JP2023024038A - 処理装置、及び処理方法 - Google Patents

処理装置、及び処理方法 Download PDF

Info

Publication number
JP2023024038A
JP2023024038A JP2021130085A JP2021130085A JP2023024038A JP 2023024038 A JP2023024038 A JP 2023024038A JP 2021130085 A JP2021130085 A JP 2021130085A JP 2021130085 A JP2021130085 A JP 2021130085A JP 2023024038 A JP2023024038 A JP 2023024038A
Authority
JP
Japan
Prior art keywords
compression
processing
data
spectral data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021130085A
Other languages
English (en)
Inventor
優美 藤井
Yumi Fujii
寿子 村田
Toshiko Murata
敬洋 下条
Takahiro Shimojo
邦明 高地
Kuniaki Kochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2021130085A priority Critical patent/JP2023024038A/ja
Priority to CN202210788216.3A priority patent/CN115938376A/zh
Priority to US17/859,430 priority patent/US20230040821A1/en
Publication of JP2023024038A publication Critical patent/JP2023024038A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】バランスの良いフィルタを生成することができる処理装置及び処理方法を提供する。【解決手段】空間音響伝達特性を測定する測定装置において、空間音響フィルタを適切に生成するための演算処理を行う処理装置201は、収音信号の周波数特性を取得する周波数特性取得部214と、周波数特性に基づく第1スペクトルデータよりも平滑な第2スペクトルデータを生成するように、平滑化処理を施す平滑化処理部215と、第1の帯域における第2スペクトルデータと第1スペクトルデータとの差分に応じた第1差分値を算出し、第1差分値に基づいて前記第2スペクトルデータを圧縮する第1圧縮部217と、第2スペクトルデータに基づいて、フィルタを生成するフィルタ生成部221と、を備えている。【選択図】図3

