JP2019060436A - 管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法 - Google Patents
管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法 Download PDFInfo
- Publication number
- JP2019060436A JP2019060436A JP2017186539A JP2017186539A JP2019060436A JP 2019060436 A JP2019060436 A JP 2019060436A JP 2017186539 A JP2017186539 A JP 2017186539A JP 2017186539 A JP2017186539 A JP 2017186539A JP 2019060436 A JP2019060436 A JP 2019060436A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- bubble
- pressure fluctuation
- liquid
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pipe Accessories (AREA)
Abstract
【課題】配管内で液柱分離に伴う配管内での圧力変動を抑制する。【解決手段】管内圧力変動の緩和装置は、液体が流れる配管11内に配置され、筒状を成す気泡放出器31と、気泡放出器31の内部空間32に気体を供給する気体供給機21と、を備える。気泡放出器31には、内部空間32から外側に貫通する複数の孔34が形成されている。【選択図】図2
Description
本発明は、液体が流れる配管内の急激な圧力変動を緩和する管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法に関する。
ポンプ等で配管内に液体を流す設備では、ポンプ等が緊急停止し、配管内の一部の圧力が低下する場合がある。このような場合、配管内の一部の圧力が液体の飽和蒸気圧以下になると、液体が気化し、配管内で液体が分離する液柱分離が発生する。配管内で液柱分離が発生しても、分離した液柱同士は極めて短時間のうちにぶつかりあって、一つの連続した液柱に戻る。分離した液柱同士がぶつかりあって再結合する際、大きな衝撃が生じる。この衝撃は、一般的に水撃を呼ばれる。この水撃が発生すると、配管そのもののみならず、配管に接続されている弁や、配管等を支持している管サポートが損傷することがある。
水撃による衝撃を緩和する方法として、例えば、以下の特許文献1に記載の方法がある。この方法では、配管中で水撃が発生し易い箇所に配管壁を貫通する孔を設けると共に、この孔に連通する弁を配管に取り付ける。配管壁を貫通する孔は、管内の作動流体の飽和蒸気圧よりも高い圧力の外部空間とつながる孔である。
この方法では、管内の静圧が外部空間の圧力より低下した場合に、弁を開いて外部空間から気体を吸い込むことで管内の圧力が上がる。また、管内の静圧が外部空間より高い場合に、弁が開いていると、官内の流体が圧力の低い外部空間に吹き出すことになる。外部空間を占める気体は、管内の作動流体に溶けにくい気体である。このような気体としては、空気や窒素等である。
上記メカニズムにより、管内の静圧が低下した場合に、この圧力低下部分に空気等の気体が入り、管内の圧力が上がるため、液柱分離の発生を抑制することができる。また、仮に、液柱分離が発生しても、液柱の再結合の際の衝撃を空気等の気体で緩和させることができる。
上記特許文献1に記載の方法のように、配管内の圧力が低下した場合に、この圧力低下部分に空気等の気体を入ると、水撃による衝撃、言い換えると、配管内の急激な圧力変動を抑制することができる。長い配管を備える送水設備の設計者やオペレータ等は、配管内の急激な圧力変動をより抑制できる技術を望んでいる。
そこで、本発明は、配管内の急激な圧力変動をより抑制することができる技術を提供することを目的とする。
