JPH06145703A - Ti-ag alloy parts - Google Patents
Ti-ag alloy partsInfo
- Publication number
- JPH06145703A JPH06145703A JP4301341A JP30134192A JPH06145703A JP H06145703 A JPH06145703 A JP H06145703A JP 4301341 A JP4301341 A JP 4301341A JP 30134192 A JP30134192 A JP 30134192A JP H06145703 A JPH06145703 A JP H06145703A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy
- parts
- weight
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001316 Ag alloy Inorganic materials 0.000 title abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 46
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229920005989 resin Polymers 0.000 claims abstract description 7
- 239000011347 resin Substances 0.000 claims abstract description 7
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001746 injection moulding Methods 0.000 claims abstract description 6
- 238000005245 sintering Methods 0.000 claims abstract description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 5
- 239000011669 selenium Substances 0.000 claims abstract description 5
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 238000013329 compounding Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000005520 cutting process Methods 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000003763 carbonization Methods 0.000 abstract description 4
- 238000000227 grinding Methods 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 238000005498 polishing Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000011230 binding agent Substances 0.000 description 11
- 239000010408 film Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000007772 electroless plating Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- -1 MIM compound Chemical class 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は金属粉末射出成形法によ
るTi−Ag系合金部品に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ti-Ag type alloy part manufactured by a metal powder injection molding method.
【0002】[0002]
【従来の技術】アーク熔解により得られた板材、丸棒か
らの切削加工を中心の精密部品の製造方法では、構成刃
先による工具の損耗が激しく精密部品の量産には課題が
あり、特公昭55-21823号公報にあるように快削性を付与
のため第三元素として金属の添加をおこなっていた。2. Description of the Related Art In the manufacturing method of precision parts centering on cutting work from plate material and round bar obtained by arc melting, there is a problem in mass production of precision parts due to severe wear of tools due to built-up blades. As described in JP-A-21823, a metal was added as a third element in order to impart free-cutting property.
【0003】近年、金属粉末射出成形法(以下MIMと
呼ぶ)が新たな金属部品の製造法として注目され、ステ
ンレス材をメインに実用化が進んでいる。Tiあるいは
Ti合金は軽く、強く、さらに耐蝕性に優れた特性を有
するため、前述の切削加工をベースに時計、メガネ、カ
メラ等の精密部品に実用化されているが、さらに生産の
合理化、より複雑な形状を製作するためにMIM法によ
る部品が要望されている。In recent years, a metal powder injection molding method (hereinafter referred to as MIM) has attracted attention as a new method for manufacturing metal parts, and practical application is progressing mainly for stainless steel materials. Since Ti or Ti alloy is light, strong, and has excellent corrosion resistance, it has been put to practical use for precision parts such as watches, glasses, and cameras based on the cutting process described above. Parts manufactured by the MIM method are required to manufacture complicated shapes.
【0004】しかし、Ti粉末表面に酸化膜が容易に形
成されるため焼結性が悪い。また、焼結体中に酸化物が
残留し部品として要求される機械的強度が劣化するた
め、特開平03-183666 号公報にあるようにバインダーを
工夫して製造する事でこの様なTiまたはTi合金部品
を得ようとしていた。However, since an oxide film is easily formed on the Ti powder surface, the sinterability is poor. In addition, since the oxide remains in the sintered body and the mechanical strength required for parts deteriorates, it is possible to produce such Ti or Ti by devising the binder as described in JP-A-03-183666. I was trying to get a Ti alloy part.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記の従来技
術による切削加工を中心とするアーク熔解材は、第二元
素としてアルミニウム、マンガン、鉄等から1種以上の
多元合金となり特殊な用途に限定されるため、精密部品
としては実用例が少なく、難加工を伴いながら生産をし
ているのが現状である。またMIM法も、酸素、炭素等
と結合力が強いTi及びTi合金ではバインダーの樹脂
材料混合割合をかえたり、焼結時の雰囲気をいかに厳し
くコントロールしても、混練・成形・脱脂の工程で酸化
又は炭化を免れない。さらに、これらの工程の雰囲気を
コントロールしても、バインダーに含まれる酸素・炭素
・水分による汚染は免れない。しかも樹脂分を主成分と
するバインダーを皆無にすることは、MIM法では不可
能である。However, the arc-melting material centered on the cutting work according to the above-mentioned conventional technique is one or more multi-component alloys of aluminum, manganese, iron, etc. as the second element, and is limited to special applications. Therefore, there are few practical examples of precision parts, and it is the current situation that they are produced with difficult processing. In the MIM method, Ti and Ti alloys, which have a strong bonding force with oxygen and carbon, can be used in the kneading, molding, and degreasing processes even if the mixing ratio of the binder resin material is changed or the atmosphere during sintering is strictly controlled. Inevitable to oxidation or carbonization. Furthermore, even if the atmosphere of these steps is controlled, the contamination by oxygen, carbon, and water contained in the binder is inevitable. Moreover, it is impossible by the MIM method to eliminate the binder containing the resin component as the main component.
