JP2019060506A - 空調制御システム - Google Patents

空調制御システム Download PDF

Info

Publication number
JP2019060506A
JP2019060506A JP2017183175A JP2017183175A JP2019060506A JP 2019060506 A JP2019060506 A JP 2019060506A JP 2017183175 A JP2017183175 A JP 2017183175A JP 2017183175 A JP2017183175 A JP 2017183175A JP 2019060506 A JP2019060506 A JP 2019060506A
Authority
JP
Japan
Prior art keywords
control
state
outdoor unit
load factor
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183175A
Other languages
English (en)
Other versions
JP6941522B2 (ja
Inventor
直樹 大串
Naoki Ogushi
直樹 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Exeo Corp
Original Assignee
Kyowa Exeo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Exeo Corp filed Critical Kyowa Exeo Corp
Priority to JP2017183175A priority Critical patent/JP6941522B2/ja
Publication of JP2019060506A publication Critical patent/JP2019060506A/ja
Application granted granted Critical
Publication of JP6941522B2 publication Critical patent/JP6941522B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】フィードバック制御機能を有していない一般的な空調機器についてもフィードバック制御することが可能な空調制御システムを提供する。【解決手段】室外機13の状態を、電力使用量を制限しない第1の状態、電力使用量を所定割合に制限する第2の状態又は電力使用量をほぼゼロに制限する第3の状態に切り替えするためのデマンド制御手段21と、少なくとも1つの室外機13のデマンド制御手段21を制御し、少なくとも1つの室外機13の電力使用量を第1の状態、第2の状態又は第3の状態に切り替え制御するフィードバック制御手段とを備えている。このフィードバック制御手段は、少なくとも1つの電流センサ16が検出した電流値から少なくとも1つの室外機13の平均負荷率を算出し、算出した平均負荷率に応じて設定された制御内容でこの少なくとも1つの室外機13のデマンド制御手段を制御するように構成されている。【選択図】図1

