JP2019062265A - 信号処理装置、信号処理方法、及びプログラム - Google Patents

信号処理装置、信号処理方法、及びプログラム Download PDF

Info

Publication number
JP2019062265A
JP2019062265A JP2017183337A JP2017183337A JP2019062265A JP 2019062265 A JP2019062265 A JP 2019062265A JP 2017183337 A JP2017183337 A JP 2017183337A JP 2017183337 A JP2017183337 A JP 2017183337A JP 2019062265 A JP2019062265 A JP 2019062265A
Authority
JP
Japan
Prior art keywords
sound
signal
time
collected
outline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183337A
Other languages
English (en)
Other versions
JP6904197B2 (ja
Inventor
敬洋 下条
Takahiro Shimojo
敬洋 下条
村田 寿子
Toshiko Murata
寿子 村田
優美 藤井
Yumi Fujii
優美 藤井
正也 小西
Masaya Konishi
正也 小西
邦明 高地
Kuniaki Kochi
邦明 高地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2017183337A priority Critical patent/JP6904197B2/ja
Priority to EP18756889.4A priority patent/EP3588987A4/en
Priority to PCT/JP2018/003975 priority patent/WO2018155164A1/ja
Priority to CN201880011697.9A priority patent/CN110301142B/zh
Publication of JP2019062265A publication Critical patent/JP2019062265A/ja
Priority to US16/549,928 priority patent/US10805727B2/en
Application granted granted Critical
Publication of JP6904197B2 publication Critical patent/JP6904197B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】収音信号を適切に処理することができる信号処理装置、信号処理方法、及びプログラムを提供することを目的とする。【解決手段】本実施の形態にかかる信号処理装置201は、音源からマイク2L、2Rに直接到達する直接音と、反射音とを含む収音信号を取得する収音信号取得部212と、収音信号の時間振幅データに基づく第1概形を算出する第1概形算出部222と、第1概形を平滑化することで、収音信号の第2概形を算出する第2概形算出部223と、第1概形と前記第2概形の少なくとも一方に基づいて、収音信号の直接音から初期反射音までにあるボトム時間Tbと、初期反射音のピーク時間Tpと、を決定する時間決定部225とを備えたものである。【選択図】図3

Description

本発明は、信号処理装置、信号処理方法、及びプログラムに関する。
音像定位技術として、ヘッドホンを用いて受聴者の頭部の外側に音像を定位させる頭外定位技術がある。頭外定位技術では、ヘッドホンから耳までの特性をキャンセルし、ステレオスピーカから耳までの4本の特性(空間音響伝達特性)を与えることにより、音像を頭外に定位させている。
頭外定位再生においては、2チャンネル(以下、chと記載)のスピーカから発した測定信号(インパルス音等)を聴取者本人の耳に設置したマイクロフォン(以下、マイクとする)で録音する。そして、インパルス応答で得られた収音信号に基づいて、処理装置がフィルタを作成する。作成したフィルタを2chのオーディオ信号に畳み込むことにより、頭外定位再生を実現することができる。
特許文献1には、個人化された室内インパルス応答のセットを取得する方法が開示されている。特許文献1では、聴取者の各耳の近くにマイクを設置している。そして、スピーカを駆動した時のインパルス音を、左右のマイクが録音する。
特表2008−512015号公報
このような、スピーカから耳元までの空間音響伝達特性として、頭部伝達関数(HRTF)が用いられている。頭部伝達関数は、ダミーヘッドやユーザ本人に対する測定により取得される。HRTFと聴感や定位に関する解析や研究も数多くなされている。
空間音響伝達特性は、音源から受聴位置までの直接音と、壁面や底面等の物体に反射して届く反射音(及び回折音)との2種類に分類される。そして、直接音と反射音自体とそれらの関係が、空間音響伝達特性の全体を表す構成要素となっている。音響特性のシミュレーションでも、直接音と反射音とを個別にシミュレートし、統合することにより全体の特性を算出することがある。また、前記解析や研究においても、2種類の音の伝達特性を個別に取り扱えるようにすることは非常に有用である。
したがって、マイクで収音された収音信号から、直接音と反射音とを適切に分離することが望まれる。
本発明は上記の点に鑑みなされたもので、収音信号を適切に処理することができる信号処理装置、信号処理方法、及びプログラムを提供することを目的とする。
本実施形態にかかる信号処理装置は、音源からマイクに直接到達する直接音と、反射音とを含む収音信号を取得する収音信号取得部と、前記収音信号の時間振幅データに基づく第1概形を算出する第1概形算出部と、前記第1概形を平滑化することで、前記収音信号の第2概形を算出する第2概形算出部と、前記第1概形と前記第2概形の少なくとも一方に基づいて、前記収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間と、を決定する時間決定部とを備えたものである。
本実施形態にかかる信号処理方法は、音源からマイクに直接到達する直接音と、反射音とを含む収音信号を取得するステップと、前記収音信号の時間振幅データに基づく前記収音信号の第1概形を算出するステップと、前記第1概形を平滑化することで、前記収音信号の第2概形を算出するステップと、前記第1概形と前記第2概形の少なくとも一方に基づいて、前記収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間と、を決定するステップとを備えたものである。
本実施形態にかかるプログラムは、音源から出力される音をマイクにより収音することで得られた収音信号を処理する信号処理方法を、コンピュータに実行させるプログラムであって、前記信号処理方法は、音源からマイクに直接到達する直接音と、反射音とを含む収音信号を取得するステップと、前記収音信号の時間振幅データに基づく前記収音信号の第1概形を算出するステップと、前記第1概形を平滑化することで、前記収音信号の第2概形を算出するステップと、前記第1概形と前記第2概形の少なくとも一方に基づいて、前記収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間と、を決定するステップとを備えている。
本発明によれば、収音信号を適切に処理することができる信号処理装置、信号処理方法、及びプログラムを提供することができる。
本実施の形態に係る頭外定位処理装置を示すブロック図である。 空間音響伝達特性の測定装置を示す図である。 信号処理装置の構成を示す制御ブロック図である。 実施の形態1にかかる信号処理装置における信号処理方法を示すフローチャートである。 実施の形態1にかかる信号処理装置における信号処理方法を示すフローチャートである。 信号処理装置における処理を説明するための波形図である。 実施の形態2にかかる信号処理装置における信号処理方法を示すフローチャートである。 実施の形態2にかかる信号処理装置における信号処理方法を示すフローチャートである。 信号処理装置における処理を説明するための波形図である。 反復探索法により収束点を求める処理を説明するための波形図である。
本実施の形態にかかる信号処理装置で生成したフィルタを用いた音像定位処理の概要について説明する。本実施形態にかかる頭外定位処理は、空間音響伝達特性と外耳道伝達特性を用いて頭外定位処理を行うものである。空間音響伝達特性は、スピーカなどの音源から外耳道までの伝達特性である。外耳道伝達特性は、外耳道入口から鼓膜までの伝達特性である。本実施形態では、ヘッドホン又はイヤホンを装着していない状態での空間音響伝達特性を測定し、かつ、ヘッドホン又はイヤホンを装着した状態での外耳道伝達特性を測定し、それらの測定データを用いて頭外定位処理を実現している。
本実施の形態にかかる頭外定位処理は、パーソナルコンピュータ、スマートホン、タブレットPCなどのユーザ端末で実行される。ユーザ端末は、プロセッサ等の処理手段、メモリやハードディスクなどの記憶手段、液晶モニタ等の表示手段、タッチパネル、ボタン、キーボード、マウスなどの入力手段を有する情報処理装置である。ユーザ端末は、データを送受信する通信機能を有していてもよい。さらに、ユーザ端末には、ヘッドホン又はイヤホンを有する出力手段(出力ユニット)が接続される。
実施の形態1.