【0006】また、こうして汚染されたTiまたはTi
合金粉末の焼結体は非常に脆く、また汚染された部分と
そうでない部分との間に局部電池を形成し孔食等の腐食
を生じやすく実用には全く使えなかった。Also, Ti or Ti thus contaminated
The sintered body of the alloy powder was very brittle, and a local battery was formed between the contaminated portion and the non-contaminated portion, which was likely to cause corrosion such as pitting corrosion and could not be used at all in practice.
【0007】以上のとおり従来技術のアーク熔解、MI
M法ともに課題を有している。As described above, conventional arc melting, MI
Both methods M have problems.
【0008】本発明はこのような課題を解決するもので
あり、通常のMIM法では得られない高密度、高精度、
高耐蝕性のTi合金による精密部品を提供することを目
的としている。The present invention solves such a problem, and achieves high density, high accuracy, and high precision which cannot be obtained by the ordinary MIM method.
It is intended to provide a precision component made of a Ti alloy having high corrosion resistance.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、TiまたはTi合金粉末の表面全体に湿式または乾
式製膜法によりAgを被覆し、これを原料粉とする。高
精度を要するため切削加工を要する部品については第三
元素としてビスマス、テルル、セレン、鉛の1種類を、
合金粉末もしくは単体粉末として添加する。以上の原料
粉を樹脂材料(バインダー)と混練して射出成形、焼結
して、Ti−Ag系合金部品とする事を特徴とする。In order to solve the above problems, the entire surface of Ti or Ti alloy powder is coated with Ag by a wet or dry film forming method, and this is used as a raw material powder. For parts requiring cutting because of high precision, one type of bismuth, tellurium, selenium, and lead is used as the third element.
Add as alloy powder or simple substance powder. It is characterized in that the above raw material powder is kneaded with a resin material (binder), injection-molded and sintered to obtain a Ti-Ag alloy part.
【0010】[0010]
【作用】本発明によれば、非常に活性で酸化され易いT
iまたはTi合金粉末を混練する前に、Agの被膜をT
i粉末の表面に0.3ミクロンメーター以下の厚さに被
覆し、その後樹脂材料とコンパウンド化する。また焼結
工程の雰囲気等を精度よくコントロールし、酸素・炭素
等の濃度を著しく低い状態で製造する。このことによ
り、MIMの工程においてその雰囲気によるTiまたは
Ti合金粉末の酸化、炭化及び接触物からの汚染を防
ぎ、高密度・高精度・高強度のTi合金の焼結品を得る
ことが可能になる。According to the present invention, T which is very active and easily oxidized
Before kneading the i or Ti alloy powder, the Ag film was
The surface of the i powder is coated to a thickness of 0.3 micrometer or less, and then compounded with a resin material. Also, the atmosphere in the sintering process is accurately controlled, and the concentration of oxygen, carbon, etc. is made extremely low. As a result, in the MIM process, it is possible to prevent oxidation or carbonization of Ti or Ti alloy powder due to the atmosphere and contamination from contact substances, and obtain a sintered product of Ti alloy of high density, high precision and high strength. Become.
