)である。このVドリルは、ドリル径dが4.0mm、切れ刃の先端角が140°である。 Furthermore, a V drill having a V-shaped cutting edge was prepared. The prepared V drill is a drill (model number: 05WHNSB0400-TH, material: cemented carbide) manufactured by Hitachi Tool Co., Ltd. This V drill has a drill diameter d of 4.0 mm and a tip angle of the cutting edge of 140 °.
上記Rドリル、ダブルアングルドリル及びVドリルを使用して圧粉成形体に穴あけ加工を行い、貫通孔を形成した。Rドリルを使用した場合の切削条件は、回転数4000rpm、送り速度1600mm/minとした。ダブルアングルドリル又はVドリルを使用した場合の切削条件は、回転数4000rpm、入口側から穴深さが5mmに達するまでの送り速度800mm/min、穴深さが5mmの位置から貫通するまでの送り速度1600mm/minとした。 Using the R drill, the double angle drill, and the V drill, the green compact was drilled to form a through hole. Cutting conditions when the R drill was used were a rotational speed of 4000 rpm and a feed rate of 1600 mm / min. The cutting conditions when using a double angle drill or V drill are as follows: the rotation speed is 4000 rpm, the feed speed is 800 mm / min until the hole depth reaches 5 mm from the inlet side, and the feed is made until the hole depth penetrates from the position of 5 mm. The speed was 1600 mm / min.
穴あけ加工後、各ドリルで貫通孔を形成した圧粉成形体について、貫通孔の出口側の開口部を光学顕微鏡で観察した。その結果を図9〜図11に示す。図9はRドリルを使用した場合、図10はダブルアングルドリルを使用した場合、図11はVドリルを使用した場合である。図9〜図11の顕微鏡写真において、中央の円形部分が貫通孔である。図9において、中央の円形部分(貫通孔)の周囲を縁取るような一定幅の黒い環状部分は、貫通孔の内周面が見えている部分である。図10において、貫通孔の周囲であって一部欠けているグレーの部分、図11において、貫通孔の周囲に広がっているグレーの部分は、コバ欠けである。図9に示すように、上記Rドリルで貫通孔を形成した場合、貫通孔の出口側の開口においてコバ欠けが非常に少なく、この例ではコバ欠けが確認できなかった。また、図10に示すように、上記ダブルアングルドリルで貫通孔を形成した場合、貫通孔の出口側の開口においてコバ欠けが小さいことが分かる。一方、上記Vドリルで貫通孔を形成した場合、図11に示すように、貫通孔の出口側の開口に大きなコバ欠けが発生していることが分かる。ダブルアングルドリル及びVドリルで貫通孔を形成した場合のコバ欠け量を測定したところ、ダブルアングルドリルでは0.36mm、Vドリルでは1.55mmであった。コバ欠け量は、図10及び図11の顕微鏡写真から、コバ欠け部分の輪郭上に位置する点のうち、貫通孔の中心から最も離れた点までの距離を計測し、その長さと貫通孔の直径との差を算出することで求めた。この結果から、円弧状の切れ刃を有するRドリル又はマルチアングルドリルを使用することで、コバ欠けの発生を抑制できることが分かる。中でもRドリルを使用すれば、コバ欠けの発生をより抑制できることが分かる。 After the drilling process, the opening on the outlet side of the through hole was observed with an optical microscope for the compacted body in which the through hole was formed with each drill. The results are shown in FIGS. 9 shows a case where an R drill is used, FIG. 10 shows a case where a double angle drill is used, and FIG. 11 shows a case where a V drill is used. In the micrographs of FIGS. 9 to 11, the central circular portion is a through hole. In FIG. 9, a black annular portion having a constant width that borders the central circular portion (through hole) is a portion where the inner peripheral surface of the through hole is visible. In FIG. 10, the gray portion around the through-hole and partially missing, and in FIG. 11, the gray portion spreading around the through-hole is chipped. As shown in FIG. 9, when the through-hole was formed with the R drill, there was very little edge chipping at the opening on the outlet side of the through-hole, and no edge chipping could be confirmed in this example. Moreover, as shown in FIG. 10, when a through-hole is formed with the said double angle drill, it turns out that an edge chip | tip is small in opening of the exit side of a through-hole. On the other hand, when the through-hole is formed with the V drill, it can be seen that a large chip is generated at the opening on the outlet side of the through-hole as shown in FIG. When the through-holes were formed using a double angle drill and a V drill, the edge chipping amount was 0.36 mm for the double angle drill and 1.55 mm for the V drill. The edge chipping amount is determined by measuring the distance from the micrographs of FIGS. 10 and 11 to the point farthest from the center of the through hole among the points located on the contour of the edge chipping part. It calculated | required by calculating the difference with a diameter. From this result, it can be seen that the occurrence of edge chipping can be suppressed by using an R drill or a multi-angle drill having an arcuate cutting edge. It turns out that generation | occurrence | production of a chipping edge can be suppressed more especially if R drill is used.