Description

本発明は、1つ又は複数設置されている空調機器をフィードバック制御する空調制御システムに関する。
フィードバック制御を行う空調制御技術として、特許文献1には、制御対象空間の室内温度を計測し、得られた計測温度を設定温度に一致させるよう空調機器を制御する空調制御システムが記載されている。
この空調制御システムでは、空調機器の起動時における電力消費の急増を抑制するために、空調機器の起動から所定の待ち時間にわたり、計測した制御対象空間の室内温度と設定温度とから演算処理して得られた制御出力値を、抑制した抑制制御出力値に基づいて空調機器をフィードバック制御している。
特開平2013−231523号公報
特許文献1に記載されている空調制御システムによれば、室温を設定温度にフィードバック制御して起動時における電力消費を抑制することが可能であるが、空調機器によって消費される総電力量を適切に削減することはできず、最適な省エネ効果を期待することができなかった。また、このような空調制御システムは、空調機器を製造する段階からフィードバック制御するように設計されているものであり、フィードバック制御機能を有していない既存の一般的な空調機器にこの技術を適用してフィードバック制御するように設定することはできなかった。
従って本発明の目的は、複数の空調機器を適切にフィードバック制御することにより、最適な省エネ効果を得ることができる空調制御システムを提供することにある。
本発明の他の目的は、フィードバック制御機能を有していない一般的な空調機器についてもフィードバック制御することが可能な空調制御システムを提供することにある。
本発明によれば、空調制御システムは、少なくとも1つの室内機と、少なくとも1つの室内機に冷媒回路を介して接続されている少なくとも1つの室外機と、少なくとも1つの室外機の電力量を測定するために電流を検出する少なくとも1つの電流センサと、少なくとも1つの室外機の各々に設けられ、この室外機の状態を、電力使用量を制限しない第1の状態、電力使用量を所定割合に制限する第2の状態又は電力使用量をほぼゼロに制限する第3の状態に切り替えするためのデマンド制御手段と、少なくとも1つの室外機のデマンド制御手段を制御し、少なくとも1つの室外機の電力使用量を第1の状態、第2の状態又は第3の状態に切り替え制御するフィードバック制御手段とを備えている。このフィードバック制御手段は、少なくとも1つの電流センサが検出した電流値から少なくとも1つの室外機の平均負荷率を算出し、算出した平均負荷率に応じて設定された制御内容でこの少なくとも1つの室外機のデマンド制御手段を制御するように構成されている。
電流センサが検出した電流値から室外機の平均負荷率を算出し、その平均負荷率に応じて室外機をデマンド制御しているため、空調機器の負荷率を向上させることができ、室外機による成績係数COPを改善することができ、最適な省エネ効果を得ることが可能となる。また、各室外機に設けられたデマンド制御手段をフィードバック制御してその電力使用量を第1の状態、第2の状態又は第3の状態に切り替え制御しているため、フィードバック制御機能を有していない一般的な空調機器についてもフィードバック制御することが可能である。
フィードバック制御手段は、少なくとも1つの電流センサが検出した電流値から負荷率計算時間内の少なくとも1つの室外機の電力使用量積算値を算出し、算出した電力使用量積算値と、少なくとも1つの室外機の定格消費電力と負荷率計算時間とから平均負荷率を、
平均負荷率=(負荷率計算時間内の電力使用量積算値)/(定格消費電力×負荷率計算時間)から算出するように構成されていることが好ましい。
フィードバック制御手段は、算出した平均負荷率が低負荷率閾値より低い場合は、少なくとも1つの室外機の電力使用量を第3の状態に切り替え制御するように構成されていることも好ましい。
フィードバック制御手段は、算出した平均負荷率が高負荷率閾値を超える場合は、少なくとも1つの室外機の電力使用量を第1の状態に切り替え制御するように構成されていることも好ましい。
少なくとも1つの室内機が設置されている建家内の温度を検出する室内温度センサをさらに備えており、フィードバック制御手段は、室内温度センサが検出した室内温度に基づいて設定された制御内容でデマンド制御手段を制御するように構成されていることも好ましい。
この場合、フィードバック制御手段は、室内温度センサが検出した過去及び現在の室内温度から将来の室内温度を予測し、予測した室内温度があらかじめ定めた温度変動限界範囲内にあるか否かに応じてデマンド制御手段を制御するように構成されていることがより好ましい。
さらにこの場合、フィードバック制御手段は、予測した室内温度が温度変動限界範囲内にない場合は、少なくとも1つの室外機の電力使用量を第3の状態から第2の状態に又は第2の状態から第1の状態に切り替え制御するように構成されていることも好ましい。
フィードバック制御手段は、予測した室内温度が温度変動限界範囲内に有りかつ少なくとも1つの室外機の電力使用量が第3の状態にある場合は、少なくとも1つの室外機の電力使用量を第3の状態から第2の状態に切り替え制御するように構成されていることも好ましい。
本発明によれば、空調機器の負荷率を向上させることができ、室外機による成績係数COPを改善することができ、最適な省エネ効果を得ることが可能となる。また、フィードバック制御機能を有していない一般的な空調機器についてもフィードバック制御することが可能である。
本発明の空調制御システムの一実施形態における全体のシステム構成を概略的に示すブロック図である。 図1の空調制御システムにおける各要素間の信号の流れを示す図である。 図1の空調制御システムによって制御される空調機器(エアコン)の負荷率とCOPとの関係を表す図である。 図1の空調制御システムにおける制御全体の処理フローを概略的に示すフローチャートである。 図1の空調制御システムにおけるフィードバック制御の一部処理フローを概略的に示すフローチャートである。 図1の空調制御システムにおけるフィードバック制御の一部処理フローを概略的に示すフローチャートである。 図1の空調制御システムにおける将来室温の予測方法の一例を説明する図である。 図1の空調制御システムにおける接点制御の一例を説明する図である。 図1の空調制御システムにおける実際の負荷率の推移の一例を説明する図である。
図1は本発明の空調制御システムの一実施形態における全体のシステム構成を概略的に示しており、図2は本実施形態の空調制御システムにおける各要素間の信号の流れを示している。
図1に示すように、本実施形態における空調制御システムは、建家10内に設けられた室内機11と、屋外に設置されており、室内機11に冷媒回路12を介して接続されている室外機13とを備えている。図示の例では、建家10内に単一の室内機11が設けられ、この室内機11と単一の室外機13とによって1つの空調機器が構成されているが、複数の室内機を単一の室外機に対応させても良い。なお、この建家10内に複数の室内機を設けると共にこれに対応する複数の室外機を屋外に設け、それらをグループ分けして別個に制御できるように(グループ制御するように)構成しても良い。本実施形態においては、図示のように、室外機13以外に複数の室外機が設けられており、各室外機は図示されていない建家に設けられた単一又は複数の室内機に冷媒回路を介して接続されている。