上記目的を達成するための発明に係る一態様としての管内圧力変動の緩和装置は、
液体が流れる配管内に配置され、筒状を成す気泡放出器と、前記気泡放出器の内部空間に気体を供給する気体供給機と、を備える。前記気泡放出器には、前記内部空間から外側に貫通する複数の孔が形成されている。
液体が流れる配管内に配置され、筒状を成す気泡放出器と、前記気泡放出器の内部空間に気体を供給する気体供給機と、を備える。前記気泡放出器には、前記内部空間から外側に貫通する複数の孔が形成されている。
本態様では、配管内の液体中に複数の気泡を放出することができる。よって、本態様では、配管内の液体中に複数の気泡を放出することで、配管内の圧力が上がるため、液柱分離の発生を抑制することができる。また、本態様では、仮に、液柱分離が発生しても、液柱の再結合の際の衝撃、つまり水撃を複数の気泡で緩和させることができる。
ところで、配管内の圧力変動ΔPは、ジューコフスキーの公式により、液体の密度ρと、圧力波の伝播速度cと、液体の当初の流速V0との積で表すことができる。
圧力波伝播速度cは、液体中のガス溶解度が高まると、小さくなる。本態様では、一つの孔から気泡を放出する場合よりも、複数の孔から気泡を放出するので、液体中に多数の細かな気泡が配管内の広い範囲に分散される。すなわち、本態様では、液体中に多数の細かな気泡が配管内の広い範囲に強制分散される。液体と多数の細かな気泡との混合流体は、ガス溶解度の高い液体とみなすことができる。このため、液体中に多数の細かな気泡が配管内の広い範囲に分散されると、液体の圧力波伝播速度cが小さくなり、ジューコフスキーの公式から理解できるように、圧力変動ΔPを小さくすることができる。
また、液体と多数の細かな気泡との混合流体は、密度の小さい液体とみなすことができる。このため、液体中に多数の細かな気泡が分散されると、液体の密度が小さくなり、ジューコフスキーの公式から理解できるように、圧力変動ΔPを小さくすることができる。
よって、よって、本態様によれば、単に、一つの孔から気泡を液体中に供給するよりも、水撃による圧力変動を抑えることができる。
配管内で水撃が生じると、圧力変動が複数回周期的に起こる。つまり、配管内で水撃が生じると、配管内の圧力が脈動する。圧力波は、流体管路固有の圧力伝播速度に従い系統を伝播する。圧力波の減衰が小さい場合は、管路端、管口径変化部等での反射により、系統全体を何度も往復することになる。また、飽和蒸気が再結合せず、蒸気相のまま維持するような箇所が複数箇所ある場合、蒸気相で囲まれた系統管路内の流体は脈動を生じる場合がある。
液体と多数の細かな気泡との混合流体は、純粋な液体よりも弾性係数の小さい流体である。言い換えると、混合流体は、圧力変化に対する弾性変形量が純粋な液体よりも大きい。このため、本態様では、この混合気体が圧力の脈動を緩和する緩衝材として機能し、脈動の減衰を促すことができる。
ここで、前記管内圧力変動の緩和装置において、前記気泡放出器は、前記内部空間から複数の前記孔を経て前記配管内の液体中に放出された気体である気泡を前記気泡放出器の外周面に保持する気泡保持部を有してもよい。
本態様では、水撃が生じた後、配管内で圧力が脈動している間でも、気泡放出器周りに複数の気泡を存在させることができ、脈動の減衰効果を高めることができる。また、圧力が脈動している間、気泡放出器の外周面に保持されている複数の気泡により、圧力波からこの気泡放出器を保護することができる。
前記気泡保持部を有する前記管内圧力変動の緩和装置において、前記気泡放出器の外周面には、複数の凸部又は複数の凹部が形成され、前記気泡保持部は、前記複数の凸部又は前記複数の凹部を有してもよい。
以上のいずれかの前記管内圧力変動の緩和装置において、前記気泡放出器は、前記気体供給機に接続されていてもよい。
本態様では、気体供給機を配管に固定することで、気泡放出器を配管内にセットすることができる。このため、本態様では、気泡放出器の設置作業を簡略化できる。
上記目的を達成するための発明に係る一態様としての管内圧力変動の緩和システムは、
以上のいずれかの前記管内圧力変動の緩和装置と、前記配管とを備える。前記緩和装置は、前記配管に設けられている。