[試験例2]
切れ刃のすくい角が異なるRドリルを使用して圧粉成形体に穴あけ加工を行い、貫通孔を形成する際のスラスト荷重を比較した。
[Test Example 2]
Using R drills with different cutting edge rake angles, drilling was performed on the green compacts, and the thrust load when forming through holes was compared.
加工対象の圧粉成形体には、試験例1と同じものを用いた。 The same compact as that of Test Example 1 was used as the green compact to be processed.
使用したRドリルは、試験例1と同様、切れ刃の形状が半円状であり、住友電工ハードメタル株式会社製のドリル(型番:MDW0800GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。このRドリルは、ドリル径dが8.0mm、切れ刃を形成する円弧の中心角αが180°、円弧の半径Rが4.0mm(ドリル径dの0.5倍)である。そして、すくい角が0°,7°,10°の3種類のRドリルを作製し、すくい角が0°のRドリルをR0、すくい角が7°のRドリルをR7、すくい角が10°のRドリルをR10とした。 The R drill used has a semi-circular cutting edge as in Test Example 1, and the cutting edge at the tip of a drill (model number: MDW0800GS4, material: cemented carbide) manufactured by Sumitomo Electric Hardmetal Co., Ltd. It was made by polishing. In this R drill, the drill diameter d is 8.0 mm, the center angle α of the arc forming the cutting edge is 180 °, and the radius R of the arc is 4.0 mm (0.5 times the drill diameter d). Three types of R drills with rake angles of 0 °, 7 °, and 10 ° were produced. R drills with a rake angle of 0 ° were R0, R drills with a rake angle of 7 ° were R7, and a rake angle was 10 °. The R drill was designated as R10.
上記3種類の各ドリル(R0,R7,R10)で圧粉成形体に穴あけ加工を3回行い、圧粉成形体の厚さ方向に貫通孔を3つ形成した。切削条件は、回転数2000rpm、送り速度200mm/min(送り量0.1mm/rev.)とした。そして、1回目から3回目までのそれぞれの穴あけ加工において、貫通孔を形成する際のスラスト荷重及びトルクを測定した。スラスト荷重及びトルクは、切削動力計(日本キスラー株式会社製、型番9272)を使用して、穴あけ加工の開始から貫通孔が形成されるまで測定し、その最大値を求めた。また、各回の穴あけ加工における各スラスト荷重及びトルクからその平均値も求めた。 Each of the three types of drills (R0, R7, R10) was drilled three times in the green compact to form three through holes in the thickness direction of the green compact. The cutting conditions were a rotational speed of 2000 rpm and a feed rate of 200 mm / min (feed amount of 0.1 mm / rev.). And in each drilling process from the 1st time to the 3rd time, the thrust load and torque at the time of forming a through-hole were measured. The thrust load and torque were measured using a cutting dynamometer (manufactured by Nippon Kistler Co., Ltd., model number 9272) from the start of drilling until a through hole was formed, and the maximum value was obtained. Moreover, the average value was also calculated | required from each thrust load and torque in each drilling process.
R0,R7,R10のドリルを使用して穴あけ加工した場合のスラスト荷重及びトルクを表1〜表3にそれぞれ示す。例えば表1中、「R0−1」とは、R0のドリルを使用した1回目の穴あけ加工であることを示しており、前半の記号は使用したドリル、後半の数字は何回目の加工であるかを表している(表2、表3も同じ)。更に、各ドリルにおけるスラスト荷重及びトルクの平均値を元に、すくい角とスラスト荷重及びトルクとの関係を図12に示す。図12のグラフにおいて、横軸がすくい角の角度(°)、左側の縦軸がスラスト荷重(N)、右側の縦軸がトルク(N・m)を示し、■印がスラスト荷重、◇印がトルクである。 Tables 1 to 3 show thrust loads and torques when drilling is performed using drills R0, R7, and R10. For example, in Table 1, “R0-1” indicates the first drilling process using the drill of R0, the first half symbol is the drill used, and the second half number is the number of drilling. (Tables 2 and 3 are also the same). Further, FIG. 12 shows the relationship between the rake angle and the thrust load and torque based on the average value of the thrust load and torque in each drill. In the graph of FIG. 12, the horizontal axis indicates the rake angle (°), the left vertical axis indicates the thrust load (N), the right vertical axis indicates the torque (N · m), the ■ mark indicates the thrust load, and the ◇ mark Is the torque.