Description

本開示は、処理装置、及び処理方法に関する。
音像定位技術として、ヘッドホンを用いて受聴者の頭部の外側に音像を定位させる頭外定位技術がある。頭外定位技術では、ヘッドホンから耳までの特性(ヘッドホン特性)をキャンセルし、1つのスピーカ(モノラルスピーカ)から耳までの2本の特性(空間音響伝達特性)を与えることにより、音像を頭外に定位させている。
ステレオスピーカの頭外定位再生においては、2チャンネル(以下、chと記載)のスピーカから発した測定信号(インパルス音等)を聴取者(リスナー)本人の耳に設置したマイクロフォン(以下、マイクとする)で録音する。そして、測定信号を収音して得られた収音信号に基づいて、処理装置がフィルタを生成する。生成したフィルタを2chのオーディオ信号に畳み込むことにより、頭外定位再生を実現することができる。
さらに、ヘッドホンから耳までの特性をキャンセルするフィルタ(逆フィルタともいう)を生成するために、ヘッドホンから耳元乃至鼓膜までの特性(外耳道伝達関数ECTF、外耳道伝達特性とも称する)を聴取者本人の耳に設置したマイクで測定する。
特許文献1には、頭外定位処理を行う装置が開示されている。さらに、特許文献1では、頭外定位処理が再生信号に対して、DRC(Dynamic Range Compression)処理を行っているが、そのDRC処理の前段階において、処理装置が周波数特性を平滑化している。さらに、処理装置が、平滑化した特性に基づいて帯域分割を行っている。
特開2019-62430号公報
頭外定位処理はスピーカの個数分の空間音響伝達特性から得られる空間音響フィルタと、ヘッドホンのECTFから算出される逆フィルタを用いている。頭外定位効果を最大限得るには、なるべく測定されたままの空間音響フィルタと、正確な逆フィルタを用いることが理想である。
しかしながら、マイクを用いた測定により得られた周波数振幅特性において急峻なピーク(レベルが非常に高い狭帯域部分)やディップ(レベルが非常に低い狭帯域部分)が発生する。このため、信号処理された信号がクリップすることがよくある。
ピーク及びディップのレベルや周波数には、様々な要因による変化する。例えば、測定位置におけるスピーカの特性、部屋の音響特性、ヘッドホンの特性などによって、レベルや周波数が変化する。また、個人の頭部や耳の形状によって、レベルや周波数が変わる。このため、測定時の使用機材によって特性をその都度確認し、その機材に合わせた調整を試聴確認しながら行わなければならなかった。
したがって、圧縮処理での補正量(圧縮量)が大きくすぎると、個人の持つ個人特性のバランスが崩れてしまう。したがって、定位のバランスが崩れてしまい、頭外定位の効果を損ねてしまうというおそれがある。
さらに、低周波数帯域の個人特性を正確に測定するためにはマイクの収音時間を長くして測定を行う必要がある。耳にマイクを装着した被測定者が測定中に動いてしまうと、個人特性が変化してしまう。したがって、バランスの良いフィルタを生成することが困難である。
本開示は上記の点に鑑みなされたものであり、バランスの良いフィルタを生成することができる処理装置、及び処理方法を提供することを目的とする。
本実施の形態にかかる処理装置は、入力信号の周波数特性を取得する周波数特性取得部と、前記周波数特性に基づく第1スペクトルデータよりも平滑な第2スペクトルデータを生成するように、平滑化処理を施す平滑化処理部と、第1の帯域における前記第2スペクトルデータと前記第1スペクトルデータとの差分に応じた第1差分値を算出し、前記第1差分値に基づいて前記第2スペクトルデータを圧縮する第1圧縮部と、前記第2スペクトルデータに基づいて、フィルタを生成するフィルタ生成部と、を備えている。
本実施の形態にかかる処理方法は、入力信号の周波数特性を取得するステップと、前記周波数特性に基づく第1スペクトルデータよりも平滑な第2スペクトルデータを生成するように、平滑化処理を施すステップと、第1の帯域における前記第2スペクトルデータと前記第1スペクトルデータとの差分に応じた第1差分値を算出し、前記第1差分値に基づいて前記第2スペクトルデータを圧縮するステップと、前記第2スペクトルデータに基づいて、フィルタを生成するステップと、を含んでいる。
本開示によれば、バランスの良いフィルタを生成することができる処理装置、及び処理方法を提供することができる。
本実施の形態に係る頭外定位処理装置を示すブロック図である。 測定装置の構成を模式的に示す図である。 処理装置の構成を示すブロック図である。 第1圧縮処理においてを説明するためのグラフである。 第1圧縮処理で得られたスペクトルを示すグラフである。 第2圧縮処理を説明するためのグラフである。 第2圧縮処理で得られたスペクトルを示すグラフである。 実施の形態にかかる処理方法を説明するフローチャートである。 第1圧縮処理で圧縮されたスペクトルデータを示すグラフである。 第1圧縮処理で圧縮されたスペクトルデータを示すグラフである。 第1圧縮処理で圧縮されたスペクトルデータを示すグラフである。 第1圧縮処理で圧縮されたスペクトルデータを示すグラフである。
本実施の形態にかかる音像定位処理の概要について説明する。本実施の形態にかかる頭外定位処理は、空間音響伝達特性と外耳道伝達特性を用いて頭外定位処理を行うものである。空間音響伝達特性は、スピーカなどの音源から外耳道までの伝達特性である。外耳道伝達特性は、ヘッドホン又はイヤホンのスピーカユニットから鼓膜までの伝達特性である。本実施の形態では、ヘッドホン又はイヤホンを装着していない状態での空間音響伝達特性を測定し、かつ、ヘッドホン又はイヤホンを装着した状態での外耳道伝達特性を測定し、それらの測定データを用いて頭外定位処理を実現している。本実施の形態は、空間音響伝達特性、又は外耳道伝達特性を測定するためのマイクシステムに特徴を有している。
本実施の形態にかかる頭外定位処理は、パーソナルコンピュータ、スマートホン、タブレットPCなどのユーザ端末で実行される。ユーザ端末は、プロセッサ等の処理手段、メモリやハードディスクなどの記憶手段、液晶モニタ等の表示手段、タッチパネル、ボタン、キーボード、マウスなどの入力手段を有する情報処理装置である。ユーザ端末は、データを送受信する通信機能を有していてもよい。さらに、ユーザ端末には、ヘッドホン又はイヤホンを有する出力手段(出力ユニット)が接続される。ユーザ端末と出力手段との接続は、有線接続でも無線接続でもよい。
実施の形態1.
(頭外定位処理装置)
本実施の形態にかかる音場再生装置の一例である、頭外定位処理装置100のブロック図を図1に示す。頭外定位処理装置100は、ヘッドホン43を装着するユーザUに対して音場を再生する。そのため、頭外定位処理装置100は、LchとRchのステレオ入力信号XL、XRについて、音像定位処理を行う。LchとRchのステレオ入力信号XL、XRは、CD(Compact Disc)プレイヤーなどから出力されるアナログのオーディオ再生信号、又は、mp3(MPEG Audio Layer-3)等のデジタルオーディオデータである。なお、オーディオ再生信号、又はデジタルオーディオデータをまとめて再生信号と称する。すなわち、LchとRchのステレオ入力信号XL、XRが再生信号となっている。
なお、頭外定位処理装置100は、物理的に単一な装置に限られるものではなく、一部の処理が異なる装置で行われてもよい。例えば、一部の処理がスマートホンなどにより行われ、残りの処理がヘッドホン43に内蔵されたDSP(Digital Signal Processor)などにより行われてもよい。
頭外定位処理装置100は、頭外定位処理部10、逆フィルタLinvを格納するフィルタ部41、逆フィルタRinvを格納するフィルタ部42、及びヘッドホン43を備えている。頭外定位処理部10、フィルタ部41、及びフィルタ部42は、具体的にはプロセッサ等により実現可能である。
頭外定位処理部10は、空間音響伝達特性Hls、Hlo、Hro、Hrsを格納する畳み込み演算部11~12、21~22、及び加算器24、25を備えている。畳み込み演算部11~12、21~22は、空間音響伝達特性を用いた畳み込み処理を行う。頭外定位処理部10には、CDプレイヤーなどからのステレオ入力信号XL、XRが入力される。頭外定位処理部10には、空間音響伝達特性が設定されている。頭外定位処理部10は、各chのステレオ入力信号XL、XRに対し、空間音響伝達特性のフィルタ(以下、空間音響フィルタとも称する)を畳み込む。空間音響伝達特性は被測定者の頭部や耳介で測定した頭部伝達関数HRTFでもよいし、ダミーヘッドまたは第三者の頭部伝達関数であってもよい。
4つの空間音響伝達特性Hls、Hlo、Hro、Hrsを1セットとしたものを空間音響伝達関数とする。畳み込み演算部11、12、21、22で畳み込みに用いられるデータが空間音響フィルタとなる。空間音響伝達特性Hls、Hlo、Hro、Hrsを所定のフィルタ長で切り出すことで、空間音響フィルタが生成される。
