JP2011144419A - Sintering method - Google Patents

Sintering method Download PDF

Info

Publication number
JP2011144419A
JP2011144419A JP2010005608A JP2010005608A JP2011144419A JP 2011144419 A JP2011144419 A JP 2011144419A JP 2010005608 A JP2010005608 A JP 2010005608A JP 2010005608 A JP2010005608 A JP 2010005608A JP 2011144419 A JP2011144419 A JP 2011144419A
Authority
JP
Japan
Prior art keywords
mold
core
powder
injection molding
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010005608A
Other languages
Japanese (ja)
Inventor
Akira Yonetani
彰 米谷
Katsunori Nakagawa
勝則 中川
Jun Asakawa
遵 浅川
Joji Yamaoka
丈二 山岡
Tsutomu Shimizu
勉 清水
Chisato Shimizu
千里 清水
Toru Shimizu
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
SHIMIZU SEISAKUSHO KK
Original Assignee
IHI Corp
SHIMIZU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, SHIMIZU SEISAKUSHO KK filed Critical IHI Corp
Priority to JP2010005608A priority Critical patent/JP2011144419A/en
Priority to PCT/JP2011/050569 priority patent/WO2011087098A1/en
Publication of JP2011144419A publication Critical patent/JP2011144419A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/342Moulds, cores, or mandrels of special material, e.g. destructible materials which are at least partially destroyed, e.g. broken, molten, before demoulding; Moulding surfaces or spaces shaped by, or in, the ground, or sand or soil, whether bound or not; Cores consisting at least mainly of sand or soil, whether bound or not
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a product having a cavity or a through-hole therein is difficult to produce by powder injection molding. <P>SOLUTION: The sintering method comprises steps of: kneading a first composition containing a first powder of a thermoplastic resin; carrying out injection molding so that the kneaded first composition becomes a core; incorporating the core into an outer mold so as to assemble a mold; kneading a second composition comprising a powder chosen from the group consisting of a metal and a ceramic and a second powder of a binder for powder injection molding; injecting the kneaded second composition into the mold and carrying out injection molding to obtain a green compact; and sintering the green compact with the core incorporated therein. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属粉末射出成形(MIM)やセラミック粉末射出成形(CIM)のごとき粉末射出成形方法による焼結方法に関する。   The present invention relates to a sintering method by a powder injection molding method such as metal powder injection molding (MIM) or ceramic powder injection molding (CIM).

金属粉末を適宜のバインダと共に射出成形することによりグリーン体を形成し、焼結に供する技法は、金属粉末射出成形(MIM)と呼ばれる。MIMは精密な焼結体を製造する目的に適し、その利用は次第に拡大している。金属粉末をセラミック粉末に代えたセラミック粉末射出成形(CIM)も実用化されている。特許文献1および2は、関連する技術を開示する。   A technique of forming a green body by injection molding metal powder together with a suitable binder and subjecting it to sintering is called metal powder injection molding (MIM). MIM is suitable for the purpose of producing a precise sintered body, and its use is gradually expanding. Ceramic powder injection molding (CIM) in which metal powder is replaced with ceramic powder has also been put into practical use. Patent documents 1 and 2 disclose related technology.

鋳砂のごとき定型を持たないものをモールドに利用する鋳造法と異なり、射出成形のモールドは、原則的に定型の金属である。金属のモールドは精密に加工することが可能であり、それを反映して、MIMやCIMは複雑な形状の精密な成形に適する。一方、内部に空洞や貫通孔を有する物品を製造しようとする場合には問題が生ずる。空洞や貫通孔を形成するために中子を必要とするが、中子は焼結前に引き抜くか、焼結後に破砕して除去しなければならない。グリーン体は粉末およびバインダの凝集体に過ぎないので、その形状に影響を与えずに中子を引き抜ける場合はごく限られる。焼結後に破砕しようとしても、中子はそもそも射出圧に耐えるべく相当程度の強度を有するべきなので、これを破砕して除去することは困難である。そのため内部に空洞や貫通孔を有する製品をMIMやCIMにより製造しようとする場合には、追加的にドリル等による加工が必要である。加工の便宜のために製造しうる形状は著しく制約され、さらに内面の仕上げ(表面粗さ)には問題が生じ、勿論生産性も減ぜられる。   Unlike a casting method that uses a mold that does not have a fixed shape, such as foundry sand, an injection-molded mold is basically a fixed metal. Metal molds can be precisely processed, and MIM and CIM are suitable for precise molding of complex shapes. On the other hand, a problem arises when trying to manufacture an article having a cavity or a through hole inside. A core is required to form a cavity or a through-hole, but the core must be pulled out before sintering or crushed and removed after sintering. Since the green body is merely an aggregate of powder and binder, the number of cases where the core can be pulled out without affecting its shape is limited. Even if the core is to be crushed after sintering, the core should be strong enough to withstand the injection pressure, so it is difficult to crush and remove it. Therefore, when it is going to manufacture the product which has a cavity and a through-hole by MIM or CIM, the process by a drill etc. is additionally required. The shape that can be produced for the convenience of processing is remarkably restricted, and furthermore, the finish of the inner surface (surface roughness) is problematic, and of course the productivity is also reduced.

特許第4240512号公報Japanese Patent No. 4240512 特許第4317916号公報Japanese Patent No. 4317916

本発明は、内部に空洞や貫通孔を有する製品を製造するに適した粉末射出成形による焼結方法を提供することを目的とする。   An object of this invention is to provide the sintering method by the powder injection molding suitable for manufacturing the product which has a cavity and a through-hole inside.