表1〜表3及び図12の結果から、すくい角が7°のRドリルの方が、すくい角が0°又は10°のRドリルに比較して、スラスト荷重が小さいことが分かる。すくい角が0°超10°以下の範囲内であれば、すくい角が0°の場合に比較して、スラスト荷重を低減できると考えられる。したがって、すくい角が0°超10°以下のRドリルを使用することで、コバ欠けの発生をより効果的に抑制できると考えられる。一方、トルクは、すくい角が大きくなるほど小さくなる傾向があることが分かる。 From the results of Tables 1 to 3 and FIG. 12, it can be seen that the R load with a rake angle of 7 ° has a smaller thrust load than the R drill with a rake angle of 0 ° or 10 °. If the rake angle is in the range of more than 0 ° and not more than 10 °, it is considered that the thrust load can be reduced compared to the case where the rake angle is 0 °. Therefore, it is considered that the occurrence of edge chipping can be more effectively suppressed by using an R drill having a rake angle of more than 0 ° and not more than 10 °. On the other hand, it can be seen that the torque tends to decrease as the rake angle increases.
更に、参考として、ダブルアングルドリルを使用して圧粉成形体に穴あけ加工を行い、試験例2と同様にして、貫通孔を形成する際のスラスト荷重及びトルクを調べた。 Furthermore, as a reference, a double-angle drill was used to make a hole in the green compact, and in the same manner as in Test Example 2, the thrust load and torque when forming the through hole were examined.
使用したダブルアングルドリルは、ドリル径dが8.0mmであり、1次切れ刃の先端角β1が135°、2次切れ刃の先端角β2が60°である。また、切れ刃(1次切れ刃及び2次切れ刃)のすくい角が0°である。このダブルアングルドリルは、住友電工ハードメタル株式会社製のドリル(型番:MDW0800GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。このダブルアングルドリルをW0とした。 The used double angle drill has a drill diameter d of 8.0 mm, a primary cutting edge angle β1 of 135 °, and a secondary cutting edge angle β2 of 60 °. Moreover, the rake angle of the cutting edge (primary cutting edge and secondary cutting edge) is 0 °. This double angle drill was produced by polishing the cutting edge at the tip of a drill (model number: MDW0800GS4, material: cemented carbide) manufactured by Sumitomo Electric Hardmetal Co., Ltd. This double angle drill was designated as W0.
上記のダブルアングルドリルW0で圧粉成形体に穴あけ加工を3回行い、圧粉成形体の厚さ方向に貫通孔を3つ形成した。切削条件は、回転数2000rpm、送り速度200mm/min(送り量0.1mm/rev.)とした。そして、1回目から3回目までのそれぞれの穴あけ加工において、試験例2と同じように、貫通孔を形成する際のスラスト荷重及びトルクを測定した。その結果を表4に示す。 With the double angle drill W0, the green compact was drilled three times to form three through holes in the thickness direction of the green compact. The cutting conditions were a rotational speed of 2000 rpm and a feed rate of 200 mm / min (feed amount of 0.1 mm / rev.). And in each drilling process from the 1st time to the 3rd time, similarly to Test Example 2, the thrust load and torque at the time of forming the through hole were measured. The results are shown in Table 4.
[試験例3]
Rドリルを使用して圧粉成形体に穴あけ加工した後、Rドリルで貫通孔を形成した圧粉成形体を焼結して焼結部品を作製した。
[Test Example 3]
After drilling the green compact using an R drill, the green compact with through holes formed by the R drill was sintered to produce a sintered part.
加工対象の圧粉成形体には、試験例1と同じものを用いた。 The same compact as that of Test Example 1 was used as the green compact to be processed.