空間音響伝達特性Hls、Hlo、Hro、Hrsのそれぞれは、インパルス応答測定などにより、事前に取得されている。例えば、ユーザUが左右の耳にマイクをそれぞれ装着する。ユーザUの前方に配置された左右のスピーカが、インパルス応答測定を行うための、インパルス音をそれぞれ出力する。そして、スピーカから出力されたインパルス音等の測定信号をマイクで収音する。マイクでの収音信号に基づいて、空間音響伝達特性Hls、Hlo、Hro、Hrsが取得される。左スピーカと左マイクとの間の空間音響伝達特性Hls、左スピーカと右マイクとの間の空間音響伝達特性Hlo、右スピーカと左マイクとの間の空間音響伝達特性Hro、右スピーカと右マイクとの間の空間音響伝達特性Hrsが測定される。
そして、畳み込み演算部11は、Lchのステレオ入力信号XLに対して空間音響伝達特性Hlsに応じた空間音響フィルタを畳み込む。畳み込み演算部11は、畳み込み演算データを加算器24に出力する。畳み込み演算部21は、Rchのステレオ入力信号XRに対して空間音響伝達特性Hroに応じた空間音響フィルタを畳み込む。畳み込み演算部21は、畳み込み演算データを加算器24に出力する。加算器24は2つの畳み込み演算データを加算して、フィルタ部41に出力する。
畳み込み演算部12は、Lchのステレオ入力信号XLに対して空間音響伝達特性Hloに応じた空間音響フィルタを畳み込む。畳み込み演算部12は、畳み込み演算データを、加算器25に出力する。畳み込み演算部22は、Rchのステレオ入力信号XRに対して空間音響伝達特性Hrsに応じた空間音響フィルタを畳み込む。畳み込み演算部22は、畳み込み演算データを、加算器25に出力する。加算器25は2つの畳み込み演算データを加算して、フィルタ部42に出力する。
フィルタ部41、42にはヘッドホン特性(ヘッドホンの再生ユニットとマイク間の特性)をキャンセルする逆フィルタLinv、Rinvが設定されている。そして、頭外定位処理部10での処理が施された再生信号(畳み込み演算信号)に逆フィルタLinv、Rinvを畳み込む。フィルタ部41で加算器24からのLch信号に対して、Lch側のヘッドホン特性の逆フィルタLinvを畳み込む。同様に、フィルタ部42は加算器25からのRch信号に対して、Rch側のヘッドホン特性の逆フィルタRinvを畳み込む。逆フィルタLinv、Rinvは、ヘッドホン43を装着した場合に、ヘッドホンユニットからマイクまでの特性をキャンセルする。マイクは、外耳道入口から鼓膜までの間ならばどこに配置してもよい。
フィルタ部41は、処理されたLch信号YLをヘッドホン43の左ユニット43Lに出力する。フィルタ部42は、処理されたRch信号YRをヘッドホン43の右ユニット43Rに出力する。ユーザUは、ヘッドホン43を装着している。ヘッドホン43は、Lch信号YLとRch信号YR(以下、Lch信号YLとRch信号YRをまとめてステレオ信号とも称する)をユーザUに向けて出力する。これにより、ユーザUの頭外に定位された音像を再生することができる。
このように、頭外定位処理装置100は、空間音響伝達特性Hls、Hlo、Hro、Hrsに応じた空間音響フィルタと、ヘッドホン特性の逆フィルタLinv,Rinvを用いて、頭外定位処理を行っている。以下の説明において、空間音響伝達特性Hls、Hlo、Hro、Hrsに応じた空間音響フィルタと、ヘッドホン特性の逆フィルタLinv,Rinvとをまとめて頭外定位処理フィルタとする。2chのステレオ再生信号の場合、頭外定位フィルタは、4つの空間音響フィルタと、2つの逆フィルタとから構成されている。そして、頭外定位処理装置100は、ステレオ再生信号に対して合計6個の頭外定位フィルタを用いて畳み込み演算処理を行うことで、頭外定位処理を実行する。頭外定位フィルタは、ユーザU個人の測定に基づくものであることが好ましい。例えば,ユーザUの耳に装着されたマイクが収音した収音信号に基づいて、頭外定位フィルタが設定されている。
このように空間音響フィルタと、ヘッドホン特性の逆フィルタLinv,Rinvはオーディオ信号用のフィルタである。これらのフィルタが再生信号(ステレオ入力信号XL、XR)に畳み込まれることで、頭外定位処理装置100が、頭外定位処理を実行する。本実施の形態では、空間音響フィルタを生成する処理が技術的特徴の一つとなっている。具体的には、空間音響フィルタを生成する処理において、周波数特性におけるスペクトルデータのゲインレベルをレンジ圧縮するレベルレンジコントロール処理(Level Range Control、以降、LRC処理)が施されている。ここでは、周波数特性のスペクトルデータの最小ゲインのレベルと最大ゲインのレベルのレベル幅のことをレベルレンジと呼ぶ。
(空間音響伝達特性の測定装置)
図2を用いて、空間音響伝達特性Hls、Hlo、Hro、Hrsを測定する測定装置200について説明する。図2は、被測定者1に対して測定を行うための測定構成を模式的に示す図である。なお、ここでは、被測定者1は、図1のユーザUと同一人物となっているが、異なる人物であってもよい。
図2に示すように、測定装置200は、ステレオスピーカ5とマイクユニット2を有している。ステレオスピーカ5が測定環境に設置されている。測定環境は、ユーザUの自宅の部屋やオーディオシステムの販売店舗やショールーム等でもよい。測定環境は、スピーカや音響の整ったリスニングルームであることが好ましい。
本実施の形態では、測定装置200の処理装置201が、空間音響フィルタを適切に生成するための演算処理を行っている。処理装置201は、例えば、CDプレイヤー等の音楽プレイヤーなどを有している。処理装置201は、パーソナルコンピュータ(PC)、タブレット端末、スマートホン等であってもよい。また、処理装置201は、サーバ装置自体であってもよい。
ステレオスピーカ5は、左スピーカ5Lと右スピーカ5Rを備えている。例えば、被測定者1の前方に左スピーカ5Lと右スピーカ5Rが設置されている。左スピーカ5Lと右スピーカ5Rは、インパルス応答測定を行うためのインパルス音等を出力する。以下、本実施の形態では、音源となるスピーカの数を2(ステレオスピーカ)として説明するが、測定に用いる音源の数は2に限らず、1以上であればよい。すなわち、1chのモノラル、または、5.1ch、7.1ch等の、いわゆるマルチチャンネル環境においても同様に、本実施の形態を適用することができる。
マイクユニット2は、左のマイク2Lと右のマイク2Rを有するステレオマイクである。左のマイク2Lは、被測定者1の左耳9Lに設置され、右のマイク2Rは、被測定者1の右耳9Rに設置されている。具体的には、左耳9L、右耳9Rの外耳道入口から鼓膜までの位置にマイク2L、2Rを設置することが好ましい。マイク2L、2Rは、ステレオスピーカ5から出力された測定信号を収音して、収音信号を取得する。マイク2L、2Rは収音信号を処理装置201に出力する。被測定者1は、人でもよく、ダミーヘッドでもよい。すなわち、本実施形態において、被測定者1は人だけでなく、ダミーヘッドを含む概念である。
上記のように、左スピーカ5L、右スピーカ5Rで出力されたインパルス音をマイク2L、2Rで測定することでインパルス応答が測定される。処理装置201は、インパルス応答測定により取得した収音信号をメモリなどに記憶する。これにより、左スピーカ5Lと左マイク2Lとの間の空間音響伝達特性Hls、左スピーカ5Lと右マイク2Rとの間の空間音響伝達特性Hlo、右スピーカ5Rと左マイク2Lとの間の空間音響伝達特性Hro、右スピーカ5Rと右マイク2Rとの間の空間音響伝達特性Hrsが測定される。すなわち、左スピーカ5Lから出力された測定信号を左マイク2Lが収音することで、空間音響伝達特性Hlsが取得される。左スピーカ5Lから出力された測定信号を右マイク2Rが収音することで、空間音響伝達特性Hloが取得される。右スピーカ5Rから出力された測定信号を左マイク2Lが収音することで、空間音響伝達特性Hroが取得される。右スピーカ5Rから出力された測定信号を右マイク2Rが収音することで、空間音響伝達特性Hrsが取得される。
また、測定装置200は、収音信号に基づいて、左右のスピーカ5L、5Rから左右のマイク2L、2Rまでの空間音響伝達特性Hls、Hlo、Hro、Hrsに応じた空間音響フィルタを生成してもよい。例えば、処理装置201は、空間音響伝達特性Hls、Hlo、Hro、Hrsを所定のフィルタ長で切り出す。処理装置201は、測定した空間音響伝達特性Hls、Hlo、Hro、Hrsを補正してもよい。
このようにすることで、処理装置201は、頭外定位処理装置100の畳み込み演算に用いられる空間音響フィルタを生成する。図1で示したように、頭外定位処理装置100が、左右のスピーカ5L、5Rと左右のマイク2L、2Rとの間の空間音響伝達特性Hls、Hlo、Hro、Hrsに応じた空間音響フィルタを用いて頭外定位処理を行う。すなわち、空間音響フィルタをオーディオ再生信号に畳み込むことにより、頭外定位処理を行う。
処理装置201は、空間音響伝達特性Hls、Hlo、Hro、Hrsのそれぞれに対応する収音信号に対して同様の処理を実施している。すなわち、空間音響伝達特性Hls、Hlo、Hro、Hrsに対応する4つの収音信号に対して、それぞれ同様の処理が実施される。これにより、空間音響伝達特性Hls、Hlo、Hro、Hrsに対応する空間音響フィルタをそれぞれ生成することができる。