(頭外定位処理装置)
本実施の形態にかかる音場再生装置の一例である頭外定位処理装置100を図1に示す。図1は、頭外定位処理装置100のブロック図である。頭外定位処理装置100は、ヘッドホン43を装着するユーザUに対して音場を再生する。そのため、頭外定位処理装置100は、LchとRchのステレオ入力信号XL、XRについて、音像定位処理を行う。LchとRchのステレオ入力信号XL、XRは、CD(Compact Disc)プレイヤーなどから出力されるアナログのオーディオ再生信号、又は、mp3(MPEG Audio Layer-3)等のデジタルオーディオデータである。なお、頭外定位処理装置100は、物理的に単一な装置に限られるものではなく、一部の処理が異なる装置で行われてもよい。例えば、一部の処理がパソコンなどにより行われ、残りの処理がヘッドホン43に内蔵されたDSP(Digital Signal Processor)などにより行われてもよい。
頭外定位処理装置100は、頭外定位処理部10、フィルタ部41、フィルタ部42、及びヘッドホン43を備えている。頭外定位処理部10、フィルタ部41、及びフィルタ部42は、具体的にはプロセッサ等により実現可能である。
頭外定位処理部10は、畳み込み演算部11〜12、21〜22、及び加算器24、25を備えている。畳み込み演算部11〜12、21〜22は、空間音響伝達特性を用いた畳み込み処理を行う。頭外定位処理部10には、CDプレイヤーなどからのステレオ入力信号XL、XRが入力される。頭外定位処理部10には、空間音響伝達特性が設定されている。頭外定位処理部10は、各chのステレオ入力信号XL、XRに対し、空間音響伝達特性のフィルタ(以下、空間音響フィルタとも称する)を畳み込む。空間音響伝達特性は被測定者の頭部や耳介で測定した頭部伝達関数HRTFでもよいし、ダミーヘッドまたは第三者の頭部伝達関数であってもよい。
4つの空間音響伝達特性Hls、Hlo、Hro、Hrsを1セットとしたものを空間音響伝達関数とする。畳み込み演算部11、12、21、22で畳み込みに用いられるデータが空間音響フィルタとなる。空間音響伝達特性Hls、Hlo、Hro、Hrsを所定のフィルタ長で切り出すことで、空間音響フィルタが生成される。
空間音響伝達特性Hls、Hlo、Hro、Hrsのそれぞれは、インパルス応答測定などにより、事前に取得されている。例えば、ユーザUが左右の耳にマイクをそれぞれ装着する。ユーザUの前方に配置された左右のスピーカが、インパルス応答測定を行うための、インパルス音をそれぞれ出力する。そして、スピーカから出力されたインパルス音等の測定信号をマイクで収音する。マイクでの収音信号に基づいて、空間音響伝達特性Hls、Hlo、Hro、Hrsが取得される。左スピーカと左マイクとの間の空間音響伝達特性Hls、左スピーカと右マイクとの間の空間音響伝達特性Hlo、右スピーカと左マイクとの間の空間音響伝達特性Hro、右スピーカと右マイクとの間の空間音響伝達特性Hrsが測定される。
そして、畳み込み演算部11は、Lchのステレオ入力信号XLに対して空間音響伝達特性Hlsに応じた空間音響フィルタを畳み込む。畳み込み演算部11は、畳み込み演算データを加算器24に出力する。畳み込み演算部21は、Rchのステレオ入力信号XRに対して空間音響伝達特性Hroに応じた空間音響フィルタを畳み込む。畳み込み演算部21は、畳み込み演算データを加算器24に出力する。加算器24は2つの畳み込み演算データを加算して、フィルタ部41に出力する。
畳み込み演算部12は、Lchのステレオ入力信号XLに対して空間音響伝達特性Hloに応じた空間音響フィルタを畳み込む。畳み込み演算部12は、畳み込み演算データを、加算器25に出力する。畳み込み演算部22は、Rchのステレオ入力信号XRに対して空間音響伝達特性Hrsに応じた空間音響フィルタを畳み込む。畳み込み演算部22は、畳み込み演算データを、加算器25に出力する。加算器25は2つの畳み込み演算データを加算して、フィルタ部42に出力する。
フィルタ部41、42にはヘッドホン特性(ヘッドホンの再生ユニットとマイク間の特性)をキャンセルする逆フィルタが設定されている。そして、頭外定位処理部10での処理が施された再生信号(畳み込み演算信号)に逆フィルタを畳み込む。フィルタ部41で加算器24からのLch信号に対して、逆フィルタを畳み込む。同様に、フィルタ部42は加算器25からのRch信号に対して逆フィルタを畳み込む。逆フィルタは、ヘッドホン43を装着した場合に、ヘッドホンユニットからマイクまでの特性をキャンセルする。マイクは、外耳道入口から鼓膜までの間ならばどこに配置してもよい。逆フィルタは、後述するように、ユーザU本人の特性の測定結果から算出されている。
フィルタ部41は、処理されたLch信号をヘッドホン43の左ユニット43Lに出力する。フィルタ部42は、処理されたRch信号をヘッドホン43の右ユニット43Rに出力する。ユーザUは、ヘッドホン43を装着している。ヘッドホン43は、Lch信号とRch信号をユーザUに向けて出力する。これにより、ユーザUの頭外に定位された音像を再生することができる。
このように、頭外定位処理装置100は、空間音響伝達特性Hls、Hlo、Hro、Hrsに応じた空間音響フィルタと、ヘッドホン特性の逆フィルタを用いて、頭外定位処理を行っている。以下の説明において、空間音響伝達特性Hls、Hlo、Hro、Hrsに応じた空間音響フィルタと、ヘッドホン特性の逆フィルタとをまとめて頭外定位処理フィルタとする。2chのステレオ再生信号の場合、頭外定位フィルタは、4つの空間音響フィルタと、2つの逆フィルタとから構成されている。そして、頭外定位処理装置100は、ステレオ再生信号に対して合計6個の頭外定位フィルタを用いて畳み込み演算処理を行うことで、頭外定位処理を実行する。
(フィルタ生成装置)
図2を用いて、空間音響伝達特性(以下、伝達特性とする)を測定して、フィルタを生成するフィルタ生成装置について説明する。図2は、フィルタ生成装置200の構成を模式的に示す図である。なお、フィルタ生成装置200は、図1に示す頭外定位処理装置100と共通の装置であってもよい。あるいは、フィルタ生成装置200の一部又は全部が頭外定位処理装置100と異なる装置となっていてもよい。
図2に示すように、フィルタ生成装置200は、ステレオスピーカ5とステレオマイク2と信号処理装置201を有している。ステレオスピーカ5が測定環境に設置されている。測定環境は、ユーザUの自宅の部屋やオーディオシステムの販売店舗やショールーム等でもよい。測定環境では、床面や壁面によって音の反射が生じる。
本実施の形態では、フィルタ生成装置200の信号処理装置201が、伝達特性に応じたフィルタを適切に生成するための演算処理を行っている。信号処理装置201は、パーソナルコンピュータ(PC)、タブレット端末、スマートホン等であってもよい。
信号処理装置201は、測定信号を生成して、ステレオスピーカ5に出力する。なお、信号処理装置201は、伝達特性を測定するための測定信号として、インパルス信号やTSP(Time Streched Pule)信号等を発生する。測定信号はインパルス音等の測定音を含んでいる。また、信号処理装置201は、ステレオマイク2で収音された収音信号を取得する。信号処理装置201は、伝達特性の測定データをそれぞれ記憶するメモリなどを有している。
ステレオスピーカ5は、左スピーカ5Lと右スピーカ5Rを備えている。例えば、ユーザUの前方に左スピーカ5Lと右スピーカ5Rが設置されている。左スピーカ5Lと右スピーカ5Rは、インパルス応答測定を行うためのインパルス音等を出力する。以下、本実施の形態では、音源となるスピーカの数を2(ステレオスピーカ)として説明するが、測定に用いる音源の数は2に限らず、1以上であればよい。すなわち、1chのモノラル、または、5.1ch、7.1ch等の、いわゆるマルチチャンネル環境においても同様に、本実施の形態を適用することができる。
ステレオマイク2は、左のマイク2Lと右のマイク2Rを有している。左のマイク2Lは、ユーザUの左耳9Lに設置され、右のマイク2Rは、ユーザUの右耳9Rに設置されている。具体的には、左耳9L、右耳9Rの外耳道入口から鼓膜までの位置にマイク2L、2Rを設置することが好ましい。マイク2L、2Rは、ステレオスピーカ5から出力された測定信号を収音して、信号処理装置201に収音信号を出力する。ユーザUは、人でもよく、ダミーヘッドでもよい。すなわち、本実施形態において、ユーザUは人だけでなく、ダミーヘッドを含む概念である。
上記のように、左右のスピーカ5L、5Rから出力された測定信号をマイク2L、2Rで収音し、収音された収音信号に基づいてインパルス応答が得られる。フィルタ生成装置200は、インパルス応答測定に基づいて取得した収音信号をメモリなどに記憶する。これにより、左スピーカ5Lと左マイク2Lとの間の伝達特性Hls、左スピーカ5Lと右マイク2Rとの間の伝達特性Hlo、右スピーカ5Rと左マイク2Lとの間の伝達特性Hro、右スピーカ5Rと右マイク2Rとの間の伝達特性Hrsが測定される。すなわち、左スピーカ5Lから出力された測定信号を左マイク2Lが収音することで、伝達特性Hlsが取得される。左スピーカ5Lから出力された測定信号を右マイク2Rが収音することで、伝達特性Hloが取得される。右スピーカ5Rから出力された測定信号を左マイク2Lが収音することで、伝達特性Hroが取得される。右スピーカ5Rから出力された測定信号を右マイク2Rが収音することで、伝達特性Hrsが取得される。
そして、フィルタ生成装置200は、収音信号に基づいて、左右のスピーカ5L、5Rから左右のマイク2L、2Rまでの伝達特性Hls、Hlo、Hro、Hrsに応じたフィルタを生成する。このようにすることで、フィルタ生成装置200は、頭外定位処理装置100の畳み込み演算に用いられるフィルタを生成する。図1で示したように、頭外定位処理装置100が、左右のスピーカ5L、5Rと左右のマイク2L、2Rとの間の伝達特性Hls、Hlo、Hro、Hrsに応じたフィルタを用いて頭外定位処理を行う。すなわち、伝達特性に応じたフィルタをオーディオ再生信号に畳み込むことにより、頭外定位処理を行う。
さらに、測定環境において、スピーカ5L、5Rから測定信号を出力した場合、収音信号は直接音と反射音とを含む。直接音は、スピーカ5L、5Rから、マイク2L、2R(耳9L、9R)に直接到達する音である。すなわち、直接音は、スピーカ5L、5Rから、床面、又は壁面等で反射されずに、マイク2L、2Rに到達する音である。反射音は、スピーカ5L、5Rから出力された後、床面又は壁面等で反射されて、マイク2L、2Rに到達する音である。伝達特性Hls、Hlo、Hro、Hrsのそれぞれに対応する収音信号は直接音と反射音を含んでいる。直接音は、反射音よりも早く耳に到達する。そして、壁面、床面等の物体で反射した反射音が直接音の後に現れる。
信号処理装置201は、直接音と反射音とを分離するための処理を行う.具体的には、信号処理装置201は、直接音の後から、初期反射音が到達するまでの間における分離境界点を算出する。初期反射音は、壁や壁面などの物体で反射する反射音のうち、最も早く耳9(マイク2)に到達する反射音である。そして、伝達特性Hls、Hlo、Hro、Hrsを分離境界点で分離することで、直接音と反射音とが分離される。すなわち、分離境界点よりも前の信号(特性)には、直接音が含まれ、分離境界点よりも後の信号(特性)には、反射音が含まれる。
信号処理装置201は、直接音と初期反射音を分離する分離境界点を算出するための処理を行っている。具体的には、信号処理装置201は、収音信号において、直接音から初期反射音までの間のボトム時間(ボトム位置)と、初期反射音のピーク時間(ピーク位置)を算出する。そして、信号処理装置201は、ボトム位置とピーク位置とに基づいて、分離境界点を探索するための探索範囲を設定する。信号処理装置201は、探索範囲における評価関数の値に基づいて、分離境界点を算出する。
以下に、フィルタ生成装置200の信号処理装置201と、その処理について詳細に説明する。図3は、フィルタ生成装置200の信号処理装置201を示す制御ブロック図である。なお、フィルタ生成装置200は、左スピーカ5L、及び右スピーカ5Rのそれぞれに対して同様の測定を実施するため、ここでは、左スピーカ5Lを音源として用いた場合について説明する。すなわち、右スピーカ5Rを音源として用いた測定は、左スピー5Lを音源として用いた測定と同様に実施することができるため、図3では右スピーカ5を省略している。
信号処理装置201は、測定信号生成部211と、収音信号取得部212と、信号選択部221と、第1概形算出部222と、第2概形算出部223と、極値算出部224と、時間決定部225、探索範囲設定部226と、評価関数算出部227と、分離境界点算出部228と、特性分離部229と、環境情報設定部230と、特性解析部241と、特性調整部242と、特性生成部243と、出力器250と、を備えている。
信号処理装置201は、パソコンやスマートホンなどの情報処理装置であり、メモリ、及びCPUを備えている。メモリは、処理プログラムや各種パラメータや測定データなどを記憶している。CPUは、メモリに格納された処理プログラムを実行する。CPUが処理プログラムを実行することで、測定信号生成部211、収音信号取得部212、信号選択部221、第1概形算出部222、第2概形算出部223、極値算出部224、探索範囲設定部226、評価関数算出部227、分離境界点算出部228、特性分離部229、環境情報設定部230、特性解析部241、特性調整部242、特性生成部243、及び出力器250における各処理が実施される。
測定信号生成部211は、測定信号を生成する。測定信号生成部211で生成された測定信号は、D/A変換器215でD/A変換されて、左スピーカ5Lに出力される。なお、D/A変換器215は、信号処理装置201又は左スピーカ5Lに内蔵されていてもよい。左スピーカ5Lが伝達特性を測定するための測定信号を出力する。測定信号は、インパルス信号やTSP(Time Streched Pule)信号等であってもよい。測定信号はインパルス音等の測定音を含んでいる。
ステレオマイク2の左マイク2L、右マイク2Rがそれぞれ測定信号を収音し、収音信号を信号処理装置201に出力する。収音信号取得部212は、左マイク2L、右マイク2Rからの収音信号を取得する。なお、マイク2L、2Rからの収音信号は、A/D変換器213L、213RでA/D変換されて、収音信号取得部212に入力される。収音信号取得部212は、複数回の測定により得られた信号を同期加算してもよい。ここでは、左スピーカ5Lから出力されたインパルス音が収音されているため、収音信号取得部212は、伝達特性Hlsに対応する収音信号と、伝達特性Hloに対応する収音信号を取得する。
以下、図3とともに、図4〜図6を参照して、信号処理装置201における信号処理について説明する。図4、及び図5は、信号処理方法を示すフローチャートである。図6は、各処理における信号を示す波形図である。図6では、横軸が時間、縦軸が信号強度となっている。なお、最初のデータの時間が0、最後のデータの時間が1となるように横軸(時間軸)は、正規化されている。
まず、信号選択部221は、収音信号取得部212で取得された一対の収音信号のうち、音源に近い方の収音信号を選択する(S101)。右マイク2Rよりも左マイク2の方が、左スピーカ5Lに近いため、信号選択部221は、伝達特性Hlsに対応する収音信号を選択する。図6のグラフIに示すように、音源(スピーカ5L)に近いマイク2Lでは、マイク2Rよりも直接音が早く到達する。したがって、2つの収音信号において、音が最も早く到達する到達時間を比較することで、音源に近い収音信号を選択することができる。環境情報設定部230からの環境情報を信号選択部221に入力して、信号選択部221が選択結果と環境情報との照合を行うことも可能である。
第1概形算出部222は、収音信号の時間振幅データに基づく第1概形を算出する。第1概形を算出するため、まず、第1概形算出部222は、選択された収音信号をヒルベルト変換することで、時間振幅データを算出する(S102)。次に、第1概形算出部222は、時間振幅データのピーク(極大値)間を線形補間して、線形補間データを算出する(S103)。
そして、第1概形算出部222は、直接音の到達予測時間T1と初期反射音の到達予測時間T2とに基づいて切り出し幅T3を設定する(S104)。第1概形算出部222には、環境情報設定部230から測定環境に関する環境情報が入力されている。環境情報は、測定環境に関する幾何学的な情報を含んでいる。例えば、ユーザUからスピーカ5Lまでの距離、角度、ユーザUから両側壁面での距離、スピーカ5Lの設置高、天井高、ユーザUの地上高のうちの1つ以上の情報が含まれている。第1概形算出部222は、環境情報を用いて、直接音の到達予測時間T1と、初期反射音の到達予測時間T2をそれぞれ予測する。第1概形算出部222は、例えば、2つの到達予測時間の差の2倍を切り出し幅T3とする。すなわち、切り出し幅T3=2×(T2―T1)となっている。なお、切り出し幅T3は、環境情報設定部230に予め設定されていてもよい。
第1概形算出部222は、線形補間データに基づいて、直接音の立ち上がり時間T4を算出する(S105)。例えば、第1概形算出部222は、線形補間データにおける最も早いピーク(極大値)の時間(位置)を立ち上がり時間T4とすることができる.
第1概形算出部222は、切り出し範囲の線形補間データを切り出して、窓掛けを実施することで第1概形を算出する(S106)。例えば、立ち上がり時間T4よりも所定時間前の時間が切り出し開始時間T5となる。そして、切り出し開始時間T5から切り出し幅T3の時間を切り出し範囲として、線形補間データを切り出す。第1概形算出部222は、T5〜(T5+T3)の切り出し範囲の線形補間データを切り出すことで、切り出しデータを算出する。そして、第1概形算出部222は、切り出し範囲の外側で、データの両端が0に収束するように窓掛けを行うことで、第1概形を算出する。図6のグラフIIに第1概形の波形を示す。
第2概形算出部223は、平滑化フィルタ(3次関数近似)により、第1概形から第2概形を算出する(S107)。すなわち、第2概形算出部223は、第1概形に平滑化処理を行うことで、第2概形を算出する。ここでは、第2概形算出部223は、第1概形を3次関数近似によってスムージングしたデータを第2概形としている。図6のグラフIIに第2概形の波形を示す。もちろん、第2概形算出部223は、3次関数近似以外の平滑化フィルタを用いて、第2概形を算出してもよい。
極値算出部224は、第2概形の全ての極大値と極小値を求める(S108)。次に、極値算出部224は、最大を取る極大値よりも前の極値を排除する(S109)。最大を取る極大値は、直接音のピークに相当する。極値算出部224は、連続する2つの極値が、一定のレベル差の範囲内にある極値を排除する(S110)。このようにして、極値算出部224は、極値を抽出する。図6のグラフIIに第2概形から抽出された極値を示す。極値算出部224は、ボトム時間Tbの候補となる極小値を抽出する。
例えば、早い時間から、0.8(極大値)、0.5(極小値)、0.54(極大値)、0.2(極小値)、0.3(極大値)、0.1(極小値)の順に並んでいる数値例について説明する。一定のレベル差(しきい値)を0.05とした場合、[0.5(極小値)、0.54(極大値)]のペアでは、連続する2つの極値が一定のレベル差以下となる。その結果、極値算出部224は、0.5(極小値)、0.54(極大値)の極値を排除する。排除されずに残存した極値は、早い時間から順に、0.8(極大値)、0.2(極小値)、0.3(極大値)、0.1(極小値)になる。このように、極値算出部224は、不必要な極値を排除する。連続する2つの極値が一定のレベル差以下となる極値を排除することで、適切な極値のみを抽出することができる。
時間決定部225は、第1概形、及び第2概形に基づいて、直接音から初期反射音までにあるボトム時間Tbと、初期反射音のピーク時間Tpと、を算出する。具体的には、時間決定部225は、極値算出部224で得られた第2概形の極値の中で、最も早い時間の極小値の時間(位置)をボトム時間Tbとする(S111)。すなわち、極値算出部224で排除されなかった第2概形の極値のうち、最も早い時間にある極小値の時間がボトム時間Tbとなる。ボトム時間Tbを図6のグラフIIに示す。上記の数値例では、0.2(極小値)の時間がボトム時間Tbとなる。
時間決定部225は、第1概形の微分値を求めて、ボトム時間Tb以降で、微分値が最大を取る時間をピーク時間Tpとする(S112)。図6のグラフIIIに第1概形の微分値の波形とその最大点を示す。グラフIIIに示すように、第1概形の微分値の最大点がピーク時間Tpとなる。
探索範囲設定部226は、ボトム時間Tbとピーク時間Tpから探索範囲Tsを決定する(S113)。例えば、探索範囲設定部226は、ボトム時間Tbから規定時間T6だけ前の時間を探索開始時間T7(=Tb−T6)とし、ピーク時間Tpを探索終了時間とする。この場合、探索範囲Tsは、T7〜Tpとなる。
そして、評価関数算出部227は、探索範囲Tsにおける一対の収音信号と基準信号のデータを用いて、評価関数(第3概形)を算出する(S114)。なお、一対の収音信号は、伝達特性Hlsに対応する収音信号と伝達特性Hloに対応する収音信号とである。基準信号は、探索範囲Tsにおける値が全て0となる信号である。そして、評価関数算出部227は、2つの収音信号と1つの基準信号の3つの信号について、絶対値の平均値と標本標準偏差を算出する。
例えば、時間Tにおける伝達特性Hlsの収音信号の絶対値をABSHls(t)とし、伝達特性Hloの収音信号の絶対値をABSHlo(t)とし、基準信号の絶対値をABSRef(t)とする。3つの絶対値の平均値ABSave=(ABSHls(t)+ABSHlo(t)+ABSHls(t))/3となる。また、3つの絶対値ABSHls(t)、ABSHlo(t)、ABSRef(t)の標本標準偏差をσ(t)とする。そして、評価関数算出部227は、絶対値の平均値ABSaveと標本標準偏差σ(t)の加算値(ABSave(t)+σ(t))を評価関数とする。評価関数は、探索範囲Tsにおける時間に応じて変化する信号となる。評価関数を図6のグラフIVに示す。
そして、分離境界点算出部228は、評価関数が最小となる点を探索して、その時間を分離境界点とする(S115)。評価関数が最小となる点(T8)を図6のグラフIVに示す。このようにすることで、直接音と初期反射音を適切に分離するための分離境界点を算出することができる。基準信号を用いて評価関数を算出することで、一対の収音信号が0に近い点を分離境界点とすることができる。
そして、特性分離部229は、分離境界点で、一対の収音信号を分離する。これにより、収音信号が、直接音を含む伝達特性(信号)と、初期反射音を含む伝達特性(信号)とに分離される。すなわち、分離境界点より前の信号は、直接音の伝達特性を示すものとなる。分離境界点の後の信号では、壁面や床面などの物体で反射した反射音の伝達特性が支配的となる
特性解析部241は、分離境界点の前後の信号の周波数特性などを解析する。特性解析部241は離散フーリエ変換や離散コサイン変換を行って、周波数特性を算出する。特性調整部242は、分離境界点前後の信号の周波数特性などを調整する。例えば、特性調整部242分離境界点前後の信号のどちらかに、応答のある周波数帯域の振幅などを調整することができる。特性生成部243は、特性解析部241、特性調整部242で解析、調整された特性を合成することで、伝達特性を生成する。
特性解析部241、特性調整部242、及び特性生成部243における処理は、公知の手法を用いることができるため、説明を省略する。特性生成部243で生成された伝達特性が伝達特性Hls,Hloに対応するフィルタとなる。そして、出力器250は、特性生成部243が生成した特性をフィルタとして頭外低位処理装置100に出力する。
このように、本実施形態では、収音信号取得部212が、音源である左スピーカ5Lからマイク2Lに直接到達する直接音と、反射音とを含む収音信号を取得する。第1概形算出部222は、収音信号の時間振幅データに基づく第1概形を算出している。第2概形算出部223は、第1概形を平滑化することで、収音信号の第2概形を算出している。時間決定部225は、第1概形と第2概形に基づいて、収音信号の直接音から初期反射音までにあるボトム時間(ボトム位置)と、初期反射音のピーク時間(ピーク位置)と、を決定している。
時間決定部225は、収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間とを適切に求めることができる。すなわち、直接音と反射音とを適切に分離するための情報であるボトム時間、及びピーク時間を、適切に求めることができる。本実施の形態によれば、収音信号を適切に処理することができる。
さらに、本実施の形態では、第1概形算出部222は、収音信号の時間振幅データを求めるために、収音信号をヒルベルト変換している。そして、第1概形算出部222は、第1概形を求めるために、時間振幅データのピークを補間している。第1概形算出部222は、ピークを補間した補間データの両端が0に収束するように、窓掛けを行っている。これにより、ボトム時間Tbとピーク時間Tpを求めるための第1概形を適切に求めることができる。
第2概形算出部223は、第1概形に対して、3次関数近似等を用いた平滑化処理を行うことで、第2概形を算出している。これにより、ボトム時間Tbとピーク時間Tpを求めるための第2概形を適切に求めることができる。なお、第2概形を算出するための近似式は、3次関数以外の多項式や、その他の関数を用いてもよい。
ボトム時間Tbとピーク時間Tpとに基づいて、探索範囲Tsが設定されている。これにより、分離境界点を適切に算出することができる。また、コンピュータプログラムなどにより、自動的に分離境界点を算出することが可能となる。特に、反射音が収束していないタイミングで初期反射音が到達する測定環境であっても、適切な分離が可能となる。
また、本実施の形態では、環境情報設定部230において、測定環境に関する環境情報が設定されている。そして、環境情報に基づいて、切り出し幅T3を設定している。これにより、より適切にボトム時間Tbとピーク時間Tpとを求めることができる。
評価関数算出部227は、2つのマイク2L、2Rで取得した収音信号に基づいて、評価関数を算出している。これにより、適切な評価関数を算出することができる。したがって、音源から遠いマイク2Rの収音信号についても、適切な分離境界点を求めることができる。もちろん、音源からの音を3つ以上のマイクで収音する場合、3つ以上の収音信号によって評価関数を求めてもよい。
また、評価関数算出部227は、収音信号毎に評価関数を求めてもよい。この場合、分離境界点算出部228は、収音信号毎に分離境界点を算出する。これにより、収音信号毎に適切な分離境界点を決定することができる。例えば、探索範囲Tsにおいて、評価関数算出部227は、収音信号の絶対値を評価関数として算出する。分離境界点算出部228は、評価関数が最小となる点を分離境界点とすることができる。分離境界点算出部228は、評価関数の変動が小さくなる点を分離境界点とすることができる。
右スピーカ5Rについても、左スピーカ5Lと同様の処理を行う。これにより、図1で示した畳み込み演算部11、12、21、22におけるフィルタと求めることができる。よって、精度の高い頭外低位処理を行うことができる。
実施の形態2.
本実施の形態にかかる信号処理方法について、図7〜図9を用いて説明する。図7,及び図8は、本実施の形態2にかかる信号処理方法を示すフローチャートである。図9は、各処理を説明するための波形を示す図である。なお、実施の形態2におけるフィルタ生成装置200、及び信号処理装置201等の構成は実施の形態1で示した図2,図3と同様であるため説明を省略する。
本実施の形態では、第1概形算出部222、第2概形算出部223、時間決定部225、評価関数算出部227、及び分離境界点算出部228における処理等が実施の形態1の処理と異なっている。なお、実施の形態1と同様の処理については適宜説明を省略する。例えば、極値算出部224、特性分離部229、特性解析部241、特性調整部242、特性生成部243等の処理は実施の形態1の処理と同様であるため、詳細な説明を省略する。
まず、信号選択部221は、収音信号取得部212で取得された一対の収音信号のうち、音源に近い方の収音信号を選択する(S201)。これにより、実施の形態1と同様に、信号選択部221は、伝達特性Hlsに対応する収音信号を選択する。なお、一対の収音信号を図9のグラフIに示す。
第1概形算出部222は、収音信号の時間振幅データに基づく第1概形を算出する。第1概形を算出するため、まず、第1概形算出部222は、選択された収音信号の振幅の絶対値のデータに対して、単純移動平均を取ることで、平滑化を行う(S202)。ここで、収音信号の振幅の絶対値のデータを時間振幅データとする。そして、時間振幅データを平滑化処理することで得られたデータを平滑化データとする。なお、平滑化処理の方法については、単純移動平均に限られるものではない。
第1概形算出部222は、直接音の到達予測時間T1と初期反射音の到達予測時間T2とに基づいて切り出し幅T3を設定する(S203)。切り出し幅T3は、S104と同様に、環境情報に基づいて、設定することができる。
第1概形算出部222は、平滑化データに基づいて、直接音の立ち上がり時間T4を算出する(S104)。例えば、第1概形算出部222は、平滑化データにおける最も早いピーク(極大値)の位置(時間)を立ち上がり時間T4とすることができる。
第1概形算出部222は、切り出し範囲の平滑化データを切り出して、窓掛けを実施することで第1概形を算出する(S205)。S205での処理は、S106での処理と同様であるため、説明を省略する。図9のグラフIIに第1概形の波形を示す。
第2概形算出部223は、3次スプライン補間により、第1概形から第2概形を算出する(S206)。すなわち、第2概形算出部223は、3次スプライン補間を適用して、第1概形を平滑化することで、第2概形を算出する。図9のグラフIIに第2概形の波形を示す。もちろん、第2概形算出部223は、3次スプライン補間以外の手法を用いて、第1概形を平滑化してもよい。例えば、B−スプライン補間、ベジエ曲線による近似、ラグランジュ補間、Savitzky−Golayフィルタによるスムージングなど、平滑化の手法は特に限定されるものではない。
極値算出部224は、第2概形の全ての極大値と極小値を求める(S207)。次に、極値算出部224は、最大を取る極大値よりも前の極値を排除する(S208)。最大を取る極大値は、直接音のピークに相当する。極値算出部224は、連続する2つの極値が、一定のレベル差の範囲内にある極値を排除する(S209)。これにより、ボトム時間Tbの候補となる極小値と、ピーク時間Tpの候補となる極大値との候補が求められる。S207〜S209の処理は、S108〜S110の処理と同様であるため、説明を省略する。図9のグラフIIに第2概形の極値を示す。
次に、時間決定部225は、連続する2つの極値間の差が最大となる極値対を求めるS210)。極値間の差は、時間軸方向における傾きで定義される値である。時間決定部225が求める極値対は、極小値の後に極大値となる並び順になる。すなわち、極大値の後に極小値となる並び順では、極値間の差が負となるため、時間決定部225が求める極値対は、極小値の後に極大値となる並び順になっている。
時間決定部225は、求めた極値対の極小値の時間を直接音から初期反射音までにあるボトム時間Tbとし、極大値の時間を初期反射音のピーク時間Tpとする(S211)。図9のグラフIIIにボトム時間Tbと、ピーク時間Tpとを示す。
探索範囲設定部226は、ボトム時間Tbとピーク時間Tpから探索範囲Tsを決定する(S212)。例えば、S113と同様に、探索範囲設定部226は、ボトム時間Tbから規定時間T6だけ前の時間を探索開始時間T7(=Tb―T6)とし、ピーク時間Tpを探索終了時間とする。
評価関数算出部227は、探索範囲Tsにおける一対の収音信号のデータを用いて、評価関数(第3概形)を算出する(S213)。なお、一対の収音信号は、伝達特性Hlsに対応する収音信号と伝達特性Hloに対応する収音信号とである。従って、本実施の形態では、実施の形態1と異なり、評価関数算出部227が、基準信号を用いずに評価関数を算出している。
ここでは、一対の収音信号の絶対値和を評価関数としている。例えば、時間Tにおける伝達特性Hlsの収音信号の絶対値をABSHls(t)とし、伝達特性Hloの収音信号の絶対値をABSHlo(t)とする。評価関数はABSHls(t)+ABSHlo(t)となる。評価関数を図9のグラフIIIに示す。
分離境界点算出部228は、反復探索法により、評価関数の収束点を求めて、その時間を分離境界点とする(S214)。図9のグラフIIIに評価関数の収束点の時間T8を示す。例えば、本実施の形態では、分離境界点算出部228が以下の通りに反復探索することで、分離境界点を算出している。
(1)探索範囲Tsの先頭から一定の窓幅のデータを抽出して、その総和を求める。
(2)窓を時間軸方向にずらして、順次、窓幅のデータの総和を求めていく。
(3)求めた総和が最小となる窓位置を決定して、そのデータを切り出し、新しい探索範囲とする。
(4)収束点が求まるまで、(1)〜(3)の処理を繰り返す。
反復探索法を用いることで、評価関数の変動が小さくなる時間を分離境界点とすることができる。図10は、反復探索法により切り出されたデータを示す波形図である。図10では、第1探索〜第3探索の3回探索を繰り返す処理で得られた波形を示している。なお、図10では、横軸である時間軸をサンプル数で示している。
第1探索では、分離境界点算出部228が、探索範囲Tsにおいて、第1の窓幅で順次総和を求めていく。第2探索では、分離境界点算出部228が、第1探索で求められた窓位置における第1の窓幅を探索範囲Ts1として、第2の窓幅で順次総和を求めていく。なお、第2の窓幅は第1の窓幅よりも狭くなっている。
同様に、第3探索では、分離境界点算出部228が、第2探索で求められた窓位置における第2の窓幅を探索範囲Ts2として、第3の窓幅で順次総和を求めていく。なお、第3の窓幅は第2の窓幅よりも狭くなっている。各探索における窓幅は、適切に設定されていればどのような値でもよい。また、反復毎に窓幅を適宜変更してもよい。さらには、実施形態1のように、評価関数の最小値を分離境界点としてもよい。
このように、本実施形態では、収音信号取得部212が、音源である左スピーカ5Lからマイク2Lに直接到達する直接音と、反射音とを含む収音信号を取得する。第1概形算出部222は、収音信号の時間振幅データに基づく第1概形を算出している。第2概形算出部223は、第1概形を平滑化することで、収音信号の第2概形を算出している。時間決定部225は、第2概形に基づいて、収音信号の直接音から初期反射音までにあるボトム時間(ボトム位置)と、初期反射音のピーク時間(ピーク位置)と、を決定している。
このようにすることで、収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間とを適切に求めることができる。すなわち、直接音と反射音とを適切に分離するための情報であるボトム時間、及びピーク時間を、適切に求めることができる。このように、実施の形態2の処理によっても,実施の形態1と同様に,収音信号を適切に処理することができる。
なお、時間決定部225は、第1概形、及び第2概形の少なくとも一方に基づいて、ボトム時間Tbとピーク時間Tpを決定すればよい。具体的には、ピーク時間Tpは、実施の形態1のように、第1概形に基づいて決定されてもよく、実施の形態2のように第2概形に基づいて決定されてもよい。また、実施の形態1、2では、時間決定部225が、第2概形に基づいてボトム時間Tbを決定しているが、第1概形に基づいて、ボトム時間Tbを決定してもよい。
なお、実施の形態1の処理と実施の形態2の処理は適宜組み合わせることができる。例えば、第1の実施形態における第1概形算出部222の処理の代わりに、第2の実施形態における第1概形算出部222の処理を用いてもよい。同様に、第1の実施形態における第2概形算出部223、極値算出部224、時間決定部225、探索範囲設定部226、評価関数算出部227、又は分離境界点算出部228の処理の代わりに、第2の実施形態における第2概形算出部223、極値算出部224、時間決定部225、探索範囲設定部226、評価関数算出部227、又は分離境界点算出部228の処理を用いてもよい。
あるいは、第2の実施形態における第1概形算出部222、第2概形算出部223、極値算出部224、時間決定部225、探索範囲設定部226、評価関数算出部227、又は分離境界点算出部228の処理の代わりに、第1の実施形態における第1概形算出部222、第2概形算出部223、極値算出部224、時間決定部225、探索範囲設定部226、評価関数算出部227、又は分離境界点算出部228の処理を用いてもよい。このように、第1概形算出部222、第2概形算出部223、極値算出部224、時間決定部225、探索範囲設定部226、評価関数算出部227、及び分離境界点算出部228の処理の少なくとも1つ以上を、実施の形態1と実施の形態2とで置き換えて、実施することが可能である。
上記処理のうちの一部又は全部は、コンピュータプログラムによって実行されてもよい。上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non−transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限られたものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
U ユーザ
2 マイクユニット
2L 左マイク
2R 右マイク
5L 左スピーカ
5R 右スピーカ
9L 左耳
9R 右耳
10 頭外定位処理部
11 畳み込み演算部
12 畳み込み演算部
21 畳み込み演算部
22 畳み込み演算部
24 加算器
25 加算器
41 フィルタ部
42 フィルタ部
200 フィルタ生成装置
201 信号処理装置
211 測定信号生成部
212 収音信号取得部
221 信号選択部
222 第1概形算出部
223 第2概形算出部
224 極値算出部
225 時間決定部
226 探索範囲設定部
227 評価関数算出部
228 分離境界点算出部
229 特性分離部
230 環境情報設定部
241 特性解析部
242 特性調整部
243 特性生成部
250 出力器

Claims (5)

  1. 音源からマイクに直接到達する直接音と、反射音とを含む収音信号を取得する収音信号取得部と、
    前記収音信号の時間振幅データに基づく第1概形を算出する第1概形算出部と、
    前記第1概形を平滑化することで、前記収音信号の第2概形を算出する第2概形算出部と、
    前記第1概形と前記第2概形の少なくとも一方に基づいて、前記収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間と、を決定する時間決定部とを備えた信号処理装置。
  2. 前記ボトム時間と前記ピーク時間とに基づいて、分離境界点を探索するための探索範囲を決定する探索範囲決定部をさらに備えた請求項1に記載の信号処理装置。
  3. 前記探索範囲における前記収音信号に基づいて、評価関数を算出する評価関数算出部と、
    前記評価関数に基づいて、前記分離境界点を算出する分離境界点算出部と、をさらに備えた請求項2に記載の信号処理装置。
  4. 音源からマイクに直接到達する直接音と、反射音とを含む収音信号を取得するステップと、
    前記収音信号の時間振幅データに基づく前記収音信号の第1概形を算出するステップと、
    前記第1概形を平滑化することで、前記収音信号の第2概形を算出するステップと、
    前記第1概形と前記第2概形の少なくとも一方に基づいて、前記収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間と、を決定するステップとを備えた信号処理方法。
  5. 音源から出力される音をマイクにより収音することで得られた収音信号を処理する信号処理方法を、コンピュータに実行させるプログラムであって、
    前記信号処理方法は、
    音源からマイクに直接到達する直接音と、反射音とを含む収音信号を取得するステップと、
    前記収音信号の時間振幅データに基づく前記収音信号の第1概形を算出するステップと、
    前記第1概形を平滑化することで、前記収音信号の第2概形を算出するステップと、
    前記第1概形と前記第2概形の少なくとも一方に基づいて、前記収音信号の直接音から初期反射音までにあるボトム時間と、初期反射音のピーク時間と、を決定するステップとを備えた、プログラム。
JP2017183337A 2017-02-24 2017-09-25 信号処理装置、信号処理方法、及びプログラム Active JP6904197B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017183337A JP6904197B2 (ja) 2017-09-25 2017-09-25 信号処理装置、信号処理方法、及びプログラム
EP18756889.4A EP3588987A4 (en) 2017-02-24 2018-02-06 FILTER GENERATION DEVICE, FILTER GENERATION METHOD AND PROGRAM
PCT/JP2018/003975 WO2018155164A1 (ja) 2017-02-24 2018-02-06 フィルタ生成装置、フィルタ生成方法、及びプログラム
CN201880011697.9A CN110301142B (zh) 2017-02-24 2018-02-06 滤波器生成装置、滤波器生成方法以及存储介质
US16/549,928 US10805727B2 (en) 2017-02-24 2019-08-23 Filter generation device, filter generation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183337A JP6904197B2 (ja) 2017-09-25 2017-09-25 信号処理装置、信号処理方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2019062265A true JP2019062265A (ja) 2019-04-18
JP6904197B2 JP6904197B2 (ja) 2021-07-14

Family

ID=66177674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183337A Active JP6904197B2 (ja) 2017-02-24 2017-09-25 信号処理装置、信号処理方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP6904197B2 (ja)

Also Published As

Publication number Publication date
JP6904197B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6791001B2 (ja) 頭外定位フィルタ決定システム、頭外定位フィルタ決定装置、頭外定位決定方法、及びプログラム
JP6922603B2 (ja) 信号処理装置、信号処理方法、及びプログラム
US10412530B2 (en) Out-of-head localization processing apparatus and filter selection method
US10405127B2 (en) Measurement device, filter generation device, measurement method, and filter generation method
JP6565709B2 (ja) 音像定位処理装置、及び音像定位処理方法
CN110301142B (zh) 滤波器生成装置、滤波器生成方法以及存储介质
US10687144B2 (en) Filter generation device and filter generation method
CN108605197B (zh) 滤波器生成装置、滤波器生成方法以及声像定位处理方法
JP6981330B2 (ja) 頭外定位処理装置、頭外定位処理方法、及びプログラム
JP6904197B2 (ja) 信号処理装置、信号処理方法、及びプログラム
JP6805879B2 (ja) フィルタ生成装置、フィルタ生成方法、及びプログラム
JP6950405B2 (ja) 処理装置、処理方法、及びプログラム
JP2017028365A (ja) 音場再生装置、音場再生方法、及びプログラム
WO2021059984A1 (ja) 頭外定位フィルタ決定システム、頭外定位処理装置、頭外定位フィルタ決定装置、頭外定位フィルタ決定方法、及びプログラム
JP7435334B2 (ja) 頭外定位フィルタ決定システム、頭外定位フィルタ決定方法、及びプログラム
WO2021059983A1 (ja) ヘッドホン、頭外定位フィルタ決定装置、頭外定位フィルタ決定システム、頭外定位フィルタ決定方法、及びプログラム
JP6988321B2 (ja) 信号処理装置、信号処理方法、及びプログラム
JP2023024038A (ja) 処理装置、及び処理方法
JP2022185840A (ja) 頭外定位処理装置、及び頭外定位処理方法
JP2021052274A (ja) ヘッドホン、頭外定位フィルタ決定装置、及び頭外定位フィルタ決定方法
JP2021052273A (ja) 頭外定位フィルタ決定システム、頭外定位フィルタ決定方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6904197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150