建家10内には、その室内温度を検知するための室内温度センサ14と、対応する室外機13用の分電盤15又はその入出力電線に取り付けられ、その室外機13の電力量を測定するために電流を検出する電流センサ(CTセンサ)16と、これら室内温度センサ14及びCTセンサ16に接続されたゲートウェイデバイス(GWデバイス)17とが設けられている。本実施形態では、室内温度センサ14の検出した室内温度情報は、無線でGWデバイス17に送信されるように構成されており、CTセンサ16の検出した電流情報は、有線でGWデバイス17に送信されるように構成されている。
建家10の外部には、室外温度を検知するための室外温度センサ18と、室外温度センサ18に接続されたゲートウェイデバイス(GWデバイス)19とがさらに設けられている。本実施形態では、室外温度センサ18の検出した室外温度情報は、無線でGWデバイス19に送信されるように構成されている。GWデバイス17及び19は、LTE(次世代の高速携帯通信規格)等を採用した高速無線回線を介して、IPC(プロセス間通信)チャネルを利用したクラウド上のサーバであるIPCクラウドサーバ20に接続されている。
また、室外機13を含む複数の室外機の接点制御インタフェース(例えば、デマンドアダプタ)の制御端子には、デマンド制御用の接点信号を送るデマンド制御装置21が有線で接続されている。このデマンド制御装置21は、LTE等を採用した高速無線回線を介してIPCクラウドサーバ20に接続されており、IPCクラウドサーバ20から送られてくるスケジュール制御情報と時刻とに基づいて種々の接点信号を作成し出力するコンピュータ機能を有している。
本実施形態では、デマンド制御装置21にLANによって接続されている他のデマンド制御装置が設けられており、各デマンド制御装置は、複数の(本実施形態では最大8つの)室外機のデマンド制御端子にそれぞれ有線で接続されている。もちろん、さらに他のデマンド制御装置が設けられていても良い。
図2に示すように、IPCクラウドサーバ20には、本空調制御システムの制御情報(フィードバック制御情報及びスケジュール制御情報)があらかじめ登録されており、さらに、制御対象となる室外機を指定する対象室外機情報等の制御用初期設定情報並びに測定対象となる室内温度センサ、室外温度センサ及びCTセンサを指定する情報等の測定用初期設定情報を含む初期設定情報が登録されている。このIPCクラウドサーバ20からデマンド制御装置21へは、初期設定時に対象室外機情報等の制御用初期設定情報が送付されると共に、その室外機のフィードバック制御情報及びスケジュール制御情報が送付されるように構成されている。逆に、デマンド制御装置21からIPCクラウドサーバ20へは、制御対象空調機器の制御状態、即ち室外機13の制御状態を表す制御状態情報が送付される。また、IPCクラウドサーバ20からGWデバイス17及び19へは、初期設定時に室内温度センサ、室外温度センサ及びCTセンサ情報等の測定用初期設定情報が送付される。室内温度センサ14は、初期設定された測定対象エリア、本実施形態では建家10内(室内)の温度を測定し、その測定結果はGWデバイス17からIPCクラウドサーバ20へ送付される。CTセンサは、初期設定された測定対象空調機器、本実施形態では室外機13の電流を測定し、その測定結果はGWデバイス17からIPCクラウドサーバ20へ送付される。室外温度センサ18は、室外の温度を測定し、その測定結果はGWデバイス19からIPCクラウドサーバ20へ送付される。
IPCクラウドサーバ20は、GWデバイス17及び19を含む複数のGWデバイス及びデマンド制御装置21を含む複数のデマンド制御装置と高速無線回線を介して情報及び指示の送受を行う無線通信装置と、サーバ本体と、サーバ本体の制御プログラム及び空調機器(室外機)毎の制御情報を格納しているデータベースとを備えており、室内温度センサ、室外温度センサ及びCTセンサからの検出信号並びにデータベース内に格納されている制御情報に基づいて接点信号を作成し、各室外機のデマンド制御を行う。このデマンド制御は、運転状態に応じたフィードバック制御を行うものであり、室外機の状態を、電力使用量を制限しない第1の状態(接点0制御、100%制御、デマンド制御無し)、電力使用量を所定割合に制限する第2の状態(接点1制御、例えば40%制御)、又は電力使用量をほぼゼロに制限する第3の状態(接点2制御、例えばサーモオフ)に切り替えし、各室外機による成績係数COPを改善するように設定された制御内容でフィードバック制御する。なお、本実施形態では、室外機の状態を第1の状態、第2の状態及び第3の状態の3つの状態に制御しているが、制御する状態の数はこのように3つに限定されるものではなく、4つ以上であっても良い。また、第2の状態を40%制御としているが、この割合は、0%を超えかつ100%未満の他の値、たとえば70%であっても良い。また、第3の状態をサーモオフではなく、40%制御としても良い。さらに、第1の状態、第2の状態及び第3の状態の制御時間も後に述べる時間に限定されるものではない。
図3は本実施形態の空調制御システムによって制御される空調機器(室外機、エアコン)の負荷率と成績係数COPとの関係を表している。上述のごとく運転状態に応じたフィードバック制御情報に基づいて室外機のデマンド制御を行うことにより、エアコンを、COP比が1.0以下となる効率の悪い負荷率のエリア30で動作させるのではなく、COP比が1.0を超える高COPエリア(効率の良い負荷率のエリア31、負荷率が50%近辺となるエリア)で動作させることができる。
なお、成績係数COP(Coefficient Of Performance)とは、エアコンの消費効率を示す指標であり、空気を一定温度とするのに使用した電力量を示す値であり、以下の式で求められる。
COP=(定格冷房又は暖房能力(kW))/(定格消費電力(kW))
COPの値が高ければ高いほど効率よく冷暖房が行われていることとなり、COPの値が低ければ低いほど効率が悪いこととなる。従って、COPを向上させるようにフィードバック制御すれば、空調使用電力量の削減が可能となる。即ち、COP比が1.0を超えるようにフィードバック制御すれば、室温をあらかじめ定めた設定温度に制御できると共に、総電力量を削減することができ、最適な省エネ効果を得ることが可能となる。
図4は本実施形態の空調制御システムにおける制御全体の処理フローを概略的に示している。IPCクラウドサーバ20のサーバ本体は、インストールされた制御プログラムに従って同図に示すような制御処理を、所定の処理間隔、例えば1分間隔で実行する。
まず、システム全体において、本実施形態の空調制御を行う必要があるか否かを判別する(ステップS1)。全体の空調制御が不要の場合(NOの場合)、この制御処理を終了する。全体の空調制御を要する場合(YESの場合)、制御対象とする空調機器(室外機)を決定する(ステップS2)。次いで、データベースを参照し、この空調機器の制御対象エリアが制御を実施すべきエリアか否か、即ち、この空調機器の制御が必要か否か判別する(ステップS3)。制御を実施しないエリアの空調機器であると判別した場合(NOの場合)、後述するステップS7へ進む。