以上のいずれかの前記管内圧力変動の緩和装置と、前記配管とを備える。前記緩和装置は、前記配管に設けられている。
ここで、前記管内圧力変動の緩和システムにおいて、前記気泡放出器は、前記配管の径方向の成分を含む方向である放出器延在方向に延びていてもよい。
本態様では、気泡放出器から複数の気泡を配管の径方向に分散させることができる。
前記気泡放出器が前記配管の径方向の成分を含む方向に延びている前記管内圧力変動の緩和システムにおいて、前記気泡放出器における前記径方向の長さは、前記配管の内径の半分以上の長さであってもよい。
本態様では、気泡放出器からの複数の気泡を配管内の径方向における広い範囲に分散させることができる。
前記気泡放出器が前記配管の径方向の成分を含む方向に延びている、以上のいずれかの前記管内圧力変動の緩和システムにおいて、前記気泡放出器は、前記配管の内周面上の点のうち前記径方向で互いに対向する第一点から第二点まで延びていてもよい。
本態様では、気泡放出器からの複数の気泡を配管内の径方向における全範囲に分散させることができる。
以上のいずれかの前記管内圧力変動の緩和システムにおいて、前記気泡放出器は、前記配管内を流れる前記液体に対して流線形状を成していてもよい。
本態様では、気泡放出器の下流側に形成される渦の発生を抑制でき、気泡放出器の存在に起因する圧力損出を低減させることができる。さらに、本態様では、この圧力損出の低減に起因して、気泡放出器の下流側で生じる水柱分離及び再結合の頻度を低減することができる。
上記目的を達成するための発明に係る一態様としての管内圧力変動の緩和方法は、
液体が流れる配管内に気体を供給する気体供給工程と、前記気体供給工程で前記配管内に至った気体を前記配管内の液体中に複数の気泡として強制分散させる気泡放出工程と、を実行する。
液体が流れる配管内に気体を供給する気体供給工程と、前記気体供給工程で前記配管内に至った気体を前記配管内の液体中に複数の気泡として強制分散させる気泡放出工程と、を実行する。
ここで、前記管内圧力変動の緩和方法において、前記気泡放出工程では、前記液体の流れの上流側及び下流側に少なくても向かって気泡を放出させてもよい。
本発明では、配管内の急激な圧力変動を抑制することができる。
以下、本発明に係る管内圧力変動の緩和システムの各種実施形態について、図面を参照して詳細に説明する。
「第一実施形態」
図1〜図3を参照して、管内圧力変動の緩和システムの第一実施形態について説明する。
図1〜図3を参照して、管内圧力変動の緩和システムの第一実施形態について説明する。
本実施形態の緩和システムは、例えば、液体搬送設備に組み込まれている。液体搬送設備は、図1に示すように、例えば、液体供給元装置1と、液体受入装置2と、配管3と、ポンプ4と、を備える。液体供給元装置1及び液体受入装置2は、例えば、液体を一時的に貯めるタンク等の容器である。配管3は、液体供給元装置1と液体受入装置2との間を接続する。ポンプ4は、配管3に設けられている。配管3の特定部分3aの設置レベルは、この特定部分3aよりも上流側部分の設置レベル及び下流側部分の設置レベルより高い。このため、この特定部分3aでは、ポンプ4が緊急停止した場合、この特定部分3aは、水柱分離が発生する可能性が他の部分に比べて高い。そこで、本実施形態では、配管3中で相対的に設置レベルが高い特定部分3aに、管内圧力変動を緩和する緩和システム10を設けている。
液体搬送設備としては、例えば、復水器やクーラー等の熱交換器に、熱交換器に冷媒として海水を供給する設備がある。この場合、液体供給元装置1は、海水が一時的に溜まる海水ピット等である。また、液体受入装置2は、復水器やクーラー等の熱交換器である。配管3は、海水が流れる配管である。この場合の配管呼び径は、例えば、300〜500mmである。また、配管3が循環水管の場合には、例えば、内径が1.8〜2.3mのこともある。海水が流れる配管の高低差(海面から最高レベルまでの距離)は、7〜12m程度である。常温海水の飽和蒸気圧は、ほぼ10mH2O(ゲージ圧)である。このため、ポンプ4により海水を圧送しない場合、配管中で、海面から10mより高い部分では海水中の水が蒸発する。液体受入装置2としての復水器のトップレベルは、例えば、7〜9mである。