以下、測定装置200の処理装置201と、その処理について詳細に説明する。図3は、処理装置201を示す制御ブロック図である。処理装置201は、測定信号生成部211と、収音信号取得部212と、周波数特性取得部214と、平滑化処理部215と、軸変換部216と、第1圧縮部217、第2圧縮部218と、軸変換部220と、フィルタ生成部221と、を備えている。
測定信号生成部211は、D/A変換器やアンプなどを備えており、外耳道伝達特性を測定するための測定信号を生成する。測定信号は、例えば、インパルス信号やTSP(Time Stretched Pulse)信号等である。ここでは、測定信号としてインパルス音を用いて、測定装置200がインパルス応答測定を実施している。
マイクユニット2の左マイク2L、右マイク2Rがそれぞれ測定信号を収音し、収音信号を処理装置201に出力する。左マイク2L、右マイク2Rで収音された収音信号が入力信号として処理装置201に入力される。収音信号取得部212は、左マイク2L、右マイク2Rで収音された収音信号を取得する。なお、収音信号取得部212は、マイク2L、2Rからの収音信号をA/D変換するA/D変換器を備えていてもよい。収音信号取得部212は、複数回の測定により得られた信号を同期加算してもよい。
周波数特性取得部214は、収音信号の周波数特性を取得する。周波数特性取得部214は、離散フーリエ変換や離散コサイン変換により、収音信号の周波数特性を算出する。周波数特性取得部214は、例えば、時間領域の収音信号をFFT(高速フーリエ変換)することで、周波数特性を算出する。周波数特性は、振幅スペクトルと、位相スペクトルとを含んでいる。なお、周波数特性取得部214は振幅スペクトルの代わりにパワースペクトルを生成してもよい。
平滑化処理部215は、周波数特性に基づく第1スペクトルデータよりも平滑な第2スペクトルデータを生成するように平滑化処理を施す。つまり、平滑化処理部215は、周波数特性に基づくスペクトルデータに対して平滑化処理を行う。平滑化処理部215は、移動平均やSavitzky-Golayフィルタ、平滑化スプライン、ケプストラム変換、ケプストラム包絡線等の手法を用いて、スペクトルデータを平滑化する。
ケプストラム解析で平滑化した場合、平滑化処理部215は、リフターの次数を平滑化の次数として与える。この場合、平滑化処理部215が、平滑化の次数に異なる値を与えることで、平滑化の度合いを変えることができる。次数が大きい場合、平滑化の度合いが低くなり、次数が小さい場合、平滑化の度合いが高くなる。したがって、小さい次数の平滑化処理で得られたスペクトルデータは、大きい次数の平滑化処理で得られたスペクトルデータよりも平滑化されている。小さい次数の平滑化処理で得られたスペクトルデータは、大きい次数の平滑化処理で得られたスペクトルデータよりも滑らかになっている。
本実施の形態では、平滑化処理部215が、周波数振幅特性に対して、異なる次数の平滑化処理を行うことで、第1スペクトルデータ及び第2スペクトルデータを生成する。平滑化処理部215が、周波数振幅特性(振幅スペクトル)に対して、相対的に大きい次数の平滑化処理を行うことで、第1スペクトルデータが算出される。平滑化処理部215が、周波数振幅特性のスペクトルデータに対して、相対的に小さい次数の平滑化処理を行うことで、第2スペクトルデータ(平滑化スペクトルデータともいう)が算出される。平滑化処理部215は第1スペクトルデータと、第1スペクトルデータよりも平滑な第2スペクトルデータを生成する。
なお、以下の実施の形態では、大きい次数で平滑化処理されたスペクトルデータを第1スペクトルデータとしている。なお、周波数振幅特性に対して平滑化処理が施されていないスペクトルデータを第1スペクトルデータとしてもよい。つまり、FFTにより得られた周波数振幅特性を第1スペクトルデータとすることができる。
あるいは、平滑化処理部215は複数回平滑化処理を行うことで、第1スペクトルデータ及び第2スペクトルデータを生成する。つまり、平滑化処理部215は、周波数振幅特性に対して1回目の平滑化処理を行うことで、第1スペクトルデータを生成する。平滑化処理部215は、平滑化処理が施されている第1スペクトルデータに対して2回目の平滑化処理を施すことで、第2スペクトルデータを生成する。この場合、平滑化処理部215は、1回目の平滑化処理と2回目の平滑化処理で、同じ平滑化処理を用いてもよいし、異なる平滑化処理を用いてもよい。
図4は、第1スペクトルデータAと第2スペクトルデータAsmを示すグラフである。図4において、横軸が周波数[Hz]、縦軸が振幅値(ゲイン)[dB]となっている。第2スペクトルデータAsmは、第1スペクトルデータAよりも滑らかになっている。つまり、第2スペクトルデータAsmは、第1スペクトルデータAよりも平滑なゲインデータを有している。
軸変換部216は、データ補間により、第1スペクトルデータA、及び第2スペクトルデータAsmの周波数軸を変換する。軸変換部216は、対数軸において、離散的なスペクトルデータが等間隔になるように周波数振幅特性のデータの尺度を変化する。周波数特性取得部214で第1及び第2スペクトルデータ(以下、まとめてゲインデータともいう)は、周波数的に等間隔となっている。つまり、ゲインデータは、周波数線形軸において等間隔となっているため、周波数対数軸では非等間隔になっている。このため、軸変換部216は、周波数対数軸においてゲインデータが等間隔になるように、ゲインデータに対して補間処理を行う。
ゲインデータにおいて、対数軸上では、低周波数域になればなるほど隣接するデータ間隔は粗く、高周波数域になればなるほど隣接するデータ間隔は密になっている。そのため、軸変換部216は、データ間隔が粗い低周波数帯域のデータを補間する。具体的には、軸変換部216は、3次元スプライン補間等の補間処理を行うことで、対数軸において等間隔に配置された離散的なゲインデータを求める。軸変換が行われたゲインデータを、軸変換データとする。軸変換データは、周波数と振幅値(ゲイン値)とが対応付けられているスペクトルとなる。軸変換データは、軸変換が行われた平滑化スペクトルデータである。
周波数軸を対数尺度に変換する理由について説明する。一般的に人間の感覚量は対数に変換されていると言われている。そのため、聴こえる音の周波数も対数軸で考えることが重要になる。尺度変換することで、上記の感覚量においてデータが等間隔となるため、全ての周波数帯域でデータを等価に扱えるようになる。この結果、数学的な演算、周波数帯域の分割や重み付けが容易になり、安定した結果を得ることが可能になる。なお、軸変換部216は、対数尺度に限らず、人間の聴覚に近い尺度(聴覚尺度と称する)へ包絡線データを変換すればよい。聴覚尺度としては、対数尺度(Logスケール)、メル(mel)尺度、バーク(Bark)尺度、ERB(Equivalent Rectangular Bandwidth)尺度等で軸変換をしてもよい。
軸変換部216は、データ補間により、ゲインデータを聴覚尺度で尺度変換する。例えば、軸変換部216は、聴覚尺度においてデータ間隔が粗い低周波数帯域のデータを補間することで、低周波数帯域のデータを密にする。聴覚尺度で等間隔なデータは、線形尺度(リニアスケール)では低周波数帯域が密、高周波数帯域が粗なデータとなる。このようにすることで、軸変換部216は、聴覚尺度で等間隔な軸変換データを生成することができる。もちろん、軸変換データは、聴覚尺度において、完全に等間隔なデータでなくてもよい。
第1圧縮部217は、第1の帯域B1における第2スペクトルデータに対して第1圧縮処理を施す。第1圧縮部217は、第1の帯域B1における第2スペクトルデータと第1スペクトルデータとの差分に応じた第1差分値を算出する。第1圧縮部217は、第1差分値に基づいて第2スペクトルデータを圧縮する。例えば、第1圧縮部217は、第2スペクトルデータAsmから第1スペクトルデータAを減算した値(Asm-A)を第1差分値として算出する。第1差分値は周波数毎に算出される。
第1圧縮部217は、第1差分値(Asm-A)が正の値の場合、第1差分値(Asm-A)に第1圧縮係数lrcRate1を乗じることで第1圧縮値を算出する。第2スペクトルデータAsmに第1圧縮値lrcRate1*(Asm-A)を加算することで、圧縮処理を行う。第1圧縮部217は、第1差分値が負の値の場合、圧縮を行わない。つまり、第2スペクトルデータのゲインをそのまま用いる。
第1圧縮部217での第1圧縮処理は、以下の式(1)、式(2)で表される。
AがAsm未満の場合
lrc1=lrcRate1*(Asm-A)+Asm ・・・(1)
AがAsm以上の場合
lrc1=Asm ・・・(2)