ステップS3において、制御を実施すべきエリアの空調機器であると判別した場合(YESの場合)、その制御がフィードバック制御であるか否かを判別する(ステップS4)。フィードバック制御であると判別した場合(YESの場合)、ステップS5へ進み、後述する図5a及び図5bに示すフィードバック制御を実行する(ステップS5)。フィードバック制御ではないと判別した場合(NOの場合)、ステップS6へ進み、スケジュール制御を実行する。
スケジュール制御は、その室外機による成績係数COP比が1.0を超えるように、季節及び時刻に応じてあらかじめ設定された制御内容で室外機を、電力使用量を制限しない第1の状態、電力使用量を所定割合に制限する第2の状態又は電力使用量をほぼゼロに制限する第3の状態に切り替えるデマンド制御を行うものである。例えば、冬の朝から午前の所定時までは、まず、第1の状態となり、その後、第2の状態となることを繰り返すようにデマンド制御したり、夏の昼から午後の所定時までは、まず、第1の状態となり、その後、第2の状態となることを繰り返すようにデマンド制御する。このスケジュール制御は、本発明のフィードバック制御が行えない場合、例えば、室外機の定格情報が不明であったり、室外機の電力量を測定できなかったり、室内温度を測定できないような場合に実施される。
ステップS5のフィードバック制御処理又はステップS6のスケジュール制御処理の後に、全ての空調機器についてこの制御を行ったか否かを判別し(ステップS7)、全ての空調機器について制御を行っていないと判別した場合(NOの場合)、ステップS2へ戻り上述の処理を繰り返す。ステップS7において、全ての空調機器について制御を行ったと判別した場合(YESの場合)、この制御処理を終了する。
次に、本実施形態におけるステップS5のフィードバック制御処理について、図5a及び図5bを用いて詳細に説明する。図5a及び図5bに示すプログラムは、図4の制御プログラムのステップS5で実行される制御プログラムである。
このフィードバック制御は、室外機の平均負荷率と、室温の傾向から予測した将来室温とからデマンド制御の内容をフィードバック制御するものである。表1は、本実施形態及びその変更態様における室外機の制御状態と接点と設定内容との関係を示している。
Figure 2019060506
図5aにおいて、まず、室外温度センサ18からの室外温度情報を取得可能か否か判別する(ステップS51)。室外温度情報を取得可能であると判別した場合(YESの場合)、室外温度情報を取得し、その室外温度情報があらかじめ定めた冷暖切替温度以下であるか否かを判別する(ステップS52)。冷暖切替温度は、任意に設定可能であり、単なる一例であるが、例えば、15℃が設定される。室外温度が冷暖切替温度以下であると判別した場合(YESの場合)、暖房の定格消費電力を用いて平均負荷率を算出する(ステップS53)。ステップS52において、室外温度が冷暖切替温度を超えると判別した場合(NOの場合)、冷房の定格消費電力を用いて平均負荷率を算出する(ステップS54)。
一方、ステップS51において、例えば室外温度センサ18が設置されてないか、又は室外温度センサ18と通信できず室外温度情報を取得できないと判別した場合(NOの場合)、当日がその地域毎に設定された暖房期間であるか否かを判別する(ステップS55)。単なる一例であるが、東京においては、暖房期間が例えば11月1日〜3月31日、冷房期間が例えば4月1日〜10月31日に設定される。暖房期間であると判別した場合(YESの場合)、暖房の定格消費電力を用いて平均負荷率を算出する(ステップS56)。ステップS55において、冷房期間であると判別した場合(NOの場合)、冷房の定格消費電力を用いて平均負荷率を算出する(ステップS57)。
平均負荷率は、CTセンサ16の検出した電流値から電力使用量積算値を算出し、算出した電力使用量積算値を用いて、次式から算出される。
平均負荷率(%)={負荷率計算時間(分)内の電力使用量積算値(kWh)}×100/{暖房又は冷房の定格消費電力(kW)×負荷率計算時間(分)/60(分)}
例えば、冷房時に、冷房の定格消費電力=10kW、負荷率計算時間=3分、空調機器の負荷率計算時間内の電力使用量積算値=0.2kWhの場合は、
平均負荷率=0.2/(10×3/60)×100
=(0.2/0.5)×100
=40(%)
となる。
ステップS53、ステップS54、ステップS56又はステップS57において、平均負荷率を算出した後、ステップS58へ進む。このステップS58では、その室外機の現在の制御状態が第3の状態、即ち接点2制御のサーモオフである際にそのサーモオフを継続する必要があるかどうかを判別する。具体的には、現在の制御状態がサーモオフでありかつそのサーモオフの継続時間があらかじめ定めたサーモオフ連続時間未満であるか否かを判別する。本実施形態では、単なる一例であるが、サーモオフ連続時間が例えば20分に設定されている。この時間は、最大で60分までの所定値に設定される。
ステップS58において、現在の制御状態がサーモオフ(接点2制御)でありかつそのサーモオフの継続時間がサーモオフ連続時間未満であると判別した場合(YESの場合)、図4のステップS5におけるフィードバック制御処理を終了する。これにより、サーモオフ連続時間未満である際には、制御変更することなくサーモオフが維持される。
ステップS58において、現在の制御状態がサーモオフではないと判別したか、又はサーモオフでありかつそのサーモオフの継続時間がサーモオフ連続時間以上であると判別した場合(NOの場合)、次のステップS59へ進む。サーモオフでは、室外機の圧縮機が停止状態となるので機器保護の観点から、また、平均負荷率がほぼ0%となるのでこの平均負荷率による空調使用の判断を正しく行うことができないため、サーモオフの継続時間が空調機器のメーカが推奨している時間(サーモオフ連続時間)を以上となった場合は、サーモオフを解除している。
ステップS59では、現在の制御状態がサーモオフ以外、かつ、接点1制御又は接点2制御である際にその接点1制御又は接点2制御を継続する必要があるかどうかを判別する。具体的には、現在の制御状態が接点1制御又は接点2制御でありかつその現在の制御状態の継続時間があらかじめ定めた出力制御継続時間未満であるか否かを判別する。本実施形態では、単なる一例であるが、出力制御継続時間が例えば5分に設定されている。この時間は、最大で60分までの所定値に設定される。
ステップS59において、現在の制御状態が接点1制御又は接点2制御でありかつその現在の制御状態の継続時間があらかじめ定めた出力制御継続時間未満であると判別した場合(YESの場合)、図4のステップS5におけるフィードバック制御処理を終了する。これにより、接点1制御又は接点2制御が出力制御継続時間未満である際には、制御変更することなくその現在の制御状態が維持される。