ここでは、切れ刃の形状が半円状であり、ドリル径dが3.5mmのRドリルを使用した。このRドリルは、住友電工ハードメタル株式会社製のドリル(型番:MDW0350GS4、材質:超硬合金)の先端部の切れ刃を研磨加工して作製した。このRドリルは、切れ刃を形成する円弧の中心角αが180°、円弧の半径Rが1.75mm(ドリル径dの0.5倍)、すくい角が0°である。 Here, an R drill having a semi-circular cutting edge and a drill diameter d of 3.5 mm was used. This R drill was produced by polishing the cutting edge of the tip of a drill (model number: MDW0350GS4, material: cemented carbide) manufactured by Sumitomo Electric Hardmetal Co., Ltd. In this R drill, the central angle α of the arc forming the cutting edge is 180 °, the radius R of the arc is 1.75 mm (0.5 times the drill diameter d), and the rake angle is 0 °.
上記Rドリルを使用して圧粉成形体に穴あけ加工を行い、圧粉成形体の厚さ方向に貫通孔を形成した。切削条件は、回転数2000rpm、送り速度200mm/min(送り量0.1mm/rev.)とした。穴あけ加工後、貫通孔を形成した圧粉成形体を1130℃×20分で焼結して焼結部品を作製した。 Using the R drill, a hole was formed in the green compact to form a through hole in the thickness direction of the green compact. The cutting conditions were a rotational speed of 2000 rpm and a feed rate of 200 mm / min (feed amount of 0.1 mm / rev.). After drilling, the green compact formed with through holes was sintered at 1130 ° C. for 20 minutes to produce a sintered part.
同様にして貫通孔を形成した圧粉成形体を貫通孔の中心軸を通るように厚さ方向に切断し、貫通孔の内周面を光学顕微鏡で観察した。その断面写真を図13に示す。図13において、中央の左右方向に延びる帯状部分が貫通孔の内周面である。図13に示すように、貫通孔の内周面は梨地状であった。また、この貫通孔の内周面の十点平均粗さRzを測定したところ、40μmであった。更に、上記作製した焼結部品を貫通孔の中心軸を通るように厚さ方向に切断し、貫通孔の内周面を光学顕微鏡で観察したところ、上述した圧粉成形体における貫通孔の内周面の表面性状と同様であり、内周面の十点平均粗さRzも同等であった。十点平均粗さRzは、「製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語、定義及び表面性状パラメータ JIS B 0601:2013」に準拠して測定した値である。 Similarly, the green compact formed with the through hole was cut in the thickness direction so as to pass through the central axis of the through hole, and the inner peripheral surface of the through hole was observed with an optical microscope. The cross-sectional photograph is shown in FIG. In FIG. 13, a central belt-like portion extending in the left-right direction is the inner peripheral surface of the through hole. As shown in FIG. 13, the inner peripheral surface of the through hole was a satin finish. Moreover, it was 40 micrometers when ten-point average roughness Rz of the internal peripheral surface of this through-hole was measured. Further, the sintered part produced above was cut in the thickness direction so as to pass through the central axis of the through hole, and the inner peripheral surface of the through hole was observed with an optical microscope. Similar to the surface properties of the peripheral surface, the ten-point average roughness Rz of the inner peripheral surface was also equivalent. The ten-point average roughness Rz is a value measured in accordance with “Product Geometric Specification (GPS) —Surface Properties: Contour Curve Method—Terminology, Definition and Surface Property Parameters JIS B 0601: 2013”.
焼結後の焼結部品に対してドリルで貫通孔を形成し、同じように貫通孔の内周面を観察した結果、図示は省略するが、貫通孔の内周面は凹凸の少ない平滑な面となっており、光沢を有していた。また、この貫通孔の内周面の十点平均粗さRzを測定したところ、11μmであった。焼結部品の穴あけ加工に使用したドリルは、住友電工ハードメタル株式会社製のMDW0350GS4であり、切れ刃の形状がV字状で、ドリル径dが3.5mm、切れ刃の先端角が135°である。 As a result of forming a through-hole with a drill in the sintered part after sintering and observing the inner peripheral surface of the through-hole in the same manner, the inner peripheral surface of the through-hole is smooth with few irregularities, although illustration is omitted. The surface was glossy. Further, the ten-point average roughness Rz of the inner peripheral surface of the through hole was measured and found to be 11 μm. The drill used for drilling the sintered parts is MDW0350GS4 manufactured by Sumitomo Electric Hardmetal Co., Ltd., and the shape of the cutting edge is V-shaped, the drill diameter d is 3.5 mm, and the tip angle of the cutting edge is 135 °. It is.