本実施形態の緩和システム10は、管内圧力変動の緩和装置20と、配管11と、を備える。この緩和システム10の配管であるシステム配管11は、液体搬送設備における配管3の一部を構成する。緩和装置20は、このシステム配管11に設けられている。この緩和装置20は、システム配管11内に配置され、筒状を成す気泡放出器31と、この気泡放出器31の内部空間32に気体を供給する気体供給機21と、を備える。なお、配管3の一部を便宜上、システム配管3としたが、当該配管3の全部をシステム配管3としてもよい。
気体供給機21は、図2に示すように、弁ケース22と、弁体27と、コイルスプリング等の弾性体28と、を有する。弁ケース22は、弁体27が移動可能に内部に配置されているケース本体23と、接続管25と、接続フランジ26と、を有する。この接続管25の第一端は、ケース本体23に接続されている。この接続管25の第二端には、接続フランジ26が設けられている。ケース本体23で、接続管25が接続されている位置と対向する位置には、気体吸込口24が形成されている。弁体27は、ケース本体23内で、気体吸込口24を塞ぐ閉位置と、この気体吸込口24から離れている開位置との間で移動可能である。弾性体28は、ケース本体23内に配置されている。この弾性体28は、弁体27を開位置から閉位置の方向に向かって、一定の力で常時押す。なお、図2で描かれている弁体27の位置は、開位置である。
システム配管11は、円筒状の管本体12と、管本体12における管延在方向Dpの中間部分に設けられている接続管14と、接続管14の端に設けられている接続フランジ15と、を有する。ここで、管延在方向Dpとは、円筒状の管本体12の中心軸線である管軸線Apが延びる方向である。接続管14は、管本体12の外周面から管本体12の径方向Dr外側に向かって延びている。システム配管11の接続フランジ15には、気体供給機21の接続フランジ26がボルト等で接続されている。
気泡放出器31は、図2及び図3に示すように、管本体12内に配置されて、この管本体12に固定されている。この気泡放出器31は、円筒である。この気泡放出器31は、管本体12の径方向Drに延びている。すなわち、気泡放出器31が延びる放出器延在方向Deは、管本体12の径方向Drである。放出器延在方向Deにおける気泡放出器31の両端は、管本体12の内周面に接続されている。すなわち、気泡放出器31は、管本体12の内周面中の第一点からこの内周面中で第一点と径方向Drで対向する第二点まで延びている。よって、この気泡放出器31の放出器延在方向Deにおける長さは、管本体12の内径と実質的に等しい。円筒状の気泡放出器31の内部空間32は、気体供給機21の弁ケース22内の空間と連通している。
気泡放出器31には、内部空間32から外側に貫通する複数の孔34が形成されている。気泡放出器31の外周面33における複数の孔34の開口は、この外周面33全体にほぼ均一に分布している。
次に、以上で説明した緩和システム10の動作、及びこの動作に伴う作用について説明する。
液体搬送設備のポンプ4が駆動し、液体供給元装置1内の液体が、配管3を介して、液体受入装置2に送られているとする。この定常状態のときに、気体供給機21の弁体27は、弾性体28に押されて閉位置に位置している。すなわち、この弁体27は、気体供給機21の気体吸込口24を塞いでいる。
前述したように、液体搬送設備の配管3中の特定部分3aの静圧は、他の部分に比べて静圧が低い。液体搬送設備が定常状態のときに、例えば、ポンプ4が緊急停止すると、液体搬送設備の配管3中の特定部分3aに設けられている緩和システム10のシステム配管11内の圧力が、このシステム配管11を流れる液体の飽和蒸気圧(<大気圧)以下になることがある。この場合、システム配管11内と連通している弁ケース22内の圧力も飽和蒸気圧以下になる。よって、この場合、弁ケース22内の圧力が弁ケース22外の圧力より低くなる。この結果、弁体27が弾性体28により閉位置側に押されている力よりも、弁体27が外気により開位置側に押される力の方が大きくなり、弁体27は開位置へ移動する。弁体27が開位置に移動すると、弁ケース22外の気体である空気が弁ケース22内に流入する。この空気は、管本体12内の気泡放出器31の内部空間32内に供給される(気体供給工程)。気泡放出器31の内部空間32内に至った空気は、気泡放出器31の複数の孔34から管本体12内の液体中に、複数の気泡Bとして放出される(気泡放出工程)。この気泡放出工程では、液体の流れの上流側Dpu及び下流側Dpd、さらに、管延在方向Dp及び放出器延在方向Deに垂直な方向にも、気泡放出器31から複数の気泡Bが放出される。