【0011】Ag被膜の厚みが0.05ミクロンメータ
ー未満ではTi粉末の表面に一様な被覆を施すことが困
難なため、酸素・炭素が侵入し、低酸素量・低炭素量の
Ti合金の焼結体は製造できない。Ag被膜0.05ミ
クロンメーターは2重量パーセントに相当する。また厚
さが0.3ミクロンメーターを超えるとTiのα相単体
が困難になり材料脆性を増やすため、精密部品のコーナ
ー部に欠け及びチッピングが生じ本発明の効果が得られ
なくなる。Ag被膜0.3ミクロンメーターは10重量
パーセントに相当する。If the thickness of the Ag coating is less than 0.05 micrometer, it is difficult to apply a uniform coating to the surface of the Ti powder, so that oxygen / carbon will invade and a Ti alloy with a low oxygen content / low carbon content will be formed. Sintered bodies cannot be manufactured. The 0.05 micron meter Ag coating corresponds to 2 weight percent. On the other hand, if the thickness exceeds 0.3 micrometer, the Ti α phase alone becomes difficult and the brittleness of the material increases, so that chipping and chipping occur at the corners of precision parts and the effect of the present invention cannot be obtained. An Ag coating 0.3 micron meter corresponds to 10 weight percent.
【0012】また、MIM焼結体で得られた焼結品は表
面が梨地になる。一般に精密部品は表面粗度を鏡面まで
及び部分的に高精度を要求されることが多い。従って、
アーク熔解による素材より軽加工ではあるが、切削・研
削・研磨等の加工が必要となる。この加工性を改善する
ために、粒界反応による切削性向上に寄与するビスマス
・テルル・セレンと鉛のTi−Ag原料への添加は有益
である。添加量のコントロールは切削量の程度により、
この第三元素の添加物の増減(0から1重量パーセン
ト)を決定する。但し、添加量と脆性は比例関係にある
ため、上限として1重量パーセントが望ましい。MIM
法では形状矯正(サイジング)を焼結体に施すことがあ
るため材料の脆性は重要な特性である。また時計・写真
機・メガネ等の精密部品に共通している特性は、軽量で
かつ耐食性だが、時計ケースは耐傷性としてのカタサ、
メガネフレームのバネ性と特有のものもあり適宜対応す
る必要がある。Further, the surface of the sintered product obtained from the MIM sintered body becomes matte. In general, precision parts are often required to have high surface roughness to a mirror surface and high precision locally. Therefore,
Although it is lighter than the material produced by arc melting, it requires machining such as cutting, grinding, and polishing. In order to improve this workability, it is beneficial to add bismuth tellurium selenium and lead, which contribute to the improvement of machinability due to the grain boundary reaction, to the Ti-Ag raw material. The control of the amount added depends on the degree of cutting.
The increase or decrease (0-1 weight percent) of this third element additive is determined. However, since the addition amount and the brittleness are in a proportional relationship, the upper limit is preferably 1% by weight. MIM
In the method, since the shape may be subjected to shape correction (sizing) to the sintered body, brittleness of the material is an important characteristic. In addition, the characteristics common to precision parts such as watches, camera and glasses are light weight and corrosion resistance, but the watch case has scratch resistance as
Some of them are unique to the elasticity of spectacle frames, so it is necessary to take appropriate measures.
【0013】原料である粉末はMIM法に適用可能な平
均粒径30ミクロンメーター以下が望ましいが(特開平
02-54733号参照)その粉末は水素化脱水素粉、ガスアト
マイズ粉等のいずれの製造方法でつくられたものでも良
いが、バネ性の向上のためには粉末の酸素量が少ないほ
ど好結果が得られた。It is desirable that the raw material powder has an average particle size of 30 μm or less applicable to the MIM method.
(See No. 02-54733) The powder may be produced by any manufacturing method such as hydrodehydrogenation powder and gas atomized powder, but in order to improve the spring property, the smaller the oxygen content of the powder, the better the result. Was obtained.
【0014】また有機バインダーはMIM法に従来用い
られている熱可塑性樹脂、ワックス等、公知のバインダ
ーを使用することができる。As the organic binder, known binders such as thermoplastic resins and wax conventionally used in the MIM method can be used.
【0015】[0015]
【実施例】以下、実施例に基づいて本発明の詳細を説明
する。EXAMPLES The present invention will be described in detail below based on examples.
