JP2019066736A - 静電荷像現像用トナーの製造方法 - Google Patents

静電荷像現像用トナーの製造方法 Download PDF

Info

Publication number
JP2019066736A
JP2019066736A JP2017193684A JP2017193684A JP2019066736A JP 2019066736 A JP2019066736 A JP 2019066736A JP 2017193684 A JP2017193684 A JP 2017193684A JP 2017193684 A JP2017193684 A JP 2017193684A JP 2019066736 A JP2019066736 A JP 2019066736A
Authority
JP
Japan
Prior art keywords
resin
toner
less
particles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017193684A
Other languages
English (en)
Other versions
JP7027671B2 (ja
Inventor
章貴 清水
Akitaka Shimizu
章貴 清水
浩司 水畑
Koji Mizuhata
浩司 水畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2017193684A priority Critical patent/JP7027671B2/ja
Publication of JP2019066736A publication Critical patent/JP2019066736A/ja
Application granted granted Critical
Publication of JP7027671B2 publication Critical patent/JP7027671B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】低温定着性、耐熱保存性、及びクリーニング性に優れる静電荷像現像用トナーの製造方法を提供する。【解決手段】工程1:結晶性樹脂CCを含有する樹脂粒子A1を凝集させて、凝集粒子1を得る工程と工程2:工程1で得られた凝集粒子1に、非晶性樹脂SAを含有する樹脂粒子Bを凝集させて凝集粒子2を得る工程と工程3:工程2で得られた凝集粒子2を、非晶性樹脂SAのガラス転移温度より5℃低い温度以上、結晶性樹脂CCの融点より5℃低い温度未満の温度T1、且つ、3.0以上6.0以下のpH1で融着させ、その後、結晶性樹脂CCの融点より5℃低い温度以上、20℃高い温度以下の温度T2で、且つ、前記pH1より0.2高い値以上のpH2で更に融着させ、融着粒子を得る工程とを含む、静電荷像現像用トナーの製造方法。【選択図】なし

Description

本発明は、静電荷像現像用トナーの製造方法に関する。
電子写真の分野においては、電子写真システムの発展に伴い、高画質化及び高速化に対応した静電荷像現像用トナーの開発が求められている。高画質化に対応して、粒径分布が狭く、小粒径のトナーを得る方法として、微細な樹脂粒子等を水性媒体中で凝集、融着させてトナーを得る、凝集融着法(乳化凝集法、凝集合一法)によるトナーの製造が行われている。なかでも低温定着性や耐熱保存性といった熱特性を改善するために、コアシェル構造を有するトナーが提案されている。
特許文献1では、工程(1):樹脂粒子(A)及び離型剤粒子を含む凝集粒子と、界面活性剤とを含有する水性混合液の25℃におけるpHを2.0〜5.0に調整した後及び/又は調整しながら、該水性混合液中の凝集粒子を融着する工程、工程(2):工程(1)で得られた融着粒子分散液の25℃におけるpHを5.5〜7.5に調整する工程、及び工程(3):工程(2)で得られた融着粒子分散液から液体部分を除去してトナー粒子を得る工程を有する電子写真用トナーの製造方法が記載されている。当該製造方法により得られるトナーは、良好な低温定着性と高温高湿度下での帯電性とを両立し、耐熱保存性にも優れると記載されている。
特許文献2では、少なくとも樹脂と着色剤とを含有するコアの表面にシェルを有するコア・シェル構造の静電荷像現像用トナーであり、当該シェルの8点平均膜厚(Have)が100〜300nmであり、当該シェルの最大膜厚をHmax、最小膜厚をHminとしたとき、両者の比:Hmax/Hminが1.00〜1.50であり、当該コアのガラス転移温度をTg1、当該シェルのガラス転移温度をTg2としたとき、30℃≦Tg1≦40℃、45℃≦Tg2≦55℃であるトナー粒子を用いた静電荷像現像用現像剤が記載されている。当該トナーとキャリアを含有する静電荷像現像用現像剤は、所謂ハイブリッド現像において、耐熱保存性に優れ、長期使用によってもトナー及びキャリアの劣化が小さく、常に安定した帯電性付与が可能であり、且つベタ画像均一性に優れると記載されている。
特許文献3では、ポリエステル樹脂を含む芯材粒子と、前記芯材粒子の表面を被覆するビニル系樹脂を含む被覆層と、で構成されたトナー粒子と、平均円形度が0.75以上0.9以下であり、立体画像解析により求められる最大高さHに対する平面画像解析により求められる円相当径Daの比の平均値が、1.5を超え1.9未満であるシリカ粒子である外添剤と、を有する静電荷像現像用トナーが記載されている。当該トナーによれば、定着時の定着画像に生じる発泡による画像あれを抑制すると記載されている。
特開2013−25093号公報 特開2010−26049号公報 特開2014−191108号公報
球状の粒子が得やすい凝集融着法によるケミカルトナーの製造方法おいては、粒子表面の形状を制御することは難しく、特にコアシェル型のトナー粒子においては、シェルによる被覆が不十分となりやすい。また、低温定着性を向上させるために、トナー中に結晶性樹脂を含有させることが行われるが、結晶性樹脂はその融点付近の温度で容易に溶融するため、温度を高めれば融着が進みやすくなる半面、粒子の球状化が促進されるという問題がある。そのため、コアシェル構造を維持しながらトナー粒子の表面形状を制御し、低温定着性や耐熱保存性といった熱特性に優れ、更にトナーのクリーニング性を向上させることのできるトナーの製造方法が求められていた。
本発明は、低温定着性、耐熱保存性、及びクリーニング性に優れる静電荷像現像用トナーの製造方法に関する。
本発明者らは、特定の樹脂を含有するトナーの製造方法において、融着工程での温度制御と同時に、融着工程での系内のpH変化を制御することで、得られるトナーの表面が好適に異形化し、低温定着性、耐熱保存性、及びクリーニング性に優れるトナーを製造できることを見出した。
つまり、本発明は、
工程1:結晶性樹脂CCを含有する樹脂粒子A1を凝集させて、凝集粒子1を得る工程と
工程2:工程1で得られた凝集粒子1に、非晶性樹脂SAを含有する樹脂粒子Bを凝集させて凝集粒子2を得る工程と
工程3:工程2で得られた凝集粒子2を、非晶性樹脂SAのガラス転移温度より5℃低い温度以上、結晶性樹脂CCの融点より5℃低い温度未満の温度T、且つ、3.0以上6.0以下のpHで融着させ、その後、結晶性樹脂CCの融点より5℃低い温度以上、20℃高い温度以下の温度Tで、且つ、前記pHより0.2高い値以上のpHで更に融着させ、融着粒子を得る工程と
を含む、静電荷像現像用トナーの製造方法に関する。
本発明によれば、優れた低温定着性、耐熱保存性、及びクリーニング性を示す静電荷像現像用トナーの製造方法を提供することができる。
[静電荷像現像用トナーの製造方法]
本発明の静電荷像現像用トナー(以下、単に「トナー」ともいう)の製造方法は、
工程1:結晶性樹脂CCを含有する樹脂粒子A1を凝集させて、凝集粒子1を得る工程と
工程2:工程1で得られた凝集粒子1に、非晶性樹脂SAを含有する樹脂粒子Bを凝集させて凝集粒子2を得る工程と
工程3:工程2で得られた凝集粒子2を、非晶性樹脂SAのガラス転移温度より5℃低い温度以上、結晶性樹脂CCの融点より5℃低い温度未満の温度T、且つ、3.0以上6.0以下のpHで融着させ、その後、結晶性樹脂CCの融点より5℃低い温度以上、20℃高い温度以下の温度Tで、且つ、前記pHより0.2高い値以上のpHで更に融着させ、融着粒子を得る工程と
を含む。
本発明の製造方法によれば、優れた低温定着性、耐熱保存性、及びクリーニング性を示すトナーが得られる。その理由は定かではないが以下のように考えられる。
一般的に、凝集融着法で結晶性樹脂を含有するコアシェルトナー粒子を製造する際、融着の温度を結晶性樹脂が融解するのに十分高くすると、融着がスムーズに進行する半面、粒子が球状化し、十分なクリーニング性が得られなくなる。逆に、融着の温度が十分でない場合は、シェル部が融着不足となりやすく、十分な耐熱保存性が得られなくなる。
このように通常、凝集融着法でトナー形状を制御することは難しいところ、本発明では、融着工程において、まず系内の温度を「非晶性樹脂SAのガラス転移温度より5℃低い温度」以上「結晶性樹脂CCの融点より5℃低い温度」以下とし、系内のpHを3.0以上6.0以下のpHとし弱酸性とする。
これにより、結晶性樹脂CCは融解させずに、非晶性樹脂SAの熱運動をある程度起こしつつ、凝集粒子2の表面の非晶性樹脂SAのカルボン酸の解離を低下させ、凝集粒子2の表面を選択的に融着させることができる。
その結果、粒子表面が滑らかで適度に凹凸を有する状態で、凝集粒子2の表面に非晶性樹脂SAによるシェル層が形成されると考えられる。
引き続き、「結晶性樹脂CCの融点より5℃低い温度」以上「結晶性樹脂CCの融点より20℃高い温度」以下とし、系内のpHを「pHより0.2高い値」以上とすることで、融着粒子の球状化を抑制しながら内部の結晶性樹脂CC及び表面の非晶性樹脂SAの融着を進行させることが可能となる。その結果、結晶性樹脂CCを含有し、粒子表面が滑らかで適度に凹凸を有するトナー粒子が得られ、優れた低温定着性、耐熱保存性、及びクリーニング性を示すトナーが得られると考えられる。
本明細書における各種用語の定義等を以下に示す。
樹脂が結晶性であるか非晶性であるかについては、結晶性指数により判定される。結晶性指数は、後述する実施例に記載の測定方法における、樹脂の軟化点と吸熱の最大ピーク温度との比(軟化点(℃)/吸熱の最大ピーク温度(℃))で定義される。結晶性樹脂とは、結晶性指数が0.6以上1.4以下のものである。非晶性樹脂とは、結晶性指数が0.6未満又は1.4超のものである。結晶性指数は、原料モノマーの種類及びその比率、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができる。
明細書中、ポリエステル樹脂のカルボン酸成分には、その化合物のみならず、反応中に分解して酸を生成する無水物、及び各カルボン酸のアルキルエステル(アルキル基の炭素数1以上3以下)も含まれる。
本明細書において、「結着樹脂」とは、結晶性樹脂CC、非晶性樹脂CA及び結晶性樹脂SAを包含するトナー中に含まれる樹脂成分を意味する。
「体積中位粒径D50」とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径である。
粒径分布の変動係数(以下、単に「CV値」ともいう)は、下記式で表される値である。下記式における体積平均粒径とは、体積基準で測定された粒径に、その粒径値を持つ粒子の割合を掛け、それにより得られた値を粒子数で除して得られる粒径である。
CV値(%)=[粒径分布の標準偏差(μm)/体積平均粒径(μm)]×100
<工程1>
工程1では、結晶性樹脂CCを含有する樹脂粒子A1を凝集させて、凝集粒子1を得る。
凝集粒子1は、好ましくは非晶性樹脂CAを含有する。
その場合、工程1において、樹脂粒子A1が非晶性樹脂CAを含有する、又は、樹脂粒子A1と共に、非晶性樹脂CAを含有する樹脂粒子A2を凝集させる。
〔結晶性樹脂CC〕
結晶性樹脂CCとしては、例えば、結晶性ポリエステル樹脂が挙げられる。
結晶性ポリエステル樹脂は、アルコール成分とカルボン酸成分との重縮合物である。
アルコール成分としては、α,ω−脂肪族ジオールが好ましい。
α,ω−脂肪族ジオールの炭素数は、好ましくは2以上、より好ましくは4以上、更に好ましくは6以上であり、そして、好ましくは16以下、より好ましくは14以下、更に好ましくは12以下である。
α,ω−脂肪族ジオールとしては、例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオールが挙げられる。これらの中でも、1,6−ヘキサンジオール、1,10−デカンジオール、1,12−ドデカンジオールが好ましく、1,10−デカンジオールがより好ましい。
α,ω−脂肪族ジオールの量は、アルコール成分中、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして100モル%以下であり、更に好ましくは100モル%である。
アルコール成分は、α,ω−脂肪族ジオールとは異なる他のアルコール成分を含有していてもよい。他のアルコール成分としては、例えば、1,2−プロパンジオール、ネオペンチルグリコール等のα,ω−脂肪族ジオール以外の脂肪族ジオール;ビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の3価以上のアルコール等が挙げられる。これらのアルコール成分は、1種又は2種以上を用いてもよい。
カルボン酸成分としては、脂肪族ジカルボン酸が好ましい。
脂肪族ジカルボン酸の炭素数は、好ましくは4以上、より好ましくは8以上、更に好ましくは10以上であり、そして、好ましくは14以下、より好ましくは12以下である。
脂肪族ジカルボン酸としては、例えば、フマル酸、セバシン酸、ドデカン二酸、テトラデカン二酸が挙げられる。これらの中でも、セバシン酸、ドデカン二酸が好ましく、セバシン酸がより好ましい。これらのカルボン酸成分は、1種又は2種以上を用いてもよい。
脂肪族ジカルボン酸の量は、カルボン酸成分中、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして、100モル%以下であり、更に好ましくは100モル%である。
カルボン酸成分は、脂肪族ジカルボン酸とは異なる他のカルボン酸成分を含有していてもよい。他のカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸;3価以上の多価カルボン酸が挙げられる。これらのカルボン酸成分は、1種又は2種以上を用いてもよい。
アルコール成分の水酸基に対するカルボン酸成分のカルボキシ基の当量比〔COOH基/OH基〕は、好ましくは0.7以上、より好ましくは0.8以上であり、そして、好ましくは1.3以下、より好ましくは1.2以下である。
(結晶性樹脂CCの製造方法)
結晶性樹脂CCは、例えば、アルコール成分及びカルボン酸成分の重縮合により得られる。
必要に応じて、ジ(2−エチルヘキサン酸)錫(II)、酸化ジブチル錫、チタンジイソプロピレートビストリエタノールアミネート等のエステル化触媒をアルコール成分とカルボン酸成分との総量100質量部に対し0.01質量部以上5質量部以下;没食子酸(3,4,5−トリヒドロキシ安息香酸と同じ。)等のエステル化助触媒をアルコール成分とカルボン酸成分との総量100質量部に対し0.001質量部以上0.5質量部以下用いて重縮合してもよい。
また、重縮合にフマル酸等の不飽和結合を有するモノマーを使用する際には、必要に応じてアルコール成分とカルボン酸成分との総量100質量部に対して、好ましくは0.001質量部以上0.5質量部以下のラジカル重合禁止剤を用いてもよい。ラジカル重合禁止剤としては、例えば、4−tert−ブチルカテコールが挙げられる。
重縮合反応の温度は、好ましくは120℃以上、より好ましくは160℃以上、更に好ましくは180℃以上であり、そして、好ましくは250℃以下、より好ましくは240℃以下である。なお、重縮合は、不活性ガス雰囲気中にて行ってもよい。
(結晶性樹脂CCの物性)
結晶性樹脂CCの軟化点は、耐熱保存性をより向上させる観点から、好ましくは60℃以上、より好ましくは70℃以上、更に好ましくは80℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは150℃以下、より好ましくは120℃以下、更に好ましくは100℃以下である。
結晶性樹脂CCの融点は、耐熱保存性をより向上させる観点から、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは100℃以下、より好ましくは90℃以下、更に好ましくは80℃以下である。
結晶性樹脂CCの酸価は、樹脂粒子A1の分散安定性を向上させる観点から、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上であり、そして、好ましくは35mgKOH/g以下、より好ましくは25mgKOH/g以下、更に好ましくは20mgKOH/g以下である。
結晶性樹脂CCの軟化点、融点、及び酸価は、原料モノマーの種類及びその使用量、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができ、後述の実施例に記載の方法により求められる。なお、結晶性樹脂CCを2種以上組み合わせて使用する場合は、それらの混合物として得られた軟化点、融点、及び酸価の値がそれぞれ前記範囲内であることが好ましい。
〔非晶性樹脂CA〕
非晶性樹脂CAとしては、例えば、非晶性ポリエステル樹脂、ポリエステル樹脂セグメントと付加重合樹脂セグメントとを含む非晶性複合樹脂等の非晶性ポリエステル系樹脂が挙げられる。これらの中でも非晶性複合樹脂が好ましい。
非晶性ポリエステル樹脂は、例えば、アルコール成分とカルボン酸成分との重縮合物である。
アルコール成分としては、例えば、芳香族ジオール、直鎖又は分岐の脂肪族ジオール、脂環式ジオール、3価以上の多価アルコールが挙げられる。これらの中でも、芳香族ジオールが好ましい。
芳香族ジオールは、好ましくはビスフェノールAのアルキレンオキサイド付加物であり、より好ましくは式(I):

