JP2019067143A - 検出装置及び表示装置 - Google Patents

検出装置及び表示装置 Download PDF

Info

Publication number
JP2019067143A
JP2019067143A JP2017192033A JP2017192033A JP2019067143A JP 2019067143 A JP2019067143 A JP 2019067143A JP 2017192033 A JP2017192033 A JP 2017192033A JP 2017192033 A JP2017192033 A JP 2017192033A JP 2019067143 A JP2019067143 A JP 2019067143A
Authority
JP
Japan
Prior art keywords
electrode
detection
tdl
electrodes
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017192033A
Other languages
English (en)
Inventor
中西 貴之
Takayuki Nakanishi
貴之 中西
高田 直樹
Naoki Takada
直樹 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2017192033A priority Critical patent/JP2019067143A/ja
Priority to US16/139,582 priority patent/US10705637B2/en
Publication of JP2019067143A publication Critical patent/JP2019067143A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041662Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using alternate mutual and self-capacitive scanning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Quality & Reliability (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】タッチ検出とホバー検出とを良好に行うことが可能な検出装置及び表示装置を提供する。【解決手段】検出装置は、少なくとも1つの基板と、基板の第1方向に延び、第1方向と交差する第2方向にそれぞれ並ぶ複数の第1電極COMLと、第1電極とは異なる層において、少なくとも第1方向に並んで配置された複数の第2電極TDL(m,n)と、を備える。1つの第2電極は、平面視で複数の第1電極に部分的に重なり、かつ、電界が基板に垂直な方向に第2電極を透過できる電界透過領域TDDを有している。1つの第2電極における1つの電界透過領域が1つの第1電極と平面視で重なっている。【選択図】図16