本発明の一態様に係る焼結部品の製造方法は、自動車部品や機械部品などの各種焼結部品(例、スプロケット、ロータ、ギア、リング、フランジ、プーリー、ベーン、軸受けなど)の製造に利用可能である。本発明の一態様に係る焼結部品は、自動車部品や機械部品などの各種焼結部品に利用可能である。 The method for manufacturing a sintered part according to one aspect of the present invention is used for manufacturing various types of sintered parts such as automobile parts and machine parts (eg, sprockets, rotors, gears, rings, flanges, pulleys, vanes, bearings, etc.). Is possible. The sintered part which concerns on 1 aspect of this invention can be utilized for various sintered parts, such as a motor vehicle part and a machine part.
10 ドリル
10R Rドリル
10W マルチアングルドリル(ダブルアングルドリル)
11 Vドリル
100 先端部
110 切れ刃
110a 1次切れ刃 110b 2次切れ刃
111 すくい面
120 外周コーナ
30 軸孔
50 貫通孔
51 貫通孔
53 溝
55 穴
50S 貫通孔
G 圧粉成形体
S 焼結部品
10 drill 10R R drill 10W multi-angle drill (double angle drill)
DESCRIPTION OF SYMBOLS 11 V drill 100 Tip part 110 Cutting edge 110a Primary cutting edge 110b Secondary cutting edge 111 Rake face 120 Outer periphery corner 30 Shaft hole 50 Through hole 51 Through hole 53 Groove 55 Hole 50S Through hole G Powder compact S Sintered part
Claims (7)
前記圧粉成形体にドリルで穴あけ加工を行い、少なくとも1つの貫通孔を形成する穴あけ加工工程と、
前記穴あけ加工後、前記圧粉成形体を焼結する焼結工程と、を備え、
前記原料粉末は、
有機バインダーを含有せず、前記原料粉末を100質量%として鉄系材料を95質量%以上含み、
前記穴あけ加工に使用する前記ドリルは、
先端部に円弧状の切れ刃を有するRドリル、又は、先端部に複数の切れ刃を有し、かつ各切れ刃の先端角が中心側から外周側にかけて段階的に小さくなるマルチアングルドリルであり、
前記切れ刃のすくい角が0°以上10°以下であり、
前記穴あけ加工工程において、少なくとも1つの前記貫通孔を前記圧粉成形体の前記曲面に抜けるように形成し、前記貫通孔の少なくとも一方の開口を前記曲面に設ける鉄系焼結部品の製造方法。 A molding process for producing a green compact having a curved surface through press molding of a raw material powder containing metal powder,
Drilling the green compact with a drill to form at least one through hole; and
A sintering step of sintering the green compact after the drilling process,
The raw material powder is
Contains no organic binder, contains 95% by mass or more of iron-based material as 100% by mass of the raw material powder,
The drill used for the drilling process is
R drill with an arcuate cutting edge at the tip, or a multi-angle drill with multiple cutting edges at the tip, and the tip angle of each cutting edge gradually decreases from the center to the outer periphery ,
The rake angle of the cutting edge is 0 ° or more and 10 ° or less,
A method of manufacturing an iron-based sintered part, wherein in the drilling step, at least one through hole is formed so as to pass through the curved surface of the green compact, and at least one opening of the through hole is provided on the curved surface.
前記原料粉末は、0.1質量%以上1質量%以下の潤滑剤を含む請求項1に記載の鉄系焼結部品の製造方法。 The iron-based material is mainly composed of iron powder, and includes at least one of a metal powder of an alloy component of more than 0% by mass and 5% by mass or less and a nonmetallic inorganic material of more than 0% by mass and 2% by mass,
The said raw material powder is a manufacturing method of the iron-type sintered component of Claim 1 containing 0.1 to 1 mass% of lubricants.
前記穴あけ加工工程において、前記貫通孔を前記溝又は穴の前記内周面に抜けるように形成する請求項1又は請求項2に記載の鉄系焼結部品の製造方法。 A groove or hole having a curved inner peripheral surface is formed in the green compact,
The method for manufacturing an iron-based sintered component according to claim 1 or 2, wherein, in the drilling step, the through hole is formed so as to pass through the inner peripheral surface of the groove or hole.
前記穴あけ加工工程において、前記貫通孔を前記筒状体の前記内周面に抜けるように形成する請求項1又は請求項2に記載の鉄系焼結部品の製造方法。 In the molding step, the green compact is a cylindrical body having a curved inner peripheral surface,
The method for manufacturing an iron-based sintered part according to claim 1 or 2, wherein, in the drilling step, the through hole is formed so as to pass through the inner peripheral surface of the cylindrical body.