ステップS59において、現在の制御状態がサーモオフ以外、かつ、接点1制御又は接点2制御ではないと判別したか、又は接点1制御若しくは接点2制御でありかつその継続時間が出力制御継続時間以上であると判別した場合(NOの場合)、次のステップS60へ進む。接点変更を行いすぎると、空調機器の故障につながる可能性もあるため、接点1制御又は接点2制御の継続時間があらかじめ定めた出力制御継続時間以上となった場合は、接点1制御又は接点2制御を解除している。
ステップS60では、現在の制御状態が強制デマンド制御である際にその強制デマンド制御を継続する必要があるかどうかを判別する。具体的には、現在の制御状態が強制デマンド制御でありかつその制御状態の継続時間があらかじめ定めた強制デマンド制御時間未満であるか否かを判別する。本実施形態では、単なる一例であるが、強制デマンド制御時間が例えば10分に設定されている。この時間は、最大で60分までの所定値に設定される。
なお、強制デマンド制御とは、電力会社のデマンド計により計測されている30分間の平均電力値の最大値である最大デマンドを制御して契約電力が低減するように強制的にデマンド制御する公知技術である。例えば、真夏や真冬のピーク時には、空調機器は高負荷で動作することが多く最大デマンド電力の発生する可能性が高い。このため、接点0制御(100%制御)が例えば20分間連続運転された時に次の10分間に強制デマンド制御してデマンドを自動抑制するようにしている。
ステップS60において、現在の制御状態が強制デマンド制御でありかつその制御状態の継続時間があらかじめ定めた強制デマンド制御時間未満であると判別した場合(YESの場合)、図4のステップS5におけるフィードバック制御処理を終了する。これにより、強制デマンド制御が強制デマンド制御時間未満である際には、制御変更することなくその現在の制御状態が維持される。
ステップS60において、現在の制御状態が強制デマンド制御ではないと判別したか、又は強制デマンド制御でありかつその継続時間が強制デマンド制御時間以上であると判別した場合(NOの場合)、次のステップS61へ進む。強制デマンド制御は短時間である方が望ましいため、強制デマンド制御の継続時間があらかじめ定めた強制デマンド制御時間以上となった場合は、強制デマンド制御を解除している。
ステップS61では、室外機が停止しているどうかを判別する。具体的には、現在の制御状態が接点0制御若しくは接点1制御、又はサーモオフではない接点2制御(変更態様では40%制御を接点2制御と設定している、本実施形態では接点2制御をサーモオフと設定している)でありかつ平均負荷率があらかじめ定めた停止負荷率未満であるか否かを判別する。本実施形態では、単なる一例であるが、停止負荷率が例えば3%に設定されている。
ステップS61において、現在の制御状態が接点0制御若しくは接点1制御、又はサーモオフではない接点2制御でありかつ平均負荷率があらかじめ定めた停止負荷率未満であると判別した場合(YESの場合)、室外機が停止していると判断し、ステップS62へ進んで接点0制御に変更する。その後、図4のステップS5におけるフィードバック制御処理を終了する。これにより、室外機が停止している際には、接点0制御(100%制御)に変更される。即ち、夜間や休日などで空調機器が使用されていないと類推されるときは接点制御を解除(リセット)し、100%制御とすることで、翌日等の空調使用開始時に空調の負荷率を判断できるようにしている。
ステップS61において、現在の制御状態が、接点0制御又は接点1制御ではないと判別したか、サーモオフ以外の接点2制御ではないと判別したか、又は接点0制御若しくは接点1制御、又はサーモオフではない接点2制御でありかつ平均負荷率が停止負荷率以上であると判別した場合(NOの場合)、空調機器が停止していないので、次のステップS63へ進む。
ステップS63では、この室外機について強制デマンド制御が必要かどうか判別する。具体的には、接点0制御が1時間のうちのあらかじめ定めたデマンド時限(0〜20分、30〜50分)の間、連続的に継続したか否かを判別する。
ステップS63において、強制デマンド制御が必要と判別した場合(YESの場合)、ステップS64へ進んで強制デマンド制御を行う。その後、図4のステップS5におけるフィードバック制御処理を終了する。ステップS63において、強制デマンド制御が不要と判別した場合(NOの場合)、図5bのステップS65へ進む。
ステップS65では、室内温度センサ14からの温度情報を取得可能か否か判別する。室内温度情報を取得可能であると判別した場合(YESの場合)、取得した室内温度があらかじめ定めた上限値及び下限値で規定される温度範囲内であるか否かを判別する(ステップS66)。この場合の上限値及び下限値は、本実施形態では、労働安全衛生法で規定される室温上限値、例えば28℃、及び室温下限値、例えば17℃に設定されている。室内温度があらかじめ定めた上限値及び下限値で規定される温度範囲内にあると判別した場合(YESの場合)、ステップS67へ進んで将来室温を予測する。
一方、ステップS65において、例えば室内温度センサ14が設置されてないか、又は室内温度センサ14と通信できず室内温度情報を取得できないと判別した場合(NOの場合)、ステップS72へ進んで現在の制御状態が接点2制御であるか否かを判別する。
また、ステップS66において、取得した室内温度があらかじめ定めた上限値及び下限値で規定される温度範囲内にないと判別した場合(NOの場合)、ステップS69へ進んで現在の制御状態が接点2制御であるか否かを判別する。
ステップS67における将来室温の予測は、以下のようにして行われる。即ち、現時点から所定時間(温度変動計算間隔)前の基準時点に測定した室内温度Tと、現時点で測定した室内温度Tとから、将来時点(基準時点から温度変動予測時間後)の室内温度Tを予測する。この予測は、下記の比例式で計算する。
=(T−T)×(温度変動予測時間/温度変動計算間隔)+T
ここで、温度変動計算間隔の一例は例えば5分であり、温度変動予測時間の一例は例えば30分である。
次のステップS68では、予測した将来室温が現時点の室温から温度変動限界範囲内にあるか否かを判別する。この温度変動限界範囲は、例えば±2℃に設定されている。このステップS68において、将来室温が現時点の室温から温度変動限界範囲内にないと判別した場合(NOの場合)、ステップS69へ進んで現在の制御状態が接点2制御であるか否かを判別する。
ステップS69において、現在の制御状態が接点2制御であると判別した場合(YESの場合)、ステップS70へ進み、制御状態を現在の接点2制御から接点1制御に変更し、図4のステップS5におけるフィードバック制御処理を終了する。このように、接点2制御(サーモオフ)という強い制御を行っている場合は接点1制御(40%制御)とし、一旦制御を弱めて様子を見る。一方、現在の制御状態が接点2制御ではないと判別した場合(NOの場合)、ステップS71へ進み、制御状態を現在の接点1又は0制御から接点0制御に変更し、図4のステップS5におけるフィードバック制御処理を終了する。このように室内温度が労働安全衛生法の上限値及び下限値で規定される温度範囲内にない場合や、将来室温が現時点の室温から温度変動限界範囲内にない場合は、制御状態を接点0制御か接点1制御に弱めている。