【0016】(実施例1)平均粒度30ミクロンメータ
ーの酸素0.2または0.5重量パーセントを含むTi
粉末表面に無電解メッキ法によりAgを被覆した。Ti
粉末上に無電解メッキを施す場合、直接メッキを行おう
としてもTi粉末表面に大気中の酸素が吸着し不働態膜
を形成しているために密着性の良いメッキ膜を被覆する
事ができない。従って、Ti粉末表面の活性化を行うこ
とにより、無電解メッキ膜を選択的にTi粉末上に析出
させる必要がある。Example 1 Ti containing 0.2 or 0.5 weight percent oxygen with an average particle size of 30 microns.
The surface of the powder was coated with Ag by the electroless plating method. Ti
When electroless plating is applied to the powder, it is not possible to coat the plating film with good adhesion because the oxygen in the atmosphere is adsorbed on the surface of the Ti powder to form a passive film even if the plating is performed directly. . Therefore, it is necessary to selectively deposit the electroless plating film on the Ti powder by activating the surface of the Ti powder.
【0017】まず、濃度5(体積)%の希硫酸に5分間
浸漬した後、5分間の純水洗浄を行う。次に表1に示す
組成のセンシタイジング液に室温にて10分間浸漬し、
その後5分間純水洗浄を行う。さらに表1に示すアクチ
ベーティング液に室温にて10分間浸漬した後、5分間
静水中に浸漬し余剰のアクチベータ−を除去した。First, after dipping in dilute sulfuric acid having a concentration of 5 (volume)% for 5 minutes, washing with pure water is performed for 5 minutes. Next, it is immersed in a sensitizing solution having the composition shown in Table 1 for 10 minutes at room temperature,
Then, pure water cleaning is performed for 5 minutes. Further, it was dipped in the activating liquid shown in Table 1 for 10 minutes at room temperature and then dipped in still water for 5 minutes to remove excess activator.
【0018】[0018]
【表1】 [Table 1]
【0019】上記の条件でTi粉末表面を活性化した
後、表1に示す組成により室温で無電解メッキを行っ
た。メッキ中はTi粉末が沈澱しないように攪拌を行う
とともに、無電解メッキ液の成分濃度、PHを一定に保
つように必要薬品を添加することが望ましい。メッキ時
間を3分から60分まで変えることによってメッキ被膜
厚みを0.05〜0.3ミクロンメーターの範囲でTi
粉末表面に形成した。次にこれらのAg被膜つきのTi
粉末を熱可塑性樹脂、ワックス、可塑剤からなる有機バ
インダーと加圧ニーダーにて混練するが、この時の温度
は室温(摂氏20度)から摂氏120度の範囲で行うこ
とが望ましい。これ以上の温度であるとバインダーが炭
化する恐れがあり、それ以下の温度ではバインダーの粘
度が大きくなり、混練が困難になるからである。バイン
ダーの配合比は約10重量パーセントとし、このように
作製したMIM用コンパウンドを射出成形機にてシリン
ダー温度摂氏150度、不活性ガス雰囲気中で、時計ケ
ース、バンド、メガネフレーム及び被削性、抗折力の試
験片(55×10×3ミリメーター)を成形した。After activating the surface of the Ti powder under the above conditions, electroless plating was carried out at room temperature with the composition shown in Table 1. It is desirable to stir the Ti powder during plating so that it does not precipitate and to add necessary chemicals so as to keep the component concentration and PH of the electroless plating solution constant. By changing the plating time from 3 minutes to 60 minutes, the thickness of the plating film can be adjusted in the range of 0.05 to 0.3 micrometer.
Formed on the powder surface. Next, Ti with these Ag coatings
The powder is kneaded with an organic binder composed of a thermoplastic resin, wax, and a plasticizer by a pressure kneader, and the temperature at this time is preferably in the range of room temperature (20 degrees Celsius) to 120 degrees Celsius. This is because if the temperature is higher than this, the binder may be carbonized, and if the temperature is lower than this, the viscosity of the binder becomes large and the kneading becomes difficult. The compounding ratio of the binder is about 10% by weight, and the MIM compound prepared in this manner is used in an injection molding machine at a cylinder temperature of 150 ° C. in an inert gas atmosphere, a watch case, a band, a spectacle frame, and machinability. A bending strength test piece (55 × 10 × 3 mm) was molded.
【0020】脱脂は窒素中で摂氏450度まで48時間
で昇温させて行い続いて焼結を真空中で摂氏1200度
で2時間保持して行った。Degreasing was carried out by raising the temperature to 450 ° C. in nitrogen for 48 hours, followed by sintering in vacuum at 1200 ° C. for 2 hours.