Description

本発明は、検出装置及び表示装置に関する。
近年、いわゆるタッチパネルと呼ばれる、外部近接物体を検出可能なタッチ検出装置が注目されている。タッチパネルは、液晶表示装置等の表示装置上に装着又は一体化されて、タッチ検出機能付き表示装置として用いられている(例えば、特許文献1参照)。このような表示装置において、操作者の手指の画面への接触を検出するタッチ検出機能に加え、画面に手指が触れていない状態でその手指の近接状態やジェスチャ等を検出するホバー検出(近接検出)の機能が知られている。
特開2009−244958号公報
タッチ検出とホバー検出とでは検出対象となる手指等の被検出体と検出電極との距離や、それに伴う要求感度が大きく異なる。このため、タッチ検出用の電極や駆動構成をそのままホバー検出に採用すると、良好にホバー検出を行うことが困難となる可能性がある。また、ホバー検出の検出感度を上げるためには、検出電極の面積を大きくすることが有効である。しかし、この場合、タッチ検出の検出精度が低下する可能性がある。
本発明は、タッチ検出とホバー検出とを良好に行うことが可能な検出装置及び表示装置を提供することを目的とする。
一態様の検出装置は、少なくとも1つの基板と、前記基板の第1方向に延び、前記第1方向と交差する第2方向にそれぞれ並ぶ複数の第1電極と、前記第1電極とは異なる層において、少なくとも第1方向に並んで配置された複数の第2電極と、を備え、1つの前記第2電極は、平面視で複数の前記第1電極に部分的に重なり、かつ電界が前記基板に垂直な方向に前記第2電極を透過できる電界透過領域を有し、1つの前記第2電極における1つの前記電界透過領域が1つの前記第1電極と平面視で重なっている。
他の態様の表示装置は、検出装置と、表示領域とを備える表示パネルと、を備え、前記表示領域と重畳する領域に、前記第2電極が設けられ、前記検出装置は、少なくとも1つの基板と、前記基板の第1方向に延び、前記第1方向と交差する第2方向にそれぞれ並ぶ複数の第1電極と、前記第1電極とは異なる層において、少なくとも第1方向に並んで配置された複数の第2電極と、を備え、1つの前記第2電極は、平面視で複数の前記第1電極に部分的に重なり、かつ電界が前記基板に垂直な方向に前記第2電極を透過できる電界透過領域を有し、1つの前記第2電極における1つの前記電界透過領域が1つの前記第1電極と平面視で重なっている。
図1は、実施形態1に係る検出装置及び表示装置の一構成例を示すブロック図である。 図2は、検出回路の一構成例を示すブロック図である。 図3は、相互静電容量方式の検出の基本原理を説明するための、非存在状態を表す説明図である。 図4は、非存在状態の、相互静電容量方式の検出の等価回路の例を示す説明図である。 図5は、相互静電容量方式の検出の基本原理を説明するための、接触状態を表す説明図である。 図6は、接触状態の、相互静電容量方式の検出の等価回路の例を示す説明図である。 図7は、相互静電容量方式の検出の駆動信号及び検出信号の波形の一例を表す図である。 図8は、自己静電容量方式の検出の基本原理を説明するための、非存在状態を表す説明図である。 図9は、自己静電容量方式の検出の基本原理を説明するための、接触状態を表す説明図である。 図10は、自己静電容量方式の検出の等価回路の例を示す説明図である。 図11は、自己静電容量方式の検出の駆動信号及び検出信号の波形の一例を表す図である。 図12は、実施形態1に係る検出装置及び表示装置の概略断面構造を表す断面図である。 図13は、第1基板を模式的に示す平面図である。 図14は、実施形態に係る表示領域の画素配列を表す回路図である。 図15は、第2基板を模式的に示す平面図である。 図16は、第1電極と第2電極との関係を説明するための模式図である。 図17は、実施形態1に係る電界透過領域と第1電極との関係を説明するための模式図である。 図18は、タッチ検出において、第1電極と第2電極との間に発生するフリンジ電界の電気力線を模式的に示す説明図である。 図19は、タッチ検出における第2電極の第1接続状態と、ホバー検出における第2電極の第2接続状態とを説明するための説明図である。 図20は、実施形態に係るホバー検出の一例を示す説明図である。 図21は、実施形態に係るホバー検出の他の例を示す説明図である。 図22は、第2電極及び第1電極の配置例を示す斜視図である。 図23は、実施形態に係る表示装置の動作例を示すフローチャートである。 図24は、第2電極と信号強度との関係を模式的に示すグラフである。 図25は、実施形態に係る表示装置の動作例を示すタイミング波形図である。 図26は、実施形態2に係る電界透過領域と第1電極との関係を説明するための模式図である。 図27は、実施形態2に係る第2電極を模式的に示した模式図である。 図28は、実施形態2に係る第1電極を模式的に示した模式図である。 図29は、実施形態3に係る電界透過領域と第1電極との関係を説明するための模式図である。 図30は、実施形態3に係る第2電極を模式的に示した模式図である。 図31は、実施形態3に係る第1電極を模式的に示した模式図である。 図32は、副画素の構成例を示す平面図である。 図33は、図32のB1−B2線に沿う断面図である。 図34は、図29のC1−C2線に沿う断面図である。 図35は、実施形態4に係る第2電極を模式的に示した模式図である。 図36は、実施形態4の変形例1に係る第2電極の部分拡大図である。 図37は、実施形態4の変形例2に係る第2電極の部分拡大図である。 図38は、実施形態4の変形例3に係る第2電極の部分拡大図である。 図39は、実施形態5に係る検出装置及び表示装置の構成例を示す断面図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本開示が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、本開示の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本開示の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本開示と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
(実施形態1)
図1は、実施形態1に係る検出装置及び表示装置の一構成例を示すブロック図である。図2は、検出回路の一構成例を示すブロック図である。図1に示すように、表示装置1は、表示パネル10と、制御回路11と、検出回路40とを備えている。表示パネル10は、画像を表示する表示領域20と、タッチ入力を検出する検出装置に含まれるセンサ領域30の検出装置とを含む。図1及び図2に示すブロック図は、概念的に構成を説明するものであり、他の構成で構成してもよい。
表示パネル10は、表示領域20とセンサ領域30とが一体化された表示装置である。具体的には、表示パネル10において、表示領域20の電極や基板等の部材の一部が、センサ領域30の電極や基板等に兼用される。
表示領域20は、表示素子として液晶表示素子を用いている。表示領域20は、表示素子を有する複数の画素を備えるとともに、複数の画素に対向する表示面を有している。また、表示領域20は、映像信号の入力を受けて表示面に複数の画素からなる画像の表示を行う。なお、表示領域20は、例えば、有機EL表示パネルであってもよい。
制御回路11は、ゲートドライバ12、ソースドライバ13及び駆動回路14を備える。制御回路11は、外部より供給された映像信号Vdispに基づいて、ゲートドライバ12、ソースドライバ13、駆動回路14、検出回路40に制御信号を供給して、表示動作と検出動作を制御する回路である。
ゲートドライバ12は、制御回路11から供給される制御信号に基づいて、表示パネル10の表示駆動の対象となる1水平ラインに走査信号Vscanを供給する。これにより、表示駆動の対象となる1水平ラインが順次又は同時に選択される。
ソースドライバ13は、表示領域20の、各副画素SPix(図14参照)に画素信号Vpixを供給する回路である。ソースドライバ13の機能の一部は、表示パネル10に搭載されていてもよい。この場合、制御回路11が画素信号Vpixを生成し、この画素信号Vpixをソースドライバ13に供給してもよい。
駆動回路14は、表示パネル10の第1電極COMLに表示用の駆動信号Vcomdcを供給する回路である。また、駆動回路14は、表示パネル10の第1電極COMLに検出用の第1駆動信号Vcom1を供給し、又は第2電極TDLに第2駆動信号Vselfを供給する。
本実施形態において、制御回路11は、表示領域20により表示を行う表示モードと、センサ領域30において被検出体を検出する検出モードとを時分割で行う。制御回路11は、検出モードとして、タッチ検出(第1検出モード)とホバー検出(第2検出モード)との2つの検出モードを有する。本開示において、タッチ検出は、被検出体が検出面又は表示面に接触した状態又は接触と同視し得るほど近接した状態(以下、「接触状態」と表す)において、被検出体の位置を検出することを表す。また、ホバー検出は、被検出体が検出面又は表示面に接触していない状態又は接触と同視できるほどには近接していない状態(以下、「非接触状態」と表す)において、被検出体の位置や動きを検出することを表す。また、検出面又は表示面に対向する位置に被検出体が存在しない場合、又はホバー検出において被検出体を検出できない程度に被検出体が表示面から離れている状態を「非存在状態」と表す。
センサ領域30において検出装置は、相互静電容量方式(ミューチュアル方式ともいう)によるタッチ検出の基本原理に基づいて、タッチ検出を行う。センサ領域30において検出装置は、接触状態の被検出体を検出した場合、第1検出信号Vdet1を検出回路40に出力する。また、センサ領域30において検出装置は、自己静電容量方式(セルフ方式ともいう)によるタッチ検出の基本原理に基づいて、ホバー検出を行う。センサ領域30において検出装置は、非接触状態の被検出体を検出した場合、第2検出信号Vdet2を検出回路40に出力する。
検出回路40は、相互静電容量方式の検出において、制御回路11から供給される制御信号と、表示パネル10から出力される第1検出信号Vdet1とに基づいて、表示パネル10の表示面への被検出体のタッチの有無を検出する回路である。検出回路40は、タッチがある場合においてタッチ入力が行われた座標などを求める。また、検出回路40は、自己静電容量方式のホバー検出において、制御回路11から供給される制御信号と、表示パネル10から出力される第2検出信号Vdet2とに基づいて、非接触状態の被検出体の位置やジェスチャ等の動作を検出することができる。
図2に示すように、検出回路40は、検出信号増幅回路42と、A/D変換回路43と、信号処理回路44と、座標抽出回路45と、検出タイミング制御回路46と、を備える。検出タイミング制御回路46は、制御回路11から供給される制御信号に基づいて、A/D変換回路43と、信号処理回路44と、座標抽出回路45とが同期して動作するように制御する。
タッチ検出において、検出信号増幅回路42は、表示パネル10から供給された第1検出信号Vdet1を増幅する。A/D変換回路43は、第1駆動信号Vcom1に同期したタイミングで、検出信号増幅回路42から出力されるアナログ信号をそれぞれサンプリングしてデジタル信号に変換する。
信号処理回路44は、A/D変換回路43の出力信号に基づいて、表示パネル10に対するタッチの有無を検出する論理回路である。信号処理回路44は、指による検出信号の差分の信号(絶対値|ΔV|)を取り出す処理を行う。信号処理回路44は、絶対値|ΔV|を所定のしきい値電圧と比較し、この絶対値|ΔV|がしきい値電圧未満であれば、被検出体が非存在状態であると判断する。一方、信号処理回路44は、絶対値|ΔV|がしきい値電圧以上であれば、被検出体の接触状態又は近接状態(接触状態)と判断する。このようにして、検出回路40はタッチ検出が可能となる。
座標抽出回路45は、信号処理回路44においてタッチが検出されたときに、そのタッチパネル座標を求める論理回路である。座標抽出回路45は、タッチパネル座標を出力信号Voutとして出力する。座標抽出回路45は、出力信号Voutを制御回路11に出力してもよい。制御回路11は出力信号Voutに基づいて、所定の表示動作又は検出動作を実行することができる。
ホバー検出において、検出回路40は、表示パネル10から供給された第2検出信号Vdet2に基づいて、上述と同様の処理を実行する。座標抽出回路45は、信号処理回路44において非接触状態の被検出体が検出されたときに、被検出体の座標を求める。これにより、検出回路40は、非接触状態の被検出体の位置やジェスチャ等の動作を検出することができる。
なお、検出回路40の検出信号増幅回路42と、A/D変換回路43と、信号処理回路44と、座標抽出回路45と、検出タイミング制御回路46とは、表示装置1に搭載される。ただし、これに限定されず、検出回路40の全部又は一部の機能は外部のプロセッサ等に搭載されてもよい。例えば、座標抽出回路45は、表示装置1とは別の外部プロセッサに搭載されており、検出回路40は、信号処理回路44が信号処理した信号を出力信号Voutとして出力してもよい。
表示パネル10は、静電容量型のタッチ検出の基本原理に基づいたタッチ制御がなされる。ここで、図3から図7を参照して、本実施形態の表示装置1の相互静電容量方式によるタッチ検出の基本原理について説明する。図3は、相互静電容量方式の検出の基本原理を説明するための、非存在状態を表す説明図である。図4は、非存在状態の、相互静電容量方式の検出の等価回路の例を示す説明図である。図5は、相互静電容量方式の検出の基本原理を説明するための、接触状態を表す説明図である。図6は、接触状態の、相互静電容量方式の検出の等価回路の例を示す説明図である。図7は、相互静電容量方式の検出の駆動信号及び検出信号の波形の一例を表す図である。なお、以下の説明では、指が接触又は近接する場合を説明するが、指に限られず、例えばスタイラスペン等の導体を含む物体であってもよい。
図3に示すように、容量素子C1は、誘電体Dを挟んで互いに対向配置された一対の駆動電極E1及び検出電極E2を備えている。容量素子C1は、駆動電極E1と検出電極E2との対向面同士の間に形成される電気力線(図示しない)に加え、駆動電極E1の端部から検出電極E2の上面に向かって延びるフリンジ分の電気力線が生じる。図4に示すように、容量素子C1の一端は、交流信号源(駆動信号源)Sに接続され、他端は電圧検出器DETに接続される。電圧検出器DETは、例えば図2に示す検出信号増幅回路42に含まれる積分回路である。
交流信号源Sから駆動電極E1(容量素子C1の一端)に所定の周波数(例えば数kHz〜数百kHz程度)の交流矩形波Sgが印加されると、電圧検出器DETを介して、図7に示すような出力波形(第1検出信号Vdet1)が現れる。なお、この交流矩形波Sgは、駆動回路14から入力される第1駆動信号Vcom1に相当するものである。
図3及び図4に示すように、非存在状態では、容量素子C1の容量値に応じた電流Iが流れる。図4に示す電圧検出器DETは、交流矩形波Sgに応じた電流の変動を電圧の変動(実線の波形V(図7参照))に変換する。
図5及び図6に示すように、接触状態では、指によって形成される静電容量C2が、検出電極E2と接触し、又は接触と同視し得るほど近傍にある。これにより、駆動電極E1と検出電極E2との間にあるフリンジ分の電気力線が導体(指)により遮られる。このため、容量素子C1は、非存在状態での容量値よりも容量値の小さい容量素子C11として作用する。そして、図5及び図6に示すように、電圧検出器DETは、交流矩形波Sgに応じた電流Iの変動を電圧の変動(点線の波形V(図7参照))に変換する。
この場合、波形Vは、上述した波形Vと比べて振幅が小さくなる。これにより、波形Vと波形Vとの電圧差分の絶対値|ΔV|は、指などの外部から接触又は近接する外部物体の影響に応じて変化することになる。なお、電圧検出器DETは、回路内のスイッチングにより、交流矩形波Sgの周波数に合わせて、コンデンサの充放電をリセットする。かかる期間Resetを設けていることにより、電圧差分の絶対値|ΔV|が精度よく検出される。
検出回路40は、上述したように絶対値|ΔV|を所定のしきい値電圧と比較することで、外部近接物体が非存在状態であるか、接触状態又は近接状態であるかを判断する。このようにして、検出回路40は相互静電容量方式の検出の基本原理に基づいてタッチ検出が可能となる。
次に、図8から図11を参照して、自己静電容量方式の検出の基本原理について説明する。図8は、自己静電容量方式の検出の基本原理を説明するための、非存在状態を表す説明図である。図9は、自己静電容量方式の検出の基本原理を説明するための、接触状態を表す説明図である。図10は、自己静電容量方式の検出の等価回路の例を示す説明図である。図11は、自己静電容量方式の検出の駆動信号及び検出信号の波形の一例を表す図である。
図8左図は、非存在状態において、スイッチSW1により電源Vddと検出電極E3とが接続され、スイッチSW2により検出電極E3がコンデンサCcrに接続されていない状態を示している。この状態では、検出電極E3が有する容量Cx1が充電される。図8右図は、スイッチSW1により、電源Vddと検出電極E3との接続がオフされ、スイッチSW2により、検出電極E3とコンデンサCcrとが接続された状態を示している。この状態では、容量Cx1の電荷はコンデンサCcrを介して放電される。
図9左図は、接触状態において、スイッチSW1により電源Vddと検出電極E3とが接続され、スイッチSW2により検出電極E3がコンデンサCcrに接続されていない状態を示している。この状態では、検出電極E3が有する容量Cx1に加え、検出電極E3に近接している指により生じる容量Cx2も充電される。図9右図は、スイッチSW1により、電源Vddと検出電極E3との接続がオフされ、スイッチSW2により検出電極E3とコンデンサCcrとが接続された状態を示している。この状態では、容量Cx1の電荷と容量Cx2の電荷とがコンデンサCcrを介して放電される。
ここで、図8右図に示す放電時(非存在状態)におけるコンデンサCcrの電圧変化特性に対して、図9右図に示す放電時(接触状態)におけるコンデンサCcrの電圧変化特性は、容量Cx2が存在するために、明らかに異なる。したがって、自己静電容量方式では、容量Cx2の有無により、コンデンサCcrの電圧変化特性が異なることを利用して、指などの操作入力の有無を判定している。
具体的には、検出電極E3に所定の周波数(例えば数kHz〜数百kHz程度)の交流矩形波Sg(図11参照)が印加される。図10に示す電圧検出器DETは、交流矩形波Sgに応じた電流の変動を電圧の変動(波形V、V(図7参照))に変換する。
図11において、時刻T01のタイミングで交流矩形波Sgは電圧Vに相当する電圧レベルに上昇する。このときスイッチSW1はオンとなりスイッチSW2はオフとなるため検出電極E3の電位も電圧Vに上昇する。次に時刻T11のタイミングの前にスイッチSW1をオフとする。このとき検出電極E3はフローティング状態であるが、検出電極E3の容量Cx1(またはCx1+Cx2、図9参照)によって、検出電極E3の電位はVが維持される。さらに、時刻T11のタイミングの前に電圧検出器DETのリセット動作が行われる。このリセット動作により出力電圧はVrefと略等しい電圧となる。
続いて、時刻T11のタイミングでスイッチSW2をオンさせると、検出電極E3の容量Cx1(またはCx1+Cx2)に蓄積されていた電荷が電圧検出器DET内の容量C5に移動するため、電圧検出器DETの出力が上昇する(図11の第2検出信号Vdet2参照)。電圧検出器DETの出力(第2検出信号Vdet2)は、非存在状態では、実線で示す波形Vとなり、Vdet2=Cx1×V/C5となる。接触状態では、点線で示す波形Vとなり、Vdet2=(Cx1+Cx2)×V/C5となる。
その後、時刻T31のタイミングでスイッチSW2をオフさせ、スイッチSW1及びスイッチSW3をオンさせることにより、検出電極E3の電位を交流矩形波Sgと同電位のローレベルにするとともに電圧検出器DETをリセットさせる。以降、時刻T01のタイミング、時刻T12のタイミングが続き、以上の動作を所定の周波数(例えば数kHz〜数百kHz程度)で繰り返す。このようにして、検出回路40は自己静電容量方式の検出の基本原理に基づいてタッチ検出が可能となる。
次に、本実施形態の表示装置1の構成例を詳細に説明する。図12は、実施形態1に係る検出装置及び表示装置の概略断面構造を表す断面図である。図12に示すように、表示パネル10は、画素基板2と、対向基板3と、表示機能層としての液晶層6とを備える。対向基板3は、画素基板2の表面に垂直な方向に対向して配置される。また、液晶層6は画素基板2と対向基板3との間に設けられる。
画素基板2は、第1基板21と、画素電極22と、第1電極COMLと、偏光板35Bと、絶縁層59とを有する。第1基板21には、ゲートドライバ12に含まれるゲートスキャナ等の回路や、TFT(Thin Film Transistor)等のスイッチング素子や、ゲート線GCL、信号線SGL等の各種配線(図12では省略して示す)が設けられる。
画素電極22は、絶縁層24を介して第1電極COMLの上側に設けられ、平面視でマトリクス状に複数配置される。偏光板35Bは、第1基板21の下側に設けられる。
なお、本開示において、第1基板21に垂直な方向において、第1基板21から第2基板31に向かう方向を「上側」とする。また、第2基板31から第1基板21に向かう方向を「下側」とする。また、「平面視」とは、第1基板21の表面に垂直な方向から見た場合を示す。
画素電極22は、表示パネル10の各画素Pixを構成する副画素SPixに対応して設けられ(図14参照)、表示動作を行うための画素信号Vpixが供給される。また、第1電極COMLは、表示動作の際に直流の表示用の駆動信号Vcomdcが供給され、複数の画素電極22に対する共通電極として機能する。
本実施形態において、画素電極22及び第1電極COMLは、例えば、ITO(Indium Tin Oxide)等の透光性を有する導電性材料が用いられる。
対向基板3は、第2基板31と、第2基板31の一方の面に形成されたカラーフィルタ32と、第2基板31の他方の面に設けられた第2電極TDLと、偏光板35Aとを有する。第2電極TDLは、第2基板31の上に複数配列されている。第2電極TDLは、相互静電容量方式の検出における検出電極として機能するとともに、自己静電容量方式のホバー検出における検出電極として機能する。表示装置1において、センサ領域30で被検出体を検出する検出装置と、表示領域20を備える表示パネル10を備え、表示領域と重畳する領域に、第2電極TDLが設けられている。
カラーフィルタ32は、第1基板21と垂直な方向において、液晶層6と対向する。なお、カラーフィルタ32は第1基板21の上に配置されてもよい。本実施形態において、第1基板21及び第2基板31は、例えば、ガラス基板又は樹脂基板である。
第1基板21と第2基板31とは所定の間隔を設けて対向して配置される。第1基板21と第2基板31との間に液晶層6が設けられる。液晶層6は、通過する光を電界の状態に応じて変調するものであり、例えば、FFS(Fringe Field Switching:フリンジフィールドスイッチング)を含むIPS(In−Plane Switching:インプレーンスイッチング)等の横電界モードの液晶が用いられる。なお、図12に示す液晶層6と画素基板2との間、及び液晶層6と対向基板3との間には、それぞれ配向膜(図12では省略して示す)が配設されている。
第1基板21の下側には、図示しない照明装置(バックライト)が設けられる。照明装置は、例えばLED等の光源を有しており、光源からの光を第1基板21に向けて射出する。照明装置からの光は、画素基板2を通過して、その位置の液晶の状態により変調され、表示面への透過状態が場所によって変化する。これにより、表示面に画像が表示される。
図13は、第1基板を模式的に示す平面図である。図13に示すように、表示装置1において、アクティブエリア10aの外側に周辺領域10bが設けられている。本開示において、アクティブエリア10aは、画像を表示させるための領域であり、複数の画素Pix(副画素SPix)と重なる領域である。周辺領域10bは、第1基板21の外周よりも内側で、かつ、アクティブエリア10aよりも外側の領域を示す。なお、周辺領域10bはアクティブエリア10aを囲う枠状であってもよく、その場合、周辺領域10bは額縁領域ともいえる。
本実施形態において、第1方向Dxは、アクティブエリア10aの長辺に沿った方向である。第2方向Dyは、第1方向Dxと直交する方向である。これに限定されず、第2方向Dyは第1方向Dxに対して90°以外の角度で交差していてもよい。第1方向Dxと第2方向Dyとで規定される平面は、第1基板21の表面と平行となる。また、第1方向Dx及び第2方向Dyと直交する方向は、第1基板21の厚み方向である。
図13に示すように、第1電極COMLは、アクティブエリア10aにおいて、第1方向Dxに延出し、第2方向Dyに複数配列される。言い換えると、第1電極COMLは、アクティブエリア10aの長辺に沿って延出し、アクティブエリア10aの短辺に沿って複数配列される。
1つの第1電極COMLに対応する位置に、複数の副画素SPixが行列状に配置される。副画素SPixは、第1電極COMLよりも小さい面積を有している。各副画素SPixに対応して、信号線SGLとゲート線GCLが設けられている。信号線SGLは、第2方向Dyに延出し、第1方向Dxに複数配列される。ゲート線GCLは、平面視で信号線SGLと交差して設けられ、第1方向Dxに延出し、第2方向Dyに複数配列される。なお、図13では一部の副画素SPix、信号線SGL及びゲート線GCLについて示しているが、副画素SPix、信号線SGL及びゲート線GCLはアクティブエリア10aの全域に亘って配置される。
本実施形態において、第1電極COMLは、平面視でゲート線GCLの延出方向に平行な方向に延出し、信号線SGLと交差する方向に延出する。実施形態1において、第1電極COMLは、直線的に延びる帯状の電極である。
なお、複数の画素電極22の配列は、第1方向Dx及び該第1方向Dxに交差する第2方向Dyに沿って配列されるマトリクス状の配列のみならず、対向する画素電極22同士が第1方向Dx又は第2方向Dyにずれて配置される構成を採用することもできる。また、対向する画素電極22の大きさの違いから、第1方向Dxに配列される画素列を構成する1つの画素電極22に対し、当該画素電極22の一側に2又は3の複数の画素電極22が配列される構成も採用可能である。
周辺領域10bには、第1スキャナ12A及び第2スキャナ12Bが設けられている。駆動回路14(図1参照)は、第1スキャナ12A及び第2スキャナ12Bを介して第1電極COMLと接続されている。第1電極COMLは、第1スキャナ12A及び第2スキャナ12Bに挟まれている。
周辺領域10bの長辺側には、切替回路18と接続端子75と表示用IC19とが設けられている。切替回路18は、制御回路11から供給され、後述する制御信号Vsc1、Vsc2に基づいて、検出駆動の対象となる第2電極TDLと検出回路40との接続と遮断とを切り換える回路である。また、周辺領域10bの長辺側には、フレキシブル基板71が接続されている。フレキシブル基板71に検出用IC49が設けられている。表示用IC19は、図1に示す制御回路11として機能する。また、検出回路40の機能の一部は、検出用IC49に含まれていてもよく、外部のMPU(Micro−Processing Unit)の機能として設けられてもよい。なお、表示用IC19又は検出用IC49は、これに限定されず、例えばモジュール外部の制御基板に備えられていてもよい。
第1電極COMLは、表示用IC19と電気的に接続される。
次に表示パネル10の表示動作について説明する。図14は、実施形態に係る表示領域の画素配列を表す回路図である。第1基板21(図12参照)には、図14に示す各副画素SPixのスイッチング素子Tr、信号線SGL、ゲート線GCL等が形成されている。信号線SGLは、各画素電極22に画素信号Vpixを供給するための配線である。ゲート線GCLは、各スイッチング素子Trを駆動する駆動信号を供給するための配線である。信号線SGL及びゲート線GCLは、第1基板21の表面と平行な平面に延出する。
図14に示す表示領域20は、マトリクス状に配列された複数の副画素SPixを有している。副画素SPixは、それぞれスイッチング素子Tr及び液晶素子6aを備えている。スイッチング素子Trは、薄膜トランジスタにより構成されるものであり、この例では、nチャネルのMOS(Metal Oxide Semiconductor)型のTFTで構成されている。画素電極22と第1電極COMLとの間に絶縁層24が設けられ、これらによって図14に示す保持容量6bが形成される。
図1に示すゲートドライバ12は、ゲート線GCLを順次選択する。ゲートドライバ12は、選択されたゲート線GCLを介して、走査信号Vscanを副画素SPixのスイッチング素子Trのゲートに印加する。これにより、副画素SPixのうちの1行(1水平ライン)が表示駆動の対象として順次選択される。また、ソースドライバ13は、選択された1水平ラインを構成する副画素SPixに、信号線SGLを介して画素信号Vpixを供給する。そして、これらの副画素SPixでは、供給される画素信号Vpixに応じて1水平ラインずつ表示が行われるようになっている。
この表示動作を行う際、駆動回路14は、第1電極COMLに対して表示用の駆動信号Vcomdcを印加する。表示用の駆動信号Vcomdcは複数の副画素SPixに対する共通電位となる電圧信号である。これにより、各第1電極COMLは、表示動作時には画素電極22に対する共通電極として機能する。表示の際に、駆動回路14は、アクティブエリア10aの全ての第1電極COMLに対して駆動信号Vcomdcを印加する。
図12に示すカラーフィルタ32は、例えば赤(R)、緑(G)、青(B)の3色に着色されたカラーフィルタの色領域が周期的に配列されていてもよい。上述した図14に示す各副画素SPixに、R、G、Bの3色の色領域32R、32G、32Bが1組として対応付けられる。そして、3色の色領域32R、32G、32Bに対応する副画素SPixを1組として画素Pixが構成される。なお、カラーフィルタ32は、4色以上の色領域を含んでいてもよい。
次に、第2電極TDLの構成について説明する。図15は、第2基板を模式的に示す平面図である。図15に示すように、第2電極TDLは、第2基板31のアクティブエリア10aにおいて、行列状に複数配列されている。例えば、第2電極TDL(1,1)、TDL(1,2)、・・・、TDL(1,n)が第2方向Dyに複数配列される。また、第2電極TDL(1,1)、TDL(2,1)、・・・、TDL(m,1)が第1方向Dxに複数配列される。従って、第2電極TDL(m,1)、・・・、TDL(m,n)が第2方向Dyに複数配列される。なお、第2電極TDL(1,1)、・・・、TDL(1,n)、・・・、TDL(m,1)、・・・、TDL(m,n)を区別して説明する必要がない場合には、単に第2電極TDLと表す。
第2電極TDLは、例えば、ITO等の透光性を有する導電性材料で構成されている。また、第2電極TDLは、ITOに限定されず、例えば、後述する実施形態4のように、金属材料を用いた金属細線等により構成されていてもよい。
第2基板31の周辺領域10bには、ガードリングと呼ばれる導電性の外縁配線TDL−G及びフレキシブル基板72が設けられている。外縁配線TDL−Gは、複数の第2電極TDLを囲むように配置されている。複数の第2電極TDLは、外縁配線TDL−Gの内側にある。外縁配線TDL−Gの両端は、フレキシブル基板72に電気的に接続される。
各第2電極TDLは、接続配線37を介してフレキシブル基板72に接続される。フレキシブル基板72は、図13に示す第1基板21の接続端子75に接続される。これにより、各第2電極TDLはそれぞれ、接続配線37、フレキシブル基板72、接続端子75を介して切替回路18に電気的に接続される。
図16は、第1電極と第2電極との関係を説明するための模式図である。第2電極TDLは、それぞれ、第1方向Dx及び第2方向Dyに行列状に複数配列される。第2電極TDLは、平面視で、例えば6つの第1電極COMLと重畳して配置される。第2電極TDLと第1電極COMLとの重畳領域において、第2電極TDLに含まれる第2電極TDLと第1電極COMLとの間に静電容量が形成される。
駆動回路14(図1参照)は、タッチ検出において、第1電極COMLに第1スキャナ12A及び第2スキャナ12Bを介して第1駆動信号Vcom1を供給する。第2電極TDLは、第1電極COMLとの間の容量変化に応じた第1検出信号Vdet1を、切替回路18を介して検出回路40に出力する。検出回路40は、第1検出信号Vdet1に基づいて、上述した相互静電容量方式の検出によりタッチ入力を検出する。駆動回路14は、アクティブエリア10aの第1電極COMLを順次駆動してタッチ検出を行う。このように、第1電極COMLは、相互静電容量方式によるタッチ検出において、駆動電極として機能する。これにより、座標抽出回路45は接触状態の被検出体の位置を検出することができる。
なお、タッチ検出において、第1駆動信号Vcom1が供給されていない第1電極COML(図13参照)は、電圧信号が供給されず、電位が固定されていないフローティング状態としてもよい。或いは、駆動回路14は、第1駆動信号Vcom1が供給されていない複数の第1電極COMLに対して固定された電位を有する電圧信号を供給してもよい。
また、タッチ検出において、外縁配線TDL−Gには、電圧信号が供給されず、電位が固定されていないフローティング状態である。或いは、駆動回路14は、外縁配線TDL−Gに固定された電位を有する直流電圧信号を供給してもよい。これにより、第2電極TDLの寄生容量を抑制して、検出精度を向上させることができる。
以上説明したように、第2電極TDLは、相互静電容量方式によるタッチ検出において、1つの検出電極として機能する。第2電極TDLの外形は、矩形である。
図17は、実施形態1に係る電界透過領域と第1電極との関係を説明するための模式図である。図17に示すように、第2方向Dyに複数配列される第1電極COMLは、それぞれ、第1電極Tx1、・・・、Tx12、・・・とする。なお、第1電極Tx1、・・・、Tx12を区別して説明する必要がない場合は、上述と同様に、単に第1電極COMLとする。
図17に示すように、第2電極TDL(1,1)、TDL(1,2)、TDL(2,1)、TDL(2,2)のそれぞれには、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6がある。電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6は、それぞれ同じ面積である。第2電極TDL(1,1)、TDL(1,2)、・・・、TDL(1,n)、TDL(2,1)、・・・、TDL(m,1)においても、同様に、それぞれ電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6がある。なお、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6を区別して説明する必要がない場合には、単に電界透過領域TDDと表す。
図17に示すように、1つの第2電極TDLは、平面視において6つの電界透過領域TDDの領域を内部に有する。図17に示すように、1つの第2電極TDLにおいて、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6は、重ならない位置に配置される。そして、各第2電極TDLにおける電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6の第1方向Dx及び第2方向Dyで特定される位置が座標として予め制御回路11に記憶されている。
図17に示すように、第2電極TDL(1,1)の電界透過領域TDD1は、平面視で第1電極Tx1と重畳する。第2電極TDL(1,1)の電界透過領域TDD2は、平面視で第1電極Tx2と重畳する。第2電極TDL(1,1)の電界透過領域TDD3は、平面視で第1電極Tx3と重畳する。第2電極TDL(1,1)の電界透過領域TDD4は、平面視で第1電極Tx4と重畳する。第2電極TDL(1,1)の電界透過領域TDD5は、平面視で第1電極Tx5と重畳する。第2電極TDL(1,1)の電界透過領域TDD6は、平面視で第1電極Tx6と重畳する。
図17に示すように、第2電極TDL(2,1)の電界透過領域TDD1は、平面視で第1電極Tx1と重畳する。第2電極TDL(2,1)の電界透過領域TDD2は、平面視で第1電極Tx2と重畳する。第2電極TDL(2,1)の電界透過領域TDD3は、平面視で第1電極Tx3と重畳する。第2電極TDL(2,1)の電界透過領域TDD4は、平面視で第1電極Tx4と重畳する。第2電極TDL(2,1)の電界透過領域TDD5は、平面視で第1電極Tx5と重畳する。第2電極TDL(2,1)の電界透過領域TDD6は、平面視で第1電極Tx6と重畳する。第2電極TDL(2,1)の電界透過領域TDD1は、第2電極TDL(1,1)の電界透過領域TDD1とは異なる位置で、第1電極Tx1と重畳する。第2電極TDL(2,1)の電界透過領域TDD2、TDD3、TDD4、TDD5、TDD6についても同様である。
図17に示すように、第2電極TDL(1,2)の電界透過領域TDD1は、平面視で第1電極Tx7と重畳する。第2電極TDL(1,2)の電界透過領域TDD2は、平面視で第1電極Tx8と重畳する。第2電極TDL(1,2)の電界透過領域TDD3は、平面視で第1電極Tx9と重畳する。第2電極TDL(1,2)の電界透過領域TDD4は、平面視で第1電極Tx10と重畳する。第2電極TDL(1,2)の電界透過領域TDD5は、平面視で第1電極Tx11と重畳する。第2電極TDL(1,2)の電界透過領域TDD6は、平面視で第1電極Tx12と重畳する。
図17に示すように、第2電極TDL(2,2)の電界透過領域TDD1は、平面視で第1電極Tx7と重畳する。第2電極TDL(2,2)の電界透過領域TDD2は、平面視で第1電極Tx8と重畳する。第2電極TDL(2,2)の電界透過領域TDD3は、平面視で第1電極Tx9と重畳する。第2電極TDL(2,2)の電界透過領域TDD4は、平面視で第1電極Tx10と重畳する。第2電極TDL(2,2)の電界透過領域TDD5は、平面視で第1電極Tx11と重畳する。第2電極TDL(2,2)の電界透過領域TDD6は、平面視で第1電極Tx12と重畳する。第2電極TDL(2,2)の電界透過領域TDD1は、第2電極TDL(1,2)の電界透過領域TDD1とは異なる位置で、第1電極Tx7と重畳する。第2電極TDL(2,2)の電界透過領域TDD2、TDD3、TDD4、TDD5、TDD6についても同様である。
図18は、タッチ検出において、第1電極と第2電極との間に発生するフリンジ電界の電気力線を模式的に示す説明図である。図18は、図17のA1−A2断面を模式的に示した断面図である。図18に示すように、第2基板31に設けられた第2電極TDLは、第1基板21に設けられた第1電極COMLよりも上側に配置される。上述したように、第2電極TDLは、相互静電容量方式の検出において検出電極として機能する。
タッチ検出において、第1電極COMLに第1駆動信号Vcom1が順次供給されると、第1電極Tx1に第1駆動信号Vcom1が供給され、次に、第1電極Tx2に第1駆動信号Vcom1が供給される。次に、第1電極Tx3に第1駆動信号Vcom1が供給される。
図18に示すように、第1電極Tx1に第1駆動信号Vcom1が供給されると、第2電極TDL(1,1)との間に、フリンジ電界の電気力線Efnが発生する。図17のA1−A2断面においては、第1電極Tx1の上に第2電極TDL(1,1)が重畳しているため、フリンジ電界の電気力線Efnは第2電極TDL(1,1)から検出面DSよりも上側まで延びることができず、電界が遮蔽される。
次に、第1電極Tx2に第1駆動信号Vcom1が供給されると、第2電極TDL(1,1)との間に、フリンジ電界の電気力線Efが発生する。図17のA1−A2断面においては、第1電極Tx2の上に電界透過領域TDD2があるため、フリンジ電界の電気力線Efは第2電極TDLから表示面DSよりも上側まで延びる。なお、図18において、検出面DSはカバーガラス120の表面である。ただし、これに限定されず、検出面DSは表示装置1の最上部に設けられる他の部材の表面であってもよく、第2基板31に設けられた保護層の表面であってもよい。
次に、第1電極Tx3に第1駆動信号Vcom1が供給されると、第2電極TDL(1,1)との間に、フリンジ電界の電気力線Efnが発生する。図17のA1−A2断面においては、第1電極Tx3の上に第2電極TDL(1,1)が重畳しているため、フリンジ電界の電気力線Efnは第2電極TDL(1,1)から検出面DSよりも上側まで延びることができず、電界が遮蔽される。
ここで、第2電極TDLの平面視での面積を大きくすると、ホバー検出における検出感度を高めることができる。一方、第2電極TDLの平面視での面積を大きくすると、対向する第2電極TDL自体がフリンジ電界を遮蔽してしまう。この場合、第2電極TDLを通過したフリンジ電界が減少し、タッチ検出の検出感度が低下する可能性がある。
これに対して、実施形態1の検出装置は、電界透過領域TDDの領域においてフリンジ電界が遮蔽されにくくなっており、第2電極TDLを通過したフリンジ電界が減少され難い。このため、実施形態1の検出装置は、第2電極TDLの平面視での面積を大きくしても、タッチ検出の検出感度を高め、かつホバー検出における検出感度を高めることができる。
実施形態1において、電界透過領域TDDの領域には、第2電極TDLの導電性材料がない。電界透過領域TDDの領域には、検出電極として機能しないダミー電極が設けられていてもよい。ダミー電極は、電位が固定されていない導電性材料が用いられる。またこのような導電材料として、例えばITO等の透光性を有する導電性材料を用いることができる。
図17に示すように、電界透過領域TDDの領域又は外形は、第2方向Dyの長さよりも第1方向Dxの方が長い、全体として第1方向Dxに長手を有する略矩形状となる。図17に示すように、各電界透過領域TDDは、平面視で、第2方向Dyに複数配列される第1電極COMLとそれぞれ重なって配置される。
図18に示すように、電界透過領域TDDの第2方向Dyにおける幅SPは、対向する第1電極COMLの第2方向Dyの幅CWよりも小さい。これにより、各第2電極TDLにおいて、対向する第1電極COMLごとにフリンジ電界が検出面DSよりも上側に到達できる位置が電界透過領域TDDによって、規制される。
例えば、検出面DSよりも上側に5cm程度の被検出体を検出する場合、第2電極TDLは、第1方向Dxに例えば10mm以上30mm以下程度、第2方向Dyに例えば10mm以上30mm以下程度である。電界透過領域TDDの第2方向Dyにおける幅SPは、第1電極COMLと第2電極TDLとの距離に応じて設定されるが、例えば0.5mm以上2mm以下程度である。対向する第1電極COMLの第2方向Dyの幅CWは、第2電極の第2方向Dyの幅よりも大きければよい。隣り合う第1電極COMLの間は、例えば数μm程度離れている。電界透過領域TDDと重なる第1電極COMLと、電界透過領域TDDと重なる第1電極COMLとの間に、第1駆動信号Vcom1が順次供給されない第1電極COMLが配置されていてもよい。第1駆動信号Vcom1が順次供給されると、それぞれの第1電極COMLからの電界透過領域TDDを通ってフリンジ電界が図18に示す電気力線Efのように、検出面DSよりも上側まで延びることができる。これにより、検出装置は、良好にタッチ検出を実現できる。
上述したように、検出回路40は、タッチがある場合においてタッチ入力が行われた座標を求める。この場合、検出回路40は、第1駆動信号Vcom1が供給された第1電極Tx1、・・・、Tx12、・・・のいずれかの第1電極COMLを特定する。検出回路40は、特定された第1電極COMLに重なる第2電極TDLの電界透過領域TDDにおいて、第1電極COMLと第2電極TDLとの間の相互静電容量変化に応じた第1検出信号Vdet1に基づき、検出面に接触する被検出体を検出する。具体的には、検出回路40は、相互静電容量変化があった、第2電極TDL(1,1)、TDL(1,2)、・・・、TDL(1,n)、TDL(2,1)、・・・、TDL(m,1)のいずれかの第2電極TDLを特定する。検出回路40は、この特定した第2電極TDLが有する電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6のうち、第1駆動信号Vcom1が供給されていると特定した第1電極COMLと重なる電界透過領域TDDを特定し、検出回路40は、この電界透過領域TDDの座標を被検出体の位置として出力する。
実施形態1の検出装置は、第2電極TDLの平面視での面積を大きくして第1電極COMLを覆う面積が増えても、被検出体の位置を出力することができる。
一方、図15に示すように、ホバー検出において、例えば、第2電極TDL(1,1)、・・・、TDL(1,n)、・・・、TDL(m,1)、・・・、TDL(m,n)がそれぞれホバー検出の検出電極として作用する。図16に示すように、第2電極TDL(1,1)、・・・、TDL(1,n)、・・・、TDL(m,1)、・・・、TDL(m,n)が複数の第1電極COMLに重畳するような面積を有しているので、面積が大きくなり、ホバー検出の検出感度が向上する。
本開示において、第2電極TDLは、アクティブエリア10aにおいて、行列状に複数配列される。つまり、第2電極TDLは、第1方向Dxに複数配列されるとともに、第2方向Dyに複数配列される。
上述したように、第2電極TDLは、タッチ検出(相互静電容量方式)の際は、第1電極COMLを駆動して、各第2電極TDLの各電界透過領域TDDの位置で、接触状態の被検出体の位置を検出し、ホバー検出(自己静電容量方式)の際は、第2電極TDLの位置で非存在状態の被検出体を検知する。
図19は、タッチ検出における第2電極の第1接続状態と、ホバー検出における第2電極の第2接続状態とを説明するための説明図である。なお、図19では、説明を分かりやすくするために、4行4列の第2電極TDLが配列された構成を示す。本開示では、4行4列の第2電極TDLには限られず、n行m列の第2電極TDLにも実施形態が適用可能である。タッチ検出において、図1に示すように、駆動回路14は、アクティブエリア10aの第1電極COMLを順次駆動する。これにより、図19に示すように、第2電極TDL(1,1)、TDL(1,2)、TDL(1,3)、TDL(1,4)、TDL(2,1)、TDL(2,2)、TDL(2,3)、TDL(2,4)、TDL(3,1)、TDL(3,2)、TDL(3,3)、TDL(3,4)、TDL(4,1)、TDL(4,2)、TDL(4,3)、TDL(4,4)は、それぞれ第1検出信号Vdet1が切替回路18を介して検出回路40に出力する。
ホバー検出において、図19に示す駆動回路14は、第2電極TDLに対し、切替回路18を介して順次、又は同時に第2駆動信号Vselfを供給する。つまり、駆動回路14は、複数の第2電極TDLをまとめて駆動する。第2電極TDLは、それぞれの第2電極TDLの容量変化に応じた第2検出信号Vdet2を、切替回路18を介して検出回路40に出力する。
検出回路40は、第2検出信号Vdet2に基づいて、上述した自己静電容量方式によりホバー検出を行う。検出回路40は、アクティブエリア10aの複数の第2電極TDLから供給された第2検出信号Vdet2に基づいて、非接触状態の被検出体の位置やジェスチャ等の動作を検出することができる。
図20は、実施形態に係るホバー検出の一例を示す説明図である。図21は、実施形態に係るホバー検出の他の例を示す説明図である。図20に示すように、表示装置1は、被検出体である操作者の手指が検出面DSに対し非接触状態でホバー検出を行う。検出回路40は、第2検出信号Vdet2に基づいて、検出面DSに垂直な方向における、検出面DSと被検出体との距離D1を検出することができる。また、検出回路40は、第2検出信号Vdet2に基づいて、被検出体の位置R1を検出することができる。被検出体の位置R1は、例えば、検出面DSと垂直な方向において、被検出体と対向する位置であり、複数の第2電極TDLからの第2検出信号Vdet2のうち、最大の値となる第2電極TDLに対応する位置である。
また、図21に示すように、表示装置1は、被検出体のジェスチャ等の動作を検出することができる。検出回路40は、被検出体が検出面DSに対し非接触状態で矢印Da方向に移動した場合、第2検出信号Vdet2に基づいて、被検出体の位置の変化を演算する。これにより、検出回路40は、被検出体のジェスチャ等の動作を検出する。制御回路11(図1参照)は、これらのホバー検出の結果に基づいて、所定の表示動作又は検出動作を実行する。
このように、複数の第2電極TDLは、自己静電容量方式によるホバー検出において、それぞれ1つの検出電極として機能する。なお、ホバー検出において、駆動回路14は、第1電極COMLに対してガード信号Vgdを供給する。第1電極COMLは、第2電極TDLと同じ電位を有して駆動される。これにより、第2電極TDLと第1電極COMLとの間の寄生容量を抑制して、ホバー検出の検出精度を向上させることができる。すなわち、ホバー検出において、第1電極COMLは、ガード電極として機能する。
図22は、第2電極及び第1電極の配置例を示す斜視図である。上述したように、表示装置1が自己静電容量方式でホバー検出を行う際に、外縁配線TDL−Gには、検出用の第2駆動信号Vselfと同じ波形で、かつ第2駆動信号Vselfと同期したガード信号Vgdが供給されている。このように、駆動回路14は、ホバー検出の際に、外縁配線TDL−Gにガード信号Vgdを供給する。つまり、ガード信号Vgdは第2駆動信号Vselfと同期した、同じ電位を有する電圧信号である。これにより、第2電極TDLの寄生容量を抑制して、検出精度を向上させることができる。または、外縁配線TDL−Gには、ガード信号Vgdが供給される代わりに、電気的にどことも接続されていない状態(ハイインピーダンス)に設定されてもよい。
複数の第1電極COMLは、第1基板21の一方の面21a側のアクティブエリア10aに設けられている。例えば、一方の面21aは、第1基板21と対向する面の反対側である。
また、図22に示すように、第1基板21の一方の面21a側の周辺領域10bには、外縁配線COML−Gが設けられている。例えば、外縁配線COML−Gは、アクティブエリア10aの長辺と短辺とに沿って連続して設けられており、アクティブエリア10aを囲んでいる。表示装置1が自己静電容量方式でホバー検出を行う際に、外縁配線COML−Gには、検出用の第2駆動信号Vselfと同じ波形で、かつ第2駆動信号Vselfと同期したガード信号Vgdが供給されてもよい。または、外縁配線COML−Gは、電気的にどことも接続されていない状態(ハイインピーダンス)に設定されてもよい。これによれば、外縁配線COML−Gと、第2駆動信号Vselfが供給される第1電極COMLとの間に静電容量が生じることを防ぐことができるので、ホバー検出の感度を高めることができる。
なお、本実施形態では、図22に示す第1基板21の他方の面21b側に、外縁配線29が設けられていてもよい。裏面の外縁配線29は、第1基板21の他方の面21bの一部を覆っていてもよいし、他方の面21bの全体を覆っていてもよい。また、裏面の外縁配線29は、例えば、ITO等の透光性を有する導電性材料で構成されていてもよいし、図示しない金属フレーム等で構成されていてもよい。表示装置1が自己静電容量方式でホバー検出を行う際に、裏面の外縁配線29には、検出用の第2駆動信号Vselfと同じ波形で、かつ第2駆動信号Vselfと同期したガード信号Vgdが供給されてもよい。または、裏面の外縁配線29は、電気的にどことも接続されていない状態(ハイインピーダンス)に設定されてもよい。これによれば、裏面の外縁配線29と、第2駆動信号Vselfが供給される第1電極COMLとの間に静電容量が生じることを防ぐことができるので、ホバー検出の感度を高めることができる。
以上のように、第2電極TDLは、相互静電容量方式によるタッチ検出において検出電極として機能するとともに、自己静電容量方式によるホバー検出において検出電極として機能する。本実施形態において、1つの第2電極TDLは大きい面積を有する。このため、第2電極TDLから発生する電界の電気力線が、検出面DSから離れた位置まで到達する。これにより、表示装置1は、タッチ検出とホバー検出とで第2電極TDLを共用しつつ、精度よくタッチ検出を行うとともに、良好にホバー検出を行うことができる。
また、本実施形態において、第2電極TDLは、第2基板31に設けられている。このため、第1基板21に第2電極TDLを設けた場合と比べ、スイッチング素子Trや第1スキャナ12A及び第2スキャナ12B等の各種回路、信号線SGL、ゲート線GCL等の各種配線と、第2電極TDLとの間隔を大きくすることができる。したがって、本実施形態は、第2電極TDLと、各種回路及び各種配線との間に形成される寄生容量を低減して、精度よくホバー検出を行うことができる。
以上のように、センサ領域30にある検出装置は、少なくとも第1基板21と、第1基板21の第1方向Dxに延び、第1方向Dxと交差する第2方向Dyにそれぞれ並ぶ複数の第1電極COMLと、第1電極COMLとは異なる層において、少なくとも第1方向に並んで配置された複数の第2電極TDLと、を備える。1つの第2電極TDLは、平面視で複数の第1電極COMLに部分的に重なり、かつ電界が第1基板21に垂直な方向に第2電極TDLを透過できる電界透過領域TDDを有する。1つの第2電極TDLにおける1つの電界透過領域TDDが1つの第1電極COMLと平面視で重なっている。第2電極TDLの平面視での面積を大きくしても、第2電極TDLを通過したフリンジ電界が減少され難いので、タッチ検出することができる。その結果、同じ第2電極TDLを利用して、センサ領域にある検出装置がタッチ検出とホバー検出をすることができる。
次に、図1及び図23から図25を参照して、本実施形態の動作例を説明する。図23は、実施形態に係る表示装置の動作例を示すフローチャートである。図24は、第2電極と信号強度との関係を模式的に示すグラフである。図25は、実施形態に係る表示装置の動作例を示すタイミング波形図である。図23から図25に示す動作例はあくまで一例であり、適宜変更してもよい。
図25に示すように、表示期間Pdと検出期間Ptとが時分割で交互に配置される。検出期間Ptは、ホバー検出期間Ptsと、タッチ検出期間Ptmとを含む。表示期間Pd、ホバー検出期間Pts及びタッチ検出期間Ptmの実行の順番はあくまで一例であり適宜変更してもよい。例えば、1つの検出期間Ptにホバー検出期間Pts又はタッチ検出期間Ptmのいずれか一方のみが存在する場合であってもよい。1検出面のタッチ検出を1つのタッチ検出期間Ptmで実行してもよく、複数のタッチ検出期間Ptmに分けて実行してもよい。また、表示期間Pdで1フレーム分の画像の表示を行ってもよく、1フレーム分の画像の表示期間中に、複数の表示期間Pdと検出期間Ptとが交互に配置されていてもよい。
図23に示すように、制御回路11は、まず表示データの書き込みを実行する(ステップST1)。具体的には、上述した表示動作と同様であり、ソースドライバ13は、各ゲート線GCL1、GCL2、GCL3に対応する副画素SPixに、信号線SGL1、SGL2、SGL3を介して画素信号Vpixを供給する。そして、これらの副画素SPixでは、供給される画素信号Vpixに応じて1水平ラインずつ表示が行われるようになっている。図25に示すように、表示期間Pdにおいて、駆動回路14は、第1電極COMLに対し、表示用の駆動信号Vcomdcを供給する。
次に、制御回路11は、ホバー検出を実行する(ステップST2)。具体的には、図25に示すように、ホバー検出期間Ptsにおいて、制御回路11は、制御信号Vsc1を切替回路18に信号線SSEを介して供給し、制御信号Vsc2を切替回路18に信号線SSSを介して供給する。制御信号Vsc1は検出装置を動作させる信号であり、制御信号Vsc2は、検出装置を自己容量検出方式で動作させるか、相互静電容量方式で動作させるかを選択する信号である。ホバー検出期間Ptsにおいて、センサ領域30の検出装置は、自己容量検出方式で動作する。
ホバー検出期間Ptsにおいて、図19に示すように、駆動回路14は、第2電極TDLに第2駆動信号Vselfを供給する。配線SRx1は、第2電極TDL(1,1)の配線37に電気的に接続される配線であり、配線SRx2は、第2電極TDL(2,1)の配線37に電気的に接続される配線であり、配線SRx3以降は、図示を省略するが、第2電極TDL(1,1)、TDL(1,2)以外の各第2電極TDLの配線37にそれぞれ接続される配線である。これにより、表示装置1は、第1方向Dx及び第2方向Dyに隣接して配置された複数の第2電極TDLごとに非接触状態の被検出体を検出することができる。例えば、検出回路40は、各第2電極TDLからの第2検出信号Vdet2に基づいて、検出面DSに垂直な方向における、検出面DSと被検出体との距離D1を検出することができる。また、検出回路40は、各第2電極TDLからの第2検出信号Vdet2に基づいて、被検出体の位置R1を検出することができる。また、駆動回路14は、ホバー検出期間Ptsにおいて、各第1電極COMLに接続される各配線STx1、STx2、STx3、STx4・・・に対し、ガード信号Vgdを供給する。
次に、検出回路40は、第2電極TDLから供給された第2検出信号Vdet2が、所定の閾値ΔVB以上であるかどうかを判断する(ステップST3)。図24に示すように、検出回路40は、各第2電極TDLから供給された第2検出信号Vdet2の信号強度を求め、所定の閾値ΔVBと比較する。
複数の第2検出信号Vdet2のうち、いずれか1つの第2検出信号Vdet2の信号強度が閾値ΔVB以上である場合(ステップST3、Yes)、制御回路11は、タッチ検出を実行する(ステップST4)。第2検出信号Vdet2の信号強度が閾値ΔVB以上である場合、被検出体が接触状態であると判断する。図24に示す例では、第2電極TDL(4,3)において、第2検出信号Vdet2の信号強度が閾値ΔVB以上であり、それ以外の第2電極TDLにおいて、第2検出信号Vdet2の信号強度は閾値ΔVBよりも小さい。この場合、検出回路40は、第2電極TDL(4,3)に対応する位置において被検出体が接触状態であると判断する。制御回路11は、検出回路40からの情報に基づいて、ホバー検出からタッチ検出に切り換える。
具体的には、図25に示すように、タッチ検出期間Ptmにおいて、制御回路11は、制御信号Vsc1を切替回路18に供給し、制御信号Vsc2を切替回路18に供給する。これにより、センサ領域30の検出装置は、相互容量検出方式で動作する。
駆動回路14は、各第1電極COMLに接続される各配線STx1、STx2、STx3、STx4・・・に対し、第1駆動信号Vcom1を順次供給する。第2電極TDLに含まれる電界透過領域TDDの位置ごとに、各第1電極COMLとの間の容量変化に応じた第1検出信号Vdet1が、各第2電極TDLから、配線SRx1、SRx2・・・を介して検出回路40に供給される。これにより、表示装置1は、各第2電極TDLの各電界透過領域TDDの位置ごとに接触状態の被検出体を検出することができる。
タッチ検出期間Ptmにおいて、1検出面の検出動作が終了した場合、すなわち、全ての第2電極TDLに対して、順次、第1駆動信号Vcom1を供給してタッチ検出を実行した場合、制御回路11は、タッチ検出を終了して表示データの書き込み(ステップST1)に戻る。
複数の第2検出信号Vdet2の信号強度が全て閾値ΔVBよりも小さい場合(ステップST3、No)、制御回路11は、タッチ検出を実行せず、表示データの書き込み(ステップST1)に戻る。この場合、図25に示す検出期間Ptにおいて、ホバー検出期間Ptsのみが実行され、タッチ検出期間Ptmは実行されない。つまり、1つの検出期間Ptにおいてホバー検出期間Ptsのみが存在する。
なお、図25では図示を省略しているが、信号線SGLは、ホバー検出期間Pts及びタッチ検出期間Ptmにおいて、フローティング状態であることが好ましい。こうすれば、第2電極TDLと信号線SGLとの間の容量を低減することができる。また、ゲート線GCLは、ホバー検出期間Ptsにおいてフローティング状態であってもよい。
図23から図25に示す動作例はあくまで一例であり、適宜変更してもよい。例えば、複数回のホバー検出期間Ptsにおいて、1つの検出電極を構成する第2電極TDLの数を変えてホバー検出を実行してもよい。第2電極TDLは、第1方向Dxに隣接して配置された2つの第2電極TDL及び第2方向Dyに隣接して配置された2つの第2電極TDLが切替回路18により電気的に接続されて、1つの検出電極として機能してもよい。このように、第2電極TDLは、第1方向Dxに隣接して配置された2以上の第2電極TDL及び第2方向Dyに隣接して配置された2以上の第2電極TDLで構成されていてもよい。或いは、第2電極TDLは、第1方向Dxに隣接して配置された3以上の第2電極TDL及び第2方向Dyに隣接して配置された3以上の第2電極TDLで構成されていてもよい。例えば、アクティブエリア10aの全ての第2電極TDLが切替回路18により電気的に接続されて、1つの第2電極TDLを構成してもよい。制御回路11は、検出面DSと被検出体との距離D1に応じて、1つの検出電極に含まれる第2電極TDLの数を変更すると、ホバー検出の解像度を変更することができる。
以上のように、センサ領域30の検出装置は、これにより、タッチ検出とホバー検出とを良好に行うことが可能になる。
また、1つの第2電極TDLにおける電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6の位置が重ならない。このため、検出回路40は、複数の第2電極TDLのうち相互静電容量変化があった第2電極TDLを特定し、第1駆動信号Vcom1が供給された第1電極COMLと重なる電界透過領域TDDを特定することができれば、第1方向Dx及び第2方向Dyで特定される電界透過領域TDDの位置が被検出体の座標として利用できる。このため、実施形態1の検出装置は、第2電極TDLの平面視での面積を大きくしても、タッチ検出の検出感度を高めることができる。これにより、第2電極TDLの平面視での面積が大きくなり、ホバー検出における検出感度が高まる。
従って、本実施形態の表示装置1は、タッチ検出とホバー検出とで第2電極TDLを共用しつつ、良好にタッチ検出及びホバー検出を行うことが可能である。
(実施形態2)
図26は、実施形態2に係る電界透過領域と第1電極との関係を説明するための模式図である。図27は、実施形態2に係る第2電極を模式的に示した模式図である。図28は、実施形態2に係る第1電極を模式的に示した模式図である。なお、実施形態1で説明した構成要素については、同じ符号を付して、説明を省略する。
実施形態1において、第1電極COMLは、直線的に延びる帯状の電極であったが、実施形態2において、第1電極COMLは、全体として第1方向Dxに延びているが、部分的に屈曲している。
図26には、図28に示す第1電極Tx1、・・・、Tx18、・・・と、図27に示す第2電極TDLとが重畳している状態が示されている。図26及び図27に示すように、第2電極TDL(1,1)、TDL(1,2)、TDL(2,1)、TDL(2,2)のそれぞれには、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9がある。電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9の面積は、それぞれ同じである。図26から図28は、部分的な例示であり、第2電極TDL(1,1)、・・・、TDL(1,n)、・・・、TDL(m,1)、・・・、TDL(m,n)においても、同様に、それぞれ電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9がある。なお、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9を区別して説明する必要がない場合には、単に電界透過領域TDDと表す。
図27に示すように、1つの第2電極TDLは、平面視において9つの電界透過領域TDDの領域を内部に有する。図27に示すように、1つの第2電極TDLにおいて、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9は、重ならない位置に配置される。
1つの第2電極TDLにおいて、電界透過領域TDD1、TDD2、TDD3は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD4、TDD5、TDD6は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD7、TDD8、TDD9は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。
1つの第2電極TDLにおいて、電界透過領域TDD1、TDD4、TDD7は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD2、TDD5、TDD8は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD3、TDD6、TDD9は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。
以上より、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9の領域は、第1方向Dx及び第2方向Dy方向に、重ならないように、行列状に並んでいる。
図28に示すように、第2方向Dyに複数配列される第1電極COMLは、それぞれ、第1電極Tx1、・・・、Tx18、・・・とする。なお、第1電極Tx1、・・・、Tx18を区別して説明する必要がない場合は、上述と同様に、単に第1電極COMLとする。第1電極COMLは、全体として第1方向Dxに延びているが、部分的に屈曲している。
第1電極Tx1、Tx10は、他の部分に比べ第2方向Dyの幅が広い幅広部TS1を部分的に複数備えている。第1電極Tx2、Tx11は、他の部分に比べ第2方向Dyの幅が広い幅広部TS2を部分的に複数備えている。第1電極Tx3、Tx12は、他の部分に比べ第2方向Dyの幅が広い幅広部TS3を部分的に複数備えている。第1電極Tx4、Tx13は、他の部分に比べ第2方向Dyの幅が広い幅広部TS4を部分的に複数備えている。第1電極Tx5、Tx14は、他の部分に比べ第2方向Dyの幅が広い幅広部TS5を部分的に複数備えている。第1電極Tx6、Tx15は、他の部分に比べ第2方向Dyの幅が広い幅広部TS6を部分的に複数備えている。第1電極Tx7、Tx16は、他の部分に比べ第2方向Dyの幅が広い幅広部TS7を部分的に複数備えている。第1電極Tx8、Tx17は、他の部分に比べ第2方向Dyの幅が広い幅広部TS8を部分的に複数備えている。第1電極Tx9、Tx18は、他の部分に比べ第2方向Dyの幅が広い幅広部TS9を部分的に複数備えている。
幅広部TS1、TS2、TS3は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。また、幅広部TS4、TS5、TS6は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。また、幅広部TS7、TS8、TS9は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。
幅広部TS1、TS4、TS7は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、幅広部TS2、TS5、TS8は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、幅広部TS3、TS6、TS9は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。
以上説明したように、第1電極COMLは、屈曲し、かつ他の部分に比べ第2方向Dyの幅が広い幅広部を備え、隣り合う第1電極COMLの幅広部同士が、第1方向Dxに並ぶ。これにより、図26に示す電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9の領域は、図28に示す幅広部TS1、TS2、TS3、TS4、TS5、TS6、TS7、TS8、TS9の領域に重畳することができるようになる。
上述したように、検出回路40は、タッチがある場合においてタッチ入力が行われた座標を求める。この場合、検出回路40は、第1駆動信号Vcom1が供給された第1電極Tx1、・・・、Tx18、・・・のいずれかの第1電極COMLを特定する。検出回路40は、特定された第1電極COMLに重なる第2電極TDLの電界透過領域TDDにおいて、第1電極COMLと第2電極TDLとの間の相互静電容量変化に応じた第1検出信号Vdet1に基づき、検出面に接触する被検出体を検出する。具体的には、検出回路40は、相互静電容量変化があった、第2電極TDL(1,1)、TDL(1,2)、TDL(2,1)、TDL(2,2)のいずれかの第2電極TDLを特定する。検出回路40は、この特定した第2電極TDLが有する電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9のうち、上述した特定した第1電極COMLと重なる電界透過領域TDDを特定し、検出回路40は、この電界透過領域TDDの座標を被検出体の位置として出力する。
実施形態2のセンサ領域の検出装置は、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6、TDD7、TDD8、TDD9が行列状に並んでいるので、被検出体の位置を行列状の位置として特定することが容易となる。
(実施形態3)
図29は、実施形態3に係る電界透過領域と第1電極との関係を説明するための模式図である。図30は、実施形態3に係る第2電極を模式的に示した模式図である。図31は、実施形態3に係る第1電極を模式的に示した模式図である。図32は、副画素の構成例を示す平面図である。図33は、図32のB1−B2線に沿う断面図である。図34は、図29のC1−C2線に沿う断面図である。なお、実施形態1及び実施形態2で説明した構成要素については、同じ符号を付して、説明を省略する。
実施形態1において、第1電極COMLは、直線状の電極であったが、実施形態3において、第1電極COMLは、第1方向Dxに延びている直線状の配線としての第1電極Tx1、・・・、Tx12、・・・と、第1電極Tx1、・・・、Tx12、・・・よりも幅広な複数の電極片TXxとを備える。
図29には、図31に示す第1電極Tx1、・・・、Tx12、・・・と、図30に示す第2電極TDLとが重畳している状態が示されている。図29及び図30に示すように、第2電極TDL(1,1)、TDL(1,2)、TDL(2,1)、TDL(2,2)のそれぞれには、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6がある。図29から図31は、部分的な例示であり、第2電極TDL(1,1)、・・・、TDL(1,n)、・・・、TDL(m,1)、・・・、TDL(m,n)においても、同様に、それぞれ電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6がある。なお、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6を区別して説明する必要がない場合には、単に電界透過領域TDDと表す。
図30に示すように、1つの第2電極TDLは、平面視において6つの電界透過領域TDDの領域を内部に有する。図30に示すように、1つの第2電極TDLにおいて、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6は、重ならない位置に配置される。電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6の面積は、それぞれ同じである。
1つの第2電極TDLにおいて、電界透過領域TDD1、TDD2、TDD3は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD4、TDD5、TDD6は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。
1つの第2電極TDLにおいて、電界透過領域TDD1、TDD4は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD2、TDD5は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、1つの第2電極TDLにおいて、電界透過領域TDD3、TDD6は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。
以上より、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6の領域は、第1方向Dx及び第2方向Dy方向に、重ならないように、行列状に並んでいる。
図31に示すように、第2方向Dyに複数配列される第1電極COMLは、それぞれ、第1電極Tx1、・・・、Tx12、・・・、・・・とする。なお、第1電極Tx1、・・・、Tx12、・・・を区別して説明する必要がない場合は、上述と同様に、単に第1電極COMLとする。各第1電極COMLは、第1方向Dxに延びている。
図29に示すように、1つの第2電極TDLと、電極片TXx1、TXx2、TXx3、TXx4、TXx5、TXx6の領域とは、平面視で重畳している。また、電極片TXx1、TXx2、TXx3、TXx4、TXx5、TXx6の領域は、第1方向Dx及び第2方向Dy方向に、重ならないように、行列状に並んでいる。電極片TXx1、TXx2、TXx3、TXx4、TXx5、TXx6の領域は、矩形である。
電極片TXx1、TXx2、TXx3は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。また、電極片TXx4、TXx5、TXx6は、第1方向Dxの位置が異なるが、第2方向Dyの位置が同じであり、第1方向Dxに一列に並んでいる。
電極片TXx1、TXx4は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、電極片TXx2、TXx5は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。また、電極片TXx3、TXx6は、第2方向Dyの位置が異なるが、第1方向Dxの位置が同じであり、第2方向Dyに一列に並んでいる。
電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6の領域のいずれか1つは、図29に示すように、電極片TXx1、TXx2、TXx3、TXx4、TXx5、TXx6の領域のいずれか1つに重畳する。
次に、第1電極COMLと電極片TXx1、TXx2、TXx3、TXx4、TXx5、TXx6との電気的な接続について、図29から図34を用いて説明する。
図33に示す第1基板21には、図32に示す各副画素SPixのスイッチング素子TrD、各画素電極22に画素信号Vpixを供給するデータ線SGL、各スイッチング素子TrDを駆動する駆動信号を供給するゲート線GCL等の配線が設けられている。データ線SGL及びゲート線GCLは、第1基板21の表面と平行な平面に延在している。
図14に示す表示領域20には、行列状に配列された複数の副画素SPixが配置されている。副画素SPixは、図32に示すスイッチング素子TrDをそれぞれ備える。スイッチング素子TrDは、薄膜トランジスタで構成されるものであり、この例では、nチャネルのMOS(Metal Oxide Semiconductor)型のTFTで構成されている。スイッチング素子TrDのソースはデータ線SGLに接続され、ゲートはゲート線GCLに接続され、ドレインは図14に示す液晶素子6aの一端に接続されている。図14に示す液晶素子6aの他端は、第1電極COMLに接続されている。また、画素電極22と第1電極COMLとの間に絶縁層24(図12参照)が設けられており、これにより図14に示す保持容量6bが形成される。
副画素SPixは、ゲート線GCLにより、表示領域20の同じ行に属する他の副画素SPixと互いに接続されている。ゲート線GCLは、ゲートドライバ12(図1参照)と接続され、ゲートドライバ12より走査信号Vscanが供給される。また、副画素SPixは、データ線SGLにより、表示領域20の同じ列に属する他の副画素SPixと互いに接続されている。データ線SGLは、ソースドライバ13(図1参照)と接続され、ソースドライバ13より画素信号Vpixが供給される。第1電極COMLの電極片TXxは、駆動回路14(図1参照)と接続され、駆動回路14から表示用の駆動信号Vcomdc又は検出用の第1駆動信号Vcom1が供給される。電極片TXxは、例えば、ITO等の透光性を有する導電性材料で構成されている。
図32に示すように、ゲート線GCLとデータ線SGLとで囲まれた領域が副画素SPixである。副画素SPixは、画素電極22と第1電極COMLとが重なる領域を含んで設けられる。複数の画素電極22は、それぞれスイッチング素子TrDを介してデータ線SGLと接続される。
図33に示すように、画素電極22は、複数の帯状電極22aと、連結部22bとを有する。帯状電極22aは、データ線SGLに沿って設けられ、ゲート線GCLに沿った方向に複数配列されている。連結部22bは帯状電極22aの端部同士を連結する。なお、画素電極22は、5本の帯状電極22aを有するが、これに限定されず、4本以下又は6本以上の帯状電極22aを有していてもよい。例えば、画素電極22は、2本の帯状電極22aを有していてもよい。
図33に示すように、スイッチング素子TrDは、半導体層61、ソース電極62、ドレイン電極63及びゲート電極64を含む。
図33に示すように、絶縁層58aは、基板121の上に設けられている。絶縁層58aの上には半導体層61が設けられている。半導体層61の上側に絶縁層58bを介して、ゲート電極64(ゲート線GCL)が設けられている。ゲート電極64(ゲート線GCL)の上側に絶縁層58cを介してドレイン電極63及びソース電極62(データ線SGL)が設けられる。ドレイン電極63及びソース電極62(データ線SGL)の上側に絶縁層58dを介して、第1電極COMLが設けられる。上述のように第1電極COMLの上側に絶縁層24を介して画素電極22が設けられる。画素電極22の上には配向膜34が設けられる。また、液晶層6を挟んで配向膜34と対向する側に配向膜33が設けられる。
図32及び図33に示すように、画素電極22は、コンタクトホールH11を介してスイッチング素子TrDのドレイン電極63と接続されている。半導体層61は、コンタクトホールH12を介してドレイン電極63に接続される。半導体層61は、平面視でゲート電極64と交差する。ゲート電極64はゲート線GCLに接続され、ゲート線GCLの一辺から突出している。半導体層61は、ソース電極62と重畳する位置まで延びて、コンタクトホールH13を介してソース電極62と電気的に接続される。ソース電極62は、データ線SGLに接続され、データ線SGLの一辺から突出している。
図34に示すように、第1電極Tx1、・・・、Tx4は、絶縁層58dの上に形成され、絶縁層58eで覆われている。第1電極Tx1、・・・、Tx4は、アルミニウム(Al)、銅(Cu)、銀(Ag)、モリブデン(Mo)、クロム(Cr)及びタングステン(W)から選ばれた1種以上の金属層で形成される。図31に示すように、電極片TXxは、コンタクトホールSHMを介して、第1電極Tx1、・・・、Tx12、・・・のいずれかと電気的に接続している。例えば、図34に示すように、電極片TXx2は、コンタクトホールSHMを介して、第1電極Tx2に電気的に接続している。
以上の構造によれば、図31に示すように、各電極片TXx1は、コンタクトホールSHMを介して、第1電極Tx1、Tx7のいずれかに電気的に接続している。各電極片TXx2は、コンタクトホールSHMを介して、第1電極Tx2、Tx8のいずれかに電気的に接続している。各電極片TXx3は、コンタクトホールSHMを介して、第1電極Tx3、Tx9のいずれかに電気的に接続している。各電極片TXx4は、コンタクトホールSHMを介して、第1電極Tx4、Tx10のいずれかに電気的に接続している。各電極片TXx5は、コンタクトホールSHMを介して、第1電極Tx5、Tx11のいずれかに電気的に接続している。各電極片TXx6は、コンタクトホールSHMを介して、第1電極Tx6、Tx12のいずれかに電気的に接続している。
上述したように、検出回路40は、タッチがある場合においてタッチ入力が行われた座標を求める。この場合、検出回路40は、第1駆動信号Vcom1が供給された第1電極Tx1、・・・、Tx12、・・・のいずれかの第1電極COMLを特定する。検出回路40は、特定された第1電極COMLに重なる第2電極TDLの電界透過領域TDDにおいて、第1電極COMLと第2電極TDLとの間の相互静電容量変化に応じた第1検出信号Vdet1に基づき、検出面に接触する被検出体を検出する。具体的には、検出回路40は、相互静電容量変化があった、第2電極TDL(1,1)、TDL(1,2)、TDL(2,1)、TDL(2,2)のいずれかの第2電極TDLを特定する。検出回路40は、この特定した第2電極TDLが有する電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6のうち、上述した特定した第1電極COMLと重なる電界透過領域TDDを特定し、検出回路40は、この電界透過領域TDDの座標を被検出体の位置として出力する。
実施形態3のセンサ領域にある検出装置は、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6が行列状に並んでいるので、被検出体の位置を行列状の位置として特定することが容易となる。
(実施形態4)
図35は、実施形態4に係る第2電極を模式的に示した模式図である。なお、実施形態1から実施形態3で説明した構成要素については、同じ符号を付して、説明を省略する。
実施形態4において、第2電極TDLは、少なくとも1つの第1導電性細線33Uと、第1導電性細線33Uと交差する少なくとも1つの第2導電性細線33Vと、を含む。第1導電性細線33Uと、第2導電性細線33Vとは、接続領域33Xで電気的に接続されている。複数の第1導電性細線33Uと、複数の第2導電性細線33Vとがそれぞれ複数交差すると、第2電極TDLの1つの網目の形状が平行四辺形となる。第1導電性細線33U及び第2導電性細線33Vは、それぞれ、第1方向Dxと平行な方向に対して互いに逆方向に傾斜している。
なお、第2電極TDLは、第1導電性細線33U及び第2導電性細線33Vを有しているが、本開示において、第2電極TDLの面積とは、第1導電性細線33U及び第2導電性細線33Vの面積に加え、第1導電性細線33Uと第2導電性細線33Vとで囲まれた開口の面積も含む。つまり、第2電極TDLの面積とは、第1導電性細線33U及び第2導電性細線33Vを囲む略矩形状の領域の面積となる。
複数の第1導電性細線33U及び第2導電性細線33Vは、それぞれ細幅である。図22に示すアクティブエリア10aにおいて、複数の第1導電性細線33Uは、第2方向Dyに互いに間隔を設けて配置される。また、複数の第2導電性細線33Vは、第2方向Dyに互いに間隔を設けて配置されている。
複数の第1導電性細線33U及び第2導電性細線33Vの延出方向の一端は、接続配線37に接続されている。接続配線37は、第1方向Dxに対向する第2電極TDLの間を通って、アクティブエリア10aから周辺領域10bに設けられたフレキシブル基板72に接続される(図15参照)。このような構成により、複数の第1導電性細線33U及び第2導電性細線33Vは互いに電気的に接続され、1つの第2電極TDLとして機能する。本実施形態では、1つの第2電極TDLに1本の接続配線37が接続される。第2電極TDLは、それぞれ略矩形状である。これに限定されず、第2電極TDLは、正方形状、多角形状、長円状等、他の形状であってもよい。
第1導電性細線33U及び第2導電性細線33Vは、アルミニウム(Al)、銅(Cu)、銀(Ag)、モリブデン(Mo)、クロム(Cr)及びタングステン(W)から選ばれた1種以上の金属層で形成される。又は、第1導電性細線33U及び第2導電性細線33Vは、これらの金属材料から選ばれた1種以上を含む合金で形成される。また、第1導電性細線33U及び第2導電性細線33Vは、これらの金属材料又はこれらの材料の1種以上を含む合金の導電層が複数積層された積層体としてもよい。なお、第1導電性細線33U及び第2導電性細線33Vは、ITO等の透光性導電酸化物の導電層が積層されていてもよい。また、上述した金属材料及び導電層を組み合わせた黒色化膜、黒色有機膜又は黒色導電有機膜が積層されていてもよい。
上述した金属材料は、ITO等の透光性導電酸化物よりも低抵抗である。上述した金属材料は、透光性導電酸化物に比較して遮光性があるため、透過率が低下する可能性又は第2電極TDLのパターンが視認されてしまう可能性がある。本実施形態において、1つの第2電極TDLが、複数の細幅の第1導電性細線33U及び複数の第2導電性細線33Vを有しており、第1導電性細線33U及び第2導電性細線33Vが、線幅よりも大きい間隔を設けて配置されることで、低抵抗化と、不可視化とを実現することができる。その結果、第2電極TDLが低抵抗化し、表示装置1は、薄型化、大画面化又は高精細化することができる。
第1導電性細線33U及び第2導電性細線33Vの幅は、1μm以上10μm以下であることが好ましく、さらに1μm以上5μm以下の範囲にあることがより好ましい。第1導電性細線33U及び第2導電性細線33Vの幅が10μm以下であると、アクティブエリア10aのうちブラックマトリクス又はゲート線GCL及び信号線SGLで光の透過を抑制されない領域である開口部を覆う面積が小さくなり、開口率を損なう可能性が低くなるからである。また、第1導電性細線33U及び第2導電性細線33Vの幅が1μm以上であると、形状が安定し、断線する可能性が低くなるからである。
第2電極TDLは、メッシュ状の金属細線に限定されず、例えば、ジグザグ線状、或いは波線状の金属細線を複数含む構成であってもよい。また、第2電極TDL同士の間には、検出電極として機能しないダミー電極が設けられていてもよい。ダミー電極は、第2電極TDLと類似した、メッシュ状、ジグザグ線状、或いは波線状のパターンとすることができる。ダミー電極は、電位が固定されていない。
図35に示すように、第2電極TDLは、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6を有する。電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6の面積は、それぞれ同じである。なお、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6には、電位が固定されていないダミー電極33Dが複数配置されている。複数のダミー電極33Dは、互いに電気的に接続されていない。また、複数のダミー電極33Dは、第1導電性細線33U及び第2導電性細線33Vとは、電気的に接続されていない。このように、複数のダミー電極33Dは、電位が固定されていない。このため、複数のダミー電極33Dは、タッチ検出において、フリンジ電界(図18)の遮蔽効果が小さい。その結果、タッチ検出において、フリンジ電界の電気力線は、第1電極COMLからTDD1、TDD2、TDD3、TDD4、TDD5、TDD6を通って第2電極TDLに向かって延びることとなる。
ダミー電極33Dは、第1方向Dxと平行な方向に対して第1導電性細線33Uと同じ傾きを有する導電性細線と、第1方向Dxと平行な方向に対して第2導電性細線33Vと同じ傾きを有する導電性細線とを含む。こうすれば、第1導電性細線33U及び第2導電性細線33Vに対して、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6が不可視化される。
電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6は、第2方向Dyよりも第1方向Dxの長さが長くなっている。このため、電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6は、平面視で、第1方向Dxに延びる1つの第1電極COMLにそれぞれ重なって配置できる。
(変形例1)
図36は、実施形態4の変形例1に係る第2電極の部分拡大図である。変形例1において、接続配線37は、ジグザグ線状、或いは波線状に形成されている。接続配線37は、第1方向Dxと平行な方向に対して第1導電性細線33Uと同じ傾きを有する導電性細線と、第1方向Dxと平行な方向に対して第2導電性細線33Vと同じ傾きを有する導電性細線とを含む。こうすれば、第1導電性細線33U及び第2導電性細線33Vに対して、接続配線37が不可視化される。
変形例1において、第1導電性細線33Uと第2導電性細線33Vとが接続され、平行四辺形の形状を有している。電界透過領域TDD1においては、接続領域33Xには、導電性材料が無くなるスリットGPを有していることにより、ダミー電極33Dが形成されている。電界透過領域TDD2、TDD3、TDD4、TDD5、TDD6にも図36に示すダミー電極33Dと同じ構造のダミー電極がある。
(変形例2)
図37は、実施形態4の変形例2に係る第2電極の部分拡大図である。変形例2において、2つの第1導電性細線33Uと2つの第2導電性細線33Vとが接続され、平行四辺形の形状の導電性細線が電界透過領域TDD1、TDD2、TDD3、TDD4、TDD5、TDD6(図36参照)において、並べられている。
(変形例3)
図38は、実施形態4の変形例3に係る第2電極の部分拡大図である。変形例3において、第1導電性細線33Uと、第2導電性細線33Vとがそれぞれ分離され、線状の導電性細線が電界透過領域TDD1及び電界透過領域TDD2(図36参照)において、並べられている。
(実施形態5)
図39は、実施形態5に係る検出装置及び表示装置の構成例を示す断面図である。なお、実施形態1から実施形態4で説明した構成要素については、同じ符号を付して、説明を省略する。図39に示すように、実施形態5に係る表示パネル10Aは、画素基板2Bと、画素基板2Bの表面に垂直な方向に対向して配置された対向基板3Bと、画素基板2Bと対向基板3Bとの間に配置された液晶層6と、対向基板3Bの液晶層6と向かい合う面の反対側に配置された検出装置4と、を備える。
画素基板2Bは、第1基板21と、第1基板21の一方の面21aに設けられた共通電極COMと、第1面21a上に設けられて共通電極COMを覆う絶縁層24と、絶縁層24上に設けられた画素電極22と、第1基板21の他方の面21bに設けられた偏光板35Bと、を有する。表示期間Pd(図25参照)では、共通電極COMに表示用の駆動信号Vcomdcが供給される。対向基板3Bは、第2基板31と、第2基板31の第1面31aに設けられた偏光板35Aと、第2基板31の第2面31bに設けられたカラーフィルタ32とを有する。
検出装置4は、例えば、偏光板35A上に設けられた複数の第1電極COMLと、偏光板35A上に設けられて複数の第1電極COMLを覆う絶縁層25と、絶縁層25上に設けられた複数の第2電極TDLと、絶縁層25上に設けられて複数の第2電極TDLを覆うカバーガラス81とを有する。また、検出装置4は、複数の第2電極TDLに接続する配線(図示せず)と、複数の第1電極COMLに接続する配線(図示せず)とを有する。このような構成であっても、実施形態1で説明したセンサ領域にある検出装置と同様に、タッチ検出とホバー検出とを良好に行うことができる。
以上、好適な実施の形態を説明したが、本開示はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本開示の趣旨を逸脱しない範囲で種々の変更が可能である。本開示の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本開示の技術的範囲に属する。
例えば、第1電極COML、第2電極TDL、画素電極22等の形状、配置、個数等は、あくまで一例であり、適宜変更することができる。
例えば、本態様の表示装置は、以下の態様をとることができる。
(1)少なくとも1つの基板と、
前記基板の第1方向に延び、前記第1方向と交差する第2方向にそれぞれ並ぶ複数の第1電極と、
前記第1電極とは異なる層において、少なくとも第1方向に並んで配置された複数の第2電極と、を備え、
1つの前記第2電極は、平面視で複数の前記第1電極に部分的に重なり、かつ電界が前記基板に垂直な方向に前記第2電極を透過できる電界透過領域を有し、
1つの前記第2電極における1つの前記電界透過領域が1つの前記第1電極と平面視で重なっている、検出装置。
(2)1つの前記第2電極は、複数の前記電界透過領域を有し、平面視で、複数の前記電界透過領域が重ならない位置に配置される、上記(1)に記載の検出装置。
(3)前記電界透過領域には、ダミー電極が配置されている上記(1)又は上記(2)に記載の検出装置。
(4)前記ダミー電極は、電位が固定されていない導電性材料である上記(3)に記載の検出装置。
(5)前記電界透過領域の外形は、前記第2方向の長さよりも前記第1方向の方が長い上記(1)乃至上記(4)のいずれか1つに記載の検出装置。
(6)前記第1電極は、直線的に延びる帯状の電極である上記(1)乃至上記(5)のいずれか1つに記載の検出装置。
(7)1つの前記第2電極は、複数の前記電界透過領域を有し、複数の前記電界透過領域が行列状に並んでいる上記(1)乃至上記(5)のいずれか1つに記載の検出装置。
(8)前記第1電極は、屈曲し、かつ他の部分に比べ前記第2方向の幅が広い幅広部を備え、隣り合う前記第1電極の幅広部同士が、第1方向に並ぶ、上記(7)に記載の検出装置。
(9)前記第1電極は、前記第1方向に延びている直線状の複数の配線と、前記配線よりも幅広であって、前記配線と電気的に接続する電極片と、を備え、
前記電極片と、前記電界透過領域の1つとが重畳する、上記(7)に記載の検出装置。
(10)前記第1電極に第1駆動信号を供給し、前記第2電極に第2駆動信号を供給する駆動回路と、
前記第1電極に前記第1駆動信号が供給された場合に、前記第1電極と前記第2電極との間の相互静電容量変化に応じた第1検出信号に基づいて、検出面に接触する被検出体を検出する第1検出モードと、前記第2電極に前記第2駆動信号が供給された場合に、前記第2電極の自己静電容量変化に応じた第2検出信号に基づいて、前記検出面に対して非接触状態の前記被検出体を検出する第2検出モードと、を有する制御回路を有する、上記(1)乃至上記(9)のいずれか1つに記載の検出装置。
(11)検出回路を備え、
前記第1検出モードにおいて、前記検出回路は、前記第1駆動信号が供給された第1電極を特定し、当該第1電極と重なる第2電極の電界透過領域において、前記第1電極と前記第2電極との間の相互静電容量変化に応じた第1検出信号に基づいて、検出面に接触する被検出体を検出する、上記(10)に記載の検出装置。
(12)前記第2電極において、複数の金属配線がメッシュ状、ジグザグ線状、或いは波線状に形成されている、上記(1)乃至上記(11)のいずれか1つに記載の検出装置。
(13)前記第2検出モードにおいて、前記駆動回路は、前記第1電極に対し、前記第2駆動信号と同期した同じ電位の信号を供給する上記(10)に記載の検出装置。
(14)上記(1)乃至上記(13)のいずれか1つに記載の検出装置と、表示領域とを備える表示パネルと、を備え
前記表示領域と重畳する領域に、前記第2電極が設けられている、表示装置。
1 表示装置
6 液晶層
10 表示パネル
10a アクティブエリア
10b 周辺領域
11 制御回路
14 駆動回路
18 切替回路
19 表示用IC
20 表示領域
21 第1基板
22 画素電極
30 センサ領域(検出装置)
31 第2基板
33U 第1導電性細線
33V 第2導電性細線
33D ダミー電極
37 接続配線
40 検出回路
COML 第1電極
TDL 第2電極
TDD 電界透過領域

Claims (14)

  1. 少なくとも1つの基板と、
    前記基板の第1方向に延び、前記第1方向と交差する第2方向にそれぞれ並ぶ複数の第1電極と、
    前記第1電極とは異なる層において、少なくとも第1方向に並んで配置された複数の第2電極と、を備え、
    1つの前記第2電極は、平面視で複数の前記第1電極に部分的に重なり、かつ電界が前記基板に垂直な方向に前記第2電極を透過できる電界透過領域を有し、
    1つの前記第2電極における1つの前記電界透過領域が1つの前記第1電極と平面視で重なっている、検出装置。
  2. 1つの前記第2電極は、複数の前記電界透過領域を有し、平面視で、複数の前記電界透過領域が重ならない位置に配置される、請求項1に記載の検出装置。
  3. 前記電界透過領域には、ダミー電極が配置されている請求項1又は請求項2に記載の検出装置。
  4. 前記ダミー電極は、電位が固定されていない導電性材料である請求項3に記載の検出装置。
  5. 前記電界透過領域の外形は、前記第2方向の長さよりも前記第1方向の方が長い請求項1乃至請求項4のいずれか1項に記載の検出装置。
  6. 前記第1電極は、直線的に延びる帯状の電極である請求項1乃至請求項5のいずれか1項に記載の検出装置。
  7. 1つの前記第2電極は、複数の前記電界透過領域を有し、複数の前記電界透過領域が行列状に並んでいる請求項1乃至請求項5のいずれか1項に記載の検出装置。
  8. 前記第1電極は、屈曲し、かつ他の部分に比べ前記第2方向の幅が広い幅広部を備え、隣り合う前記第1電極の幅広部同士が、第1方向に並ぶ、請求項7に記載の検出装置。
  9. 前記第1電極は、前記第1方向に延びている直線状の複数の配線と、前記配線よりも幅広であって、前記配線と電気的に接続する電極片と、を備え、
    前記電極片と、前記電界透過領域の1つとが重畳する、請求項7に記載の検出装置。
  10. 前記第1電極に第1駆動信号を供給し、前記第2電極に第2駆動信号を供給する駆動回路と、
    前記第1電極に前記第1駆動信号が供給された場合に、前記第1電極と前記第2電極との間の相互静電容量変化に応じた第1検出信号に基づいて、検出面に接触する被検出体を検出する第1検出モードと、前記第2電極に前記第2駆動信号が供給された場合に、前記第2電極の自己静電容量変化に応じた第2検出信号に基づいて、前記検出面に対して非接触状態の前記被検出体を検出する第2検出モードと、を有する制御回路を有する、請求項1乃至請求項9のいずれか1項に記載の検出装置。
  11. 検出回路を備え、
    前記第1検出モードにおいて、前記検出回路は、前記第1駆動信号が供給された第1電極を特定し、当該第1電極と重なる第2電極の電界透過領域において、前記第1電極と前記第2電極との間の相互静電容量変化に応じた第1検出信号に基づいて、検出面に接触する被検出体を検出する、請求項10に記載の検出装置。
  12. 前記第2電極において、複数の金属配線がメッシュ状、ジグザグ線状、或いは波線状に形成されている、請求項1乃至請求項11のいずれか1項に記載の検出装置。
  13. 前記第2検出モードにおいて、前記駆動回路は、前記第1電極に対し、前記第2駆動信号と同期した同じ電位の信号を供給する請求項10に記載の検出装置。
  14. 請求項1乃至請求項13のいずれか1項に記載の検出装置と、表示領域とを備える表示パネルと、を備え
    前記表示領域と重畳する領域に、前記第2電極が設けられている、表示装置。
JP2017192033A 2017-09-29 2017-09-29 検出装置及び表示装置 Pending JP2019067143A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017192033A JP2019067143A (ja) 2017-09-29 2017-09-29 検出装置及び表示装置
US16/139,582 US10705637B2 (en) 2017-09-29 2018-09-24 Detection device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192033A JP2019067143A (ja) 2017-09-29 2017-09-29 検出装置及び表示装置