一方、ステップS68において、将来室温が現時点の室温から温度変動限界範囲内にあると判別した場合(YESの場合)、ステップS72へ進んで現在の制御状態が接点2制御であるか否かを判別する。このステップS72において、現在の制御状態が接点2制御であると判別した場合(YESの場合)、ステップS73へ進み、制御状態を現在の接点2制御から接点1制御に変更し、図4のステップS5におけるフィードバック制御処理を終了する。このように、将来室温が現時点の室温から温度変動限界範囲内にありかつ接点2制御(サーモオフ)という強い制御を行っている場合は接点1制御(40%制御)とし、一旦制御を弱めて様子を見る。
ステップS72において、現在の制御状態が接点2制御ではないと判別した場合(NOの場合)、現在の制御状態は接点1又は0制御であるが、ステップS74へ進み、計算した平均負荷率があらかじめ定めた低負荷率閾値未満であるか否かを判別する。低負荷率閾値は空調機器の低負荷運転を判断する閾値であり、単なる一例であるが例えば25%に設定される。
ステップS74において、平均負荷率<低負荷率閾値であると判別した場合(YESの場合)、低負荷であるため、ステップS75へ進んで現在の制御状態である接点1又は0制御を接点2制御に変更し、図4のステップS5におけるフィードバック制御処理を終了する。このように空調機器がかなりの低負荷運転されている場合は、制御を強めている。ステップS74において、平均負荷率<低負荷率閾値ではないと判別した場合(NOの場合)、ステップS76へ進んで現在の制御状態が接点0制御であるか否かを判別する。
ステップS76において、現在の制御状態が接点0制御ではないと判別した場合(NOの場合)、現在の制御状態は接点1制御であることとなるが、ステップS77へ進んで現在の制御状態である接点1制御を接点0制御に変更し、図4のステップS5におけるフィードバック制御処理を終了する。
ステップS76において、現在の制御状態が接点0制御であると判別した場合(YESの場合)、現在の制御状態は接点0制御であることとなるが、ステップS78へ進み、計算した平均負荷率があらかじめ定めた高負荷率閾値未満であるか否かを判別する。高負荷率閾値は空調機器の高負荷運転を判断する閾値であり、単なる一例であるが例えば75%に設定される。
ステップS78において、平均負荷率>高負荷率閾値であると判別した場合(YESの場合)、高負荷であるため、ステップS77へ進んで現在の制御状態を接点0制御に維持し、図4のステップS5におけるフィードバック制御処理を終了する。ステップS78において、平均負荷率>高負荷率閾値ではないと判別した場合(NOの場合)、中負荷であるため、ステップS79へ進んで現在の制御状態である接点0制御を接点1制御に変更し、図4のステップS5におけるフィードバック制御処理を終了する。
このように、ステップS74〜S79の処理によれば、将来室温が現時点の室温から温度変動限界範囲内ありかつ空調機器がかなりの低負荷運転の場合は接点2制御(サーモオフ)として強い制御を行い、将来室温が現時点の室温から温度変動限界範囲内ありかつ空調機器が低負荷運転でも高負荷運転でもない中負荷運転の場合は接点1制御(40%制御)として多少弱めの制御を行い、将来室温が現時点の室温から温度変動限界範囲内ありかつ空調機器がかなりの高負荷運転である場合は制御状態を接点0制御(100%制御)に弱めている。
図7は本実施形態の空調制御システムの動作例を示しており、以下、同図を用いて、この空調制御システムにおける実際の接点制御の一例を説明する。
夜間停止のため接点0制御(100%制御)あった空調機器の電源がある時点でオンとなると、その時の室内温度がその上限値及び下限値で規定される温度範囲内にないと判別された場合、接点0制御(100%制御)が継続される(図5bのステップS66、S69及びS71参照)。なお、接点0制御(100%制御)がデマンド時限(0〜20分、30〜50分)の間、連続的に継続した場合、強制デマンド制御が行われる(図5aのステップS63及びS64参照)。
その後、室内温度がその上限値及び下限値で規定される温度範囲内にあり、将来室温も温度変動限界範囲内にあるが平均負荷率が中負荷である場合、接点0制御(100%制御)から接点1制御(40%制御)に変更される(図5bのステップS65、S66、S67、S68、S72、S74、S76、S78及びS79参照)。この接点1制御(40%制御)の継続時間が出力制御継続時間未満であれば、その制御状態が維持される(図5aのステップS59参照)。
その後、室内温度がその上限値及び下限値で規定される温度範囲内にあり、将来室温も温度変動限界範囲内にあるが平均負荷率が低負荷である場合、接点1制御(40%制御)から接点2制御(サーモオフ)に変更される(図5bのステップS65、S66、S67、S68、S72、S74及びS75参照)。この接点2制御(サーモオフ)の継続時間がサーモオフ連続時間未満であれば、その制御状態が維持される(図5aのステップS58参照)。
その後、将来室温が温度変動限界範囲外となった場合、接点2制御(サーモオフ)を接点1制御(40%制御)に変更する(図5bのステップS68、S69及びS70参照)。この接点1制御(40%制御)の継続時間が出力制御継続時間未満であれば、その制御状態が維持される(図5aのステップS59参照)。
図8は本実施形態の空調制御システムにおける実際の負荷率の推移の一例を説明している。
本実施形態のフィードバック制御がない場合、負荷率が20〜30%近傍の値をとるように制御される。これに対して、本実施形態のフィードバック制御を行った場合、負荷率が0〜50%の値に制御された。例えば、負荷率が低い場合は、接点2制御(サーモオフ)となり、その継続時間がサーモオフ連続時間となると接点2制御(サーモオフ)が解除された。また、負荷率の継続時間が出力制御継続時間未満であれば、接点1制御(40%制御)に変更された。その後、負荷率が低い場合は、接点2制御(サーモオフ)となった。このようなフィードバック制御を行うことにより、負荷率は約17%改善された。
以上詳細に説明したように、本実施形態の空調制御システムによれば、IPCクラウドサーバ20が、対象とする建屋10について、CTセンサ16が検出した電流値から室外機13の電力使用量積算値を計算し、さらに平均負荷率を計算し、その平均負荷率に応じて室外機13をデマンド制御しているため、空調機器の負荷率を向上させることができ、この室外機13による成績係数COPが1.0を超えるように改善することができ、最適な省エネ効果を得ることが可能となる。
以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
10 建家
11 室内機
12 冷媒回路
13 室外機
14 室内温度センサ
15 分電盤
16 CTセンサ
17、19 GWデバイス
18 室外温度センサ
20 IPCクラウドサーバ
21 デマンド制御装置