【0021】比較材として、メッキを行わないTi粉末
(平均粒径30ミクロンメーター)とAg粉末(平均粒
径25ミクロンメーター)を混合し、混練、成形、脱
脂、焼結を行ない試験片を作製した。As a comparison material, a Ti powder (average particle size 30 μm) without plating and Ag powder (average particle size 25 μm) were mixed and kneaded, molded, degreased and sintered to prepare a test piece. did.
【0022】(実施例2)実施例1に述べたTi粉末に
Ag薄膜を0.1ミクロンメーター被覆した粉末にテル
ル粉末(平均粒径30ミクロンメーター)を混合し原料
とし実施例1の条件にて試験片を作製した。(Embodiment 2) Tellurium powder (average particle diameter: 30 micrometer) was mixed with the powder obtained by coating the Ti powder described in Embodiment 1 with an Ag thin film to a thickness of 0.1 micrometer. To prepare a test piece.
【0023】以上の焼結体について従来品との比較で抗
折力試験、硬度、被削性を測定した。結果を表2に示
す。被削性については超硬バイトを用いて切削速度20
m /分、切込量0.5mm、送り0.15mm/rev (特公
昭55-21823号と同一条件)で、表2中のデーターは、純
チタンを100として指数化し指数の大きいほど被削性
の良いことを示している。その結果は表2に示すが、本
実施例による焼結体は比較材に比べ抗折力は改善され、
特に混粉(試料D)ではモロイため特にメガネフレーム
の弾性と、時計ケース研削時の欠け発生の課題を解決し
実用の域に達した。The bending strength test, hardness, and machinability of the above sintered body were measured in comparison with conventional products. The results are shown in Table 2. For machinability, use a carbide tool to cut at a cutting speed of 20
m / min, depth of cut 0.5 mm, feed 0.15 mm / rev (same conditions as Japanese Patent Publication No. 55-21823). It shows that he has good sex. The results are shown in Table 2, and the bending strength of the sintered body of this example is improved as compared with the comparative material.
In particular, since the mixed powder (Sample D) was moloi, the problems of elasticity of the spectacle frame and occurrence of chipping during grinding of the watch case were solved and the range of practical use was reached.
【0024】[0024]
【表2】 [Table 2]
【0025】メガネフレ−ムはメガネ購入時点で個々の
顧客にフィットさせるため、多少の曲げ性と適度の弾性
を要請されるが、本実施例の中でも酸素量の少ない試料
Aが試料Bより優れており、この事は上記特性がTi粉
末の酸素量に依存している事を証明した。さらにα相に
単一化する組成(Ag:10重量パ−セント以下)と溶
体化処理(焼結後摂氏850度・2時間以上)が特性向
上に効果がある。The spectacle frame is required to have some bendability and appropriate elasticity in order to fit each customer at the time of purchasing the spectacles, but the sample A having a small oxygen content is superior to the sample B in this embodiment. This proves that the above properties depend on the oxygen content of the Ti powder. Further, the composition (Ag: 10% by weight or less) that is unified into the α phase and the solution treatment (850 ° C. for 2 hours or more after sintering) are effective for improving the characteristics.
【0026】また時計ケ−スにおいては、焼結体の梨地
表面の鏡面化とコ−ナ−及び稜線部の鋭角化のために軽
度の研削を要求されるが、この時発生する欠けないしチ
ップングの防止にも上記脆性改善は有効である。更に、
時計ケ−スはデザインの多様化もメ−カ−として重要な
課題であるが、共通金型により得た焼結体を部分的な切
削で対応できる場合には、試料Cによる被削性の向上
で、色調ではα相単体の白色系から金属間化合物を多少
含む黒味を帯びた金属色とMIM法ならではの特徴によ
り柔軟に対処できる。また時計ケ−スでは、携帯時にお
ける耐傷性の向上も商品価値を高める因子である。この
ため硬さを増加する方策として、焼結体もしくは研磨上
りの時計ケ−スを前述の溶体化処理後時効硬化処理(摂
氏450度・2時間)すること及びTiの表面を改質
(特開昭51-33732号)及び(愛媛大学工学部紀要Vo
l.12,No3,Page405〜416.1992)
による超硬質化も可能となる。In the case of a watch, a slight grinding is required in order to make the matte surface of the sintered body mirror-finished and to make the corners and the ridges sharp, but the chipping or chipping that occurs at this time is required. The prevention of brittleness is also effective in improving the brittleness. Furthermore,
Although the diversification of design is an important issue for the watch case as a manufacturer, when the sintered body obtained by the common mold can be partially cut, the machinability of the sample C In terms of color tone, it is possible to flexibly cope with the white tone of the α phase alone to the blackish metallic color containing some intermetallic compounds and the characteristics unique to the MIM method. Further, in a watch case, improvement in scratch resistance during carrying is also a factor that enhances commercial value. Therefore, as a measure to increase the hardness, the sintered body or the watch case after polishing is subjected to the age hardening treatment (450 ° C. for 2 hours) after the solution treatment described above and the surface of Ti is modified (special (Kaisho 51-33732) and (Bulletin of Faculty of Engineering, Ehime University Vo
l. 12, No3, Page 405-416.1992)
It becomes possible to make it super hard.