本発明の一局面によれば、第1の熱可塑性樹脂の粉末を含む第1の組成物を混練し、混練された前記第1の組成物を中子となるよう射出成形し、前記中子を外モールドに組み込むことによりモールドを組み立て、金属およびセラミックよりなる群より選択された何れかの粉末と、第2の粉末射出成形用バインダの粉末とを含む第2の組成物を混練し、混練された前記第2の組成物を前記モールドへ射出してグリーン体を得るべく射出成形し、前記中子を組み込んだまま前記グリーン体を焼結する、ことを含む。   According to one aspect of the present invention, the first composition containing the first thermoplastic resin powder is kneaded, the kneaded first composition is injection-molded to become a core, and the core Assembling the mold into the outer mold, the mold is assembled, and the second composition containing any powder selected from the group consisting of metal and ceramic and the powder of the second powder injection molding binder is kneaded and kneaded. Injection of the prepared second composition into the mold to obtain a green body, and sintering the green body with the core incorporated therein.

好ましくは、前記第1の熱可塑性樹脂はアクリルよりなる。また好ましくは、前記第1の組成物は、さらに第1の粉末射出成形用バインダを含み、前記第1の粉末射出成形用バインダは、ポリ乳酸と、ポリオキシメチレンと、ポリプロピレンと、150℃における粘度が200mPa・s以下である有機化合物と、ビカット軟化点130℃以下である第2の熱可塑性樹脂とを含む。さらに好ましくは、前記焼結する工程は、70乃至150℃まで0.3乃至2℃/分で昇温する工程を含む。より好ましくは前記焼結する工程は、70乃至150℃において30分以上保持する工程を含む。   Preferably, the first thermoplastic resin is made of acrylic. Further preferably, the first composition further includes a first powder injection molding binder, and the first powder injection molding binder comprises polylactic acid, polyoxymethylene, polypropylene, and 150 ° C. An organic compound having a viscosity of 200 mPa · s or less and a second thermoplastic resin having a Vicat softening point of 130 ° C. or less are included. More preferably, the sintering step includes a step of raising the temperature from 70 to 150 ° C. at a rate of 0.3 to 2 ° C./min. More preferably, the sintering step includes a step of holding at 70 to 150 ° C. for 30 minutes or more.

中子を成形体に組み込んだまま焼結しても中子が焼結の過程で消失し、追加的な空洞や貫通孔の加工なしに、内部に空洞や貫通孔を有する粉末射出成形品が製造できる。   Even if the core is sintered with the molded body being sintered, the core disappears during the sintering process, and a powder injection molded product having cavities and through-holes inside without additional cavities and through-holes being processed. Can be manufactured.

図1は、本発明の一実施形態による中子を利用した粉末射出成形による焼結方法の工程を説明するフローチャートである。FIG. 1 is a flowchart illustrating the steps of a sintering method by powder injection molding using a core according to an embodiment of the present invention. 図2は、前記焼結方法に好適な焼結体の一例の断面図である。FIG. 2 is a cross-sectional view of an example of a sintered body suitable for the sintering method. 図3は、前記焼結体を焼結するに適合した中子を含むモールドの一例の断面図である。FIG. 3 is a cross-sectional view of an example of a mold including a core adapted to sinter the sintered body. 図4は、前記中子を射出成形するためのモールドの一例の断面図である。FIG. 4 is a cross-sectional view of an example of a mold for injection molding the core. 図5は、前記中子とともに前記モールドから取り出されたグリーン体の平面図である。FIG. 5 is a plan view of the green body taken out of the mold together with the core.

添付の図面を参照して以下に本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態は、種々の焼結体の製造に利用しうるが、好適な焼結体の一例としては、図2に示すような管継手である。すなわち図2は、焼結体の一例たる管継手1であって、内部に流体を流通せしめるための貫通孔3を有する。   Although this embodiment can be used for manufacturing various sintered bodies, an example of a suitable sintered body is a pipe joint as shown in FIG. That is, FIG. 2 shows a pipe joint 1 which is an example of a sintered body, and has a through hole 3 for allowing a fluid to flow inside.

まず、焼結後に管継手1の形状が得られるべきグリーン体を、射出成形により成形する必要がある。図1を参照するに、まず射出成形のためのモールド10が製作される。   First, it is necessary to form the green body from which the shape of the pipe joint 1 should be obtained after sintering by injection molding. Referring to FIG. 1, first, a mold 10 for injection molding is manufactured.

図3はモールド10の一例である。グリーン体が焼結されて焼結体となる過程で、20%程度の体積収縮が起こるので、モールド10はかかる体積収縮を考慮して設計される。モールド10は、外モールド11,13,15と、中子20とよりなる。外モールドは、射出成形後にグリーン体を取り出すことができるよう、適宜の複数部に分割でき、この例では第1のモールド11と、第2のモールド13と、入子15とよりなる。第1のモールド11は、さらに紙面に対して前後方向に分割しうる。第1のモールド11および第2のモールド13は、相互の正確な位置決めを可能とするべく、突起と係合孔の対のごとき適宜の位置決め手段を備えてもよい。入子15の外面は僅かにテーパとなっており、これに対応する第1のモールド11の孔の内面に嵌合することにより、相互に位置決めされる。あるいは、テーパとせずに円筒面として、他の適宜の位置決め手段を備えてもよい。モールド相互の嵌合面は、精密に密着するように形成することが好ましいが、ガス抜きするべく部分的に僅かな隙間を設けてもよい。   FIG. 3 shows an example of the mold 10. Since the volume shrinkage of about 20% occurs in the process of the green body being sintered to become a sintered body, the mold 10 is designed in consideration of the volume shrinkage. The mold 10 includes outer molds 11, 13, and 15 and a core 20. The outer mold can be divided into a plurality of appropriate parts so that the green body can be taken out after injection molding. In this example, the outer mold includes a first mold 11, a second mold 13, and a nest 15. The first mold 11 can be further divided in the front-rear direction with respect to the paper surface. The first mold 11 and the second mold 13 may be provided with appropriate positioning means such as a pair of protrusions and engagement holes in order to enable accurate mutual positioning. The outer surface of the insert 15 is slightly tapered and is positioned relative to each other by fitting into the corresponding inner surface of the hole of the first mold 11. Alternatively, other appropriate positioning means may be provided as a cylindrical surface without being tapered. The fitting surfaces between the molds are preferably formed so as to closely contact each other, but a slight gap may be provided partially in order to degas.