Claims (8)

  1. 少なくとも1つの室内機と、該少なくとも1つの室内機に冷媒回路を介して接続されている少なくとも1つの室外機と、前記少なくとも1つの室外機の電力量を測定するために電流を検出する少なくとも1つの電流センサと、該少なくとも1つの室外機の各々に設けられ、当該室外機の状態を、電力使用量を制限しない第1の状態、電力使用量を所定割合に制限する第2の状態又は電力使用量をほぼゼロに制限する第3の状態に切り替えするためのデマンド制御手段と、前記少なくとも1つの室外機の前記デマンド制御手段を制御し、前記少なくとも1つの室外機の電力使用量を前記第1の状態、前記第2の状態又は前記第3の状態に切り替え制御するフィードバック制御手段とを備えており、
    前記フィードバック制御手段は、前記少なくとも1つの電流センサが検出した電流値から前記少なくとも1つの室外機の平均負荷率を算出し、算出した平均負荷率に応じて設定された制御内容で当該少なくとも1つの室外機の前記デマンド制御手段を制御するように構成されていることを特徴とする空調制御システム。
  2. 前記フィードバック制御手段は、前記少なくとも1つの電流センサが検出した電流値から負荷率計算時間内の前記少なくとも1つの室外機の電力使用量積算値を算出し、該算出した電力使用量積算値と、前記少なくとも1つの室外機の定格消費電力と前記負荷率計算時間とから前記平均負荷率を、
    平均負荷率=(負荷率計算時間内の電力使用量積算値)/(定格消費電力×負荷率計算時間)から算出するように構成されていることを特徴とする請求項1に記載の空調制御システム。
  3. 前記フィードバック制御手段は、前記算出した平均負荷率が低負荷率閾値より低い場合は、前記少なくとも1つの室外機の電力使用量を前記第3の状態に切り替え制御するように構成されていることを特徴とする請求項1又は2に記載の空調制御システム。
  4. 前記フィードバック制御手段は、前記算出した平均負荷率が高負荷率閾値を超える場合は、前記少なくとも1つの室外機の電力使用量を前記第1の状態に切り替え制御するように構成されていることを特徴とする請求項1又は2に記載の空調制御システム。
  5. 前記少なくとも1つの室内機が設置されている建家内の温度を検出する室内温度センサをさらに備えており、前記フィードバック制御手段は、前記室内温度センサが検出した室内温度に基づいて設定された制御内容で前記デマンド制御手段を制御するように構成されていることを特徴とする請求項1から4のいずれか1項に記載の空調制御システム。
  6. 前記フィードバック制御手段は、前記室内温度センサが検出した過去及び現在の室内温度から将来の室内温度を予測し、該予測した室内温度があらかじめ定めた温度変動限界範囲内にあるか否かに応じて前記デマンド制御手段を制御するように構成されていることを特徴とする請求項5に記載の空調制御システム。
  7. 前記フィードバック制御手段は、前記予測した室内温度が温度変動限界範囲内にない場合は、前記少なくとも1つの室外機の電力使用量を前記第3の状態から前記第2の状態に又は前記第2の状態から前記第1の状態に切り替え制御するように構成されていることを特徴とする請求項6に記載の空調制御システム。
  8. 前記フィードバック制御手段は、前記予測した室内温度が温度変動限界範囲内に有りかつ前記少なくとも1つの室外機の電力使用量が前記第3の状態にある場合は、該少なくとも1つの室外機の電力使用量を前記第3の状態から前記第2の状態に切り替え制御するように構成されていることを特徴とする請求項6又は7に記載の空調制御システム。
JP2017183175A 2017-09-25 2017-09-25 空調制御システム Active JP6941522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183175A JP6941522B2 (ja) 2017-09-25 2017-09-25 空調制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183175A JP6941522B2 (ja) 2017-09-25 2017-09-25 空調制御システム