Publications (1)

Publication Number Publication Date
JP2019067143A true JP2019067143A (ja) 2019-04-25

Family

ID=65897991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192033A Pending JP2019067143A (ja) 2017-09-29 2017-09-29 検出装置及び表示装置

Country Status (2)

Country Link
US (1) US10705637B2 (ja)
JP (1) JP2019067143A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123454A (ja) * 2010-12-06 2012-06-28 Kitagawa Ind Co Ltd 静電容量式タッチパネル用の透明導電フィルム
JP2012519897A (ja) * 2009-03-04 2012-08-30 ナム、ドンシク タッチパネルセンサー
JP2014130626A (ja) * 2014-02-24 2014-07-10 Japan Display Inc 情報入力装置、表示装置
JP2015115021A (ja) * 2013-12-16 2015-06-22 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置及び電子機器
JP2016062205A (ja) * 2014-09-17 2016-04-25 株式会社ワコム センサ信号処理回路及びセンサ信号処理方法
JP2017174013A (ja) * 2016-03-22 2017-09-28 株式会社ジャパンディスプレイ 表示装置
JP2017174352A (ja) * 2016-03-25 2017-09-28 株式会社ジャパンディスプレイ 検出装置及びタッチ検出機能付き表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816668B2 (ja) 2008-03-28 2011-11-16 ソニー株式会社 タッチセンサ付き表示装置
JP6050728B2 (ja) * 2012-07-24 2016-12-21 株式会社ジャパンディスプレイ タッチセンサ付き液晶表示装置、及び電子機器
JP2015195010A (ja) * 2014-03-20 2015-11-05 パナソニックIpマネジメント株式会社 タッチセンサ機能を有する入力装置および表示装置
TW201824220A (zh) * 2016-09-30 2018-07-01 半導體能源硏究所股份有限公司 顯示面板、顯示裝置、輸入輸出裝置、資料處理裝置
JP2018181151A (ja) 2017-04-19 2018-11-15 株式会社ジャパンディスプレイ 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519897A (ja) * 2009-03-04 2012-08-30 ナム、ドンシク タッチパネルセンサー
JP2012123454A (ja) * 2010-12-06 2012-06-28 Kitagawa Ind Co Ltd 静電容量式タッチパネル用の透明導電フィルム
JP2015115021A (ja) * 2013-12-16 2015-06-22 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置及び電子機器
JP2014130626A (ja) * 2014-02-24 2014-07-10 Japan Display Inc 情報入力装置、表示装置
JP2016062205A (ja) * 2014-09-17 2016-04-25 株式会社ワコム センサ信号処理回路及びセンサ信号処理方法
JP2017174013A (ja) * 2016-03-22 2017-09-28 株式会社ジャパンディスプレイ 表示装置
JP2017174352A (ja) * 2016-03-25 2017-09-28 株式会社ジャパンディスプレイ 検出装置及びタッチ検出機能付き表示装置

Also Published As

Publication number Publication date
US20190102019A1 (en) 2019-04-04
US10705637B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6581927B2 (ja) 検出装置、表示装置及び電子機器
US9952700B2 (en) Display device
JP6549976B2 (ja) タッチ検出装置及びタッチ検出機能付き表示装置
JP6046600B2 (ja) タッチ検出機能付き表示装置及び電子機器
US10496223B2 (en) Touch detection device and display device with touch detection function
US10372278B2 (en) Display device and detection device
US10845636B2 (en) Input detection device
JP2018124650A (ja) 表示装置
US10949039B2 (en) Display device
US10664114B2 (en) Detection device and display device
JP2018169680A (ja) 表示装置
JP6539190B2 (ja) タッチ検出装置及びタッチ検出機能付き表示装置
JP6133732B2 (ja) 入力装置及びその検出方法
JP2018190347A (ja) 表示装置
JP2019016064A (ja) 検出装置及び表示装置
JP7466015B2 (ja) 表示装置
US10976861B2 (en) Detection device and display device
JP2019016154A (ja) 表示装置
JP2019067143A (ja) 検出装置及び表示装置
JP7329641B2 (ja) 表示装置
JP2019021289A (ja) 表示装置
TW202018474A (zh) 觸控面板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706