また第1のモールド11は、湯道17を備え、金属ないしセラミックの粉末とバインダとの混合物の導入を可能にしている。外モールド11,13,15と、中子20とにより囲まれた空間は、湯道17の部分を除いて、グリーン体の鋳型となるべき空間19である。   The first mold 11 is provided with a runner 17 and allows introduction of a mixture of a metal or ceramic powder and a binder. A space surrounded by the outer molds 11, 13, 15 and the core 20 is a space 19 to be a green body mold except for the runner 17.

外モールドを構成する第1のモールド11と、第2のモールド13と、入子15とは、SKD11(JIS G 4404)等の適宜の金属よりなり、公知の加工方法により製作される。   The first mold 11, the second mold 13, and the insert 15 constituting the outer mold are made of an appropriate metal such as SKD11 (JIS G 4404) and are manufactured by a known processing method.

中子20は、射出成形により形成される。図4は、中子20を射出成形するためのモールド30の一例である。モールド30は、湯道31と、湯道31に連通した空洞33とを備えている。空洞33は中子20の外形に対応している。モールド30も適宜に複数個に分割しうる。   The core 20 is formed by injection molding. FIG. 4 is an example of a mold 30 for injection molding the core 20. The mold 30 includes a runner 31 and a cavity 33 communicating with the runner 31. The cavity 33 corresponds to the outer shape of the core 20. The mold 30 can also be divided into a plurality of pieces as appropriate.

射出に供する組成物は、後述の焼結の工程において消失する性質を有するものである。そのような組成物の一例は、熱可塑性樹脂と適宜の添加物との混合物である。熱可塑性樹脂は、典型的には200℃以上において溶融し、分解し、蒸発することにより、消失する。   The composition to be used for injection has a property of disappearing in the sintering process described later. An example of such a composition is a mixture of a thermoplastic resin and appropriate additives. The thermoplastic resin typically disappears by melting, decomposing and evaporating above 200 ° C.

熱可塑性樹脂としては、スチレン系,アクリル系,セルロース系,ポリエチレン系,ビニル系,ナイロン系,フッ化炭素系樹脂が例示できる。とりわけアクリル系樹脂は、射出圧に耐える強度を有し、混練の際の粘度が適当であり、かつ焼結の工程において溶融、分解、および蒸発が良好である。   Examples of the thermoplastic resin include styrene-based, acrylic-based, cellulose-based, polyethylene-based, vinyl-based, nylon-based, and fluorocarbon-based resins. In particular, the acrylic resin has strength enough to withstand the injection pressure, has an appropriate viscosity during kneading, and has good melting, decomposition, and evaporation in the sintering process.

熱可塑性樹脂の混合比は、高いほうがグリーン体の形状安定性の点で有利だが、低いほうが混練や焼結の工程における流動性の点で有利である。それゆえ熱可塑性樹脂の混合比は、好ましくは50重量%以上100重量%未満であり、より好ましくは70重量%以上90重量%未満である。   A higher mixing ratio of the thermoplastic resin is advantageous in terms of shape stability of the green body, but a lower mixing ratio is advantageous in terms of fluidity in the kneading and sintering processes. Therefore, the mixing ratio of the thermoplastic resin is preferably 50% by weight or more and less than 100% by weight, more preferably 70% by weight or more and less than 90% by weight.

添加物は、粘度や流動性の調整の目的、また組成物の形状安定性の調整の目的等、種々の目的で適宜に選択しうる。添加物としては、例えばポリオキシメチレン、ポリプロピレン、適宜の有機化合物、粉末射出成形用バインダが例示できる。   The additive can be appropriately selected for various purposes such as the purpose of adjusting the viscosity and fluidity and the purpose of adjusting the shape stability of the composition. Examples of the additive include polyoxymethylene, polypropylene, an appropriate organic compound, and a binder for powder injection molding.

ポリオキシメチレンは組成物の強度を高めるので、これを添加することは中子の形状安定性を高める点で有利である。グリーン体は焼結の初期において軟化および収縮するが、特にそのビカット軟化点が150℃以上のポリオキシメチレンは、軟化および収縮の過程におけるグリーン体の変形を防止しやすい点で有利である。またポリオキシメチレンは、焼結の工程において分解および蒸発が良好であって、焼結体に残存物を残さない。   Since polyoxymethylene increases the strength of the composition, the addition of polyoxymethylene is advantageous in terms of increasing the shape stability of the core. The green body is softened and shrunk at the initial stage of sintering. Particularly, polyoxymethylene having a Vicat softening point of 150 ° C. or more is advantageous in that it can easily prevent the green body from being deformed in the process of softening and shrinking. Polyoxymethylene has good decomposition and evaporation in the sintering process, and does not leave a residue in the sintered body.

ポリプロピレンは組成物の靭性を高めるので、これを添加することは中子の破損を防止する点で有利である。特にそのビカット軟化点が130℃以上のものは、グリーン体が軟化および収縮する過程においてその変形を防止しやすい点で有利である。またポリプロピレンは、焼結の工程において分解および蒸発が良好であって、焼結体に残存物を残さない。   Since polypropylene increases the toughness of the composition, the addition of polypropylene is advantageous in terms of preventing damage to the core. In particular, those having a Vicat softening point of 130 ° C. or more are advantageous in that the green body can be easily prevented from being deformed in the process of softening and shrinking. Polypropylene has good decomposition and evaporation in the sintering process, and does not leave a residue in the sintered body.