【0027】実施例1ではTi粉末へのAg被覆とした
が、Ti−Ag合金のガスアトマイズ粉でも良く、同様
に実施例2のテルル粉末もTi−Ag−Teの合金粉と
する事も当然可能である。In the first embodiment, the Ti powder is coated with Ag. However, a Ti-Ag alloy gas atomized powder may be used. Similarly, the tellurium powder of the second embodiment may be a Ti-Ag-Te alloy powder. Is.
【0028】以上述べたように、本発明によれば、それ
ぞれニ−ズに合致した特有の特性の合金部品を容易に実
現できる。As described above, according to the present invention, it is possible to easily realize alloy parts having unique characteristics that match the needs.
【0029】[0029]
【発明の効果】以上述べたように本発明のTiまたはT
i合金粉末へのAg薄膜の被覆によりMIM製造工程中
の酸化、炭化を防ぎ、機能特性の良い合金部品が得られ
るばかりでなく、ビスマス、テルル、セレン、鉛による
被削性の改善により、複雑形状の時計、メガネ、写真機
等のTi−Ag系合金部品を安価に提供できるほか、T
iもしくはTi合金粉末の状態で長期の保管が可能とな
るため、量産時の粉末管理が容易になるという効果も有
する。As described above, the Ti or T of the present invention is used.
The i-alloy powder is coated with an Ag thin film to prevent oxidation and carbonization during the MIM manufacturing process to obtain alloy parts with good functional characteristics, and to improve the machinability by bismuth, tellurium, selenium, and lead, which makes it complicated. In addition to providing Ti-Ag alloy parts such as shaped watches, glasses, and camera units at low cost,
Since i or Ti alloy powder can be stored for a long period of time, it also has an effect of facilitating powder management during mass production.
フロントページの続き (72)発明者 後町 忠昭 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 (72)発明者 四谷 真一 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内Front page continued (72) Inventor Tadaaki Gomachi 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation (72) Inventor Shinichi Yotsuya 3-3-5 Yamato, Suwa City, Nagano Prefecture Seiko Epson Corporation Within
Claims (4)
しくは乾式成膜法によりAgを被覆し、該粉末を樹脂材
料と配合コンパウンドし、射出成形、焼結することによ
り、Agが2重量パ−セント以上、10重量パ−セント
以下含有した事を特徴とするTi−Ag系合金部品。1. The surface of Ti or Ti alloy powder is coated with Ag by a wet or dry film forming method, the powder is compounded with a resin material, compounded by injection molding, and sintered to obtain 2 parts by weight of Ag. A Ti-Ag based alloy part characterized by containing not less than 10 cents and not more than 10 percent by weight.
しくは乾式成膜法によりAgを被覆し、該粉末にビスマ
ス、テルル、セレンまたは鉛の少なくとも一種を0.0
5〜1.0重量パーセント添加し、該粉末を樹脂材料と
配合コンパウンドし、射出成形、焼結することにより、
Agが2重量パ−セント以上、10重量パ−セント以下
含有した事を特徴とするTi−Ag系合金部品。2. A surface of Ti or Ti alloy powder is coated with Ag by a wet or dry film formation method, and the powder is coated with at least one of bismuth, tellurium, selenium and lead by 0.0.