Publications (2)

Publication Number Publication Date
JP2019060506A true JP2019060506A (ja) 2019-04-18
JP6941522B2 JP6941522B2 (ja) 2021-09-29

Family

ID=66176507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183175A Active JP6941522B2 (ja) 2017-09-25 2017-09-25 空調制御システム

Country Status (1)

Country Link
JP (1) JP6941522B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042847A1 (zh) * 2019-09-06 2021-03-11 珠海格力电器股份有限公司 空调器设备负荷率的优化方法与空调云群控系统
JP2022148111A (ja) * 2021-03-24 2022-10-06 株式会社関電エネルギーソリューション 制御装置、および制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164383A (ja) * 1991-04-30 1993-06-29 Matsushita Refrig Co Ltd 空気調和装置
JP2001012789A (ja) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp 空気調和システムの温度検出装置
JP2009115392A (ja) * 2007-11-07 2009-05-28 Electric Power Dev Co Ltd 省エネルギー制御システム
JP2013079772A (ja) * 2011-10-05 2013-05-02 Hitachi Appliances Inc 空気調和機
JP2013134019A (ja) * 2011-12-27 2013-07-08 Takenaka Komuten Co Ltd 空調制御システム及び空調制御方法
JP2015183936A (ja) * 2014-03-25 2015-10-22 三菱電機株式会社 空気調和機、および空気調和機の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164383A (ja) * 1991-04-30 1993-06-29 Matsushita Refrig Co Ltd 空気調和装置
JP2001012789A (ja) * 1999-06-28 2001-01-19 Mitsubishi Electric Corp 空気調和システムの温度検出装置
JP2009115392A (ja) * 2007-11-07 2009-05-28 Electric Power Dev Co Ltd 省エネルギー制御システム
JP2013079772A (ja) * 2011-10-05 2013-05-02 Hitachi Appliances Inc 空気調和機
JP2013134019A (ja) * 2011-12-27 2013-07-08 Takenaka Komuten Co Ltd 空調制御システム及び空調制御方法
JP2015183936A (ja) * 2014-03-25 2015-10-22 三菱電機株式会社 空気調和機、および空気調和機の制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042847A1 (zh) * 2019-09-06 2021-03-11 珠海格力电器股份有限公司 空调器设备负荷率的优化方法与空调云群控系统
JP2022148111A (ja) * 2021-03-24 2022-10-06 株式会社関電エネルギーソリューション 制御装置、および制御方法
JP7407759B2 (ja) 2021-03-24 2024-01-04 株式会社関電エネルギーソリューション 制御装置、および制御方法

Also Published As

Publication number Publication date
JP6941522B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
CN108292860B (zh) 电力控制装置、运转计划制定方法以及记录介质
US9645560B2 (en) Power controller, control system, and control method
EP2874263B1 (en) Server device and electrical power control system
JP2014236605A (ja) 空気調和装置の管理システム
JP5709002B2 (ja) 運転制御装置、運転制御方法、プログラム
JP6250077B2 (ja) 判定装置、判定システム、判定方法、及び、プログラム
JP4113241B1 (ja) 電力削減方法及び電力削減装置
JPWO2018003890A1 (ja) コージェネレーションシステム、制御装置及び制御方法
JP6221058B2 (ja) 空調システム
JP6941522B2 (ja) 空調制御システム
KR20170053238A (ko) 크라우드 서비스에 의한 에너지 절감과 전력 절감을 하는사물인터넷(IoT) 스마트 홈/빌딩 오토메션시스템 및 그제어방법
JP2011214751A (ja) 空調コントローラ
JP6553933B2 (ja) 電力制御方法、電力制御装置、および電力制御システム
JP7263002B2 (ja) 個別分散空調高効率制御方法、制御装置及び制御プログラム
WO2014185014A1 (ja) 管理装置、機器管理方法、管理システム
JP2010032073A (ja) 空調システム
JP6331073B2 (ja) 情報処理装置、および情報処理システム
JP4492199B2 (ja) 集合住宅における屋内電灯線の電流制御装置及び制御方法
JP5606645B1 (ja) 目標値設定型需要電力比例制御装置
JP6972462B2 (ja) 空調制御システム
JP2018026913A (ja) 電力管理システム
JP6357031B2 (ja) 負荷の運転制御装置
KR102026638B1 (ko) 게이트웨이, 그를 포함한 빌딩 자동화 시스템 및 그의 동작방법
KR101552615B1 (ko) 공기조화기 및 그 동작방법
KR102014152B1 (ko) 온도제어를 포함하는 최대전력관리장치와 주제어장치의 스마트제어기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250