さらに適宜の有機化合物は、焼結の工程における粘度を下げるので、これを添加することは中子の溶融を容易にする点で有利である。例えばL−乳酸やD−乳酸のポリマーのごときポリ乳酸は、焼結の工程において分解および蒸発が良好であって、焼結体に残存物を残さないので好適である。また、特にポリオキシメチレンを添加する場合、そのビカット軟化点温度における粘度が200mPa・s以下の有機化合物は、グリーン体が収縮する過程において中子の溶融と流出を容易にする。そのような有機化合物としては、脂肪酸エステル、脂肪酸アミド、フタル酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックス、ポリグリコール系化合物が例示できる。かかる有機化合物より選択された何れか一のみを添加してもよいし、または二以上を添加してもよい。   Furthermore, an appropriate organic compound lowers the viscosity in the sintering step, and therefore adding this is advantageous in terms of facilitating melting of the core. For example, polylactic acid such as a polymer of L-lactic acid or D-lactic acid is preferable because it has good decomposition and evaporation in the sintering process and does not leave a residue in the sintered body. In particular, when polyoxymethylene is added, an organic compound having a viscosity at the Vicat softening point temperature of 200 mPa · s or less facilitates melting and outflow of the core in the process of shrinking the green body. Such organic compounds include fatty acid esters, fatty acid amides, phthalic acid esters, paraffin wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride modified wax, polyglycol. Examples of such compounds are listed. Only one selected from such organic compounds may be added, or two or more may be added.

上述の添加物に代えて、あるいはそれらと共に、公知の粉末射出成形用バインダを利用してもよい。粉末射出成形用バインダとしては、例えばポリ乳酸と、ポリオキシメチレンと、ポリプロピレンと、150℃における粘度が200mPa・s以下である有機化合物と、ビカット軟化点130℃以下である第2の熱可塑性樹脂とを含むものが好適に利用できる。またこのような粉末射出成形用バインダは、MRM−1(IHIターボの商品名)の名称で一般に入手できる。   A known powder injection molding binder may be used instead of or in addition to the above-described additives. Examples of the powder injection molding binder include polylactic acid, polyoxymethylene, polypropylene, an organic compound having a viscosity at 150 ° C. of 200 mPa · s or less, and a second thermoplastic resin having a Vicat softening point of 130 ° C. or less. Can be suitably used. Such a powder injection molding binder is generally available under the name MRM-1 (trade name of IHI Turbo).

上述の熱可塑性樹脂および添加物は、混練の便宜のために細かく砕かれた形態で利用される。細かく砕かれた形態としては、粉末状、顆粒状、細片状等混練に便利な何れの態様でもよく、明細書および請求の範囲において、「粉末」の語はこれら全ての態様を含むものと定義して使用する。熱可塑性樹脂の粉末と添加物の粉末との混合物は、適宜の粘度とするべく、100乃至150℃に加熱して、混練される。混練後、空冷して固形にしたものを粉砕して、射出成形に供する。   The above-mentioned thermoplastic resin and additives are used in a finely crushed form for the convenience of kneading. The finely crushed form may be any form convenient for kneading, such as powder, granule, strip, etc. In the specification and claims, the term “powder” includes all these aspects. Define and use. The mixture of the thermoplastic resin powder and the additive powder is kneaded by heating to 100 to 150 ° C. to obtain an appropriate viscosity. After kneading, the air-cooled solid is pulverized and subjected to injection molding.

混練された上述の混合物は、十分な流動性を与えるべく、160乃至200℃に加熱され、100MPa程度の加圧とともに湯道31を介してモールド30内に射出される。混合物は、モールド30の空洞33に隙間無く充填されることにより成形され、モールド30から取り出されて空冷されることにより、中子20が得られる。   The above-mentioned kneaded mixture is heated to 160 to 200 ° C. to give sufficient fluidity, and injected into the mold 30 through the runner 31 with a pressure of about 100 MPa. The mixture is molded by filling the cavity 33 of the mold 30 without a gap, and is taken out from the mold 30 and air-cooled, whereby the core 20 is obtained.

モールド10は、中子20と組み合わされて組み立てられる。まず中子20は、一方の端が第2のモールド13に嵌合され、他方の端が入子15に嵌合される。そしてこれらを挟み込むように、第1のモールド11が第2のモールド13および入子15に嵌合されて、図3のような形態のモールド10が組み立てられる。このようにして組み立てられたモールド10は、射出成形機に導入される。射出成形機としてはMIM用として一般的なものが利用できる。   The mold 10 is assembled in combination with the core 20. First, the core 20 has one end fitted to the second mold 13 and the other end fitted to the insert 15. Then, the first mold 11 is fitted to the second mold 13 and the insert 15 so as to sandwich them, and the mold 10 having a form as shown in FIG. 3 is assembled. The mold 10 assembled in this way is introduced into an injection molding machine. As the injection molding machine, a general machine for MIM can be used.

上述の工程と並行して、粉末射出成形に供する組成物の混練を行う。かかる組成物には、金属粉末またはセラミック粉末とバインダとの混合物が好適である。   In parallel with the above-described steps, the composition to be subjected to powder injection molding is kneaded. For such a composition, a mixture of metal powder or ceramic powder and a binder is suitable.

金属粉末またはセラミック粉末としては、要求される特性に応じて種々の素材の粉末を利用しうる。管継手1の素材としては、耐食性を考慮して例えばSUS316(JIS G 4303〜4305)が好適であって、かかる素材の粉末を利用する。   As the metal powder or ceramic powder, powders of various materials can be used according to required characteristics. As a material of the pipe joint 1, for example, SUS316 (JIS G 4303 to 4305) is suitable in consideration of corrosion resistance, and powder of such material is used.

バインダとしては、一般的な粉末射出成形用バインダが利用できる。粉末射出成形用バインダとしては、例えばポリ乳酸と、ポリオキシメチレンと、ポリプロピレンと、150℃における粘度が200mPa・s以下である有機化合物と、ビカット軟化点130℃以下である第2の熱可塑性樹脂とを含むものが好適に利用できる。またこのような粉末射出成形用バインダは、MRM−1(IHIターボの商品名)の名称で一般に入手できる。かかるバインダは、中子20の成形に利用するバインダと同種であってもよいし、異種であってもよい。   As the binder, a general powder injection molding binder can be used. Examples of the powder injection molding binder include polylactic acid, polyoxymethylene, polypropylene, an organic compound having a viscosity at 150 ° C. of 200 mPa · s or less, and a second thermoplastic resin having a Vicat softening point of 130 ° C. or less. Can be suitably used. Such a powder injection molding binder is generally available under the name MRM-1 (trade name of IHI Turbo). Such a binder may be the same as or different from the binder used for forming the core 20.

