JP2019066300A - 電気防食効果検出方法 - Google Patents

電気防食効果検出方法 Download PDF

Info

Publication number
JP2019066300A
JP2019066300A JP2017191504A JP2017191504A JP2019066300A JP 2019066300 A JP2019066300 A JP 2019066300A JP 2017191504 A JP2017191504 A JP 2017191504A JP 2017191504 A JP2017191504 A JP 2017191504A JP 2019066300 A JP2019066300 A JP 2019066300A
Authority
JP
Japan
Prior art keywords
corrosion
corrosion sensor
sensor
protection
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017191504A
Other languages
English (en)
Inventor
達三 佐藤
Tatsuzo Sato
達三 佐藤
玲 江里口
Rei Eriguchi
玲 江里口
博 中西
Hiroshi Nakanishi
博 中西
幸俊 井坂
Yukitoshi Isaka
幸俊 井坂
早野 博幸
Hiroyuki Hayano
博幸 早野
隼人 板屋
Hayato Itaya
隼人 板屋
若林 徹
Toru Wakabayashi
徹 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Taiheiyo Cement Corp
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Nakabohtec Corrosion Protecting Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2017191504A priority Critical patent/JP2019066300A/ja
Publication of JP2019066300A publication Critical patent/JP2019066300A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】電気防食工法が施された鋼材の腐食環境を、高い精度で検出する。【解決手段】本発明の電気防食効果検出方法は、腐食センサ7を用いて、電気防食工法が施された鉄筋5の腐食環境を検出する電気防食効果検出方法であって、鉄筋5と並列に腐食センサ7を接続し、外部電源方式または流電陽極方式によって、コンクリート3を介して鉄筋5および腐食センサ7に防食電流を提供し、腐食センサ7の抵抗値を検出することを特徴とする。【選択図】図1

Description

本発明は、腐食センサを用いて、電気防食工法が施された鋼材の腐食環境を検出する電気防食効果検出方法に関する。
従来から、鉄筋コンクリート構造物、すなわち、RC(Reinforced-Concrete)構造物における鉄筋の腐食を防止するための有効な手段として、電気防食工法が知られている。RC構造物の主な劣化要因は、塩分などによる鉄筋腐食である。鉄筋腐食が進行したり、あるいは塩分が浸透したりしたRC構造物では、材料的に有効な防食手法として、断面修復工法が挙げられるが、厳しい塩害環境下では、断面修復後に再劣化する場合がある。このため、腐食電流とは逆向きの電流(防食電流)を流す外部電源方式のような電気防食工法や、鉄筋の替わりに陽極材が腐食する流電(犠牲)陽極方式による電気防食工法が実施されている。このように、従来の電気防食工法では、鉄筋の腐食の進行自体を通電によって抑制するため、適切に実施された場合には、鉄筋腐食は進行しない。
しかしながら、外部電源方式では、通電量が不十分である場合には鉄筋腐食が生じてしまう一方、通電量が過大である場合には鉄筋近傍で電気分解によって水素が発生する。鉄筋近傍での水素の発生は、金属の水素脆化、コンクリートの付着力の低下を招くため好ましくない。また、流電(犠牲)陽極方式では、電源を必要としないメリットがあり、陽極材の残量が十分である場合には、鉄筋腐食の進行は抑制される。しかしながら、経年変化によって犠牲陽極材が欠損したりすると、防食効果が小さくなり、鉄筋腐食が進行する場合がある。
これらの現象はコンクリート内部で生じ、かつ目視による点検が難しい。特に、目視で判別しにくい場所や、点検を実施しにくい場所では、躯体鋼材の腐食進行に気付かずに、鉄筋腐食が想定以上に進行し、鋼材が断面欠損したり、破断したりすることもある。
また、これまでの電気防食効果の判定には復極試験が行なわれており、専門的知識が必要で、100mV以上の電位変化量が必要とされていたため、微量な電位変化量から判定することは困難であった。また、電位変化量を確認するためには通常24時間を要することも判定を困難にしていた。すなわち、点検者は同じ個所を当日と翌日に見回る必要があった。そのため、簡易的に電気防食効果を確認する手法が望まれていた。
本発明は、このような事情に鑑みてなされたものであり、電気防食工法が施された鋼材の腐食環境を、高い精度で検出することができる電気防食効果検出方法を提供することを目的とする。
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の電気防食効果検出方法は、腐食センサを用いて、電気防食工法が施された鋼材の腐食環境を検出する電気防食効果検出方法であって、前記鋼材と並列に腐食センサを接続し、電気防食システムによって、コンクリート層を介して前記鋼材および前記腐食センサに防食電流を提供し、前記腐食センサの抵抗値を検出することを特徴とする。
このように、鋼材と並列に腐食センサを接続し、電気防食システムによって、コンクリート層を介して鋼材および腐食センサに防食電流を提供するので、鋼材にも腐食センサにも防食電流が流れることとなる。従って、正常に防食電流が提供されていれば、鋼材も腐食センサも腐食することはない。この場合、腐食センサの抵抗値は相対的に低い値となる。しかし、防食電流が正常に提供されなくなると、鋼材と共に腐食センサが腐食する。腐食センサは、鉄箔や薄膜で構成されていることから、鋼材よりも先に破断する。腐食センサが破断すると、抵抗値が相対的に高くなることから、腐食環境が進行していること、ひいては、電気防食工法の効果が十分に得られていないことを検知することが可能となる。
(2)また、本発明の電気防食効果検出方法は、前記コンクリート層内部にかぶり深さに応じて複数の腐食センサを設けることを特徴とする。
このように、コンクリート層内部にかぶり深さに応じて複数の腐食センサを設けるので、段階的に腐食進行状況を把握することが可能となる。すなわち、正常に防食電流が提供されていれば、鋼材も腐食センサも腐食することはないが、防食電流が正常に提供されなくなると、かぶり深さの小さい腐食センサから順に破断していくこととなる。これにより、電気防食の効果を検知すると共に、腐食進行状況を把握することが可能となる。
(3)また、本発明の電気防食効果検出方法において、前記腐食センサは、有機フィルム上に鉄箔で波状または鋸歯状に形成された導体パターン部を備えることを特徴とする。
このように、腐食センサは、有機フィルム上に鉄箔で波状または鋸歯状に形成された導体パターン部を備えるので、腐食因子との接触によって腐食し易い。これにより、腐食センサの精度を高めることが可能となる。
本発明によれば、電気防食工法が施された鋼材の腐食環境を、簡易かつ高い精度で検出することが可能となる。
本実施形態に係る電気防食工法の概略を示す図である。 腐食センサ7の検知部の概略構成を示す図である。 腐食センサの検知部の一例を示す図である。 細長い腐食センサ8を鉄筋に沿わせてコンクリート中に配置した事例である。 本発明の実施例に係る試験方法の概要を示す図である。 電気防食下の試験結果を示す図である。 無防食下の試験結果を示す図である。 コンクリート層内部にかぶり深さに応じて3つの腐食センサ7を設けた例を示す図である。 外部電源方式に腐食センサを適用した場合の模式図である。
本発明者らは、電気防食効果を判定することが容易ではなかったことに着目し、腐食センサを鋼材と並列に接続することによって、腐食センサにも防食電流を流し、定期的に腐食センサの電気抵抗を測定することによって、鋼材の腐食環境、ひいては電気防食効果を判定することができることを見出し、本発明に至った。
すなわち、本発明の電気防食効果検出方法は、腐食センサを用いて、電気防食工法が施された鋼材の腐食環境を検出する電気防食効果検出方法であって、前記鋼材と並列に腐食センサを接続し、外部電源方式または流電陽極方式によって、コンクリート層を介して前記鋼材および前記腐食センサに防食電流を提供し、前記腐食センサの抵抗値を検出することを特徴とする。
これにより、本発明者らは、電気防食工法が施された鋼材の腐食環境を、簡易かつ高い精度で検出することを可能とした。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。
図1は、本実施形態に係る電気防食工法の概略を示す図である。RC構造物1は、コンクリート3および鉄筋5によって構成されている。鉄筋5の近傍には腐食センサ7が設けられており、鉄筋5に対して並列に陽極システム9に接続されている。陽極システム9は、外部電源方式の場合は、陽極にチタン等の鉄よりも貴な金属が用いられ、外部の電源装置から電力の供給を受ける。一方、流電(犠牲)陽極方式の場合は、陽極システム9は亜鉛合金など、鉄よりも卑な金属が用いられる。これらの方式により、図中、紙面に対して下向きの矢印で示したように、防食電流が提供され、鉄筋5および腐食センサ7に防食電流が流れることとなる。そして、防食電流が正しく提供されていれば、鉄筋5および腐食センサ7が腐食することはない。
図2は、腐食センサ7の検知部の概略構成を示す図である。腐食センサ7は、有機フィルム7a上に鉄箔で波状(または鋸歯状)に形成された導体パターン部7bを備える。この構成により、腐食因子との接触面積を大きくすることが可能となり、腐食因子との接触確率が高まることから、導体パターン部7bを腐食させ易くすることができる。これにより、腐食センサの精度を高めることが可能となる。
腐食センサの検知部の形状は、コンクリートとの接触面積が確保されれば、特に限定されるものではない。例えば、鉄筋に類似の外形として、細長い形状にしても良い。図3は、腐食センサの検知部の一例を示す図である。図3に示すように、腐食センサ8は、有機フィルム8a上に鉄箔で波上に形成された導体パターン部8bを備える。この形状であれば、鉄筋に沿わせて腐食センサを配置することが可能となる。図4は、細長い腐食センサ8を鉄筋に沿わせてコンクリート中に配置した事例である。腐食センサ8は、犠牲陽極材9aと対向するように、鉄筋5の表面に沿うように貼り付けられている。腐食センサ8は、鉄筋5および犠牲陽極材9aに対し、並列に接続されると共に、計測線9bと接続されている。これにより、精度の高い腐食検知を実現することが可能となる。
図5は、本発明の実施例に係る試験方法の概要を示す図である。電気防食の構成は、作用極にφ16×50mm鋼材(SR235)5a、腐食センサ7、対極に白金被覆チタン線(Pt−Ti線)11、参照極に飽和KCl銀塩化銀電極13を用いて電気化学セルを構成した。そして、この試験は、イオン交換水を用いて塩化ナトリウム濃度を3%に調整した水溶液15中で行なった。
電位は、ポテンショスタット20を用いて制御し、「−760mV vs.SSE」で定電位通電を行なった。比較対象である無防食下の試験は、電気防食下と同形状の鋼材5a、腐食センサ7および飽和KCl銀塩化銀電極13を浸漬させた。試験期間中は、鋼材5aの電位と腐食センサ7の抵抗を、データロガー22により5分間隔で記録した。腐食センサ7の断線を確認した後に鋼材5aの質量を計測し、質量変化から腐食速度を算出した。
図6は、電気防食下の試験結果を示す図である。ここで、腐食センサ7の破断確認は、データロガー22を用いて腐食センサ7の抵抗値の経時変化から判断した。データロガー22に記録される値は、電気抵抗値を温度換算した値になるため、本実施例では、腐食センサ7の抵抗の単位を便宜上“arbitrary unit”と記載した。本実施例では、腐食センサ7の抵抗値が「3280a.u.」を示した時点が当該センサの完全破断に対応する。図6に示すように、定電位通電を行なった電気防食下では、鋼材電位は「−760mV vs.SSE」を維持し、腐食センサ7の抵抗値も変化せず、280時間経過後も破断は生じなかった。
図7は、無防食下の試験結果を示す図である。図中の電位は鋼材5aの自然電位を示している。この無防食下では、浸漬直後の自然電位は「−371mV vs.SSE」を示したが、その後、電位は急速に卑化し、「−500〜−600mV vs.SSE」へ推移した。また、腐食センサ7は、約270時間後に破断を確認できる抵抗値を示した。
以上の試験の後、鋼材5aおよび腐食センサ7の腐食状態を観察した結果、電気防食下では鋼材5a、腐食センサ7は発錆しなかった。一方、無防食下においては、鋼材5aと腐食センサ7が発錆した。また、鋼材5aの腐食速度は、質量の減少分から、電気防食下で0.01mm/yを示したのに対して、無防食下では0.08mm/yとなり、海水中の腐食速度0.1mm/yに近い結果が得られた。
以上の結果から、腐食センサ7は、3%塩化ナトリウム水溶液中においては、無防食下でのみ破断が生じ、電気防食下では破断しないことが確認された。また、腐食センサ7は、約270時間で鋼材5aが腐食環境にあることを検知した。3%塩化トリウム水溶液は、鋼材5aにとっては、浸漬当初より腐食環境にあるため、腐食検知時期は早いほど良いが、実際の土木構造物の維持管理を考慮すると、約270時間という破断結果は十分許容できる範囲と考えられる。
図8は、コンクリート層内部にかぶり深さに応じて3つの腐食センサ7を設けた例を示す図である。このように、コンクリート層内部にかぶり深さに応じて複数の腐食センサを設けることによって、段階的に腐食進行状況を把握することが可能となる。すなわち、正常に防食電流が提供されていれば、鋼材も腐食センサも腐食することはないが、防食電流が正常に提供されなくなると、かぶり深さの小さい腐食センサから順に破断していくこととなる。これにより、電気防食の効果を検知すると共に、腐食進行状況を把握することが可能となる。
図9は、外部電源方式に腐食センサを適用した場合の模式図である。RC構造物90において、外部電源としての電源装置91から供給される電流が、チタンなどで構成された陽極材としての陽極システム93を通して防食電流として鉄筋95に通電される。この際、腐食センサ97と鉄筋95とを並列に接続して、(外部)電源装置91に接続して防食回路を構成している。腐食センサ97は、適切な防食電流の場合は、安定状態であり、腐食センサ97の検知部の電気抵抗は変化しない。一方、防食電流が不足する場合は、腐食センサ97の検知部の腐食が開始し、腐食センサ97の鉄箔材で構成された検知部は、腐食による断面欠損を生じて電気抵抗が増大することにより、防食電流の不足を検知する。さらに、この状態が継続すれば鉄箔材の断線が生じることから、断線する前に防食電流を回復させることで、継続して腐食センサ97として使用することができる。
以上説明したように、本実施形態によれば、腐食センサを用いることによって、電気防食工法の効率的な効果確認手法を実現することが可能となる。
1 RC構造物
3 コンクリート
5 鉄筋
5a 鋼材
7 腐食センサ
7a 有機フィルム
7b 導体パターン部
8 腐食センサ
8a 有機フィルム
8b 導体パターン部
9 陽極システム
9a 犠牲陽極材
9b 計測線
13 飽和KCl銀塩化銀電極
15 3%塩化ナトリウム水溶液
20 ポテンショスタット
22 データロガー
90 RC構造物
91 電源装置
93 陽極システム
95 鉄筋
97 腐食センサ
99 計測線

Claims (3)

  1. 腐食センサを用いて、電気防食工法が施された鋼材の腐食環境を検出する電気防食効果検出方法であって、
    前記鋼材と並列に腐食センサを接続し、
    電気防食システムによって、コンクリート層を介して前記鋼材および前記腐食センサに防食電流を提供し、
    前記腐食センサの抵抗値を検出することを特徴とする電気防食効果検出方法。
  2. 前記コンクリート層内部にかぶり深さに応じて複数の腐食センサを設けることを特徴とする請求項1記載の電気防食効果検出方法。
  3. 前記腐食センサは、有機フィルム上に鉄箔で波状または鋸歯状に形成された導体パターン部を備えることを特徴とする請求項1または請求項2記載の電気防食効果検出方法。
JP2017191504A 2017-09-29 2017-09-29 電気防食効果検出方法 Pending JP2019066300A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017191504A JP2019066300A (ja) 2017-09-29 2017-09-29 電気防食効果検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191504A JP2019066300A (ja) 2017-09-29 2017-09-29 電気防食効果検出方法

Publications (1)

Publication Number Publication Date
JP2019066300A true JP2019066300A (ja) 2019-04-25

Family

ID=66340561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191504A Pending JP2019066300A (ja) 2017-09-29 2017-09-29 電気防食効果検出方法

Country Status (1)

Country Link
JP (1) JP2019066300A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965818B1 (en) * 2021-05-28 2024-04-23 Mopeka Products Llc Corrosion monitor
JP7483190B2 (ja) 2020-03-31 2024-05-15 太平洋セメント株式会社 犠牲陽極モニタリングセンサおよびモニタリング方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129952A (ja) * 1997-07-11 1999-02-02 Nikko Boshoku Kk コンクリート構造物およびその電気防食方法
JPH1181502A (ja) * 1997-09-12 1999-03-26 Matsumuragumi:Kk 鉄筋コンクリート内の鉄筋の腐食を防止する方法
US20120007579A1 (en) * 2010-07-12 2012-01-12 Allen Wallace Apblett Embedded wireless corrosion sensor
JP2013148418A (ja) * 2012-01-18 2013-08-01 Taiheiyo Cement Corp 腐食センサ、腐食センサの製造方法、腐食検出方法
JP2014162963A (ja) * 2013-02-26 2014-09-08 Fujimori Kogyo Co Ltd 防食構造および防食方法
JP2017138285A (ja) * 2016-02-05 2017-08-10 太平洋セメント株式会社 腐食センサおよび腐食検出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129952A (ja) * 1997-07-11 1999-02-02 Nikko Boshoku Kk コンクリート構造物およびその電気防食方法
JPH1181502A (ja) * 1997-09-12 1999-03-26 Matsumuragumi:Kk 鉄筋コンクリート内の鉄筋の腐食を防止する方法
US20120007579A1 (en) * 2010-07-12 2012-01-12 Allen Wallace Apblett Embedded wireless corrosion sensor
JP2013148418A (ja) * 2012-01-18 2013-08-01 Taiheiyo Cement Corp 腐食センサ、腐食センサの製造方法、腐食検出方法
JP2014162963A (ja) * 2013-02-26 2014-09-08 Fujimori Kogyo Co Ltd 防食構造および防食方法
JP2017138285A (ja) * 2016-02-05 2017-08-10 太平洋セメント株式会社 腐食センサおよび腐食検出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中村貴毅: "電気防食技術の解説と応用", JCMA2017長野フォーラム, JPN6021009379, 8 August 2017 (2017-08-08), ISSN: 0004583399 *
板屋隼人 他: "腐食環境センサの電気防食工法への適用性に関する検討", 土木学会年次学術講演会公演概要集, vol. 71, JPN6021009378, 1 August 2016 (2016-08-01), pages 440, ISSN: 0004583398 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483190B2 (ja) 2020-03-31 2024-05-15 太平洋セメント株式会社 犠牲陽極モニタリングセンサおよびモニタリング方法
US11965818B1 (en) * 2021-05-28 2024-04-23 Mopeka Products Llc Corrosion monitor

Similar Documents

Publication Publication Date Title
US8349166B2 (en) Treatment process for concrete
US6358397B1 (en) Doubly-protected reinforcing members in concrete
US20150198518A1 (en) Cathodic protection reference cell article and method
Budiansky et al. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena
CA2601516C (en) Treatment process for concrete
González et al. Some questions on the corrosion of steel in concrete. Part II: Corrosion mechanism and monitoring, service life prediction and protection methods
JP6623329B2 (ja) 腐食センサ
JP3139938B2 (ja) 電気防食電流モニター及びそれを用いた監視システム
JP2019066300A (ja) 電気防食効果検出方法
Samples et al. Methods of Corrosion Protection and Durability of Concrete Bridge Decks Reinforced with Epoxy-coated Bars-Phase I
JP7483190B2 (ja) 犠牲陽極モニタリングセンサおよびモニタリング方法
Yoo et al. A galvanic sensor system for detecting the corrosion damage of the steel embedded in concrete structures: Laboratory tests to determine the cathodic protection and stray-current
Bhuiyan Effectiveness of impressed current cathodic protection systems in concrete following current interruption
JP2005227069A (ja) コンクリート中の鋼材の腐蝕予測装置及び腐蝕予測方法
Galvanic Galvanic cathodic protection of reinforced and prestressed concrete using a thermally sprayed aluminum coating
JP2594246B2 (ja) 防食方法及び防食用装置
JP7466866B2 (ja) 鉄筋コンクリート構造物の健全性把握方法
Kamde et al. Development of the Galvanic Anode Performance Test for Assessing the Longevity of Galvanic Anodes for Reinforced Concrete Structures
JP6600487B2 (ja) 防食用電池の選択方法
WO2015108525A1 (en) Cathodic protection reference cell article and method
Martinez et al. Control of cathodic protection in bridges without disconnecting protection current: passivity verification technique (PVT)
de Araujo et al. Cathodic protection of concrete structures
Berramdane et al. Electro-Chemical Treatments for Corroded Piers in Monte Carlo
SK4962003A3 (sk) Dvojnásobné chránené vystužovacie prvky v betóne
Aljabbri et al. COMMON CORROSION TYPES OF STEEL REINFORCEMENT AND MONITORING TECHNIQUES: A REVIEW

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831