(式中、OR1及びR2Oはオキシアルキレン基であり、R1及びR2はそれぞれ独立にエチレン基又はプロピレン基であり、x及びyはアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、xとyの和の値は、1以上、好ましくは1.5以上であり、16以下、好ましくは8以下、より好ましくは4以下である)で表されるビスフェノールAのアルキレンオキサイド付加物である。
ビスフェノールAのアルキレンオキサイド付加物としては、例えば、ビスフェノールA〔2,2−ビス(4−ヒドロキシフェニル)プロパン〕のプロピレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物が挙げられる。これらは1種又は2種以上を用いてもよい。これらの中でも、ビスフェノールAのプロピレンオキサイド付加物が好ましい。
ビスフェノールAのアルキレンオキサイド付加物の含有量は、アルコール成分中、好ましくは70モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして、100モル%以下であり、更に好ましくは100モル%である。
直鎖又は分岐の脂肪族ジオールとしては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2,2−ジメチル−1,3−プロパンジオール、1,6−ヘキサンジオール、1,8‐オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−ドデカンジオールが挙げられる。
脂環式ジオールとしては、例えば、水素添加ビスフェノールA〔2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン〕、水素添加ビスフェノールAの炭素数2以上4以下のアルキレンオキサイド付加物(平均付加モル数2以上12以下)が挙げられる。
3価以上の多価アルコールとしては、例えば、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトールが挙げられる。
これらのアルコール成分は、1種又は2種以上を用いてもよい。
カルボン酸成分としては、例えば、ジカルボン酸、3価以上の多価カルボン酸が挙げられる。
ジカルボン酸としては、例えば、芳香族ジカルボン酸、直鎖又は分岐の脂肪族ジカルボン酸、脂環式ジカルボン酸が挙げられる。これらの中でも、芳香族ジカルボン酸、及び、直鎖又は分岐の脂肪族ジカルボン酸から選ばれる少なくとも1種が好ましい。
芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸が挙げられる。これらの中でも、イソフタル酸、テレフタル酸が好ましく、テレフタル酸がより好ましい。
芳香族ジカルボン酸の量は、カルボン酸成分中、好ましくは20モル%以上、より好ましくは30モル%以上、更に好ましくは40モル%以上であり、そして、好ましくは90モル%以下、より好ましくは80モル%以下、更に好ましくは75モル%以下である。
直鎖又は分岐の脂肪族ジカルボン酸の炭素数は、好ましくは2以上、より好ましくは3以上であり、そして、好ましくは30以下、より好ましくは20以下である。
直鎖又は分岐の脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アジピン酸、セバシン酸、ドデカン二酸、アゼライン酸、炭素数1以上20以下のアルキル基又は炭素数2以上20以下のアルケニル基で置換されたコハク酸が挙げられる。炭素数1以上20以下のアルキル基又は炭素数2以上20以下のアルケニル基で置換されたコハク酸としては、例えば、ドデシルコハク酸、ドデセニルコハク酸、オクテニルコハク酸が挙げられる。これらの中でも、フマル酸、セバシン酸が好ましい。
直鎖又は分岐の脂肪族ジカルボン酸の量は、カルボン酸成分中、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、そして、好ましくは80モル%以下、より好ましくは60モル%以下、更に好ましくは40モル%以下である。
3価以上の多価カルボン酸としては、好ましくは3価のカルボン酸であり、例えば、トリメリット酸が挙げられる。
3価以上の多価カルボン酸を含む場合、3価以上の多価カルボン酸の量は、カルボン酸成分中、好ましくは3モル%以上、より好ましくは5モル%以上、更に好ましくは8モル%以上であり、そして、好ましくは30モル%以下、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
これらのカルボン酸成分は、1種又は2種以上を用いてもよい。
アルコール成分の水酸基に対するカルボン酸成分のカルボキシ基の当量比〔COOH基/OH基〕は、好ましくは0.7以上、より好ましくは0.8以上であり、そして、好ましくは1.3以下、より好ましくは1.2以下である。
非晶性ポリエステル樹脂は、例えば、前述の結晶性ポリエステルと同様の方法により得られる。
非晶性複合樹脂は、ポリエステル樹脂セグメントと付加重合樹脂セグメントとを含む。
ポリエステル樹脂セグメントを構成するポリエステル樹脂は、前述の非晶性ポリエステル樹脂と同様である。
付加重合樹脂セグメントは、例えば、スチレン系化合物を含む原料モノマーの付加重合物である。
スチレン系化合物としては、例えば、無置換又は置換のスチレンが挙げられる。スチレンに置換される置換基としては、例えば、炭素数1以上5以下のアルキル基、ハロゲン原子、炭素数1以上5以下のアルコキシ基、スルホン酸基又はその塩が挙げられる。
スチレン系化合物としては、例えば、スチレン、メチルスチレン、α−メチルスチレン、β−メチルスチレン、tert−ブチルスチレン、クロロスチレン、クロロメチルスチレン、メトキシスチレン、スチレンスルホン酸又はその塩が挙げられる。これらの中でも、スチレンが好ましい。
付加重合樹脂セグメントの原料モノマー中、スチレン系化合物の含有量は、好ましくは50質量%以上、より好ましくは65質量%以上、更に好ましくは75質量%以上であり、そして、100質量%以下であり、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。
スチレン系化合物以外の原料モノマーとしては、例えば、(メタ)アクリル酸アルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジメチルアミノエチル等の(メタ)アクリル酸エステル;エチレン、プロピレン、ブタジエン等のオレフィン類;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル等のビニルエーテル類;ビニリデンクロリド等のハロゲン化ビニリデン;N−ビニルピロリドン等のN−ビニル化合物が挙げられる。これらの中でも、(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸アルキルがより好ましい。
(メタ)アクリル酸アルキルにおけるアルキル基の炭素数は、好ましくは1以上、より好ましくは6以上、更に好ましくは10以上であり、そして、好ましくは24以下、より好ましくは22以下、更に好ましくは20以下である。
(メタ)アクリル酸アルキルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸(イソ)プロピル、(メタ)アクリル酸(イソ又はターシャリー)ブチル、(メタ)アクリル酸(イソ)アミル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸(イソ)オクチル、(メタ)アクリル酸(イソ)デシル、(メタ)アクリル酸(イソ)ドデシル、(メタ)アクリル酸(イソ)パルミチル、(メタ)アクリル酸(イソ)ステアリル、(メタ)アクリル酸(イソ)ベヘニル等が挙げられ、(メタ)アクリル酸2−エチルヘキシル又は(メタ)アクリル酸ステアリルが好ましく、(メタ)アクリル酸ステアリルがより好ましい。
なお、「(イソ又はターシャリー)」及び「(イソ)」は、これらの接頭辞が存在する場合としない場合の双方を意味し、これらの接頭辞が存在しない場合には、ノルマルを示す。また、「(メタ)アクリレート」は、アクリレート又はメタクリレートを示す。
付加重合樹脂セグメントの原料モノマー中、(メタ)アクリル酸エステルの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは50質量%以下、より好ましくは35質量%以下、更に好ましくは25質量%以下である。
付加重合樹脂セグメントの原料モノマー中における、スチレン系化合物と(メタ)アクリル酸エステルとの総量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは100質量%である。
非晶性複合樹脂は、好ましくは、ポリエステル樹脂セグメント及び付加重合樹脂セグメントと共有結合を介して結合した両反応性モノマー由来の構成単位を有する。
「両反応性モノマー由来の構成単位」とは、両反応性モノマーの官能基、付加重合性基が反応した単位を意味する。
付加重合性基としては、例えば、炭素−炭素不飽和結合が挙げられる。
両反応性モノマーとしては、例えば、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基から選ばれる少なくとも1種の官能基を有する付加重合性モノマーが挙げられる。これらの中でも、反応性の観点から、水酸基及びカルボキシ基から選ばれる少なくとも1種の官能基を有する付加重合性モノマーが好ましく、カルボキシ基を有する付加重合性モノマーがより好ましい。
カルボキシ基を有する付加重合性モノマーとしては、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸が挙げられる。これらの中でも、重縮合反応と付加重合反応の双方の反応性の観点から、アクリル酸、メタクリル酸が好ましく、アクリル酸がより好ましい。
両反応性モノマー由来の構成単位の量は、複合樹脂のポリエステル樹脂セグメントのアルコール成分100モル部に対して、好ましくは1モル部以上、より好ましくは5モル部以上、更に好ましくは8モル部以上であり、そして、好ましくは30モル部以下、より好ましくは25モル部以下、更に好ましくは20モル部以下である。
非晶性複合樹脂中のポリエステル樹脂セグメントの含有量は、好ましくは35質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上であり、そして、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは75質量%以下である。
非晶性複合樹脂中の付加重合樹脂セグメントの含有量は、好ましくは5質量%以上、より好ましくは15質量%以上、更に好ましくは25質量%以上であり、そして、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは45質量%以下である。
非晶性複合樹脂中の両反応性モノマー由来の構成単位の量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上であり、そして、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。
非晶性複合樹脂中の、ポリエステル樹脂セグメントと付加重合樹脂セグメントと両反応性モノマー由来の構成単位の総量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは93質量%以上であり、そして、100質量%以下であり、更に好ましくは100質量%である。
非晶性樹脂CAは、低温定着性をより向上させる観点から、好ましくは、水酸基又はカルボキシ基を有する炭化水素ワックス由来の構成単位を含む。
水酸基又はカルボキシ基を有する炭化水素ワックスは、水酸基及びカルボキシ基のいずれか一方、又は両方を有していてもよいが、水酸基及びカルボキシ基を有する炭化水素ワックスが好ましい。非晶性樹脂CAに含まれる水酸基又はカルボキシ基を有する炭化水素ワックス由来の構成単位とは、炭化水素ワックスがポリエステル樹脂セグメントの一部とエステル結合を介して結合している構成単位である。
水酸基又はカルボキシ基を有する炭化水素ワックスは、炭化水素ワックスを公知の方法で変性させて得られる。原料炭化水素ワックスとしては、例えば、パラフィンワックス、フィッシャートロプシュワックス、マイクロクリスタリンワックス、ポリエチレンワックスが挙げられる。これらの中でも、パラフィンワックス、フィッシャートロプシュワックスが好ましい。反応原料となるパラフィンワックス、フィッシャートロプシュワックスの市販品としては、例えば、「HNP−11」、「HNP−9」、「HNP−10」、「FT−0070」、「HNP−51」、「FNP−0090」(以上、日本精蝋株式会社製)が挙げられる。
水酸基を有する炭化水素ワックスは、例えば、前述のパラフィンワックス、フィッシャートロプシュワックス等の炭化水素ワックスを酸化処理により変性させて得られるものである。酸化処理の方法としては、例えば、特開昭62−79267号公報、特開2010−197979号公報に記載の方法が挙げられる。具体的には、炭化水素ワックスをホウ酸の存在下で酸素を含有するガスで液相酸化する方法がある。
水酸基を有する炭化水素ワックスの市販品としては、例えば、「ユニリン700」、「ユニリン425」、「ユニリン550」(以上、ベーカー・ペトロライト社製)が挙げられる。
カルボキシ基を有する炭化水素ワックスとしては、例えば、酸変性ワックスが挙げられる。カルボキシ基を有する炭化水素ワックスは、例えば、パラフィンワックス、フィッシャートロプシュワックス等の炭化水素ワックスに、カルボキシ基を導入することで得ることできる。酸変性の方法としては、例えば、特開2006−328388号公報、特開2007−84787号公報等に記載の方法が挙げられる。具体的には、炭化水素ワックスの溶融物に、DCP(ジクミルパーオキサイド)等の有機過酸化化合物(反応開始剤)とカルボン酸化合物を添加して反応させることで、カルボキシ基を導入することができる。
カルボキシ基を有する炭化水素ワックスの市販品としては、例えば、無水マレイン酸変性エチレン−プロピレン共重合体「ハイワックス1105A」(三井化学株式会社製)等が挙げられる。
水酸基及びカルボキシ基を有する炭化水素ワックスは、例えば、水酸基を有する炭化水素ワックスの酸化処理と同様の方法で得ることができる。
水酸基及びカルボキシ基を有する炭化水素ワックスの市販品としては、「パラコール6420」、「パラコール6470」、「パラコール6490」(以上、日本精蝋株式会社製)等が挙げられる。
炭化水素ワックスの水酸基価は、ポリエステル樹脂との反応性の観点から、好ましくは40mgKOH/g以上、より好ましくは70mgKOH/g以上であり、そして、好ましくは180mgKOH/g以下、より好ましくは150mgKOH/g以下である。
炭化水素ワックスの酸価は、ポリエステル樹脂との反応性の観点から、好ましくは1mgKOH/g以上、より好ましくは5mgKOH/g以上であり、そして、好ましくは30mgKOH/g以下、より好ましくは20mgKOH/g以下である。
炭化水素ワックスの水酸基価と酸価の合計は、ポリエステル樹脂との反応性の観点から、好ましくは41mgKOH/g以上、より好ましくは60mgKOH/g以上、更に好ましくは90mgKOH/g以上であり、そして、好ましくは210mgKOH/g以下、より好ましくは140mgKOH/g以下、更に好ましくは120mgKOH/g以下である。
なお、炭化水素ワックスの水酸基価及び酸価は、実施例に記載の方法により求められる。
炭化水素ワックスの融点は、トナーの低温定着性を向上させる観点から、好ましくは60℃以上、より好ましくは70℃以上であり、そして、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは80℃以下である。
炭化水素ワックスの数平均分子量は、トナーの低温定着性を向上させる観点から、好ましくは500以上、より好ましくは600以上、更に好ましくは700以上であり、そして、好ましくは2000以下、より好ましくは1700以下、更に好ましくは1500以下である。
非晶性樹脂CAが、炭化水素ワックス由来の構成単位を含む場合の含有量は、低温定着性をより向上させる観点から、非晶性樹脂CA中、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上であり、そして、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
非晶性複合樹脂は、例えば、アルコール成分及びカルボン酸成分を重縮合させる工程Aと、付加重合樹脂セグメントの原料モノマー及び両反応性モノマーを付加重合させる工程Bとを含む方法により製造してもよい。
工程Aの後に工程Bを行ってもよいし、工程Bの後に工程Aを行ってもよく、工程Aと工程Bを同時に行ってもよい。
工程Aにおいて、カルボン酸成分の一部を重縮合反応に供し、次いで工程Bを実施した後に、カルボン酸成分の残部を重合系に添加し、工程Aの重縮合反応及び必要に応じて両反応性モノマーとの反応をさらに進める方法がより好ましい。
水酸基又はカルボキシ基を有する炭化水素ワックス由来の構成単位を有する場合、工程Aにおいて、水酸基又はカルボキシ基を有する炭化水素ワックスの存在下、アルコール成分及びカルボン酸成分を重縮合させる。
重縮合の条件は、前述の結晶性樹脂CCの合成方法での例示と同様である。
付加重合のラジカル重合開始剤としては、例えば、ジブチルパーオキサイド等の過酸化物、過硫酸ナトリウム等の過硫酸塩、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ化合物が挙げられる。
ラジカル重合開始剤の使用量は、付加重合樹脂セグメントの原料モノマー100質量部に対して、好ましくは1質量部以上20質量部以下である。
付加重合反応の温度は、好ましくは110℃以上、より好ましくは130℃以上であり、そして、好ましくは230℃以下、より好ましくは220℃以下、更に好ましくは210℃以下である。
(非晶性樹脂CAの物性)
非晶性樹脂CAの軟化点は、耐熱保存性をより向上させる観点から、好ましくは70℃以上、より好ましくは90℃以上、更に好ましくは100℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは125℃以下である。
非晶性樹脂CAのガラス転移温度は、耐熱保存性をより向上させる観点から、好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは80℃以下、より好ましくは70℃以下、更に好ましくは60℃以下である。
非晶性樹脂CAのガラス転移温度は、好ましくは結晶性樹脂CCの融点以下であり、より好ましくは結晶性樹脂CCの融点より低く、更に好ましくは結晶性樹脂CCの融点より10℃低い温度以下である。
非晶性樹脂CAの酸価は、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上、更に好ましくは15mgKOH/g以上であり、そして、好ましくは40mgKOH/g以下、より好ましくは35mgKOH/g以下、更に好ましくは30mgKOH/g以下である。
非晶性樹脂CAの軟化点、ガラス転移温度、及び酸価は、原料モノマーの種類及びその使用量、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができ、また、それらの値は、実施例に記載の方法により求められる。
なお、非晶性樹脂CAを2種以上組み合わせて使用する場合は、それらの混合物として得られた軟化点、ガラス転移温度及び酸価の値がそれぞれ前述の範囲内であることが好ましい。
〔樹脂粒子A1の製造方法〕
樹脂粒子A1の分散液は、結晶性樹脂CCを水性媒体中に分散させることで得られる。トナーが非晶性樹脂CAを含有する場合には、非晶性樹脂CAを同時に分散して、非晶性樹脂CAを含有する樹脂粒子A1としてもよいし、樹脂粒子A1と別に、非晶性樹脂CAを含有する樹脂粒子A2を使用してもよい。
水性媒体としては、水を主成分とするものが好ましく、樹脂粒子の分散液の分散安定性を向上させる観点、及び環境性の観点から、水性媒体中の水の含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上であり、そして、100質量%以下であり、更に好ましくは100質量%である。水としては、脱イオン水又は蒸留水が好ましい。水性媒体に含まれうる水以外の成分としては、例えば、炭素数1以上5以下のアルキルアルコール;アセトン、メチルエチルケトン等の炭素数3以上5以下のジアルキルケトン;テトラヒドロフラン等の環状エーテル等の水に溶解する有機溶媒が挙げられる。これらの中でも、メチルエチルケトンが好ましい。
分散は、公知の方法を用いて行うことができるが、転相乳化法により分散することが好ましい。転相乳化法としては、例えば、樹脂の有機溶媒溶液又は溶融した樹脂に水性媒体を添加して転相乳化する方法が挙げられる。
転相乳化に用いる有機溶媒としては、樹脂を溶解すれば特に限定されないが、例えば、メチルエチルケトンが挙げられる。
有機溶媒溶液には、中和剤を添加することが好ましい。中和剤としては、例えば、塩基性物質が挙げられる。塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;アンモニア、トリメチルアミン、ジエタノールアミン等の含窒素塩基性物質が挙げられる。
樹脂粒子A1に含まれる樹脂の酸基に対する中和剤の使用当量(モル%)は、好ましくは10モル%以上、より好ましくは30モル%以上、更に好ましくは40モル%以上であり、そして、好ましくは150モル%以下、より好ましくは100モル%以下、更に好ましくは70モル%以下である。
なお、中和剤の使用当量(モル%)は、下記式によって求めることができる。なお、中和剤の使用当量(モル%)は、下記式によって求めることができる。なお、中和剤の使用当量は、100モル%以下の場合、中和度と同義である。
中和剤の使用当量(モル%)=〔{中和剤の添加質量(g)/中和剤の当量}/[{樹脂粒子Aを構成する樹脂の加重平均酸価(mgKOH/g)×樹脂粒子Aを構成する樹脂の質量(g)}/(56×1000)]〕×100
有機溶媒溶液又は溶融した樹脂を撹拌しながら、水性媒体を徐々に添加して転相させる。
水性媒体を添加する際の有機溶媒溶液温度は、樹脂粒子A1の分散安定性を向上させる観点から、好ましくは樹脂粒子A1を構成する樹脂のガラス転移温度以上、より好ましくは50℃以上、更に好ましくは60℃以上、更に好ましくは70℃以上であり、そして、好ましくは85℃以下、より好ましくは80℃以下、更に好ましくは75℃以下である。
転相乳化の後に、必要に応じて、得られた分散液から蒸留等により有機溶媒を除去してもよい。この場合、有機溶媒の残存量は、水系分散液中、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは実質的に0%である。
分散液中の樹脂粒子A1の体積中位粒径(D50)は、高画質の画像が得られるトナーを得る観点から、好ましくは0.05μm以上、より好ましくは0.08μm以上であり、そして、好ましくは0.8μm以下、より好ましくは0.4μm以下、更に好ましくは0.3μm以下である。
体積中位粒径(D50)は、後述の実施例に記載の方法で求められる。
なお、非晶性樹脂CAを含有する樹脂粒子A2を用いる場合、前述と同様の方法により、樹脂粒子A2を得ることができる。
結晶性樹脂CCの含有量は、トナーの低温定着性を向上させる観点から、凝集粒子1を構成する樹脂成分の合計量に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは35質量%以下である。
結晶性樹脂CCと非晶性樹脂CAとの質量比〔結晶性樹脂CC/非晶性樹脂CA〕は、低温定着性をより向上させる観点から、好ましくは5/95以上、より好ましくは10/90以上、更に好ましくは20/80以上、更に好ましくは25/75以上であり、そして、好ましくは50/50以下、より好ましくは40/60以下、更に好ましくは35/65以下である。
〔離型剤〕
凝集粒子1は、離型剤を含有していてもよい。
離型剤としては、例えば、ポリプロピレンワックス、ポリエチレンワックス、ポリプロピレンポリエチレン共重合体ワックス;マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス、サゾールワックス等の炭化水素系ワックス又はそれらの酸化物;カルナウバワックス、モンタンワックス又はそれらの脱酸ワックス、脂肪酸エステルワックス等のエステル系ワックス;脂肪酸アミド類、脂肪酸類、高級アルコール類、脂肪酸金属塩が挙げられる。これらは1種又は2種以上を用いることができる。
離型剤の融点は、好ましくは60℃以上、より好ましくは70℃以上であり、そして、好ましくは160℃以下、より好ましくは150℃以下、更に好ましくは140℃以下である。
離型剤の含有量は、結着樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは5質量部以上であり、そして、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。
(離型剤粒子の分散液)
離型剤は、離型剤粒子の分散液として、樹脂粒子A1と混合し、凝集させることで、凝集粒子1に含有させることが好ましい。
離型剤粒子の分散液は、界面活性剤を用いて得ることも可能であるが、離型剤と後述する樹脂粒子Xとを混合して得ることが好ましい。離型剤と樹脂粒子Xを用いて離型剤粒子を調製することで、樹脂粒子Xにより離型剤粒子が安定化され、界面活性剤を使用しなくても離型剤を水性媒体中に分散させることが可能となる。離型剤粒子の分散液中では、離型剤粒子の表面に樹脂粒子Xが多数付着した構造を有していると考えられる。
離型剤を分散する樹脂粒子Xを構成する樹脂は、好ましくはポリエステル系樹脂であり、水性媒体中での離型剤の分散性を向上させる観点から、ポリエステル樹脂セグメントと付加重合樹脂セグメントを有する非晶性複合樹脂Dを用いることがより好ましい。
非晶性複合樹脂Dの軟化点は、好ましくは70℃以上、より好ましくは80℃以上であり、そして、好ましくは140℃以下、より好ましくは120℃以下、更に好ましくは100℃以下である。
非晶性複合樹脂Dのその他の樹脂特性の好適範囲、樹脂を構成する原料モノマーの好適例等は、非晶性樹脂CAで示した例と同様である。樹脂粒子Xの分散液は、例えば、前述の転相乳化法により得ることができる。
樹脂粒子Xの体積中位粒径(D50)は、離型剤粒子の分散安定性の観点から、好ましくは0.01μm以上、より好ましくは0.03μm以上であり、そして、好ましくは0.3μm以下、より好ましくは0.2μm以下である。
離型剤粒子分散液は、例えば、離型剤と樹脂粒子Xの分散液と必要に応じて水性媒体とを、離型剤の融点以上の温度で、ホモジナイザー、高圧分散機、超音波分散機等の分散機を用いて分散することによって得られる。
分散時の加熱温度は、好ましくは離型剤の融点以上且つ80℃以上、より好ましくは85℃以上、更に好ましくは90℃以上であり、そして、好ましくは、樹脂粒子Xに含まれる樹脂の軟化点より10℃高い温度未満且つ100℃以下、より好ましくは98℃以下、更に好ましくは95℃以下である。
樹脂粒子Xの量は、離型剤100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上であり、そして、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは50質量部以下である。
離型剤粒子の体積中位粒径(D50)は、後の凝集工程で均一な凝集粒子を得る観点から、好ましくは0.05μm以上、より好ましくは0.2μm以上、更に好ましくは0.4μm以上であり、そして、好ましくは1μm以下、より好ましくは0.8μm以下、更に好ましくは0.6μm以下である。
離型剤粒子の体積中位粒径(D50)及びCV値の測定方法は、実施例に記載の方法による。
〔着色剤〕
凝集粒子1は、着色剤を含有していてもよい。
着色剤としては、トナー用着色剤として用いられている染料、顔料等のすべてを使用することができ、好ましくは顔料である。具体的には、例えば、カーボンブラック、フタロシアニンブルー、パーマネントブラウンFG、ブリリアントファーストスカーレット、ピグメントグリーンB、ローダミン−Bベース、ソルベントレッド49、ソルベントレッド146、ソルベントブルー35、キナクリドン、カーミン6B、ジスアゾエローが挙げられる。トナーは、黒トナー、カラートナーのいずれであってもよい。
着色剤の含有量は、トナーの画像濃度を向上させる観点から、結着樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは5質量部以上、更に好ましくは10質量部以上であり、そして、好ましくは40質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下である。
(着色剤粒子の分散液)
着色剤は、着色剤粒子の分散液として、樹脂粒子A1と混合し、凝集させることで、凝集粒子1に含有させることが好ましい。
着色剤粒子の分散液は、着色剤と水性媒体とを、ホモジナイザー、超音波分散機等の分散機を用いて分散して得ることが好ましい。当該分散は、着色剤の分散安定性を向上させる観点から、界面活性剤の存在下で行うことが好ましい。当該界面活性剤としては、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤が挙げられ、着色剤粒子の分散安定性を向上させる観点から、好ましくはアニオン性界面活性剤である。アニオン性界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、ラウリルエーテル硫酸ナトリウム、アルケニルコハク酸ジカリウムが挙げられる。これらの中でも、ドデシルベンゼンスルホン酸ナトリウムが好ましい。
着色剤粒子の分散液中の界面活性剤の含有量は、着色剤の分散安定性を向上させる観点から、着色剤100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上であり、そして、好ましくは40質量部以下、より好ましくは30質量部以下である。
着色剤粒子の体積中位粒径(D50)は、好ましくは0.05μm以上、より好ましくは0.08μm以上、更に好ましくは0.1μm以上であり、そして、好ましくは0.3μm以下、より好ましくは0.2μm以下である。
着色剤粒子の体積中位粒径(D50)の測定方法は実施例に記載の方法による。
凝集粒子1は、その他、荷電制御剤、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、老化防止剤、クリーニング性向上剤等の添加剤を含んでいてもよい。
〔界面活性剤〕
工程1では、混合分散液を調製した後に樹脂粒子A1を凝集させることが好ましい。
混合分散液を調製する際、樹脂粒子A1及び必要に応じて添加されるワックス粒子等の任意成分の分散安定性を向上させる観点から、界面活性剤の存在下で行ってもよい。界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルエーテル硫酸塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルケニルエーテル類等の非イオン性界面活性剤が挙げられる。
界面活性剤を使用する場合、その使用量は、樹脂粒子A1 100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、そして、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下である。
前述の樹脂粒子A1の分散液、及び任意成分の混合は、常法により行われる。当該混合により得られた混合分散液に、凝集を効率的に行う観点から、凝集剤を添加することが好ましい。
〔凝集剤〕
凝集剤としては、例えば、第四級塩のカチオン性界面活性剤、ポリエチレンイミン等の有機系凝集剤;硫酸ナトリウム、硝酸ナトリウム、塩化ナトリウム、塩化カルシウム、硝酸カルシウム等の無機金属塩;硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム等の無機アンモニウム塩;2価以上の金属錯体等の無機系凝集剤が挙げられる。凝集性を向上させ均一な凝集粒子を得る観点から、1価以上5価以下の無機系凝集剤が好ましく、1価以上2価以下の無機金属塩、無機アンモニウム塩がより好ましく、無機アンモニウム塩が更に好ましく、硫酸アンモニウムが更に好ましい。
凝集剤を用いて、例えば、0℃以上40℃以下の樹脂粒子A1を含む混合分散液に、樹脂の総量100質量部に対し5質量部以上50質量部以下の凝集剤を添加し、樹脂粒子A1を水性媒体中で凝集させて、凝集粒子1を得る。更に、凝集を促進させる観点から、凝集剤を添加した後に分散液の温度を上げることが好ましい。
凝集粒子1の体積中位粒径(D50)は、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは6μm以下である。凝集粒子1の体積中位粒径は、後述の実施例に記載の方法で求められる。
<工程2>
工程2では、工程1で得られた凝集粒子1に、非晶性樹脂SAを含有する樹脂粒子Bを凝集させて凝集粒子2を得る。
樹脂粒子Bの分散液は、前述の樹脂粒子A1の分散液の製造方法と同様の方法で得られる。
工程2では、例えば、30℃以上80℃以下の凝集粒子1を含む分散液に樹脂粒子Bの分散液を添加することで凝集粒子1に、樹脂粒子Bを水性媒体中で凝集させて、凝集粒子2を得る。
〔非晶性樹脂SA〕
非晶性樹脂SAとしては、例えば、非晶性ポリエステル樹脂、ポリエステル樹脂セグメントと付加重合樹脂セグメントとを含む非晶性複合樹脂等の非晶性ポリエステル系樹脂が挙げられる。
非晶性ポリエステル樹脂の例は、前述の非晶性樹脂CAにおける例示と同様である。
以下、非晶性樹脂SAとして好ましい態様について説明する。
アルコール成分は、好ましくは芳香族ジオールであり、より好ましくは式(I)で表されるビスフェノールAのアルキレンオキサイド付加物である。ビスフェノールAのアルキレンオキサイド付加物としては、ビスフェノールAのエチレンオキサイド付加物が好ましい。
ビスフェノールAのアルキレンオキサイド付加物の含有量は、アルコール成分中、好ましくは70モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして、100モル%以下であり、更に好ましくは100モル%である。
カルボン酸成分としては、芳香族ジカルボン酸、及び、直鎖又は分岐の脂肪族ジカルボン酸から選ばれる少なくとも1種が好ましい。
芳香族ジカルボン酸としては、イソフタル酸、テレフタル酸が好ましく、テレフタル酸がより好ましい。
芳香族ジカルボン酸の量は、カルボン酸成分中、好ましくは20モル%以上、より好ましくは30モル%以上、更に好ましくは40モル%以上であり、そして、好ましくは95モル%以下、より好ましくは90モル%以下、更に好ましくは85モル%以下である。
直鎖又は分岐の脂肪族ジカルボン酸としては、アジピン酸、炭素数1以上20以下のアルキル基又は炭素数2以上20以下のアルケニル基で置換されたコハク酸が好ましい。
直鎖又は分岐の脂肪族ジカルボン酸の量は、カルボン酸成分中、好ましくは1モル%以上、より好ましくは2モル%以上、更に好ましくは3モル%以上であり、そして、好ましくは30モル%以下、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
3価以上の多価カルボン酸としては、好ましくは3価のカルボン酸であり、例えばトリメリット酸が挙げられる。
3価以上の多価カルボン酸の量は、カルボン酸成分中、好ましくは3モル%以上、より好ましくは5モル%以上、更に好ましくは8モル%以上であり、そして、好ましくは30モル%以下、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
非晶性樹脂SAは、例えば、前述の非晶性樹脂CAにおける例示と同様の方法により得られる。
(非晶性樹脂SAの物性)
非晶性樹脂SAの軟化点は、耐熱保存性をより向上させる観点から、好ましくは70℃以上、より好ましくは90℃以上、更に好ましくは100℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは125℃以下である。
非晶性樹脂SAのガラス転移温度は、耐熱保存性をより向上させる観点から、好ましくは30℃以上、より好ましくは40℃以上、更に好ましくは50℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは80℃以下、より好ましくは75℃以下、更に好ましくは70℃以下である。
非晶性樹脂SAの酸価は、耐熱保存性及び低温定着性をより向上させる観点から、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上、更に好ましくは15mgKOH/g以上であり、そして、好ましくは40mgKOH/g以下、より好ましくは35mgKOH/g以下、更に好ましくは30mgKOH/g以下である。
非晶性樹脂SAの軟化点、ガラス転移温度、及び酸価は、原料モノマーの種類及びその使用量、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができ、また、それらの値は、実施例に記載の方法により求められる。
なお、非晶性樹脂SAを2種以上組み合わせて使用する場合は、それらの混合物として得られた軟化点、ガラス転移温度及び酸価の値がそれぞれ前述の範囲内であることが好ましい。
なお、非晶性樹脂SAを含有する樹脂粒子Bは、例えば、前述と樹脂粒子A1と同様の方法により得られる。
樹脂粒子Bにおける、非晶性樹脂SAの中和度は、工程3によるトナーの異形化を促進し、クリーニング性をより向上させる観点から、好ましくは10モル%以上、より好ましくは20モル%以上、更に好ましくは30モル%以上、更に好ましくは40モル%以上であり、そして、好ましくは100モル%以下、より好ましくは80モル%以下、更に好ましくは70モル%以下である。
非晶性樹脂SAと、非晶性樹脂CC及び結晶性樹脂CAの合計量との質量比〔非晶性樹脂SA/非晶性樹脂CC及び結晶性樹脂CAの合計量〕は、好ましくは5/95以上、より好ましくは10/90以上、更に好ましくは15/85以上であり、そして、好ましくは30/70以下、より好ましくは25/85以下、更に好ましくは20/80以下である。
本製造方法においては、好ましくは、結晶性樹脂CCの融点は、非晶性樹脂SAのガラス転移温度より高い。
結晶性樹脂CCの融点と、非晶性樹脂SAのガラス転移温度との差〔結晶性樹脂CCの融点−非晶性樹脂SAのガラス転移温度〕は、好ましくは5℃以上、より好ましくは7℃以上、更に好ましくは10℃以上であり、そして、好ましくは20℃以下、より好ましくは18℃以下、更に好ましくは15℃以下である、
工程2においては、凝集粒子が、トナー粒子として適度な粒径に成長したところで凝集を停止させてもよい。
凝集を停止させる方法としては、例えば、分散液を冷却する方法、凝集停止剤を添加する方法、分散液を希釈する方法が挙げられる。不必要な凝集を確実に防止する観点からは、凝集停止剤を添加して凝集を停止させる方法が好ましい。
〔凝集停止剤〕
凝集停止剤としては、界面活性剤が好ましく、アニオン性界面活性剤がより好ましい。アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシアルキレンアルキルエーテル硫酸塩が挙げられる。凝集停止剤は、1種又は2種以上を用いてもよい。凝集停止剤は、水溶液で添加してもよい。
凝集停止剤の添加量は、不必要な凝集を確実に防止する観点から、トナー中の結着樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上であり、そして、トナーへの残留を低減する観点から、好ましくは30質量部以下、より好ましくは15質量部以下である。
凝集粒子2の体積中位粒径(D50)は、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは6μm以下である。凝集粒子の体積中位粒径は、後述の実施例に記載の方法で求められる。
<工程3>
工程3では、工程2で得られた凝集粒子2を、非晶性樹脂SAのガラス転移温度より5℃低い温度以上、結晶性樹脂CCの融点より5℃低い温度未満の温度T、且つ、3.0以上6.0以下のpHで融着させ(以下、「前融着」ともいう)、その後、結晶性樹脂CCの融点より5℃低い温度以上、20℃高い温度以下の温度T、且つ、前記pHより0.2以上高いpHで更に融着させ(以下、「後融着」ともいう)、融着粒子を得る。
温度T及び温度Tは、凝集粒子の周囲の温度を意味し、例えば、融着を行う混合液に温度計を挿入し測定した温度を意味する。
pH及びpHは、粒子の周囲のpHを意味し、例えば、pHメーターを用いて、融着を行う分散液にpHメーターの電極を浸して測定したpHを意味する。
工程3は、好ましくは水性媒体中で行う。
温度Tは、低温定着性、耐熱保存性、及びクリーニング性に優れるトナーを得る観点から、非晶性樹脂SAのガラス転移温度より5℃低い温度以上、結晶性樹脂CCの融点より5℃低い温度未満であり、好ましくは非晶性樹脂SAのガラス転移温度より3℃低い温度以上、より好ましくは非晶性樹脂SAのガラス転移温度より1℃低い温度以上、更に好ましくは非晶性樹脂SAのガラス転移温度以上、更に好ましくは非晶性樹脂SAのガラス転移温度より3℃高い温度以上であり、そして、好ましくは結晶性樹脂CCの融点より6℃低い温度未満である。
pHは、低温定着性、耐熱保存性、及びクリーニング性に優れるトナーを得る観点から、3.0以上6.0以下であり、好ましくは3.5以上であり、そして、好ましくは5.0以下、より好ましくは4.5以下である。
トナーのクリーニング性をより向上させる観点から、工程3の前融着において、温度Tとした後に、酸性物質を添加して、pHに調整することが好ましい。工程3の前融着では、酸性物質を徐々に添加することが好ましい。
酸性物質としては、例えば、硝酸、硫酸、塩酸が挙げられる。これらの中でも、硝酸が好ましい。
酸の添加によるpHの平均低下速度は、トナーのクリーニング性をより向上させる観点から、好ましくは0.03min−1以上、好ましくは0.04min−1以上、好ましくは0.05min−1以上であり、そして、好ましくは1.0min−1以下、好ましくは0.5min−1以下、好ましくは0.2min−1以下である。
pHの平均低下速度は、下記数式(1)に示される算出方法による。
pHの平均低下速度=〔酸の添加開始前のpH−pH〕/〔酸の添加開始からpHに調整するまでの時間(単位:min)〕 (1)
前述のpHの平均低下速度に制御する観点から、酸性物質の水溶液を用いてもよい。
前融着では、温度Tの範囲内における最低pH値が、pHの範囲内であることが好ましい。ただし、最低pH値は、酸等の物質の添加後、安定した状態におけるpHを意味する。
温度Tは、低温定着性、耐熱保存性、及びクリーニング性に優れるトナーを得る観点から、結晶性樹脂CCの融点より5℃低い温度以上、結晶性樹脂CCの融点より20℃高い温度以下であり、好ましくは結晶性樹脂CCの融点より4℃低い温度以上、好ましくは結晶性樹脂CCの融点より3℃低い温度以上であり、そして、好ましくは結晶性樹脂CCの融点より15℃高い温度以下、より好ましくは結晶性樹脂CCの融点より10℃高い温度以下、更に好ましくは結晶性樹脂CCの融点より5℃高い温度以下、更に好ましくは結晶性樹脂CCの融点以下、更に好ましくは結晶性樹脂CCの融点より1℃低い温度以下である。
pHは、低温定着性、耐熱保存性、及びクリーニング性に優れるトナーを得る観点から、pHより0.2高い値以上であり、好ましくはpHより0.5高い値以上、より好ましくはpHより0.8高い値以上、更に好ましくはpHより1.2高い値以上、更に好ましくはpHより1.5高い値以上、更に好ましくはpHより2.0高い値以上であり、そして、好ましくはpHより4.0高い値以下、より好ましくはpHより3.5高い値以下、更に好ましくはpHより3.0高い値以下である。
トナーのクリーニング性をより向上させる観点から、工程3の後融着において、塩基性物質を添加することで、pHに調整することが好ましい。
塩基性物質としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化セシウムが挙げられる。これらの中でも、水酸化カリウムが好ましい。なお、塩基性物質は、水溶液として加えてもよい。
工程3の後融着において、pHに調整後、温度Tに昇温することが好ましい。
温度Tへの平均昇温速度は、低温定着性、及び耐熱保存性を向上させる観点から、好ましくは1.5℃/min以下、より好ましくは1℃/min以下、更に好ましくは0.8℃/min以下、更に好ましくは0.5℃/min以下であり、そして、好ましくは0.01℃/min以上、より好ましくは0.05℃/min以上、更に好ましくは0.1℃/min以上である。
平均昇温速度は、下記数式(2)に示される算出方法による。
平均昇温速度=〔T−T(単位:℃)〕/〔TからTに昇温するまでの時間(単位:min)〕 (2)
pH、且つ、温度Tの条件下での保持時間は、好ましくは20min以上、より好ましくは30min以上、更に好ましくは40min以上であり、そして、好ましくは120min以下、より好ましくは100min以下、更に好ましくは80min以下である。
後融着では、pHの範囲内における最高温度がTの範囲内であることが好ましい。
以上の工程により、融着粒子が得られる。
融着粒子の体積中位粒径(D50)は、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは6μm以下である。
融着粒子の体積中位粒径(D50)は、実施例に記載の方法による。
<後処理工程>
工程3の後に後処理工程を行ってもよく、融着粒子を単離することによってトナー粒子が得られる。工程3で得られたコアシェル粒子は、水性媒体中に存在するため、まず、固液分離を行うことが好ましい。固液分離には、吸引濾過法等が好ましく用いられる。
固液分離後に洗浄を行うことが好ましい。このとき、添加した界面活性剤も除去することが好ましいため、界面活性剤の曇点以下で水性媒体により洗浄することが好ましい。洗浄は複数回行うことが好ましい。
次に乾燥を行うことが好ましい。乾燥方法としては、例えば、真空低温乾燥法、振動型流動乾燥法、スプレードライ法、冷凍乾燥法、フラッシュジェット法が挙げられる。
〔トナー粒子〕
得られたトナー粒子は、トナーとしてそのまま用いることもできるが、後述のようにトナー粒子の表面を処理したものをトナーとして用いることが好ましい。
トナー粒子の体積中位粒径(D50)は、高画質の画像を得る観点、トナーのクリーニング性をより向上させる観点から、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは6μm以下である。
トナー粒子のCV値は、トナーの生産性を向上させる観点から、好ましくは12%以上、より好ましくは14%以上、更に好ましくは16%以上であり、そして、高画質の画像を得る観点から、好ましくは30%以下、より好ましくは26%以下である。
トナー粒子の円形度は、トナーの帯電均質性を向上させる観点から、好ましくは0.940以上、より好ましくは0.945以上、更に好ましくは0.950以上であり、そして、トナーのクリーニング性、ドット再現性及び帯電均質性を向上させる観点から、好ましくは0.990以下、より好ましくは0.985以下、更に好ましくは0.980以下、更に好ましくは0.975以下、更に好ましくは0.970以下である。
トナー粒子のBET比表面積は、トナーのクリーニング性を向上させる観点から、好ましくは0.5m/g以上、より好ましくは0.8m/g以上、更に好ましくは1.0m/g以上、更に好ましくは1.2m/g以上であり、そして、トナーの帯電均質性を向上させる観点から、好ましくは4m/g以下、より好ましくは3m/g以下、更に好ましくは2m/g以下、更に好ましくは1.5m/g以下である。
トナー粒子の体積中位粒径(D50)、CV値、円形度、及びBET比表面積の測定方法は、実施例に記載の方法による。
〔外添剤〕
トナー粒子をトナーとしてそのまま用いることもできるが、流動化剤等を外添剤としてトナー粒子表面に添加処理したものをトナーとして使用することが好ましい。
外添剤としては、例えば、疎水性シリカ、酸化チタン、アルミナ、酸化セリウム、カーボンブラック等の無機材料微粒子、ポリカーボネート、ポリメタクリル酸メチル、シリコーン樹脂等のポリマー微粒子が挙げられる。これらの中でも、疎水性シリカが好ましい。
外添剤を用いてトナー粒子の表面処理を行う場合、外添剤の添加量は、トナー粒子100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上であり、そして、好ましくは5質量部以下、より好ましくは4.5質量部以下、更に好ましくは4質量部以下である。
本発明により得られる静電荷像現像用トナーは、一成分系現像剤として、又はキャリアと混合して二成分系現像剤として使用することができる。
以下に実施例等により、本発明を更に具体的に説明する。
樹脂、樹脂粒子、トナー等の各性状値については次の方法により測定、評価した。
[測定方法]
〔樹脂の酸価〕
JIS K0070:1992に従って測定した。但し、測定溶媒をアセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))とした。
〔炭化水素ワックスの酸価及び水酸基価〕
JIS K0070:1992に従って測定した。但し、測定溶媒をキシレンとエタノールの混合溶媒(キシレン:エタノール=3:5(容量比))とした。
〔樹脂の軟化点、結晶性指数、融点及びガラス転移温度〕
(1)軟化点
フローテスター「CFT−500D」(株式会社島津製作所製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出した。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とした。
(2)結晶性指数
示差走査熱量計「Q−100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.02gをアルミパンに計量し、室温(20℃)から降温速度10℃/minで0℃まで冷却した。次いで試料をそのまま1分間静止させ、その後、昇温速度10℃/minで180℃まで昇温し熱量を測定した。観測される吸熱ピークのうち、ピーク面積が最大のピークの温度を吸熱の最大ピーク温度(1)として、(軟化点(℃))/(吸熱の最大ピーク温度(1)(℃))により、結晶性指数を求めた。
(3)融点及びガラス転移温度
示差走査熱量計「Q−100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却した。次いで昇温速度10℃/minで昇温し、熱量を測定した。観測される吸熱ピークのうち、ピーク面積が最大のピーク温度を吸熱の最大ピーク温度(2)とした。結晶性樹脂の時には該ピーク温度を融点とした。非晶性樹脂の時には、吸熱の最大ピーク温度以下のベースラインの延長線と、該ピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とした。
〔離型剤の融点〕
示差走査熱量計「Q−100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却した。次いで試料を昇温速度10℃/minで昇温し、熱量を測定し、吸熱の最大ピーク温度を融点とした。
〔樹脂粒子、離型剤粒子、着色剤粒子の体積中位粒径(D50)及びCV値〕
(1)測定装置:レーザー回折型粒径測定機「LA−920」(株式会社堀場製作所製)
(2)測定条件:測定用セルに蒸留水を加え、吸光度を適正範囲になる濃度で体積中位粒径(D50)及び体積平均粒径を測定した。また、CV値は下記の式に従って算出した。
CV値(%)=(粒径分布の標準偏差/体積平均粒径)×100
〔樹脂粒子分散液、離型剤粒子分散液、着色剤分散液の固形分濃度〕
赤外線水分計「FD−230」(株式会社ケツト科学研究所製)を用いて、測定試料5gを乾燥温度150℃、測定モード96(監視時間2.5min、変動幅0.05%)にて、水分(質量%)を測定した。固形分濃度は下記の式に従って算出した。
固形分濃度(質量%)=100−水分(質量%)
〔凝集粒子、融着粒子の体積中位粒径(D50)〕
凝集粒子及び融着粒子の体積中位粒径(D50)は以下の通り測定した。
・測定機:「コールターマルチサイザー(登録商標)III」(ベックマンコールター株式会社製)
・アパチャー径:50μm
・解析ソフト:「マルチサイザー(登録商標)IIIバージョン3.51」(ベックマンコールター株式会社製)
・電解液:「アイソトン(登録商標)II」(ベックマンコールター株式会社製)
・測定条件:試料分散液を前記電解液100mLに加えることにより、3万個の粒子の粒径を20秒で測定できる濃度に調整した後、改めて3万個の粒子を測定し、その粒径分布から体積中位粒径(D50)を求めた。
〔工程(3)のpH〕
pHメーター「SevenGo pH meter SG2」(メトラー トレド社製)を用い、電極として「InLab Expert Go」(メトラートレド社製)を接続して、工程(3)中の分散液にpHメーターの電極を浸すことにより、各温度下、撹拌された状態で、pHを測定した。
〔トナー粒子の体積中位粒径(D50)及びCV値〕
トナー粒子の体積中位粒径(D50)は以下の通り測定した。
測定機、アパチャー径、解析ソフト、電解液は、凝集粒子の体積中位粒径(D50)の測定で用いたものと同様のものを用いた。
・分散液:ポリオキシエチレンラウリルエーテル「エマルゲン(登録商標)109P」(花王株式会社製、HLB:13.6)を前記電解液に溶解させ、濃度5質量%の分散液を得た。
・分散条件:前記分散液5mLに乾燥後のトナー粒子の測定試料10mgを添加し、超音波分散機にて1分間分散させ、その後、電解液25mLを添加し、更に、超音波分散機にて1分間分散させて、試料分散液を作製した。
・測定条件:前記試料分散液を前記電解液100mLに加えることにより、3万個の粒子の粒径を20秒で測定できる濃度に調整した後、改めて3万個の粒子を測定し、その粒径分布から体積中位粒径(D50)及び体積平均粒径を求めた。
また、CV値(%)は下記の式に従って算出した。
CV値(%)=(粒径分布の標準偏差/体積平均粒径)×100
〔トナー粒子の円形度〕
フロー式粒子像分析装置「FPIA−3000」(シスメックス株式会社製)を用いて、下記条件でトナー粒子の円形度を測定した。
・分散液の調製:トナー粒子の分散液は、5質量%ポリオキシエチレンラウリルエーテル(エマルゲン109P)水溶液5mLにトナー粒子50mgを添加し、超音波分散機にて1分間分散させたのち、蒸留水20mLを添加し、さらに超音波分散機にて1分間分散させて調製した。
・測定モード:HPF測定モード
〔トナー粒子のBET比表面積〕
「Micromeritics FlowSorbIII」(株式会社島津製作所製)を用いて、下記条件で窒素吸着によるBET多点法により、BET比表面積を測定した。
・トナーサンプル量:0.09〜0.11g
・脱気条件:40℃、10分間
・吸着ガス:窒素ガス
[評価方法]
〔トナーの最低定着温度〕
上質紙「J紙A4サイズ」(富士ゼロックス株式会社製)に市販のプリンタ「Microline(登録商標)5400」(株式会社沖データ製)を用いて、トナーの紙上の付着量が0.42〜0.48mg/cm2となるベタ画像をA4紙の上端から5mmの余白部分を残し、50mmの長さで定着させずに出力した。
次に、定着器を温度可変に改造した同プリンタを用意し、定着器の温度を90℃にし、A4縦方向に1枚あたり1.2秒の速度でトナーを定着させ、印刷物を得た。
同様の方法で定着器の温度を5℃ずつ上げて、トナーを定着させ、印刷物を得た。
印刷物の画像上の上端の余白部分からベタ画像にかけて、メンディングテープ「Scotch(登録商標)メンディングテープ810」(住友スリーエム株式会社製、幅18mm)を長さ50mmに切ったものを軽く貼り付けた後、500gの円柱型おもり(接触面積157mm2)を載せ、速さ10mm/secで1往復押し当てた。その後、貼付したテープを下端側から剥離角度180度、速さ10mm/secで剥がし、テープ剥離後の印刷物を得た。テープ貼付前及び剥離後の印刷物の下に上質紙「エクセレントホワイト紙A4サイズ」(株式会社沖データ製)を30枚敷き、各印刷物のテープ貼付前及び剥離後の定着画像部分の反射画像濃度を、測色計「SpectroEye」(GretagMacbeth社製、光射条件;標準光源D50、観察視野2°、濃度基準DINNB、絶対白基準)を用いて測定し、各反射画像濃度から次の式に従って定着率を算出した。
定着率(%)=(テープ剥離後の反射画像濃度/テープ貼付前の反射画像濃度)×100
定着率90%以上となる温度を最低定着温度とした。最低定着温度が低いほど低温定着性に優れることを表す。
〔トナーの耐熱保存性〕
内容積100mLの広口ポリビンにトナー20gを入れて密封し、任意の温度で72時間静置した。その後、25℃の温度で密封したまま12時間以上静置して冷却した。次いで、「パウダーテスタ(登録商標)」(ホソカワミクロン株式会社製)の振動台に、目開き250μmのフルイをセットし、その上に前記トナー20gを乗せ30秒間振動を行い、フルイ上にトナーが残存するか否かを目視で判別し、残存しなかった保存温度の最大値を凝集しない最高温度とした。数値が大きいほど、トナーが耐熱保存性に優れることを表す。
〔トナーのクリーニング性〕
市販のプリンタ「Microline(登録商標)5400」(株式会社沖データ製)を用いて、感光体上にベタ現像トナー(ベタ印刷する際のトナー量を感光体に付着させたもの)を形成し、このベタ現像トナーを転写紙に転写させないでクリーニング装置まで到達させてクリ−ニングし、クリーニングブレードを通過後の感光体表面のスジの本数を目視で確認した。スジの本数が少ないほど、クリーニング性が良好であることを表す。
[樹脂の製造]
製造例cc1(樹脂cc−1の製造)
窒素導入管、脱水管、撹拌機、及び熱電対を装備した内容積10Lの四つ口フラスコの内部を窒素置換し、1,10−デカンジオール2049g及びセバシン酸2451gを入れた。撹拌しながら、135℃に昇温し、135℃で3時間保持した後、135℃から200℃まで10時間かけて昇温した。その後、ジ(2−エチルヘキサン酸)錫(II)9gを加え、更に200℃にて1時間保持した後、フラスコ内の圧力を下げ、8.3kPaにて1時間保持し、樹脂cc−1を得た。物性を表1に示す。
製造例ca1(樹脂ca−1の製造)
窒素導入管、脱水管、撹拌機、及び熱電対を装備した内容積10Lの四つ口フラスコの内部を窒素置換し、2,2−ビス(4−ヒドロキシフェニル)プロパンのプロピレンオキサイド(2.2)付加物3356g、テレフタル酸955g、炭化水素ワックス「パラコール6490」(日本精蝋株式会社製)385g、ジ(2−エチルヘキサン酸)錫(II)25g及び3,4,5−トリヒドロキシ安息香酸2.5gを入れ、窒素雰囲気下、撹拌しながら、235℃に昇温し、235℃で5時間保持した後、フラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、160℃まで冷却し、160℃に保持した状態で、スチレン2198g、メタクリル酸ステアリル550g、アクリル酸110g、及びジブチルパーオキサイド330gの混合物を1時間かけて滴下した。その後、30分間160℃に保持した後、200℃まで昇温し、更にフラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、190℃まで冷却し、フマル酸200g、セバシン酸194g、トリメリット酸無水物184g、及び4−tert−ブチルカテコール2.5gを加え、210℃まで10℃/hrで昇温し、その後、4kPaにて所望の軟化点まで反応を行って、樹脂ca−1を得た。物性を表1に示す。
製造例ca2(樹脂ca−2の製造)
窒素導入管、脱水管、撹拌機、及び熱電対を装備した内容積10Lの四つ口フラスコの内部を窒素置換し、2,2−ビス(4−ヒドロキシフェニル)プロパンのプロピレンオキサイド(2.2)付加物3422g、テレフタル酸1136g、ジ(2−エチルヘキサン酸)錫(II)25g及び3,4,5−トリヒドロキシ安息香酸2.5gを入れ、窒素雰囲気下、撹拌しながら、235℃に昇温し、235℃で5時間保持した後、フラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、160℃まで冷却し、160℃に保持した状態で、スチレン2202g、メタクリル酸ステアリル550g、アクリル酸113g、及びジブチルパーオキサイド330gの混合物を1時間かけて滴下した。その後、30分間160℃に保持した後、200℃まで昇温し、更にフラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、190℃まで冷却し、フマル酸329g、及び4−tert−ブチルカテコール2.5gを加え、210℃まで10℃/hrで昇温し、その後、4kPaにて所望の軟化点まで反応を行って、樹脂ca−2を得た。物性を表1に示す。
製造例sa1(樹脂sa−1の製造)
窒素導入管、脱水管、撹拌機、及び熱電対を装備した内容積20Lの四つ口フラスコの内部を窒素置換し、2,2−ビス(4−ヒドロキシフェニル)プロパンのエチレンオキサイド(2.2)付加物13060g、テレフタル酸5337g、ジ(2−エチルヘキサン酸)錫(II)40g、及び3,4,5−トリヒドロキシ安息香酸4gを入れ、窒素雰囲気下、撹拌しながら、235℃に昇温し、235℃で8時間保持した後、フラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、180℃まで冷却し、アジピン酸539g、ドデセニルコハク酸無水物293g、トリメリット酸無水物772gを加え、220℃まで10℃/hrで昇温し、その後、フラスコ内の圧力を下げ、10kPaにて所望の軟化点まで反応を行って、樹脂sa−1を得た。物性を表1に示す。
製造例d1(樹脂d−1の製造)
窒素導入管、脱水管、撹拌機、及び熱電対を装備した内容積10Lの四つ口フラスコの内部を窒素置換し、2,2−ビス(4−ヒドロキシフェニル)プロパンのプロピレンオキサイド(2.2)付加物4313g、テレフタル酸818g、コハク酸727g、ジ(2−エチルヘキサン酸)錫(II)30g及び3,4,5−トリヒドロキシ安息香酸3gを入れ、窒素雰囲気下、撹拌しながら、235℃に昇温し、235℃で5時間保持した後、フラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、160℃まで冷却し、160℃に保持した状態で、スチレン2756g、メタクリル酸ステアリル689g、アクリル酸142g及びジブチルパーオキサイド413gの混合物を1時間かけて滴下した。その後、30分間160℃に保持した後、200℃まで昇温し、8kPaにて所望の軟化点まで反応を行って、樹脂d−1を得た。物性を表1に示す。
[樹脂粒子分散液の製造]
製造例A1〜A3、B1、X1(樹脂粒子分散液A−1〜A−3、B−1、X−1の製造)
撹拌機、還流冷却器、滴下ロート、温度計及び窒素導入管を備えた10L容の容器に、表2に示す種類及び量の樹脂、並びに表2に示す量のメチルエチルケトン(MEK)を入れ、表2に示す溶解温度にて2時間かけて溶解させた。得られた溶液に、5質量%水酸化ナトリウム水溶液を、樹脂の合計酸基の量に対して表2に示す中和度になるように添加して、30分撹拌した。
次いで、表2に示す保持温度に保持したまま、200r/min(周速度63m/min)で撹拌しながら、表2に示す量の脱イオン水を1時間かけて添加し、転相乳化した。得られた溶液を、表2に示す溶媒留去温度にて、減圧下でメチルエチルケトンを留去し、水系分散体を得た。その後、撹拌を継続しながら水系分散体を30℃に冷却した後、固形分濃度が35質量%になるように脱イオン水を加えることにより、樹脂粒子分散液A−1〜A−3、B−1、X−1を得た。得られた樹脂粒子の体積中位粒径D50を表2に示す。
[離型剤粒子分散液の製造]
製造例W1(離型剤粒子分散液W−1の製造)
1L容のビーカーに、脱イオン水130g、樹脂粒子分散液X−1 45.7g、パラフィンワックス「HNP−9」(日本精蝋株式会社製、融点75℃)40gを添加し、90〜95℃に温度を保持して溶融させて撹拌し、溶融混合物を得た。90〜95℃に温度を保持しながら、超音波ホモジナイザー「US−600T」(株式会社日本精機製作所製)を用いて20分間分散処理を行った後に、20℃まで冷却した。脱イオン水を加え、固形分濃度を20質量%に調整し、離型剤粒子分散液W−1を得た。分散液中の離型剤粒子の体積中位粒径(D50)は0.439μmであった。
[着色剤粒子分散液の製造]
製造例E1(着色剤粒子分散液E−1の製造)
1L容のビーカーに、銅フタロシアニン顔料「ECB−301」(大日精化工業株式会社製)67.5g、アニオン性界面活性剤「ネオペレックス(登録商標)G−15」(花王株式会社製、15質量%ドデシルベンゼンスルホン酸ナトリウム水溶液)90g及び脱イオン水149gを混合し、ホモジナイザーを用いて室温下で3時間分散させた後、固形分濃度が25質量%になるように脱イオン水を加えることにより着色剤粒子分散液E−1を得た。分散液中の着色剤粒子の体積中位粒径(D50)は0.125μmであった。
[トナーの製造]
実施例1(トナー1の作製)
〔工程1〕
脱水管、撹拌機、温度計及び熱電対を装備した2L容4つロフラスコに、樹脂粒子分散液A−1 200g、脱イオン水150g、離型剤粒子分散液W−1 38.6g、着色剤粒子分散液E−1 40.6g、及び非イオン性界面活性剤「エマルゲン(登録商標)150」(花王株式会社製、ポリオキシエチレン(平均付加モル数50)ラウリルエーテルの10質量%水溶液)7gを入れ、25℃で混合した。次に、該混合物を撹拌しながら、硫酸アンモニウム24.1gを脱イオン水348gに溶解した水溶液に4.8質量%水酸化カリウム水溶液16gを添加してpHを8.4に調整した水溶液を、25℃で30分かけて滴下した。次いで、得られた混合液を65℃まで昇温し、65℃で保持し体積中位粒径(D50)が5.3μmの凝集粒子1を形成した。
〔工程2〕
続いて、凝集粒子1の分散液の温度を55℃まで低下させ、55℃で保持しながら、樹脂粒子分散液B−1 40gと脱イオン水 20.9gの混合液を120分かけて滴下し、体積中位粒径(D50)が5.8μmの凝集粒子2分散液を得た。得られた凝集粒子2の分散液に、ポリオキシエチレンラウリルエーテル硫酸ナトリウム「エマールE−27C」(花王株式会社製、有効濃度:27質量%)13.5gを脱イオン水1337gで希釈した水溶液を添加した。
〔工程3〕
(前融着)
次に、70℃まで1時間かけて昇温し、10分間保持した後、0.1M硫酸水溶液30gを30秒かけて添加した。その後10分おきに同様にして0.1M硫酸水溶液30gを3回添加した。その後、70℃で10分間保持し、表面が融着した融着粒子(コアシェル粒子)を得た。前融着工程終了時のpHは4.0であった。
(後融着)
続いて、4.8質量%水酸化カリウム水溶液20gを添加し、75℃まで20分かけて昇温し、1時間保持し、体積中位粒径(D50)が5.5μmの融着粒子を得た。後融着終了時のpHは6.5であった。
〔後処理工程〕
その後、25℃まで冷却した。得られた融着粒子の分散液を、吸引濾過して固形分を分離した後、25℃の脱イオン水で洗浄した後、35℃で48時間真空乾燥を行って、トナー粒子を得た。得られたトナー粒子の物性を表3に示す。該トナー粒子100質量部、疎水性シリカ「RY50」(日本アエロジル株式会社製、個数平均粒径;0.04μm)2.5質量部、及び疎水性シリカ「キャボシル(登録商標)TS720」(キャボットジャパン株式会社製、個数平均粒径;0.012μm)1.0質量部をヘンシェルミキサーに入れ、撹拌し、150メッシュの篩いを通過させてトナー1を得た。得られたトナーの物性、評価結果を表3に示す。
実施例2、3(トナー2、3の作製)
実施例1において、コア用樹脂粒子分散液をA−1から樹脂粒子分散液A−2又はA−3に変更した以外は、同様にしてトナー2及び3を得た。得られたトナーの物性、評価結果を表3に示す。
実施例4(トナー4の作製)
実施例1において、前融着の温度を70℃から65℃に変更した以外は、同様にしてトナー4を得た。得られたトナーの物性、評価結果を表3に示す。
実施例5(トナー5の作製)
実施例1において、前融着における0.1M硫酸水溶液の添加量を120gから70gに変更し、前融着の最終pHを5.8とし、後融着における4.8質量%水酸化カリウム水溶液の添加量を20gから10gへ変更し、後融着の最終pHを6.5とした以外は、同様にしてトナー5を得た。このとき、0.1M硫酸水溶液70gは、4回に分けて添加している。得られたトナーの物性、評価結果を表3に示す。
実施例6(トナー6の作製)
実施例1において、後融着の温度を75℃から90℃に変更した以外は、同様にしてトナー6を得た。得られたトナーの物性、評価結果を表3に示す。
実施例7(トナー7の作製)
実施例1において、後融着における4.8質量%水酸化カリウム水溶液の添加量を20gから10gへ変更し、後融着の最終pHを5.0とした以外は、同様にしてトナー7を得た。得られたトナーの物性、評価結果を表3に示す。
実施例8(トナー8の作製)
実施例1において、後融着における4.8質量%水酸化カリウム水溶液の添加量を20gから2gへ変更し、後融着の最終pHを4.2とした以外は、同様にしてトナー8を得た。得られたトナーの物性、評価結果を表3に示す。
実施例9(トナー9の作製)
実施例4において、後融着における4.8質量%水酸化カリウム水溶液の添加量を10gから3gへ変更し、後融着の最終pHを6.0とした以外は、同様にしてトナー9を得た。得られたトナーの物性、評価結果を表3に示す。
比較例1(トナー51の作製)
〔工程1〕
脱水管、撹拌機、温度計及び熱電対を装備した2リットル容4つロフラスコに、樹脂粒子の分散液として樹脂粒子A−1 200gと脱イオン水150g、離型剤粒子分散液W−1 38.6g、着色剤分散液E−1 40.6gを入れ、25℃で混合した。次に、カイ型の撹拌機で撹拌下、この混合物に硫酸アンモニウム24.1gを348gの脱イオン水に溶解させ、pHを8.4に調整した水溶液を25℃で30分かけて滴下した。次いで、得られた混合液を65℃まで昇温し、65℃で保持し体積中位粒径(D50)が5.2μmの凝集粒子1を形成した。
〔工程2〕
続いて、シェル樹脂粒子の分散液として樹脂粒子分散液B−1 40.0gと脱イオン水 20.9gを混合した混合液を120分かけて滴下し、体積中位粒径(D50)が5.7μmの凝集粒子2分散液を得た。得られた凝集粒子2分散液に、ポリオキシエチレンラウリルエーテル硫酸ナトリウム「エマールE−27C」(花王株式会社製、固形分濃度:30質量%)13.5gを脱イオン水1337gで希釈した水溶液を添加した。
〔工程3〕
次に75℃まで1時間かけて昇温し、10分間保持した後、0.1M硫酸水溶液30gを30秒かけて添加した。その後10分おきに同様にして0.1M硫酸水溶液30gを3回添加し、添加終了時のpHは4.0であった。その後、75℃で10分間保持し、表面が融着した融着粒子(コアシェル粒子)を得た。その後、25℃まで冷却した。得られた融着粒子を、固液分離のためのろ過工程、乾燥工程、洗浄工程を経てトナー粒子を得た。得られたトナー粒子の物性を表3に示す。該トナー粒子100質量部に対して、疎水性シリカ「RY50」(日本アエロジル株式会社製、個数平均粒径;0.04μm)2.5質量部、及び疎水性シリカ「キャボシル(登録商標)TS720」(キャボットジャパン株式会社製、個数平均粒径;0.012μm)1.0質量部をヘンシェルミキサーに入れ、撹拌し、150メッシュの篩いを通過させてトナー51を得た。得られたトナーの物性、評価結果を表3に示す。
比較例2(トナー52の作製)
比較例1において、工程3の温度を75℃から70℃に変更した以外は、同様にしてトナー52を得た。得られたトナーの物性、評価結果を表3に示す。
比較例3(トナー53の作製)
比較例1において、工程3における0.1M硫酸水溶液の添加量を120gから30gに変更し、最終pHを6.5とした以外は、同様にしてトナー53を得た。このとき、0.1M硫酸水溶液30gは、3回に分けて10gずつ添加している。得られたトナーの物性、評価結果を表3に示す。
比較例4(トナー54の作製)
比較例3において、工程3の温度を75℃から70℃に変更した以外は、同様にしてトナー54を得た。得られたトナーの物性、評価結果を表3に示す。
比較例5(トナー55の作製)
実施例1において、後融着における4.8質量%水酸化カリウム水溶液の添加量を0gとした以外は、同様にしてトナー55を得た。得られたトナーの物性、評価結果を表3に示す。
比較例6(トナー56の作製)
実施例1において、後融着の温度を75℃から70℃へ変更した以外は、同様にしてトナー56を得た。得られたトナーの物性、評価結果を表3に示す。
比較例7(トナー57の作製)
実施例1において、前融着の温度を70℃から75℃へ変更した以外は、同様にしてトナー57を得た。得られたトナーの物性、評価結果を表3に示す。
表3の結果から、実施例のトナーは比較例のトナーに比べて、クリーニング性に優れ、更に低温定着性や耐熱保存性にも優れることがわかる。

Claims (12)

  1. 工程1:結晶性樹脂CCを含有する樹脂粒子A1を凝集させて、凝集粒子1を得る工程と
    工程2:工程1で得られた凝集粒子1に、非晶性樹脂SAを含有する樹脂粒子Bを凝集させて凝集粒子2を得る工程と
    工程3:工程2で得られた凝集粒子2を、非晶性樹脂SAのガラス転移温度より5℃低い温度以上、結晶性樹脂CCの融点より5℃低い温度未満の温度T、且つ、3.0以上6.0以下のpHで融着させ、その後、結晶性樹脂CCの融点より5℃低い温度以上、20℃高い温度以下の温度Tで、且つ、前記pHより0.2高い値以上のpHで更に融着させ、融着粒子を得る工程と
    を含む、静電荷像現像用トナーの製造方法。
  2. 樹脂粒子Bにおける、非晶性樹脂SAの酸価に対する中和剤の使用当量が、10モル%以上150モル%以下である、請求項1に記載の静電荷像現像用トナーの製造方法。
  3. 前記結晶性樹脂CCの融点と、前記非晶性樹脂SAのガラス転移温度との差〔結晶性樹脂CCの融点−非晶性樹脂SAのガラス転移温度〕が、5℃以上20℃以下である、請求項1又は2に記載の静電荷像現像用トナーの製造方法。
  4. 前記工程3において、前記温度Tとした後に、酸性物質を添加して、pHの範囲に調整する、請求項1〜3のいずれかに記載の静電荷像現像用トナーの製造方法。
  5. 前記工程3において、前記酸性物質の添加によるpHの平均低下速度が0.03min−1以上0.2min−1以下である、請求項4に記載の静電荷像現像用トナーの製造方法。
  6. 前記工程3において、塩基性物質を添加することで、前記pHに調整する、請求項1〜5のいずれかに記載の静電荷像現像用トナーの製造方法。
  7. 前記工程3において、前記pHに調整後、前記温度Tに昇温する、請求項1〜6のいずれかに記載の静電荷像現像用トナーの製造方法。
  8. 前記工程1において、前記樹脂粒子A1が非晶性樹脂CAを含有する、又は、前記樹脂粒子A1と共に、非晶性樹脂CAを含有する樹脂粒子A2を凝集させる、請求項1〜7のいずれかに記載の静電荷像現像用トナーの製造方法。
  9. 前記結晶性樹脂CCと前記非晶性樹脂CAとの質量比[結晶性樹脂CC/非晶性樹脂CA]が、5/95以上50/50以下である、請求項8に記載の静電荷像現像用トナーの製造方法。
  10. 前記非晶性樹脂CAのガラス転移温度が、前記結晶性樹脂CCの融点以下である、請求項8又は9に記載の静電荷像現像用トナーの製造方法。
  11. 前記結晶性樹脂CCが、α,ω−脂肪族ジオールを含有するアルコール成分と、カルボン酸成分との重縮合物である結晶性ポリエステル樹脂である、請求項1〜10のいずれかに記載の静電荷像現像用トナーの製造方法。
  12. 前記非晶性樹脂SAが、ビスフェノールAのアルキレンオキサイド付加物を含有するアルコール成分と、カルボン酸成分との重縮合物である、請求項1〜11のいずれかに記載の静電荷像現像用トナーの製造方法。
JP2017193684A 2017-10-03 2017-10-03 静電荷像現像用トナーの製造方法 Active JP7027671B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193684A JP7027671B2 (ja) 2017-10-03 2017-10-03 静電荷像現像用トナーの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193684A JP7027671B2 (ja) 2017-10-03 2017-10-03 静電荷像現像用トナーの製造方法