バインダの混合比は適宜に調整しうる。バインダの混合比は、大きいほうが成形体の形状を保持するのに有利である。一方、バインダの混合比は、小さいほうが焼結による体積収縮を抑制する点で有利である。そこで、バインダの混合比は、例えば金属粉末またはセラミック粉末に対して30乃至60体積%とすることができ、より好ましくは35乃至50体積%とすることができる。   The mixing ratio of the binder can be adjusted as appropriate. A larger binder mixing ratio is advantageous for maintaining the shape of the molded body. On the other hand, a smaller binder mixing ratio is advantageous in that it suppresses volume shrinkage due to sintering. Therefore, the mixing ratio of the binder can be, for example, 30 to 60% by volume, and more preferably 35 to 50% by volume with respect to the metal powder or ceramic powder.

金属粉末またはセラミック粉末とバインダとの混合物は、適宜の粘度を与えるべく、100乃至150℃に加熱され、混練される。混練された上述の混合物は、十分な流動性を与えるべく、160乃至200℃に加熱され、100MPa程度の加圧とともに湯道17を介してモールド10内に射出される。混合物は、モールド10内の空洞19に隙間無く充填されることにより成形される。その後、モールド10を組み立てるのとほぼ反対の手順により、グリーン体40が中子20と共に取り出される。   The mixture of the metal powder or ceramic powder and the binder is heated to 100 to 150 ° C. and kneaded to give an appropriate viscosity. The above-mentioned kneaded mixture is heated to 160 to 200 ° C. to give sufficient fluidity, and injected into the mold 10 through the runner 17 together with a pressure of about 100 MPa. The mixture is molded by filling the cavity 19 in the mold 10 without any gap. Thereafter, the green body 40 is taken out together with the core 20 by a procedure almost opposite to that for assembling the mold 10.

図5に示すように、モールド10から取り出されたグリーン体40は、中子20をその中に組み込んだ状態である。この状態のまま、グリーン体40を雰囲気制御の可能な焼結炉に導入する。適宜の減圧下で窒素等の非酸化性のガスにより炉内をパージしつつ、カーボンヒータ等の適宜の加熱手段により、0.3乃至2℃/分程度の昇温速度でグリーン体40を昇温する。昇温の効率を高めるべく、70乃至150℃程度までは昇温速度を大きく、それ以上において昇温速度を小さくしてもよい。   As shown in FIG. 5, the green body 40 taken out from the mold 10 is in a state in which the core 20 is incorporated therein. In this state, the green body 40 is introduced into a sintering furnace capable of controlling the atmosphere. While purging the inside of the furnace with a non-oxidizing gas such as nitrogen under an appropriate reduced pressure, the green body 40 is raised at a temperature rising rate of about 0.3 to 2 ° C./min by an appropriate heating means such as a carbon heater. Warm up. In order to increase the efficiency of temperature increase, the temperature increase rate may be increased up to about 70 to 150 ° C., and the temperature increase rate may be decreased beyond that.

かかる昇温の過程において予備焼結が進行することにより、グリーン体40は軟化し、収縮するが、中子20も上述のような組成を有しているために、同様に軟化および収縮を起こす。両者の軟化および収縮が調和しているために、グリーン体40はかかる過程において、中子20によって適切にその形状および構造を保持する。両者の軟化および収縮を調和せしめるべく、70乃至150℃程度において30分以上温度を保持する段階を設けてもよい。また外形を保持するべく、適宜の治具によってグリーン体40の外部を支持してもよい。   As the pre-sintering progresses during the temperature raising process, the green body 40 softens and contracts. However, since the core 20 also has the above-described composition, the green body 40 similarly softens and contracts. . Since the softening and shrinkage of both are harmonized, the green body 40 appropriately retains its shape and structure by the core 20 in this process. In order to coordinate both softening and shrinkage, a step of maintaining the temperature at about 70 to 150 ° C. for 30 minutes or more may be provided. Further, the outside of the green body 40 may be supported by an appropriate jig in order to maintain the outer shape.

200℃以上において、MIMやCIMにおいて当業者が一般的に採用する昇温条件を適用しうる。例えば500℃程度まで前述の昇温を継続してもよいし、400乃至500℃において適宜に温度を保持する段階を設けてもよい。かかる過程において、グリーン体40内のバインダや中子20は溶融し、分解し、蒸発して気体となってパージガスとともに炉外に排出される。   Above 200 ° C., the temperature raising conditions generally employed by those skilled in the art in MIM and CIM can be applied. For example, the above-described temperature increase may be continued up to about 500 ° C., or a step of appropriately maintaining the temperature at 400 to 500 ° C. may be provided. In such a process, the binder and the core 20 in the green body 40 are melted, decomposed, evaporated and converted into a gas, which is discharged out of the furnace together with the purge gas.

その後、焼結温度まで2〜20℃/分程度の昇温速度としてもよい。焼結温度は、金属粉またはセラミック粉により適宜に決めうるが、例えば1200乃至1400℃である。一般的に行われているごとく、焼結温度を1時間ないしそれ以上保持してもよい。また焼結温度を保持する段階またはそれに先立ち、パージをアルゴン等の不活性ガスに切り替えてもよい。   Then, it is good also as a temperature increase rate of about 2-20 degree-C / min to sintering temperature. The sintering temperature can be appropriately determined depending on the metal powder or ceramic powder, and is, for example, 1200 to 1400 ° C. As is generally done, the sintering temperature may be held for 1 hour or more. In addition, the purge may be switched to an inert gas such as argon before or at the stage of maintaining the sintering temperature.

焼結が終了したら、パージを継続しつつ炉を冷却する。冷却速度は、焼結体に過大な熱的ショックを与えないよう適切に管理するべきである。十分な冷却を経た後、窒素等を導入して炉内を大気圧として、焼結体を取り出す。   When the sintering is completed, the furnace is cooled while continuing the purge. The cooling rate should be appropriately controlled so as not to give an excessive thermal shock to the sintered body. After sufficient cooling, nitrogen or the like is introduced to bring the inside of the furnace to atmospheric pressure, and the sintered body is taken out.

なお焼結はバッチ式の例を説明したが、効率に鑑みて適宜に連続式の炉を利用してもよい。   In addition, although the batch type example was demonstrated for sintering, in view of efficiency, you may utilize a continuous furnace suitably.

焼結ままで製品として利用しうるが、その内外面は、軽度に固着した粉末様の皮膜に覆われている。そこで好ましくはバレル処理を行う。すなわち、砕石や金属の針および適量の水とともに焼結体をバレル処理装置に挿入し、攪拌する。すると焼結体の内外面を覆う皮膜が除去されて、平滑な内外面が現れる。すなわち機械加工や研磨加工なしに平滑で光沢を有する内外面が得られ、典型的にはその粗度はRa=1.6程度である。   Although it can be used as a product as it is sintered, its inner and outer surfaces are covered with a lightly fixed powder-like film. Accordingly, barrel processing is preferably performed. That is, the sintered body is inserted into a barrel processing apparatus together with a crushed stone, a metal needle and an appropriate amount of water, and stirred. Then, the coating covering the inner and outer surfaces of the sintered body is removed, and smooth inner and outer surfaces appear. That is, smooth and glossy inner and outer surfaces can be obtained without machining or polishing, and the roughness is typically about Ra = 1.6.

本実施形態によれば、中子を組み込んだままグリーン体が焼結されるが、焼結の過程で中子が消失するので、焼結後にこれを除去する必要がない。また粉末射出成形の工程および焼結の初期においても、中子により貫通孔の形状が適切に保持される。それゆえ、上述の工程により得られた管継手1は、追加的な機械加工を実施することなく、所望の形状であって平滑な内外面を有する。管継手1の貫通孔は、機械加工によって形成された貫通孔と異なり、滑らかな形状および平滑な内面を有しうるので、流体の流通を円滑にし、また液溜まり等を作らない。化学プラントや塗装ライン等において、特に高度な制御性およびレスポンスを要する配管系やポンプ系または制御機器等に適用するのに好適である。平滑な内面は貫通孔内の乱流を抑制し、流速抵抗を減少せしめる点で有利であって、配管系やポンプ系または制御機器等における騒音や振動等の弊害を抑制しうる点で有利である。   According to the present embodiment, the green body is sintered with the core incorporated therein, but the core disappears during the sintering process, so it is not necessary to remove it after sintering. Further, the shape of the through-hole is appropriately maintained by the core even in the powder injection molding process and the initial stage of sintering. Therefore, the pipe joint 1 obtained by the above-described process has a desired shape and smooth inner and outer surfaces without performing additional machining. Unlike the through hole formed by machining, the through hole of the pipe joint 1 can have a smooth shape and a smooth inner surface, so that the fluid can flow smoothly and does not form a liquid pool. In a chemical plant, a painting line, etc., it is particularly suitable for application to piping systems, pump systems, control equipment, etc. that require high controllability and response. A smooth inner surface is advantageous in that it suppresses turbulent flow in the through-hole and reduces flow velocity resistance, and is advantageous in that it can suppress adverse effects such as noise and vibration in piping systems, pump systems, and control equipment. is there.

以上、屈曲した貫通孔を有する管継手を例にとり、好適な実施形態を説明した。本実施形態は、種々の製品の焼結に適用することができる。例えば、貫通孔は、例示のごとく屈曲した形状に限らず、より単純な形状、あるいはより複雑な形状であってもよい。例えば図2の例示のごとくエルボ型に限らず、より複雑に屈曲した形状を有する管継手等にも、本実施形態を適用することができる。また対象とする製品は、両端に開口を有する必要はなく、一方にのみ開口を有してもよい。さらに、焼結体の内部の貫通孔または空洞のごとき構造を形成する例について説明したが、外部の構造の一部を形成する場合にも適用しうる。上述の中子と同等物により外部の構造を支持したまま焼結に供すれば、予備焼結の段階における外部の変形を防止しうる。   The preferred embodiment has been described above by taking a pipe joint having a bent through hole as an example. This embodiment can be applied to the sintering of various products. For example, the through hole is not limited to a bent shape as illustrated, but may be a simpler shape or a more complicated shape. For example, as illustrated in FIG. 2, the present embodiment can be applied not only to the elbow type but also to a pipe joint having a more complicated bent shape. Moreover, the target product does not need to have openings at both ends, and may have openings at only one side. Furthermore, although the example which forms a structure like a through-hole or a cavity inside a sintered compact was demonstrated, it is applicable also when forming a part of external structure. If the outer structure is supported by an equivalent of the above-described core, the outer structure can be prevented from being deformed in the preliminary sintering stage.

(実施例)
粉末射出成形に好適な中子を製造するに好適な混合物の組成を探索するため、以下の試験を行った。
(Example)
In order to search for a composition of a mixture suitable for producing a core suitable for powder injection molding, the following test was conducted.

SUS316に相当する組成を有する金属粉末に、MRM−1の40体積%を混合し、混練した。かかる混合物より短管状の模擬成形体を射出成形した。模擬成形体は、金属製の中子を利用して成形することにより直線的な貫通孔を有する。中子は引き抜かれ、空洞の貫通孔が試験に供された。   40% by volume of MRM-1 was mixed and kneaded with a metal powder having a composition corresponding to SUS316. A short tubular simulated molded body was injection molded from such a mixture. The simulated molded body has linear through holes by molding using a metal core. The core was withdrawn and a hollow through hole was submitted for testing.

表1に掲げた12種の混合物につき、150℃にて混練した。混合比は重量%で表示されている。そしてそれぞれ上述の模擬成形体の貫通孔に充填した。混合物が固化した後、模擬成形体ごと焼結炉に導入し、焼結を行った。焼結は、13.3kPaの減圧下で、3l/分の流量の窒素によりパージしつつ、0.67℃/分で90℃まで昇温し、90℃にて3時間保持し、さらに0.67℃/分で800℃まで昇温し、800℃から1350℃までは5℃/分で昇温した。また800℃以上では5l/分の流量のアルゴンによりパージを行った。1350℃において3時間保持し、その後5.83℃/分で冷却した。炉より焼結体を取り出し、その外観を観察した。

Figure 2011144419
The 12 mixtures listed in Table 1 were kneaded at 150 ° C. The mixing ratio is expressed in weight percent. And it filled with the through-hole of the above-mentioned simulation molded object, respectively. After the mixture solidified, the simulated compact was introduced into a sintering furnace and sintered. Sintering was carried out under a reduced pressure of 13.3 kPa while purging with nitrogen at a flow rate of 3 l / min. The temperature was raised to 800 ° C. at 67 ° C./min, and the temperature was raised from 800 ° C. to 1350 ° C. at 5 ° C./min. At 800 ° C. or higher, purging was performed with argon at a flow rate of 5 l / min. The temperature was maintained at 1350 ° C. for 3 hours and then cooled at 5.83 ° C./min. The sintered body was taken out from the furnace and the appearance was observed.
Figure 2011144419

試料2は、混練の過程で流動性が高すぎ、また模擬成形体に充填してもヒケ巣を生じた。試料3,8も流動性が高すぎた。そこでこれらは混練不可と判断された。試料1、4乃至7および9乃至12は混練に問題が無いが、試料12は他よりやや流動性が不足し、十分な混練に時間がかかった。試料1乃至4および試料8乃至10では、焼結後の外観に変形または破損が認められた。試料5乃至7および試料11,12のみ、正常な焼結体が得られた。中でも試料11および12は内外面が美麗かつ滑らかであった。   Sample 2 had too high fluidity during the kneading process, and even if it was filled in the simulated molded body, it formed a nest. Samples 3 and 8 were too fluid. Therefore, it was judged that these could not be kneaded. Samples 1, 4 to 7 and 9 to 12 had no problem in kneading, but sample 12 was slightly lacking in fluidity than the others, and sufficient kneading took time. In Samples 1 to 4 and Samples 8 to 10, deformation or damage was observed in the appearance after sintering. Only Samples 5 to 7 and Samples 11 and 12 were normal sintered bodies. In particular, Samples 11 and 12 had beautiful and smooth inner and outer surfaces.

試料5乃至7および試料11,12は混練の過程に問題が無く、かつ焼結体の形状に問題が無いことから、アクリルの混合比は好ましくは50重量%以上であり、より好ましくは70重量%以上が好適であると推定される。また混練性の観点から100重量%未満が好ましく、90重量%未満がより好ましい。   Since Samples 5 to 7 and Samples 11 and 12 have no problem in the kneading process and have no problem in the shape of the sintered body, the mixing ratio of acrylic is preferably 50% by weight or more, more preferably 70% by weight. % Or more is estimated to be suitable. Further, from the viewpoint of kneadability, it is preferably less than 100% by weight, more preferably less than 90% by weight.

好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。   Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above-described embodiments. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiment.

内部に空洞や貫通孔を有する製品を製造するに適した粉末射出成形のための中子の製造方法、およびかかる中子を利用した粉末射出成形方法が提供される。   Provided are a manufacturing method of a core for powder injection molding suitable for manufacturing a product having a cavity and a through hole therein, and a powder injection molding method using the core.

1 管継手(焼結体の一例)
3 貫通孔
10 モールド
11,13,15 外モールド
20 中子
30 モールド
40 グリーン体
1 Pipe joint (an example of a sintered body)
3 Through-hole 10 Mold 11, 13, 15 Outer mold 20 Core 30 Mold 40 Green body

Claims (5)

第1の熱可塑性樹脂の粉末を含む第1の組成物を混練し、
混練された前記第1の組成物を中子となるよう射出成形し、
前記中子を外モールドに組み込むことによりモールドを組み立て、
金属およびセラミックよりなる群より選択された何れかの粉末と、第2の粉末射出成形用バインダの粉末とを含む第2の組成物を混練し、
混練された前記第2の組成物を前記モールドへ射出してグリーン体を得るべく射出成形し、
前記中子を組み込んだまま前記グリーン体を焼結する、
ことを含む、焼結方法。
Kneading the first composition containing the powder of the first thermoplastic resin,
Injection-molding the kneaded first composition to be a core,
Assemble the mold by incorporating the core into the outer mold,
Kneading a second composition containing any powder selected from the group consisting of metals and ceramics and a powder of a second powder injection molding binder,
Injection molding to obtain a green body by injecting the kneaded second composition into the mold,
Sintering the green body while incorporating the core,
A sintering method.
前記第1の熱可塑性樹脂はアクリルよりなる、請求項1に記載の焼結方法。   The sintering method according to claim 1, wherein the first thermoplastic resin is made of acrylic. 前記第1の組成物は、さらに第1の粉末射出成形用バインダを含み、前記第1の粉末射出成形用バインダは、ポリ乳酸と、ポリオキシメチレンと、ポリプロピレンと、150℃における粘度が200mPa・s以下である有機化合物と、ビカット軟化点130℃以下である第2の熱可塑性樹脂とを含む、請求項1または2に記載の焼結方法。   The first composition further includes a first powder injection molding binder, and the first powder injection molding binder has polylactic acid, polyoxymethylene, polypropylene, and a viscosity at 150 ° C. of 200 mPa · The sintering method of Claim 1 or 2 containing the organic compound which is s or less, and the 2nd thermoplastic resin which is Vicat softening point 130 degrees C or less. 前記焼結する工程は、70乃至150℃まで0.3乃至2℃/分で昇温する工程を含む、請求項1乃至3の何れかに記載の焼結方法。   The sintering method according to claim 1, wherein the sintering step includes a step of raising the temperature from 70 to 150 ° C. at a rate of 0.3 to 2 ° C./min. 前記焼結する工程は、70乃至150℃において30分以上保持する工程を含む、請求項1乃至4の何れかに記載の焼結方法。   The sintering method according to claim 1, wherein the sintering step includes a step of holding at 70 to 150 ° C. for 30 minutes or more.
JP2010005608A 2010-01-14 2010-01-14 Sintering method Pending JP2011144419A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010005608A JP2011144419A (en) 2010-01-14 2010-01-14 Sintering method
PCT/JP2011/050569 WO2011087098A1 (en) 2010-01-14 2011-01-14 Sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005608A JP2011144419A (en) 2010-01-14 2010-01-14 Sintering method

Publications (1)

Publication Number Publication Date
JP2011144419A true JP2011144419A (en) 2011-07-28

Family

ID=44304367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005608A Pending JP2011144419A (en) 2010-01-14 2010-01-14 Sintering method

Country Status (2)

Country Link
JP (1) JP2011144419A (en)
WO (1) WO2011087098A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070194A (en) * 2018-11-29 2019-05-09 住友電工焼結合金株式会社 Sintered component
US11305347B2 (en) 2014-12-12 2022-04-19 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing sintered component, sintered component, and drill

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2917869A1 (en) * 2013-07-09 2015-01-15 United Technologies Corporation Ceramic-encapsulated thermopolymer pattern or support with metallic plating
WO2015006433A2 (en) 2013-07-09 2015-01-15 United Technologies Corporation Plated polymer fan
US11267576B2 (en) 2013-07-09 2022-03-08 Raytheon Technologies Corporation Plated polymer nosecone
US10927843B2 (en) 2013-07-09 2021-02-23 Raytheon Technologies Corporation Plated polymer compressor
CA2917879A1 (en) 2013-07-09 2015-01-15 United Technologies Corporation Metal-encapsulated polymeric article
TWI632705B (en) 2013-12-03 2018-08-11 皇家飛利浦有限公司 A method of manufacturing a ceramic light transmitting barrier cell, a barrier cell, a light source and a luminaire
CN108436091B (en) * 2018-04-20 2020-05-22 赣州有色冶金研究所 Preparation method of tungsten crucible
WO2021132854A1 (en) * 2019-12-24 2021-07-01 코오롱플라스틱 주식회사 Binder composition for metal powder injection molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335704A (en) * 1998-05-20 1999-12-07 Olympus Optical Co Ltd Production of metal powder sintered body and core for insert forming
JP2005048230A (en) * 2003-07-28 2005-02-24 Hiroyuki Suzuki Method of forming pore in sintered product, and sintered product
JP2008241030A (en) * 2007-02-27 2008-10-09 Juki Corp Method of manufacturing sleeve for fluid-dynamic bearing, and sleeve for fluid-dynamic bearing
JP4317916B1 (en) * 2009-03-16 2009-08-19 株式会社テクネス Composition for injection molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335704A (en) * 1998-05-20 1999-12-07 Olympus Optical Co Ltd Production of metal powder sintered body and core for insert forming
JP2005048230A (en) * 2003-07-28 2005-02-24 Hiroyuki Suzuki Method of forming pore in sintered product, and sintered product
JP2008241030A (en) * 2007-02-27 2008-10-09 Juki Corp Method of manufacturing sleeve for fluid-dynamic bearing, and sleeve for fluid-dynamic bearing
JP4317916B1 (en) * 2009-03-16 2009-08-19 株式会社テクネス Composition for injection molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305347B2 (en) 2014-12-12 2022-04-19 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing sintered component, sintered component, and drill
US11325186B2 (en) 2014-12-12 2022-05-10 Sumitomo Electric Sintered Alloy, Ltd. Method for manufacturing sintered component, sintered component, and drill
JP2019070194A (en) * 2018-11-29 2019-05-09 住友電工焼結合金株式会社 Sintered component

Also Published As

Publication number Publication date
WO2011087098A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2011087098A1 (en) Sintering method
Liu et al. Binder system for micropowder injection molding
JP3433219B2 (en) Manufacturing method of metal or ceramic products
US8834077B2 (en) Micro drill and method of fabricating the same
EP1300209A2 (en) Process of metal injection molding multiple dissimilar materials to form composite parts
US8021604B2 (en) Preparation of filler-metal weld rod by injection molding of powder
CN104668565A (en) Powder injection molding feedstock preparing method and powder injection molding method
EP3634668B1 (en) Method for producing parts having a complex shape by metal powder injection moulding
WO2020200426A1 (en) Sinterable feedstock for use in 3d printing devices
JP2002206101A (en) Method for manufacturing sintered article, method for manufacturing continuous body, method for forming article, and structure
US11718736B2 (en) Binder for injection moulding compositions
WO2011087097A1 (en) Composition for a mold for injection molding
US20140187698A1 (en) Binder mixture for producing moulded parts using injection methods
JPH0387302A (en) Metal injection forming method using loose core
Liu et al. Research on manufacturing Cu matrix Fe-Cu-Ni-C alloy composite parts by indirect selective laser sintering
Yin et al. Fabrication of micro gear wheels by micropowder injection molding
KR101788139B1 (en) Binder composition for powder metallurgy
TWI580746B (en) Binder for injection molding
KR101742144B1 (en) Method of fabricating titanium or titanium alloy sintered body
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JP2006328435A (en) Composition to be injection-molded
Dube et al. Additive manufacturing and numerical modeling of injection mold for fabricating NdFeB magnets
JPH11131103A (en) Composition for powder injection molding and production of powder injection molded goods
JPH0825178B2 (en) Method of manufacturing injection molded body
JPH04259304A (en) Production of sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204