前記貫通孔の内周面が梨地状であり、
前記貫通孔の内周面の十点平均粗さRzが20μm以上150μm以下であり、
少なくとも1つの前記貫通孔が前記焼結部品の前記曲面に抜けるように形成され、前記貫通孔の少なくとも一方の開口が前記曲面に設けられており、
少なくとも1つの前記貫通孔が別の前記貫通孔の内周面に抜けるように形成されている鉄系焼結部品。 An iron-based sintered part having a curved surface and having two or more through-holes,
The inner peripheral surface of the through hole is satin-like,
The ten-point average roughness Rz of the inner peripheral surface of the through hole is 20 μm or more and 150 μm or less,
At least one of the through holes is formed so as to pass through the curved surface of the sintered part, and at least one opening of the through hole is provided in the curved surface ;
An iron-based sintered component in which at least one of the through holes is formed so as to pass out to an inner peripheral surface of another through hole .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252533A JP6555679B2 (en) | 2014-12-12 | 2014-12-12 | Manufacturing method of iron-based sintered parts and iron-based sintered parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252533A JP6555679B2 (en) | 2014-12-12 | 2014-12-12 | Manufacturing method of iron-based sintered parts and iron-based sintered parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016113659A JP2016113659A (en) | 2016-06-23 |
JP6555679B2 true JP6555679B2 (en) | 2019-08-07 |
Family
ID=56140977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014252533A Active JP6555679B2 (en) | 2014-12-12 | 2014-12-12 | Manufacturing method of iron-based sintered parts and iron-based sintered parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6555679B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018163568A1 (en) * | 2017-03-07 | 2018-09-13 | 住友電工焼結合金株式会社 | Method for manufacturing sintered component |
KR102135628B1 (en) * | 2019-03-26 | 2020-07-20 | (주)한국정밀 | Method for manufacturing powder-sintered molded rotor rotor for oil pump for balance shaft module |
JPWO2020217331A1 (en) * | 2019-04-24 | 2021-12-23 | 住友電工焼結合金株式会社 | Sintered body manufacturing system and manufacturing method |
KR102665048B1 (en) * | 2019-07-25 | 2024-05-13 | 교세라 가부시키가이샤 | Forming mold and its manufacturing method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164854A (en) * | 1984-09-04 | 1986-04-03 | Nissan Motor Co Ltd | Wear resistance sintered alloy |
JPH0979114A (en) * | 1995-09-14 | 1997-03-25 | Hino Motors Ltd | Manufacture of fuel injection nozzle for diesel engine |
JP2000178606A (en) * | 1998-12-16 | 2000-06-27 | Sumitomo Electric Ind Ltd | Quench-sintered steel parts, and its manufacture |
JP2003205410A (en) * | 2002-01-11 | 2003-07-22 | Mitsubishi Materials Kobe Tools Corp | Drilling tool for brittle material |
JP2009527651A (en) * | 2006-02-24 | 2009-07-30 | エイチピーエム テクノロジー カンパニー リミテッド | Injection molded product and manufacturing method thereof |
JP2007242574A (en) * | 2006-03-13 | 2007-09-20 | Hitachi Metal Precision:Kk | Porous liquid holding member, and alcohol holding member |
-
2014
- 2014-12-12 JP JP2014252533A patent/JP6555679B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016113659A (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6445858B2 (en) | Sintered part manufacturing method and drill | |
JP6918281B2 (en) | Manufacturing method of sintered parts | |
JP6555679B2 (en) | Manufacturing method of iron-based sintered parts and iron-based sintered parts | |
JP6395217B2 (en) | Method for manufacturing sintered parts | |
JP2017186625A (en) | Method for producing sintered compact, and sintered compact | |
JP2023075154A (en) | Sintered component | |
JPWO2018216461A1 (en) | Manufacturing method of sintered member | |
JP2019070194A (en) | Sintered component | |
JP4751159B2 (en) | Method for manufacturing sintered body | |
JPWO2019026783A1 (en) | Sintered part manufacturing method and sintered part | |
JP6573245B2 (en) | Sintered part manufacturing method and sintered part | |
JP7512367B2 (en) | Tool body and manufacturing method thereof | |
JP2017106085A (en) | Manufacturing method of sintered compact | |
CN114269495B (en) | Sintered gear and method for manufacturing sintered gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20170721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6555679 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |