JP2019064873A - Semiconductor growth substrate, semiconductor element, semiconductor light emitting element and method for manufacturing semiconductor growth substrate - Google Patents

Semiconductor growth substrate, semiconductor element, semiconductor light emitting element and method for manufacturing semiconductor growth substrate Download PDF

Info

Publication number
JP2019064873A
JP2019064873A JP2017192536A JP2017192536A JP2019064873A JP 2019064873 A JP2019064873 A JP 2019064873A JP 2017192536 A JP2017192536 A JP 2017192536A JP 2017192536 A JP2017192536 A JP 2017192536A JP 2019064873 A JP2019064873 A JP 2019064873A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
substrate
growth
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017192536A
Other languages
Japanese (ja)
Other versions
JP7053209B2 (en
Inventor
明宏 野村
Akihiro Nomura
明宏 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2017192536A priority Critical patent/JP7053209B2/en
Publication of JP2019064873A publication Critical patent/JP2019064873A/en
Application granted granted Critical
Publication of JP7053209B2 publication Critical patent/JP7053209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)

Abstract

To provide: a semiconductor growth substrate capable of reducing crystal defects even while using an inexpensive heterogeneous substrate to grow a semiconductor layer excellent in crystal quality ; a semiconductor element; a semiconductor light emitting element; and a method for manufacturing the semiconductor growth substrate.SOLUTION: A semiconductor growth substrate comprises: a heterogeneous substrate 1 having a crystal structure different from that of a semiconductor layer 3 to be grown; a nanowire layer 2a including a plurality of nanowires formed on the heterogeneous substrate 1 and having a columnar crystal of a nano size to a micron size; a diameter expansion layer 2b in which the diameter of the nanowire is expanded and varied; and a ground layer 2c constituted to bond adjacent nanowires. The heterogeneous substrate 1 is one of a sapphire substrate, a Si substrate and a SiC substrate; the nanowire layer 2a, the diameter expansion layer 2b and the ground layer 2c are GaN single crystals; and the GaN single crystal uses a c plane as a main growth surface.SELECTED DRAWING: Figure 1

Description

本発明は、半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting device, and a semiconductor growth substrate.

従来から、LED(Light Emitting Diode)や半導体レーザなどの半導体発光素子として、バンドギャップが大きいGaN系やSiC系などの化合物半導体材料を用いたものが提案されている。また、これらの材料は絶縁破壊電場強度が高く、電子移動度も高いため、パワーデバイスである高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)等の半導体素子への適用も検討されている。   Heretofore, as semiconductor light emitting devices such as LEDs (Light Emitting Diodes) and semiconductor lasers, those using compound semiconductor materials such as GaN-based and SiC-based having a large band gap have been proposed. In addition, since these materials have high breakdown electric field strength and high electron mobility, their application to semiconductor devices such as high electron mobility transistors (HEMTs) which are power devices is also being studied.

これらの化合物半導体材料を用いた半導体素子や半導体発光素子の性能を向上させるためには、機能層や活性層を構成する半導体層の結晶品質を高める必要があり、半導体層と同じ材料系の基板を用いることが好ましい。しかし、低欠陥なGaN基板やSiC基板は非常に高価であり、かつ基板サイズも小さいことから、半導体層とは異なる材料系の異種基板を用いることが多用されている。   In order to improve the performance of semiconductor elements and semiconductor light emitting elements using these compound semiconductor materials, it is necessary to improve the crystal quality of the semiconductor layers constituting the functional layer and the active layer, and a substrate of the same material system as the semiconductor layer It is preferable to use However, since low-defect GaN and SiC substrates are very expensive and the substrate size is also small, it is often used to use a different type of material substrate different from the semiconductor layer.

異種基板としてサファイア等を用いた場合には、成長させる半導体層と異種基板とでは格子定数や結晶構造が異なっているため、格子不整合を緩和するためのバッファ層を介して半導体層を成長させることが一般的である。また、異種基板上に選択的にマスクを形成することや、異種基板に溝を形成して横方向成長により格子不整合や線膨張係数差などに起因する結晶欠陥を低減する技術も用いられている(例えば特許文献1,2等を参照)。   When sapphire or the like is used as the dissimilar substrate, the semiconductor layer is grown through the buffer layer for reducing the lattice mismatch because the lattice constant and the crystal structure are different between the semiconductor layer to be grown and the dissimilar substrate. Is common. In addition, techniques for selectively forming a mask on different types of substrates, and forming grooves in different types of substrates to reduce crystal defects caused by lattice mismatch, linear expansion coefficient difference, etc. by lateral growth are also used. (See, for example, Patent Documents 1 and 2).

特開平11−130597号公報Japanese Patent Application Publication No. 11-130597 特開2000−106455号公報JP 2000-106455 A

しかし上述した従来技術の横方向成長では、異種基板の成長領域サイズは数μm〜数百μmであり、結晶欠陥や貫通転位の密度を低減するためには横方向成長する半導体層も同様に数μm〜数百μmの厚さで成長させる必要があった。また、十分な厚さの半導体層を横方向成長させても結晶欠陥や貫通転位を十分に低減することが困難であった。   However, in the above-described conventional lateral growth, the size of the growth region of the dissimilar substrate is several μm to several hundreds μm, and to reduce the density of crystal defects and threading dislocations, the number of semiconductor layers grown in the lateral direction is also several. It was necessary to grow with a thickness of μm to several hundreds of μm. In addition, it is difficult to sufficiently reduce crystal defects and threading dislocations even if a semiconductor layer having a sufficient thickness is laterally grown.

そこで本発明は、安価な異種基板を用いながらも結晶欠陥を低減して良好な結晶品質の半導体層を成長することが可能な半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法を提供することを課題とする。   Therefore, the present invention provides a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting device, and a semiconductor growth substrate capable of growing a semiconductor layer of good crystal quality by reducing crystal defects while using an inexpensive heterogeneous substrate. An object is to provide a manufacturing method.

上記課題を解決するために、本発明の半導体成長用基板は、成長させる半導体層とは結晶構造が異なる異種基板と、前記異種基板上に形成されたナノサイズからミクロンサイズの柱状結晶であるナノワイヤを複数備えるナノワイヤ層と前記ナノワイヤの直径が拡大して変化する径拡大層と、隣接する前記ナノワイヤ同士が結合して構成された下地層を備えることを特徴とする。   In order to solve the above problems, the substrate for semiconductor growth of the present invention is a heterogeneous substrate having a crystal structure different from that of the semiconductor layer to be grown, and a nanowire which is a nanosized to micron sized columnar crystal formed on the heterogeneous substrate. A plurality of nanowire layers each including a plurality of nanowire layers, a diameter expansion layer in which the diameter of the nanowires is expanded and changed, and an underlayer formed by combining the adjacent nanowires.

このような本発明の半導体成長用基板では、異種基板上に複数のナノワイヤを備えるナノワイヤ層を形成し、ナノワイヤ層から径拡大層と下地層を成長させるため、格子不整合と線膨張係数差の影響をナノワイヤで抑制することができ、安価な異種基板を用いながらも結晶欠陥を低減して良好な結晶品質の半導体層を成長することが可能となる。   In such a substrate for semiconductor growth of the present invention, a nanowire layer provided with a plurality of nanowires is formed on a heterogeneous substrate, and a diameter expansion layer and an underlayer are grown from the nanowire layer. The influence can be suppressed by the nanowires, and it is possible to grow a semiconductor layer of good crystal quality by reducing crystal defects while using an inexpensive dissimilar substrate.

また本発明の一態様では、前記異種基板は、サファイア基板、Si基板、SiC基板の何れか一つである。   In one aspect of the present invention, the heterogeneous substrate is any one of a sapphire substrate, a Si substrate, and a SiC substrate.

また本発明の一態様では、前記ナノワイヤ層、前記径拡大層および前記下地層はGaN単結晶であり、前記GaN単結晶はc面を成長主面とする。   In one aspect of the present invention, the nanowire layer, the diameter expansion layer, and the base layer are GaN single crystals, and the GaN single crystals have a c-plane as a main growth surface.

また上記課題を解決するために、本発明の半導体素子は、上記何れか一つに記載の半導体成長用基板上に機能層を備えることを特徴とする。   In order to solve the above-mentioned subject, a semiconductor device of the present invention is characterized by providing a functional layer on a substrate for semiconductor growth given in any one of the above.

また上記課題を解決するために、本発明の半導体発光素子は、上記何れか一つに記載の半導体成長用基板上に活性層を備えることを特徴とする。   In order to solve the above-mentioned subject, a semiconductor light emitting element of the present invention is characterized by providing an active layer on a substrate for semiconductor growth given in any one of the above.

また上記課題を解決するために、本発明の半導体成長用基板の製造方法は、成長させる半導体層とは結晶構造が異なる異種基板上に、ナノサイズからミクロンサイズの柱状結晶であるナノワイヤを複数備えるナノワイヤ層を形成するナノワイヤ形成工程と、前記ナノワイヤの直径を拡大して成長を継続させる径拡大工程と、隣接する前記ナノワイヤ同士を結合させて成長を継続させる下地層形成工程を備えることを特徴とする。   Further, in order to solve the above problems, according to the method for manufacturing a substrate for semiconductor growth of the present invention, a plurality of nanowires which are columnar crystals of nano size to micron size are provided on a foreign substrate different in crystal structure from the semiconductor layer to be grown. Characterized by comprising a nanowire formation step of forming a nanowire layer, a diameter enlargement step of continuing the growth by expanding the diameter of the nanowire, and an underlayer formation step of continuing the growth by combining adjacent nanowires. Do.

本発明では、安価な異種基板を用いながらも結晶欠陥を低減して良好な結晶品質の半導体層を成長することが可能な半導体成長用基板、半導体素子、半導体発光素子及び半導体成長用基板の製造方法を提供することができる。   In the present invention, manufacturing of a semiconductor growth substrate, a semiconductor element, a semiconductor light emitting element and a substrate for semiconductor growth capable of growing a semiconductor layer of good crystal quality by reducing crystal defects while using an inexpensive heterogeneous substrate We can provide a way.

本発明の第1実施形態における半導体成長用基板の製造方法を示す工程図であり、図1(a)はマスク工程、図1(b)はナノワイヤ形成工程、図1(c)は径拡大工程、図1(d)は下地層形成工程、図1(e)は半導体層形成工程を示している。It is process drawing which shows the manufacturing method of the board | substrate for semiconductor growth in 1st Embodiment of this invention, FIG. 1 (a) is a mask process, FIG.1 (b) is a nanowire formation process, FIG.1 (c) is a diameter expansion process. 1 (d) shows a base layer forming process, and FIG. 1 (e) shows a semiconductor layer forming process. 本発明の第2実施形態における半導体発光素子10の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the semiconductor light-emitting device 10 in 2nd Embodiment of this invention. 本発明の第3実施形態における半導体素子20の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the semiconductor element 20 in 3rd Embodiment of this invention.

(第1実施形態)
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1は、本発明の第1実施形態における半導体成長用基板の製造方法を示す工程図であり、図1(a)はマスク工程、図1(b)はナノワイヤ形成工程、図1(c)は径拡大工程、図1(d)は下地層形成工程、図1(e)は半導体層形成工程を示している。
First Embodiment
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and duplicative descriptions will be omitted as appropriate. FIG. 1 is a process drawing showing a method of manufacturing a substrate for semiconductor growth in the first embodiment of the present invention, and FIG. 1 (a) is a mask process, FIG. 1 (b) is a nanowire formation process, FIG. FIG. 1 (d) shows a base layer forming step, and FIG. 1 (e) shows a semiconductor layer forming step.

はじめに図1(a)に示すマスク工程では、異種基板1を用意して主面全体にマスク1aを形成し、公知のパターニング方法を用いて所定領域に開口部1bを形成する。ここで異種基板1は、成長させる半導体層とは結晶構造が異なる単結晶の基板であり、例えば成長する半導体層の材料系がGaN系の場合には、サファイア基板、Si基板、SiC基板が挙げられる。また、後述するように異種基板1の主面は、成長する半導体層のナノワイヤを成長することが可能な結晶面であり、例えばGaN系の半導体層である場合にはサファイア基板のc面を主面として用いることができる。   First, in the mask process shown in FIG. 1A, the dissimilar substrate 1 is prepared, the mask 1a is formed over the entire main surface, and the opening 1b is formed in a predetermined region using a known patterning method. Here, the heterosubstrate 1 is a single crystal substrate having a crystal structure different from that of the semiconductor layer to be grown. For example, when the material system of the semiconductor layer to be grown is GaN, sapphire substrate, Si substrate and SiC substrate are listed. Be Further, as described later, the main surface of the heterosubstrate 1 is a crystal surface on which the nanowires of the growing semiconductor layer can be grown. For example, in the case of a GaN-based semiconductor layer, the c plane of the sapphire substrate is mainly used. It can be used as a surface.

マスク1aを構成する材料は特に限定されず、レジスト等の公知の材料をスピンコート法等で塗布することができる。また、レジスト膜の種類は限定されず、ナノサイズのパターニングが可能であれば熱硬化型であってもUV硬化型であってもよい。   The material which comprises the mask 1a is not specifically limited, Well-known materials, such as a resist, can be apply | coated by a spin coat method etc. Further, the type of the resist film is not limited, and may be a thermosetting type or a UV curing type as long as nano-sized patterning is possible.

開口部1bは、マスク1aを部分的に除去して異種基板1の主面を露出させた領域であり、複数の開口部1bが異種基板1の主面上に二次元的に配置されている。開口部1bのサイズはナノサイズまたはミクロンサイズである。開口部1bの形状は限定されないが、円形や四角形、六角形などの正多角形状が好ましい。また、異種基板1の主面上における開口部1bの二次元的な配列は特に限定されず、正方格子状や三角格子状などの公知の配列を用いることができる。   The opening 1 b is a region in which the mask 1 a is partially removed to expose the main surface of the dissimilar substrate 1, and the plurality of openings 1 b are two-dimensionally arranged on the main surface of the dissimilar substrate 1. . The size of the opening 1 b is nano size or micron size. The shape of the opening 1 b is not limited, but a regular polygonal shape such as a circle, a quadrangle, or a hexagon is preferable. The two-dimensional arrangement of the openings 1b on the main surface of the heterosubstrate 1 is not particularly limited, and a known arrangement such as a square lattice shape or a triangular lattice shape can be used.

ここでナノサイズとは1nm以上1μm未満の範囲を示し、ナノサイズの柱状結晶であるナノワイヤとはc面に平行な断面における幅方向のサイズが1nm以上1μm未満のことをいう。また、ここでミクロンサイズとは1μm以上10μm未満の範囲を示し、ミクロンサイズの柱状結晶であるナノワイヤとはc面に平行な断面における幅方向のサイズが1μm以上10μm未満のことをいう。より好ましいミクロンサイズは、1μm以上5μm未満であり、さらに好ましくは1μm以上3μm未満である。   Here, nanosize refers to a range of 1 nm or more and less than 1 μm, and the nanowire which is a columnar crystal of nanosize refers to the size in the width direction in a cross section parallel to the c-plane being 1 nm or more and less than 1 μm. Here, the micron size indicates a range of 1 μm to less than 10 μm, and the nanowire which is a columnar crystal of micron size means that the size in the width direction in a cross section parallel to the c-plane is 1 μm to less than 10 μm. A more preferable micron size is 1 μm or more and less than 5 μm, and more preferably 1 μm or more and less than 3 μm.

マスク1aのパターニング方法としては、例えば所定のパターンが形成されたモールドを用いたナノインプリント技術によりパターンの転写や、フォトリソグラフィーおよびエッチング等の公知の方法が挙げられる。   Examples of the patterning method of the mask 1a include known methods such as transfer of a pattern by nanoimprint technology using a mold on which a predetermined pattern is formed, photolithography, and etching.

次に図1(b)に示すナノワイヤ形成工程では、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を用いて開口部1bから露出した異種基板1上に、ナノサイズまたはミクロンサイズの柱状結晶であるナノワイヤを複数成長してナノワイヤ層2aを形成する。具体的なMOCVD法によるナノワイヤ層2aの成長方法としては、異種基板1上に成長させる半導体層の材料がGaN系である場合には、例えばキャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH)を用い、III族原料としてTMG(TrimethylGallium)を用いて、成長温度900〜1200℃、成長圧力400mbar以下、V/III比1500などが挙げられる。 Next, in the nanowire formation step shown in FIG. 1 (b), nanosize or micron size is formed on the dissimilar substrate 1 exposed from the opening 1b using metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition). A plurality of nanowires, which are columnar crystals, are grown to form a nanowire layer 2a. As a growth method of the nanowire layer 2a by the specific MOCVD method, when the material of the semiconductor layer grown on the heterogeneous substrate 1 is a GaN-based material, for example, hydrogen or nitrogen is used as a carrier gas and ammonia is used as a V group material The growth temperature is 900 to 1200 ° C., the growth pressure is 400 mbar or less, the V / III ratio is 1,500, and the like using (NH 3 ) and TMG (Trimethyl Gallium) as a group III raw material.

ここで、ナノワイヤ層2aでは図1(b)に示すように開口部1bの領域上に選択的に柱状結晶が成長している。これは、例えばGaN系材料ではc面サファイアの異種基板1上にc面を主面としたGaN単結晶が成長するが、c面に垂直な6つのm面がファセットとして形成されてc面方向への成長が優先されるためである。したがって、GaN系材料の場合にはナノワイヤ層2aに含まれる複数のナノワイヤは、c面に垂直でm面を側面とする六角柱状となる。図1(b)では開口部1bから垂直に柱状結晶が成長している例を示したが、開口部1bの近傍においてm面が横方向成長で少しマスク1a上を覆うとしてもよい。また、図1(b)ではナノワイヤ層2aに含まれる柱状結晶の上面として平坦なc面を示したが、a面等の特定の結晶面がファセットとして形成されてもよい。   Here, in the nanowire layer 2a, columnar crystals are selectively grown on the region of the opening 1b as shown in FIG. 1 (b). This is because, for example, in the case of a GaN-based material, a GaN single crystal having a c-plane main surface is grown on a c-plane sapphire heterogeneous substrate 1, but six m-planes perpendicular to the c-plane are formed as facets and c-plane direction Growth is a priority. Therefore, in the case of a GaN-based material, the plurality of nanowires included in the nanowire layer 2a are in a hexagonal column shape perpendicular to the c-plane and having the m-plane as a side surface. Although FIG. 1B shows an example in which a columnar crystal is grown vertically from the opening 1b, an m-plane may cover the mask 1a slightly in the lateral growth in the vicinity of the opening 1b. In addition, although a flat c-plane is shown in FIG. 1 (b) as the upper surface of the columnar crystal included in the nanowire layer 2a, a specific crystal plane such as an a-plane may be formed as a facet.

次に図1(c)に示す径拡大工程では、MOCVD法を用いてナノワイヤ層2aに含まれる複数の柱状結晶から継続して半導体層を成長させる。このとき、成長条件を調整することで柱状結晶の直径を拡大させながら半導体層を成長することができ、径拡大層2bが形成される。径拡大工程は、隣接する柱状結晶から成長された径拡大層2b同士が結合するまで継続される。   Next, in the diameter expansion step shown in FIG. 1C, the semiconductor layer is continuously grown from the plurality of columnar crystals included in the nanowire layer 2a using the MOCVD method. At this time, by adjusting the growth conditions, it is possible to grow the semiconductor layer while expanding the diameter of the columnar crystal, and the diameter expanded layer 2b is formed. The diameter expansion step is continued until the diameter expansion layers 2b grown from the adjacent columnar crystals are bonded to each other.

径拡大層2bを成長させるための成長条件としては、ナノワイヤ形成工程よりも成長温度を下げることや、成長圧力を上げることV/III比を上げる等がある。具体的には、例えばキャリアガスとして水素、窒素を用い、V族原料としてアンモニア(NH)を用い、III族原料としてTMGを用いて、成長温度700〜900℃、成長圧力400mbar以上、V/III比3000〜5000などが挙げられる。 The growth conditions for growing the diameter expansion layer 2b include lowering the growth temperature and increasing the growth pressure and raising the V / III ratio as compared to the nanowire formation step. Specifically, for example, using hydrogen and nitrogen as a carrier gas, using ammonia (NH 3 ) as a group V source, and using TMG as a group III source, a growth temperature of 700 to 900 ° C., a growth pressure of 400 mbar or more, V / III ratio 3000-5000 etc. are mentioned.

次に図1(d)に示す下地層形成工程では、MOCVD法を用いて径拡大層2bから継続して半導体層を成長させ、隣接する柱状結晶であるナノワイヤ同士を結合させて、異種基板1の全面にわたって下地層2cを形成する。ここで図1(d)に示すように、マスク1a上の領域には柱状結晶であるナノワイヤ層2aが成長されず、径拡大層2bと下地層2cがオーバーハングでマスク1aの上方を覆っており、マスク1a上には空隙が形成されている。図1(d)に示した下地層形成工程までで、本発明における半導体成長用基板の製造方法は完了し、本発明における半導体成長用基板が得られる。   Next, in the base layer forming step shown in FIG. 1D, the semiconductor layer is continuously grown from the diameter expansion layer 2b using the MOCVD method, and nanowires which are adjacent columnar crystals are bonded to each other to form the dissimilar substrate 1 Underlayer 2c is formed over the entire surface of Here, as shown in FIG. 1D, the nanowire layer 2a which is a columnar crystal is not grown in the region on the mask 1a, and the diameter expansion layer 2b and the base layer 2c cover the upper side of the mask 1a with an overhang. An air gap is formed on the mask 1a. By the steps of forming the underlayer shown in FIG. 1D, the method for manufacturing a substrate for semiconductor growth in the present invention is completed, and the substrate for semiconductor growth in the present invention is obtained.

最後に図1(e)に示す半導体層形成工程では、MOCVD法を用いてGaN3を下地層2c上に成長する。この半導体層形成工程は、下地層形成工程から継続して同一のMOCVD装置で実施されるとしてもよく、下地層形成工程の終了後に得られた半導体成長用基板をMOCVD装置から取出して保管し、後工程として別のMOCVD装置で実施されるとしてもよい。   Finally, in the semiconductor layer forming step shown in FIG. 1 (e), GaN 3 is grown on the underlayer 2c by MOCVD. The semiconductor layer forming step may be carried out by the same MOCVD apparatus continuously from the base layer forming step, and the semiconductor growth substrate obtained after completion of the base layer forming step is taken out of the MOCVD device and stored. It may be implemented by another MOCVD apparatus as a post process.

本実施形態における半導体成長用基板の製造方法によって得られる半導体成長用基板は、異種基板1上に形成されたナノサイズからミクロンサイズの柱状結晶であるナノワイヤを複数備えるナノワイヤ層2aと、ナノワイヤの直径が拡大して変化する径拡大層2bと、隣接するナノワイヤ同士が結合して構成された下地層2cを備える。   The substrate for semiconductor growth obtained by the method for manufacturing a substrate for semiconductor growth in the present embodiment is a nanowire layer 2a including a plurality of nanowires that are columnar crystals of nano size to micron size formed on the dissimilar substrate 1 and the diameter of the nanowires. And the base layer 2c formed by combining adjacent nanowires with each other.

ナノワイヤ層2aに含まれるナノワイヤは、ナノサイズからミクロンサイズの柱状結晶であるため、異種基板1の主面との界面の面積が極端に小さく、格子不整合や線膨張係数差に起因する結晶欠陥が十分に低減されている。また、ナノワイヤ層2aではナノサイズからミクロンサイズの柱状結晶により結晶欠陥が低減されるため、従来の横方向成長を用いた欠陥低減よりもナノワイヤ層2a、径拡大層2b、下地層2cの合計厚さを低減することができ、成長時間の短縮と使用原料の低減を図ることができる。   The nanowires included in the nanowire layer 2a are nano-sized to micron-sized columnar crystals, so the area of the interface with the main surface of the dissimilar substrate 1 is extremely small, and crystal defects due to lattice mismatch or linear expansion coefficient difference Is sufficiently reduced. In addition, in the nanowire layer 2a, crystal defects are reduced by nano-sized to micron-sized columnar crystals, so the total thickness of the nanowire layer 2a, the diameter expansion layer 2b, and the underlayer 2c is smaller than defect reduction using conventional lateral growth. Thus, it is possible to reduce the growth time and to reduce the raw materials used.

上述した結晶欠陥低減の効果は、柱状結晶のc面に平行な断面における幅方向のサイズが小さいほど効果が大きいため、ナノワイヤのサイズは好ましくは1μm以上10μm未満であり、より好ましくは1μm以上5μm未満であり、さらに好ましくは1μm以上3μm未満であり、最も好ましくはナノサイズである。   The smaller the size in the width direction of the cross section parallel to the c-plane of the columnar crystal is, the larger the size of the nanowire is, preferably 1 μm to 10 μm, and more preferably 1 μm to 5 μm. Or less, more preferably 1 μm or more and less than 3 μm, and most preferably nano-sized.

また、径拡大層2bおよび下地層2cは、ナノワイヤ層2aから継続して成長されているため、同様に結晶欠陥は十分に低減されている。さらに、ナノワイヤ層2aから継続して成長される径拡大層2bでは、横方向成長により結晶欠陥が横方向に曲げられるため、下地層2cまで貫通する結晶欠陥をさらに低減することができる。これにより、本実施形態の半導体成長用基板では、下地層2cの結晶欠陥が十分に低減されており、安価な異種基板を用いながらも結晶欠陥を低減して良好な結晶品質の半導体層を成長することが可能となる。   Further, since the diameter expansion layer 2b and the base layer 2c are continuously grown from the nanowire layer 2a, crystal defects are similarly sufficiently reduced. Furthermore, in the diameter expansion layer 2b continuously grown from the nanowire layer 2a, the crystal defect is bent in the lateral direction by the lateral growth, so that the crystal defect penetrating to the base layer 2c can be further reduced. Thereby, in the substrate for semiconductor growth of the present embodiment, the crystal defects of the base layer 2c are sufficiently reduced, and the crystal defects are reduced while using an inexpensive foreign substrate to grow a semiconductor layer of good crystal quality. It is possible to

(第2実施形態)
次に、本発明の第2実施形態について図2を用いて説明する。第1実施形態と重複する内容は説明を省略する。図2は、本発明の第2実施形態における半導体発光素子10の構造を模式的に示す断面図である。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. The same contents as the first embodiment will not be described. FIG. 2 is a cross-sectional view schematically showing the structure of a semiconductor light emitting device 10 according to a second embodiment of the present invention.

図2に示す半導体発光素子10は、異種基板1、ナノワイヤ層2a、径拡大層2b、下地層2c、GaN層3、n型半導体層4、活性層5、p型半導体層6、n側電極7、p側電極8を有している。ここでは半導体発光素子10としてLEDの例を示したが、公知の半導体レーザ構造を形成してもよい。   The semiconductor light emitting device 10 shown in FIG. 2 includes the heterosubstrate 1, the nanowire layer 2a, the diameter expansion layer 2b, the underlayer 2c, the GaN layer 3, the n-type semiconductor layer 4, the active layer 5, the p-type semiconductor layer 6, the n-side electrode 7 has a p-side electrode 8. Here, an example of an LED is shown as the semiconductor light emitting element 10, but a known semiconductor laser structure may be formed.

第1実施形態と同様に、異種基板1を用意してマスク1aを形成し、MOCVD法でナノワイヤ層2a、径拡大層2b、下地層2cを成長させる。続いてMOCVD法でGaN層3、n型半導体層4、活性層5、p型半導体層6を順次成長させる。   Similar to the first embodiment, the heterosubstrate 1 is prepared to form the mask 1a, and the nanowire layer 2a, the diameter expansion layer 2b, and the base layer 2c are grown by the MOCVD method. Subsequently, a GaN layer 3, an n-type semiconductor layer 4, an active layer 5, and a p-type semiconductor layer 6 are sequentially grown by the MOCVD method.

次に、所定のマスクパターンを用いてフォトリソグラフィーとエッチングによりp型半導体層6と活性層5の一部を除去してn型半導体層4の一部を露出させる。次に、n型半導体層4とp型半導体層6の露出面に蒸着等により電極材料を形成し、ダイシングして個別チップ化することで半導体発光素子10を得る。   Next, part of the p-type semiconductor layer 6 and the active layer 5 are removed by photolithography and etching using a predetermined mask pattern to expose part of the n-type semiconductor layer 4. Next, an electrode material is formed on the exposed surfaces of the n-type semiconductor layer 4 and the p-type semiconductor layer 6 by evaporation or the like, and dicing is performed to form an individual chip, whereby the semiconductor light emitting device 10 is obtained.

ここではn型半導体層4、p型半導体層6をそれぞれ単層で説明したが、それぞれ材料や組成の異なる複数の層を含んでいるとしてもよく、例えば、n型半導体層4とp型半導体層6にクラッド層、コンタクト層、電流拡散層、電子ブロック層、導波路層などを含めてもよい。また、活性層5も単層で説明したが、多重量子井戸構造(MQW:Multi Quantum Well)などの複数層で構成してもよい。   Although the n-type semiconductor layer 4 and the p-type semiconductor layer 6 are each described here as a single layer, they may include a plurality of layers having different materials and compositions, for example, the n-type semiconductor layer 4 and the p-type semiconductor The layer 6 may include a cladding layer, a contact layer, a current diffusion layer, an electron blocking layer, a waveguide layer, and the like. In addition, although the active layer 5 has been described as a single layer, it may be configured of multiple layers such as a multi quantum well (MQW) structure.

n型半導体層4は、GaN層3上にエピタキシャル成長され、c面を主面とするn型不純物がドープされた半導体層であり、n側電極7から電子が注入されて活性層5に電子を供給する層である。n型半導体層4を構成する材料は、III−V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、n型不純物としてはSiなどが挙げられる。   The n-type semiconductor layer 4 is epitaxially grown on the GaN layer 3 and is a semiconductor layer doped with an n-type impurity whose main surface is c-plane, and electrons are injected from the n-side electrode 7 to the active layer 5. It is a layer to supply. As a material which comprises the n-type semiconductor layer 4, GaN, AlGaN, InGaN, AlInGaN etc. are mentioned as a III-V group compound semiconductor layer, for example, Si etc. are mentioned as an n-type impurity.

活性層5は、n型半導体層4上にエピタキシャル成長され、c面を主面とする半導体層であり、層内で電子と正孔が発光再結合することで半導体発光素子10が発光する。活性層5は、n型半導体層4とp型半導体層6よりもバンドギャップが小さい材料で構成されており、例えばInGaN、AlInGaNなどが挙げられる。活性層5は意図的に不純物を含まないノンドープとしてもよく、n型不純物を含むn型やp型不純物を含むp型としてもよい。   The active layer 5 is epitaxially grown on the n-type semiconductor layer 4 and is a semiconductor layer having the c-plane as a main surface, and the semiconductor light emitting element 10 emits light by recombination of electrons and holes in the layer. The active layer 5 is made of a material having a smaller band gap than the n-type semiconductor layer 4 and the p-type semiconductor layer 6, and examples thereof include InGaN and AlInGaN. The active layer 5 may be intentionally non-doped without containing an impurity, or may be n-type containing an n-type impurity or p-type containing a p-type impurity.

p型半導体層6は、活性層5上にエピタキシャル成長され、c面を主面とする半導体層であり、p側電極8から正孔が注入されて活性層5に正孔を供給する層である。p型半導体層6を構成する材料は、III−V族化合物半導体層としては、例えばGaN、AlGaN、InGaN、AlInGaNなどが挙げられ、p型不純物としてはZnやMgなどが挙げられる。   The p-type semiconductor layer 6 is a semiconductor layer epitaxially grown on the active layer 5 and having the c-plane as the main surface, and a layer which injects holes from the p-side electrode 8 and supplies holes to the active layer 5. . As a material which comprises the p-type semiconductor layer 6, GaN, AlGaN, InGaN, AlInGaN etc. are mentioned as a III-V group compound semiconductor layer, for example, Zn, Mg etc. are mentioned as a p-type impurity.

本実施の形態でも、半導体発光素子10は異種基板1上にナノワイヤ層2a、径拡大層2b、下地層2cを形成し、GaN層3、n型半導体層4、活性層5、p型半導体層6をエピタキシャル成長している。したがって、第1実施形態で述べたようにナノワイヤによって結晶欠陥や貫通転位を十分に抑制することができ、その上に成長されたn型半導体層4、活性層5、p型半導体層6も良好な結晶性となる。これにより、n型半導体層4、活性層5、p型半導体層6の特性も良好になり、半導体発光素子10の外部量子効率の向上などが見込まれる。   Also in the present embodiment, the semiconductor light emitting device 10 has the nanowire layer 2a, the diameter expansion layer 2b, and the base layer 2c formed on the dissimilar substrate 1, and the GaN layer 3, the n-type semiconductor layer 4, the active layer 5, the p-type semiconductor layer 6 is epitaxially grown. Therefore, as described in the first embodiment, the crystal defects and threading dislocations can be sufficiently suppressed by the nanowires, and the n-type semiconductor layer 4, the active layer 5, and the p-type semiconductor layer 6 grown thereon are also favorable. Become crystalline. As a result, the characteristics of the n-type semiconductor layer 4, the active layer 5, and the p-type semiconductor layer 6 also become good, and improvement of the external quantum efficiency of the semiconductor light emitting device 10 and the like are expected.

(第3実施形態)
次に、本発明の第3実施形態について説明する。第1実施形態と重複する内容は説明を省略する。図3は、本実施形態における半導体素子20の構造を模式的に示す断面図である。本発明における半導体成長用基板を用いた半導体装置は、LEDや半導体レーザ等の半導体発光素子10に限定されず、半導体成長用基板上に機能層を備えるHEMT等の半導体素子であってもよい。
Third Embodiment
Next, a third embodiment of the present invention will be described. The same contents as the first embodiment will not be described. FIG. 3 is a cross-sectional view schematically showing the structure of the semiconductor device 20 in the present embodiment. The semiconductor device using the semiconductor growth substrate in the present invention is not limited to the semiconductor light emitting device 10 such as an LED or a semiconductor laser, but may be a semiconductor device such as a HEMT provided with a functional layer on the semiconductor growth substrate.

図3に示すように半導体素子30は、異種基板1、ナノワイヤ層2a、径拡大層2b、下地層2c、電子走行層23、電子供給層24、保護膜25、ソース電極26、ゲート電極27、ドレイン電極28pを有している。ここでは半導体素子20としてHEMTの例を示したが、公知の半導体素子であれば素子構造は限定されない。また、HEMTとして公知の構造を各層に設けることや、p型層やn型層を追加するとしてもよい。   As shown in FIG. 3, the semiconductor device 30 includes the heterosubstrate 1, the nanowire layer 2 a, the diameter expansion layer 2 b, the underlayer 2 c, the electron transit layer 23, the electron supply layer 24, the protective film 25, the source electrode 26, the gate electrode 27, It has a drain electrode 28p. Although an example of a HEMT is shown here as the semiconductor device 20, the device structure is not limited as long as it is a known semiconductor device. In addition, a structure known as HEMT may be provided in each layer, or a p-type layer or an n-type layer may be added.

電子走行層23は、下地層2c上にエピタキシャル成長されて電子が移動する層であり、例えばGaNで構成されている。電子供給層24は、電子走行層23上にエピタキシャル成長された電子走行層23よりもバンドギャップが大きいn型の半導体層であり、例えばn型AlGaNで構成されている。電子走行層23の電子供給層24との界面近傍には二次元電子ガス層が形成される。したがって、電子走行層23と電子供給層24の組み合わせは、本発明における機能層に相当している。   The electron transit layer 23 is a layer which is epitaxially grown on the base layer 2c and moves electrons, and is made of, for example, GaN. The electron supply layer 24 is an n-type semiconductor layer having a larger band gap than the electron transit layer 23 epitaxially grown on the electron transit layer 23, and is made of, for example, n-type AlGaN. A two-dimensional electron gas layer is formed in the vicinity of the interface between the electron transit layer 23 and the electron supply layer 24. Therefore, the combination of the electron transit layer 23 and the electron supply layer 24 corresponds to the functional layer in the present invention.

保護膜25は、電子供給層24上の所定の領域に形成された絶縁膜であり、保護膜25が形成されていない領域がソース電極26、ゲート電極27、ドレイン電極28を形成する領域となる。ソース電極26およびドレイン電極28は、電子供給層24上に形成された金属材料からなる電極であり、電子供給層24とオーミック接触する。ゲート電極27は、電子供給層24上に形成された金属材料からなる電極であり、電子供給層24とショットキー接合する。   The protective film 25 is an insulating film formed in a predetermined region on the electron supply layer 24, and a region where the protective film 25 is not formed is a region where the source electrode 26, the gate electrode 27, and the drain electrode 28 are formed. . The source electrode 26 and the drain electrode 28 are electrodes made of a metal material formed on the electron supply layer 24 and make ohmic contact with the electron supply layer 24. The gate electrode 27 is an electrode made of a metal material formed on the electron supply layer 24 and has a Schottky junction with the electron supply layer 24.

電子供給層24内では、二次元電子ガス層の形成により電子走行層23との界面近傍で空乏層が形成され、ゲート電極27との界面ではショットキー接合により空乏層が形成される。したがって、ゲート電極27に印加する電圧を変化させることで、電界効果により空乏層の厚みを調整して二次元電子ガスの濃度を制御し、ソース電極26とドレイン電極28の間を流れる電流を制御することができる。   In the electron supply layer 24, a depletion layer is formed in the vicinity of the interface with the electron transit layer 23 by the formation of the two-dimensional electron gas layer, and a depletion layer is formed by the Schottky junction at the interface with the gate electrode 27. Therefore, by changing the voltage applied to gate electrode 27, the thickness of the depletion layer is adjusted by the field effect to control the concentration of the two-dimensional electron gas, and the current flowing between source electrode 26 and drain electrode 28 is controlled. can do.

本実施の形態でも、半導体素子20は異種基板1上にナノワイヤ層2a、径拡大層2b、下地層2cを形成し、電子走行層23、電子供給層24をエピタキシャル成長している。したがって、第1実施形態で述べたようにナノワイヤによって結晶欠陥や貫通転位を十分に抑制することができ、その上に成長された電子走行層23、電子供給層24も良好な結晶性となる。これにより、電子走行層23、電子供給層24の特性も良好になり、半導体素子20の性能向上などが見込まれる。   Also in the present embodiment, in the semiconductor device 20, the nanowire layer 2a, the diameter expansion layer 2b, and the base layer 2c are formed on the dissimilar substrate 1, and the electron transit layer 23 and the electron supply layer 24 are epitaxially grown. Therefore, as described in the first embodiment, the crystal defects and threading dislocations can be sufficiently suppressed by the nanowires, and the electron transit layer 23 and the electron supply layer 24 grown thereon also have good crystallinity. As a result, the characteristics of the electron transit layer 23 and the electron supply layer 24 also become good, and the performance improvement of the semiconductor element 20 is expected.

(第4実施形態)
次に、本発明の第4実施形態について説明する。第1実施形態と重複する内容は説明を省略する。第2実施形態では、半導体発光素子10として異種基板1とナノワイヤ層2a、径拡大層2bおよび下地層2cを含めた構造のものを示したが、基板裏面側から研磨やエッチング、レーザーアブレーションなどの技術を用いて、異種基板1やナノワイヤ層2a、径拡大層2bを除去するとしてもよい。また、異種基板1を除去した側にn側電極7を設け、p側電極8とn側電極7とを対向させてもよい。
Fourth Embodiment
Next, a fourth embodiment of the present invention will be described. The same contents as the first embodiment will not be described. In the second embodiment, the semiconductor light emitting device 10 has a structure including the dissimilar substrate 1, the nanowire layer 2a, the diameter expansion layer 2b, and the base layer 2c, but polishing, etching, laser ablation, etc. from the back side of the substrate The dissimilar substrate 1, the nanowire layer 2a, and the diameter expansion layer 2b may be removed using a technique. Alternatively, the n-side electrode 7 may be provided on the side from which the dissimilar substrate 1 is removed, and the p-side electrode 8 and the n-side electrode 7 may be opposed to each other.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

10…半導体発光素子
1…異種基板
1a…マスク
1b…開口部
2a…ナノワイヤ層
2b…径拡大層
2c…下地層
3…GaN層
4…n型半導体層
5…活性層
6…p型半導体層
7…n側電極
8…p側電極
20…半導体素子
23…電子走行層
24…電子供給層
25…保護膜
26…ソース電極
27…ゲート電極
28…ドレイン電極
DESCRIPTION OF SYMBOLS 10 Semiconductor light emitting element 1 Heterogeneous substrate 1a Mask 1b Opening 2a Nanowire layer 2b Diameter expansion layer 2c Underlayer 3 GaN layer 4 n-type semiconductor layer 5 Active layer 6 p-type semiconductor layer 7 ... n-side electrode 8 ... p-side electrode 20 ... semiconductor element 23 ... electron traveling layer 24 ... electron supply layer 25 ... protective film 26 ... source electrode 27 ... gate electrode 28 ... drain electrode

Claims (6)

成長させる半導体層とは結晶構造が異なる異種基板と、
前記異種基板上に形成されたナノサイズからミクロンサイズの柱状結晶であるナノワイヤを複数備えるナノワイヤ層と
前記ナノワイヤの直径が拡大して変化する径拡大層と、
隣接する前記ナノワイヤ同士が結合して構成された下地層を備えることを特徴とする半導体成長用基板。
A different kind of substrate different in crystal structure from the semiconductor layer to be grown;
A nanowire layer comprising a plurality of nanowires, which are nano-sized to micron-sized columnar crystals formed on the heterogeneous substrate, and a diameter-expanding layer in which the diameter of the nanowire is expanded and changed;
A substrate for semiconductor growth, comprising: an underlayer formed by bonding the adjacent nanowires to each other.
請求項1に記載の半導体成長用基板であって、
前記異種基板は、サファイア基板、Si基板、SiC基板の何れか一つであることを特徴とする半導体成長用基板。
The substrate for semiconductor growth according to claim 1, wherein
The substrate for semiconductor growth is any one of a sapphire substrate, a Si substrate, and a SiC substrate.
請求項1または2に記載の半導体成長用基板であって、
前記ナノワイヤ層、前記径拡大層および前記下地層はGaN単結晶であり、前記GaN単結晶はc面を成長主面とすることを特徴とする半導体成長用基板。
The semiconductor growth substrate according to claim 1 or 2, wherein
The substrate for semiconductor growth, wherein the nanowire layer, the diameter expansion layer, and the base layer are GaN single crystals, and the GaN single crystal has a c-plane as a main growth surface.
請求項1から3の何れか一つに記載の半導体成長用基板上に機能層を備えることを特徴とする半導体素子。   A semiconductor device comprising a functional layer on the semiconductor growth substrate according to any one of claims 1 to 3. 請求項1から3の何れか一つに記載の半導体成長用基板上に活性層を備えることを特徴とする半導体発光素子。   A semiconductor light emitting device comprising an active layer on the semiconductor growth substrate according to any one of claims 1 to 3. 成長させる半導体層とは結晶構造が異なる異種基板上に、ナノサイズからミクロンサイズの柱状結晶であるナノワイヤを複数備えるナノワイヤ層を形成するナノワイヤ形成工程と、
前記ナノワイヤの直径を拡大して成長を継続させる径拡大工程と、
隣接する前記ナノワイヤ同士を結合させて成長を継続させる下地層形成工程を備えることを特徴とする半導体成長用基板の製造方法。
Forming a nanowire layer comprising a plurality of nanowires of nano-sized to micron-sized columnar crystals on a foreign substrate having a crystal structure different from that of the semiconductor layer to be grown;
An expanding step of expanding the diameter of the nanowire to continue the growth;
A method for manufacturing a substrate for semiconductor growth, comprising a base layer forming step of combining adjacent nanowires and continuing growth.
JP2017192536A 2017-10-02 2017-10-02 Manufacturing method of semiconductor growth substrate, semiconductor element, semiconductor light emitting element and semiconductor growth substrate Active JP7053209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017192536A JP7053209B2 (en) 2017-10-02 2017-10-02 Manufacturing method of semiconductor growth substrate, semiconductor element, semiconductor light emitting element and semiconductor growth substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192536A JP7053209B2 (en) 2017-10-02 2017-10-02 Manufacturing method of semiconductor growth substrate, semiconductor element, semiconductor light emitting element and semiconductor growth substrate

Publications (2)

Publication Number Publication Date
JP2019064873A true JP2019064873A (en) 2019-04-25
JP7053209B2 JP7053209B2 (en) 2022-04-12

Family

ID=66338941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192536A Active JP7053209B2 (en) 2017-10-02 2017-10-02 Manufacturing method of semiconductor growth substrate, semiconductor element, semiconductor light emitting element and semiconductor growth substrate

Country Status (1)

Country Link
JP (1) JP7053209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272412B1 (en) 2021-12-03 2023-05-12 信越半導体株式会社 Bonded semiconductor wafer manufacturing method
WO2024085214A1 (en) * 2022-10-19 2024-04-25 京セラ株式会社 Semiconductor substrate, apparatus and method for producing semiconductor substrate, and method for producing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542560A (en) * 2006-03-10 2009-12-03 エステイーシー.ユーエヌエム Pulsed growth and application of GaN nanowires in group III nitride semiconductor substrate materials and devices
JP2012191066A (en) * 2011-03-11 2012-10-04 Stanley Electric Co Ltd Manufacturing method of semiconductor element
JP2013087053A (en) * 2011-10-14 2013-05-13 Samsung Corning Precision Materials Co Ltd Method for producing gallium nitride film
JP2013239718A (en) * 2008-09-01 2013-11-28 Sophia School Corp Semiconductor optical element array and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542560A (en) * 2006-03-10 2009-12-03 エステイーシー.ユーエヌエム Pulsed growth and application of GaN nanowires in group III nitride semiconductor substrate materials and devices
JP2013239718A (en) * 2008-09-01 2013-11-28 Sophia School Corp Semiconductor optical element array and manufacturing method of the same
JP2012191066A (en) * 2011-03-11 2012-10-04 Stanley Electric Co Ltd Manufacturing method of semiconductor element
JP2013087053A (en) * 2011-10-14 2013-05-13 Samsung Corning Precision Materials Co Ltd Method for producing gallium nitride film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272412B1 (en) 2021-12-03 2023-05-12 信越半導体株式会社 Bonded semiconductor wafer manufacturing method
JP2023082874A (en) * 2021-12-03 2023-06-15 信越半導体株式会社 Bonded semiconductor wafer manufacturing method
WO2024085214A1 (en) * 2022-10-19 2024-04-25 京セラ株式会社 Semiconductor substrate, apparatus and method for producing semiconductor substrate, and method for producing semiconductor device
WO2024084634A1 (en) * 2022-10-19 2024-04-25 京セラ株式会社 Semiconductor substrate, and method and device for producing semiconductor substrate

Also Published As

Publication number Publication date
JP7053209B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US7998771B2 (en) Manufacturing method of light emitting diode including current spreading layer
US8013320B2 (en) Nitride semiconductor device and method for fabricating the same
US20160268476A1 (en) Method and system for epitaxy processes on miscut bulk substrates
US20060223211A1 (en) Semiconductor devices based on coalesced nano-rod arrays
JP2007266577A (en) Nitride semiconductor device and manufacturing method thereof
WO2006013698A1 (en) Nitride semiconductor device and method for fabricating same
JP2010205988A (en) Nitride semiconductor element and method for manufacturing the same
WO2012137781A1 (en) Semiconductor stacked body, method for manufacturing same, and semiconductor element
JP4883931B2 (en) Manufacturing method of semiconductor laminated substrate
TW201937753A (en) Nitride semiconductor light-emitting element
US8878211B2 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
US8193021B2 (en) Nitride semiconductor and method for manufacturing same
JP2017157667A (en) Nitride semiconductor light-emitting device
US9515146B2 (en) Nitride semiconductor layer, nitride semiconductor device, and method for manufacturing nitride semiconductor layer
JP7053209B2 (en) Manufacturing method of semiconductor growth substrate, semiconductor element, semiconductor light emitting element and semiconductor growth substrate
KR101028585B1 (en) Hetero-substrate, ?-nitride semiconductor devices using the same and manufacturing method of thereof
JP2005285869A (en) Epitaxial substrate and semiconductor device using the same
JP2010177552A (en) Nitride semiconductor growth substrate having polar plane
KR102356457B1 (en) Semiconductor laser diode and fabricating the same
US20120292648A1 (en) Nitride semiconductor device, nitride semiconductor wafer, and method for manufacturing nitride semiconductor layer
KR101104239B1 (en) Hetero-substrate, III-nitride semiconductor devices using the same and manufacturing method of thereof
JP7008292B2 (en) Nitride semiconductor light emitting device and its manufacturing method
JP2007214378A (en) Nitride-based semiconductor element
WO2019039240A1 (en) Substrate for semiconductor growth, semiconductor element, semiconductor light emitting element, and method for producing semiconductor element
US20210257515A1 (en) Semiconductor growth substrate, semiconductor element, semiconductor light emitting element, and method for manufacturing semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150