Publications (2)

Publication Number Publication Date
JP2019066736A true JP2019066736A (ja) 2019-04-25
JP7027671B2 JP7027671B2 (ja) 2022-03-02

Family

ID=66338372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193684A Active JP7027671B2 (ja) 2017-10-03 2017-10-03 静電荷像現像用トナーの製造方法

Country Status (1)

Country Link
JP (1) JP7027671B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276074A (ja) * 2005-03-25 2006-10-12 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像剤及び画像形成方法
JP2011081241A (ja) * 2009-10-08 2011-04-21 Kao Corp 電子写真用トナーの製造方法
JP2012018391A (ja) * 2010-06-11 2012-01-26 Canon Inc トナー及びトナーの製造方法
JP2012133233A (ja) * 2010-12-22 2012-07-12 Kao Corp 電子写真用トナーの製造方法
JP2013015771A (ja) * 2011-07-06 2013-01-24 Kao Corp 電子写真用トナー
JP2013025093A (ja) * 2011-07-21 2013-02-04 Kao Corp 電子写真用トナーの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276074A (ja) * 2005-03-25 2006-10-12 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像剤及び画像形成方法
JP2011081241A (ja) * 2009-10-08 2011-04-21 Kao Corp 電子写真用トナーの製造方法
JP2012018391A (ja) * 2010-06-11 2012-01-26 Canon Inc トナー及びトナーの製造方法
JP2012133233A (ja) * 2010-12-22 2012-07-12 Kao Corp 電子写真用トナーの製造方法
JP2013015771A (ja) * 2011-07-06 2013-01-24 Kao Corp 電子写真用トナー
JP2013025093A (ja) * 2011-07-21 2013-02-04 Kao Corp 電子写真用トナーの製造方法

Also Published As

Publication number Publication date
JP7027671B2 (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
JP6018684B2 (ja) 静電荷像現像用トナー
JP7042226B2 (ja) トナーの製造方法
JP7141181B2 (ja) トナーの製造方法
JP7160256B2 (ja) トナー
JP7164367B2 (ja) 静電荷像現像用トナーの製造方法
JP2018022132A (ja) 静電荷像現像用トナーの製造方法
JP7001223B2 (ja) 静電荷像現像用トナーの製造方法
JP7027671B2 (ja) 静電荷像現像用トナーの製造方法
WO2019156232A1 (ja) トナーの製造方法
JP2020076927A (ja) 静電荷像現像用トナーの製造方法
JP7309844B2 (ja) 静電荷像現像用トナー
JP6427444B2 (ja) 静電荷像現像用トナーの製造方法
JP6357059B2 (ja) 静電荷像現像用トナーの製造方法
JP7161336B2 (ja) トナーの製造方法
JP7406448B2 (ja) 静電荷像現像用トナーの製造方法
JP7278892B2 (ja) 静電荷像現像用トナーの製造方法
JP7278844B2 (ja) トナーの製造方法
JP7178201B2 (ja) トナーの製造方法
JP7129037B2 (ja) 静電荷像現像用トナーの製造方法
JP6954607B2 (ja) 静電荷像現像用トナーの製造方法
JP2019117240A (ja) 静電荷像現像用トナーの製造方法
WO2023127947A1 (ja) 静電荷像現像用トナーの製造方法
JP2024049387A (ja) 静電荷像現像用トナーの製造方法
JP2019078811A (ja) 静電荷像現像用トナー
JP2022169300A (ja) 静電荷像現像用トナー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R151 Written notification of patent or utility model registration

Ref document number: 7027671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151