By adding 5 to 1.0 weight percent, compounding the powder with a resin material, injection molding, and sintering,
A Ti-Ag based alloy part characterized by containing Ag in an amount of 2% by weight or more and 10% by weight or less.
ト以下である事を特徴とする請求項1記載のTi−Ag
系合金部品。3. The Ti-Ag according to claim 1, wherein the Ti powder has an oxygen content of 0.2% by weight or less.
System alloy parts.
ーム部品である事を特徴とする請求項1記載のTi−A
g系合金部品。4. The Ti-A according to claim 1, wherein the alloy parts are exterior parts for watches and eyeglass frame parts.
g-based alloy parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4301341A JPH06145703A (en) | 1992-11-11 | 1992-11-11 | Ti-ag alloy parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4301341A JPH06145703A (en) | 1992-11-11 | 1992-11-11 | Ti-ag alloy parts |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06145703A true JPH06145703A (en) | 1994-05-27 |
Family
ID=17895699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4301341A Pending JPH06145703A (en) | 1992-11-11 | 1992-11-11 | Ti-ag alloy parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06145703A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06184602A (en) * | 1992-12-21 | 1994-07-05 | Horikawa:Kk | Production of spectacle metallic parts |
JP2019070194A (en) * | 2018-11-29 | 2019-05-09 | 住友電工焼結合金株式会社 | Sintered component |
US11305347B2 (en) | 2014-12-12 | 2022-04-19 | Sumitomo Electric Sintered Alloy, Ltd. | Method for manufacturing sintered component, sintered component, and drill |
-
1992
- 1992-11-11 JP JP4301341A patent/JPH06145703A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06184602A (en) * | 1992-12-21 | 1994-07-05 | Horikawa:Kk | Production of spectacle metallic parts |
US11305347B2 (en) | 2014-12-12 | 2022-04-19 | Sumitomo Electric Sintered Alloy, Ltd. | Method for manufacturing sintered component, sintered component, and drill |
US11325186B2 (en) | 2014-12-12 | 2022-05-10 | Sumitomo Electric Sintered Alloy, Ltd. | Method for manufacturing sintered component, sintered component, and drill |
JP2019070194A (en) * | 2018-11-29 | 2019-05-09 | 住友電工焼結合金株式会社 | Sintered component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4309457A (en) | Process of producing multilayer-coated composite powder | |
Barker | Electroless deposition of metals | |
EP0583853B1 (en) | A process for the production of a surface-coated cemented carbide | |
JP6573661B2 (en) | Sliding bearings or parts thereof, methods for their production and use of CuCrZr alloys as sliding bearing materials | |
US5364459A (en) | Electroless plating solution | |
JPH06145703A (en) | Ti-ag alloy parts | |
US3922405A (en) | Method for forming of a carbide layer of a V-a group element of the periodic table on the surface of an iron, ferrous alloy or cemented carbide article | |
TW201323652A (en) | Electroless plating of silver onto graphite | |
KR20190115481A (en) | Plating solution and manufacturing method of plated product | |
CN114318202A (en) | Nickel-based alloy surface wear-resistant coating and preparation method thereof | |
RU2156838C1 (en) | Process of deposition of composite metal and diamond coats | |
EP3460095B1 (en) | Sliding member | |
JP3397811B2 (en) | Watch exterior parts | |
EP0063386B1 (en) | Method for forming a carbide layer on the surface of a ferrous alloy article or a cemented carbide article | |
US3885064A (en) | Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article | |
CN109321953B (en) | Hardening agent for cyanide-free alkaline silver plating and application thereof | |
JPH06145704A (en) | Production of ti alloy by metal powder injection molding method | |
JP3151843B2 (en) | Alloy magnet plating method | |
JP3033455B2 (en) | Electroless nickel plating of aluminum | |
US3288636A (en) | Process for coating uranium alloy members | |
JPS62127448A (en) | Electrode material for electric discharge machining and its production | |
JPS63100027A (en) | Metal mold for forming glass | |
JP2005325411A (en) | Metal powder having excellent sinterability, its production method and method for producing sintered compact using the metal powder | |
JPH0772315B2 (en) | Highly wear-resistant alloy with excellent corrosion resistance to halogen gas and its manufacturing method | |
TW201350594A (en) | Metal material |