第1圧縮部217は、各周波数において、上記のAlrc1を算出する。第1圧縮部217は、第1スペクトルデータのゲインが、第2スペクトルデータのゲインを上回る周波数では、第2スペクトルデータに第1圧縮値を加算しない。第1スペクトルデータのゲインが、第2スペクトルデータのゲインを下回る周波数では、第2スペクトルデータに第1圧縮値を加算する。第1スペクトルデータのゲインが、第2スペクトルデータのゲインを下回る周波数では、第2スペクトルデータのゲインが第1スペクトルデータのゲインに近づくようにレンジを圧縮する。第1圧縮部217は、第1の帯域B1における第2スペクトルデータに対して第1圧縮処理を施すことで、第3スペクトルデータを生成する。つまり、第1圧縮部217で圧縮された第2スペクトルデータが第3スペクトルデータとなる。
例えば、ある周波数における第2スペクトルデータAsmが5dB、第1スペクトルデータAが3dBとする。第1差分値(Asm-A)は2dBとなる。また、第1圧縮係数lrcRate1=0.5とする。第1圧縮値は0.5*(5-3)=1[dB]となり、第3スペクトルデータAlrc1=5-1=4[dB]となる。
このように、第1圧縮部217は、第1差分値に基づいて、圧縮を行うか否かを判定している。つまり、第1圧縮部217は、第1差分値の符号(正負)に応じて、圧縮を行う周波数と圧縮を行わない周波数を決定している。圧縮を行う周波数では、圧縮後のゲインが第1スペクトルデータと第2スペクトルデータの間の値となる。
第1圧縮部217での第1圧縮処理で得られた第3スペクトルデータAlrc1を図5に示す。図5は、第3スペクトルデータAlrc1を示すグラフである。第1の帯域B1以外の帯域では、第2スペクトルデータのゲインと第3スペクトルデータのゲインは一致している。第1の帯域B1の下限周波数をf1Sとし、上限周波数をf1Eとする。
例えば、第1の帯域B1は20Hz~1kHzとすることができる。第1の帯域B1の下限周波数f1Sは20Hzとなり、上限周波数f1Eは1kHzとなっている。もちろん、第1の帯域B1はこの範囲に限定されるものではない。
第2圧縮部218は、第2の帯域における第3スペクトルデータに対して、第2圧縮処理を施す。第2圧縮部218は、第2の帯域において、基準値と第3スペクトルデータとの差分に応じた第2差分値を算出する。第2圧縮部218は、第2差分値に基づいて第3スペクトルデータを圧縮する。基準値Arefはスペクトルデータのゲインにおける所定の値であり、ここでは0[dB]の一定値となっている。なお、基準値は、第2の帯域において、一定のレベルとなっているが、周波数に応じて異なっていてもよい。
第2圧縮部218は、基準値Arefから第3スペクトルデータAlrc1を減算した値(Aref-Alrc1)を第2差分値として算出する。第2差分値は周波数毎に算出される。第2圧縮部218は、第2差分値が負の値の場合、第2差分値に第2圧縮係数lrcRate2を乗じることで第2圧縮値を算出する。第3スペクトルデータAlrc1に第2圧縮値lrcRate2*(Aref-Alrc1)を加算することで、圧縮処理を行う。第2圧縮部218は、第2差分値が正の値の場合、圧縮を行わない。つまり、第3スペクトルデータAlrc1のゲインをそのまま用いる。
第2圧縮部218での第2圧縮処理は、以下の式(3)、式(4)で表される。
lrc1がAref未満の場合
lrc2=lrcRate2*(Aref-Alrc1)+Alrc1 ・・・(3)
lrc1がAref以上の場合
lrc2=Alrc1 ・・・(4)
図6は、第3スペクトルデータと基準値との第2差分値を示すグラフである。第2圧縮部218は、各周波数において、上記のAlrc2を算出する。第2圧縮部218は、第3スペクトルデータのゲインが、基準値を上回る周波数では、第3スペクトルデータに第2圧縮値を加算しない。第3スペクトルデータのゲインが、基準値を下回る周波数では、第3スペクトルデータに第2圧縮値を加算する。第3スペクトルデータのゲインが、基準値を下回る周波数では、第3スペクトルデータのゲインが基準値に近づくようにレンジを圧縮する。第2圧縮部218は、第2の帯域B2における第3スペクトルデータに対して第2圧縮処理を施すことで、第4スペクトルデータを生成する。つまり、第2圧縮部218で圧縮された第3スペクトルデータが第4スペクトルデータとなる。第2圧縮部218での第2圧縮処理で得られた第4スペクトルデータAlrc2を図7に示す。
例えば、第3スペクトルデータAlrc1が-2dB、基準値Arefが0dBとする。差分値(Aref-Alrc1)は2dBとなる。また、第2圧縮係数lrcRate2=0.5とする。第2圧縮値は0.5*2=1[dB]となり、第4スペクトルデータAlrc2=1-2=-1[dB]となる。
このように、第2圧縮部218は、第2差分値に基づいて、圧縮を行うか否かを判定している。つまり、第2圧縮部218は、第2差分値の符号(正負)に応じて、圧縮を行う周波数と圧縮を行わない周波数を決定している。圧縮を行う周波数では、圧縮後のゲインが第3スペクトルデータと基準値との間の値となる。
第2の帯域B2以外の帯域では、第3スペクトルデータのゲインと第4スペクトルデータのゲインは一致している。第2の帯域B2の下限周波数をf2Sとし、上限周波数をf2Eとする。
第2の帯域B2の下限周波数f2Sは、第1の帯域B1の下限周波数f1Sと同じ値となっている。例えば、下限周波数f2Sと下限周波数f1Sとは20Hzとなっている。第2の帯域B2の上限周波数f2Eは、第1の帯域B1の上限周波数f1Eと同じ値なっている。例えば、上限周波数f2Eと上限周波数f1Eとは1kHzとなっている。
第1の帯域B1と第2の帯域B2は、20Hz以上1kHz以下の低周波数帯域となっている。もちろん、下限周波数f2Sと下限周波数f1Sとは20Hzに限定されるものではない。上限周波数f2Eと上限周波数f1Eとは1kHzに限定されるものではない。
軸変換部220は、データ補間等により、第4スペクトルデータの周波数軸を変換するように、軸変換を行う。軸変換部220における処理は、軸変換部216における処理と反対の処理である。軸変換部220は、軸変換を行うことで、第4スペクトルデータの周波数軸が、軸変換部216での軸変換前の周波数軸に戻る。例えば、軸変換部216で対数尺度にされた周波数軸を線形尺度に戻すための処理を行う。第4スペクトルデータを周波数線形軸で等間隔なデータにする。これにより、周波数特性取得部214で取得された周波数位相特性と同じ周波数軸の周波数振幅特性を得ることができる。つまり、周波数位相特性と周波数振幅特性のスペクトルデータの周波数軸(データ間隔)が一致する。
フィルタ生成部221は、軸変換部220で軸変換された第4スペクトルデータを用いて、フィルタを生成する。フィルタ生成部221は、第4スペクトルデータに基づいて、再生信号に適用されるフィルタを生成する。例えば、フィルタ生成部221は、逆離散フーリエ変換又は逆離散コサイン変換により、振幅特性と位相特性から時間領域の信号を算出する。フィルタ生成部221は、振幅特性と位相特性をIFFT(逆高速フーリエ変換)することで、時間信号を生成する。フィルタ生成部221は、生成した時間信号を所定のフィルタ長で切り出すことで、空間音響フィルタを算出する。フィルタ生成部221は窓掛けを行って、空間音響フィルタを生成しても良い。
フィルタ生成部221は、左スピーカ5Lからの測定信号を左マイク2Lで収音した収音信号に上記の処理を実施することで、空間音響伝達特性Hlsに対応する空間音響フィルタを生成する。フィルタ生成部221は、左スピーカ5Lからの測定信号を右マイク2Lで収音した収音信号に上記の処理を実施することで、空間音響伝達特性Hloに対応する空間音響フィルタを生成する。
フィルタ生成部221は、右スピーカ5Rからの測定信号を左マイク2Lで収音した収音信号に上記の処理を実施することで、空間音響伝達特性Hroに対応する空間音響フィルタを生成する。フィルタ生成部221は、右スピーカ5Rからの測定信号を右マイク2Rで収音した収音信号に上記の処理を実施することで、空間音響伝達特性Hrsに対応する空間音響フィルタを生成する。
このようにすることで、周波数特性をバランスよく圧縮することができる。よって、音像の定位に適したフィルタを生成することができる。音像定位のバランスを崩れることを抑制することができる。バランスの取れた音像を定位することができる。バランスの取れた音質に調整されたフィルタを生成することができる。聴感上、自然な音質を確保することができる。
特に、上限周波数以下の低周波数帯域をバランス良く圧縮することができるため、低周波数帯域において優れた音質を実現することができる。図2の測定装置200の収音時間が短い場合であっても、バランスのよいフィルタを生成することができる。
第2の帯域B2の下限周波数f2Sは、第1の帯域B1の下限周波数f1Sと異なる値となっていてもよい。例えば、第2の帯域B2の下限周波数f2Sは、第1の帯域B1の下限周波数f1Sより大きく、かつ、第2の帯域B2の上限周波数f2Eより小さい範囲にあればよい。
第2の帯域B2の上限周波数f2Eは、第1の帯域B1の上限周波数f1Eと異なる値となっていてもよい。例えば、第2の帯域B2の上限周波数f2Eは、第1の帯域B1の上限周波数f1Eより小さく、かつ、第2の帯域B2の下限周波数f2Sより大きい範囲にあればよい。
第1圧縮係数lrcRate1と第2圧縮係数lrcRate2は同じ値となっていてもよく、異なる値となっていてもよい。ここで、第1圧縮係数lrcRate1と第2圧縮係数lrcRate2とは0.5となっている。もちろん、第1圧縮係数lrcRate1と第2圧縮係数lrcRate2の値は0.5に限定されるものではない。
図2で示したように、1つのスピーカからの測定信号を左右のマイク2L、2Rで収音している。よって、1回の測定で、2つの収音信号(左右の収音信号ともいう)が取得される。第1圧縮係数lrcRate1は、左右のマイク2L、2Rの収音信号に対する処理で異なる値となっていてもよい。同様に、第2圧縮係数lrcRate2、左右のマイク2L、2Rで異なる値となっていてもよい。
また、図2に示したように、左右のスピーカ5L、5Rと左右のマイク2L、2Rとを用いているため、4つの収音信号が取得されている。つまり、空間音響伝達特性Hls、Hlo、Hro、Hrsを示す収音信号がそれぞれ取得されている。この場合、4つの収音信号の全てに対して、第1圧縮処理及び第2圧縮処理を行うことができる。あるいは、4つの収音信号のうちの一部については、第1圧縮処理又は第2圧縮処理を行わなくてもよい。換言すると、特定の方向の収音信号についてのみ、第1圧縮処理と第2圧縮処理を行い、残りの方向については、第1圧縮処理及び第2圧縮処理の少なくとも一方を省略しても良い。
さらに、第1差分値は、左右の収音信号の平均値でもよい。例えば、左マイク2Lの収音信号から生成された第1スペクトルデータ及び第2スペクトルデータをA,AsmLとする。右マイク2Rの収音信号から生成された第1スペクトルデータ及び第2スペクトルデータをA,AsmRとする。この場合、第1差分値は左の収音信号から得られる差分値と、右の収音信号から得られる差分値の平均値とすることができる。第1差分値D1は、以下の式(5)で示される。
D1={(AsmL-A)+(AsmR-A)}/2 (5)
左右の収音信号に対して第1差分値D1が共通になる。第1圧縮部217は、式(1)の(AsmL-A)を式(5)のD1に置き換えて、左右の第3スペクトルデータAlrc1を算出する。そして、第1圧縮部217は、左右のスペクトルデータに対して共通の第1差分値Dを用いて、第1圧縮処理を行う。これにより、左右の周波数特性をバランスよく圧縮することができる。
さらに、第1圧縮処理と第2圧縮処理とにおいて、ラウドネスカーブに沿うように聴感上のバランスを整えることで圧縮係数や処理を行う帯域を決定することができる。
第1圧縮処理と第2圧縮処理を交互に行うようにしてもよい。つまり、第2圧縮処理の後、さらに第1圧縮処理を行ってもよい。複数回の第1圧縮処理と、複数回の第2圧縮処理とが行われる。それぞれの圧縮処理において、帯域や圧縮係数は同じであってもよく、異なっていても良い。例えば、1回目の第1圧縮処理と、2回目の圧縮処理とで圧縮係数や帯域が異なっていてもよく、同じであってもよい。
図8は本実施形態にかかる処理方法を示すフローチャートである。まず、周波数特性取得部214は、収音信号取得部212で取得された収音信号の周波数特性を取得する(S801)。例えば、FFTなどにより、時間領域の収音信号を周波数領域に変換する。次に、平滑化処理部215がスペクトルデータに対して平滑化処理を行う(S802)。これにより、第2スペクトルデータが得られる。また、平滑化処理部215が平滑化処理の次数を変えることで、第1スペクトルデータが得られる。
軸変換部216が、第2スペクトルデータを軸変換する(S803)。これにより、収音信号の周波数軸を対数軸に変換したスペクトルデータが得られる。なお、軸変換部216による軸変換処理は省略可能である。この場合、後述する軸変換部220による軸変換処理も不要となる。
次に、第1圧縮部217が第1差分値を算出する(S804)。つまり、第1圧縮部217は、第2スペクトルデータと第1スペクトルデータとの差分に応じた第1差分値を算出する。第1圧縮部217は、第1差分値を用いて、第2スペクトルデータを圧縮する(S805)。これにより、第3スペクトルデータが算出される。
第2圧縮部218が第2差分値を算出する(S806)。つまり、第2圧縮部218は、基準値と第3スペクトルデータとの差分に応じた第2差分値を算出する。第2圧縮部218は、第2差分値を用いて、第3スペクトルデータを圧縮する(S807)。これにより、第4スペクトルデータが算出される。
軸変換部220が第4スペクトルデータの軸変換を行う(S808)。フィルタ生成部221が軸変換後の第4スペクトルデータに基づいて、フィルタを生成する(S809)。空間音響伝達特性Hls,Hloに対応する空間音響フィルタ又は空間音響伝達特性Hro、Hrsに対応する空間音響フィルタが生成される。このようにすることで、バランスの取れたフィルタを生成することができる。
なお、本実施の形態にかかる処理装置及び処理方法において、第2圧縮処理を省略しても良い。つまり、処理装置201は、第1圧縮処理のみを実施するようにしてもよい。
また、軸変換部220が第4スペクトルデータに対して軸変換処理を行っているが、軸変換部220は他のスペクトルデータに対して軸変換処理を行ってもよい。つまり、第1圧縮部217による第1圧縮処理後のスペクトルデータであれば、軸変換部220が軸変換を行うことができる。この場合、フィルタ生成部221におけるフィルタ生成を行う際に、位相測定と振幅特性の周波数軸が揃っていればよい。
図9~図12は、本実施の形態の処理で得られるスペクトルデータを示すグラフである。図9は空間音響伝達特性Hlsを示す収音信号のスペクトルデータに対して、第1圧縮処理を行った結果を示している。図10は空間音響伝達特性Hrsを示す収音信号のスペクトルデータに対して、第1圧縮処理を行った結果を示している。図9,図10では第1圧縮処理を行ったスペクトルデータをArdc1として示している。
図11は空間音響伝達特性Hlsを示す収音信号のスペクトルデータに対して、第1圧縮処理及び第2圧縮処理を行った結果を示している。図12は空間音響伝達特性Hrsを示す収音信号のスペクトルデータに対して、第1圧縮処理及び第2圧縮処理を行った結果を示している。図11,図12では第1圧縮処理及び第2圧縮処理を行ったスペクトルデータをArdc1として示している。図9~図12では、比較のため、圧縮前のスペクトルデータを示している。具体的には、図9~図12平滑化前のスペクトルデータが示されている。
さらに、実施の形態1,2では、処理装置201が、空間音響伝達特性Hls、Hlo、Hro、Hrsを示す収音信号のスペクトルデータを処理したが、外耳道伝達特性を示す収音信号のスペクトルデータを処理してもよい。さらに、処理装置201が頭外低位処理フィルタを生成したが、その他のフィルタを生成してもよい。本実施の形態に係る処理方法で生成されたフィルタを用いることで、バランスの取れた音像を定位することができる。
頭外定位処理装置100は物理的に単一な装置に限らず、ネットワークなどを介して接続された複数の装置に分散されていても良い。換言すると,本実施の形態にかかる頭外定位処理方法は、複数の装置が分散して実施しても良い。
上記処理のうちの一部又は全部は、コンピュータプログラムによって実行されてもよい。上述したプログラムは、コンピュータに読み込まれた場合に、実施形態で説明された1又はそれ以上の機能をコンピュータに行わせるための命令群(又はソフトウェアコード)を含む。プログラムは、非一時的なコンピュータ可読媒体又は実体のある記憶媒体に格納されてもよい。限定ではなく例として、コンピュータ可読媒体又は実体のある記憶媒体は、random-access memory(RAM)、read-only memory(ROM)、フラッシュメモリ、solid-state drive(SSD)又はその他のメモリ技術、CD-ROM、digital versatile disc(DVD)、Blu-ray(登録商標)ディスク又はその他の光ディスクストレージ、磁気カセット、磁気テープ、磁気ディスクストレージ又はその他の磁気ストレージデバイスを含む。プログラムは、一時的なコンピュータ可読媒体又は通信媒体上で送信されてもよい。限定ではなく例として、一時的なコンピュータ可読媒体又は通信媒体は、電気的、光学的、音響的、またはその他の形式の伝搬信号を含む。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限られたものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
U ユーザ
1 被測定者
2 マイクユニット
2L 左マイク
2R右マイク
5 ステレオスピーカ
5L 左スピーカ
5R 右スピーカ
10 頭外定位処理部
11 畳み込み演算部
12 畳み込み演算部
21 畳み込み演算部
22 畳み込み演算部
24 加算器
25 加算器
41 フィルタ部
42 フィルタ部
43 ヘッドホン
200 測定装置
201 処理装置
211 測定信号生成部
212 収音信号取得部
214 周波数特性取得部
215 平滑化処理部
216 軸変換部
217 第1圧縮部
218 第2圧縮部
220 軸変換部
221 フィルタ生成部
B1 第1の帯域
B2 第2の帯域

Claims (5)

  1. 入力信号の周波数特性を取得する周波数特性取得部と、
    前記周波数特性に基づく第1スペクトルデータよりも平滑な第2スペクトルデータを生成するように、平滑化処理を施す平滑化処理部と、
    第1の帯域における前記第2スペクトルデータと前記第1スペクトルデータとの差分に応じた第1差分値を算出し、前記第1差分値に基づいて前記第2スペクトルデータを圧縮する第1圧縮部と、
    前記第2スペクトルデータに基づいて、フィルタを生成するフィルタ生成部と、を備えた処理装置。
  2. 前記第1圧縮部での第1圧縮処理で生成された第3スペクトルデータと、スペクトルデータのゲインにおける所定の基準値との差分に応じた第2差分値を算出し、前記第2差分値に基づいて前記第3スペクトルデータを圧縮する第2圧縮部と、を備えた請求項1に記載の処理装置。
  3. 前記第1圧縮部による第1圧縮処理と、前記第2圧縮部による第2圧縮処理を交互に行う請求項2に記載の処理装置。
  4. データ補間により、前記第1スペクトルデータの周波数軸を変換する第1軸変換部と、
    データ補間により、前記第1圧縮部で圧縮された後のスペクトルデータの周波数軸を変換する第2軸変換部と、をさらに備え、
    前記フィルタ生成部が、前記第2軸変換部で軸変換されたスペクトルデータに基づいて、前記フィルタを生成する請求項1~3のいずれか1項に記載の処理装置。
  5. 入力信号の周波数特性を取得するステップと、
    前記周波数特性に基づく第1スペクトルデータよりも平滑な第2スペクトルデータを生成するように、平滑化処理を施すステップと、
    第1の帯域における前記第2スペクトルデータと前記第1スペクトルデータとの差分に応じた第1差分値を算出し、前記第1差分値に基づいて前記第2スペクトルデータを圧縮するステップと、
    前記第2スペクトルデータに基づいて、フィルタを生成するステップと、を含む処理方法。
JP2021130085A 2021-08-06 2021-08-06 処理装置、及び処理方法 Pending JP2023024038A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021130085A JP2023024038A (ja) 2021-08-06 2021-08-06 処理装置、及び処理方法
CN202210788216.3A CN115938376A (zh) 2021-08-06 2022-07-06 处理装置和处理方法
US17/859,430 US20230040821A1 (en) 2021-08-06 2022-07-07 Processing device and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021130085A JP2023024038A (ja) 2021-08-06 2021-08-06 処理装置、及び処理方法

Publications (1)

Publication Number Publication Date
JP2023024038A true JP2023024038A (ja) 2023-02-16

Family

ID=85204279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021130085A Pending JP2023024038A (ja) 2021-08-06 2021-08-06 処理装置、及び処理方法

Country Status (1)

Country Link
JP (1) JP2023024038A (ja)

Similar Documents

Publication Publication Date Title
CN110612727B (zh) 头外定位滤波器决定系统、头外定位滤波器决定装置、头外定位决定方法以及记录介质
US11115743B2 (en) Signal processing device, signal processing method, and program
US10264387B2 (en) Out-of-head localization processing apparatus and out-of-head localization processing method
US10687144B2 (en) Filter generation device and filter generation method
US20200213802A1 (en) Processing device, processing method, and program
JP6805879B2 (ja) フィルタ生成装置、フィルタ生成方法、及びプログラム
JP2023024038A (ja) 処理装置、及び処理方法
JP2023024040A (ja) 処理装置、及び処理方法
US20230040821A1 (en) Processing device and processing method
US20230114777A1 (en) Filter generation device and filter generation method
JP7115353B2 (ja) 処理装置、処理方法、再生方法、及びプログラム
US20230045207A1 (en) Processing device and processing method
JP2023047707A (ja) フィルタ生成装置、及びフィルタ生成方法
JP2023047706A (ja) フィルタ生成装置、及びフィルタ生成方法
US11228837B2 (en) Processing device, processing method, reproduction method, and program
WO2021131337A1 (ja) 処理装置、処理方法、フィルタ生成方法、再生方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240329