この気泡放出工程では、気泡放出器31の内部空間32内に至った空気が気泡放出器31の複数の孔34を通ることで、管本体12内の液体中に強制分散される。なお、ここでの強制分散とは、気泡放出器31が設けられていない場合よりも、細かな気泡Bを多数形成し、且つこの細かな気泡Bを広い範囲に分散させることである。
管本体12内の液体中に複数の気泡Bが放出されると、配管11内の圧力が上がるため、液柱分離の発生を抑制することができる。また、仮に、液柱分離が発生しても、液柱の再結合の際の衝撃、つまり水撃を空気等の気体で緩和させることができる。
以上のように、本実施形態の気体供給機21は、システム配管11内の圧力が所定圧力以下になると、弁ケース22外の気体である空気をシステム配管11内に供給して、システム配管11内の圧力を回復させる。よって、本実施形態の気体供給機21は、真空破壊弁と呼ばれることがある。
さらに、本実施形態では、管本体12内の液体中に複数の気泡Bを放出することで、以下の理由により、管本体12内の圧力変動を抑えることができる。
ここで、管本体12の圧力変動ΔPは、以下のジューコフスキーの公式で表すことができる。
ΔP=ρ・c・V0
上記式で、ρは液体の密度で、cは圧力波伝播速度、V0は液体の当初(液体の圧力が飽和蒸気圧以下になる前)の速度である。
ΔP=ρ・c・V0
上記式で、ρは液体の密度で、cは圧力波伝播速度、V0は液体の当初(液体の圧力が飽和蒸気圧以下になる前)の速度である。
圧力波伝播速度cは、液体中のガス溶解度が高まると、小さくなる。例えば、液体が水の場合、この水中のガス溶解度が0%のときの圧力波伝播速度cは約1000m/sである。また、水中のガス溶解度が3%のときの圧力波伝播速度cは約300m/sである。すなわち、水中のガス溶解度が0%から3%に高まると、圧力波伝播速度cは1/3以下になる。
気泡放出工程の実行では、複数の孔34から気泡Bを放出するので、液体中に多数の細かな気泡が配管内の広い範囲に強制分散することができる。液体と多数の細かな気泡Bとの混合流体は、ガス溶解度の高い液体とみなすことができる。このため、気泡放出工程の実行で、液体中に多数の細かな気泡Bが分散されると、液体の圧力波伝播速度cが小さくなり、上記ジューコフスキーの公式から理解できるように、圧力変動ΔPを小さくすることができる。
また、液体と多数の細かな気泡Bとの混合流体は、密度の小さい液体とみなすことができる。このため、気泡放出工程の実行で、液体中に多数の細かな気泡Bが分散されると、液体の密度が小さくなり、上記ジューコフスキーの公式から理解できるように、圧力変動ΔPを小さくすることができる。
よって、本実施形態では、単に、一つの孔から気泡Bを液体中に供給するよりも、水撃による圧力変動を抑えることができる。
配管11内で水撃が生じると、圧力変動が複数回周期的に起こる。つまり、配管11内で水撃が生じると、配管11内の圧力が脈動する。圧力波は、流体管路固有の圧力伝播速度に従い系統を伝播する。圧力波の減衰が小さい場合は、管路端、管口径変化部等での反射により、系統全体を何度も往復することになる。また、飽和蒸気が再結合せず、蒸気相のまま維持するような箇所が複数箇所ある場合、蒸気相で囲まれた系統管路内の流体は脈動を生じる場合がある。
液体と多数の細かな気泡Bとの混合流体は、純粋な液体よりも弾性係数の小さい流体である。言い換えると、混合流体は、圧力変化に対する弾性変形量が純粋な液体よりも大きい。このため、本実施形態では、この混合気体が圧力の脈動を緩和する緩衝材として機能し、脈動の減衰を促すことができる。
単に、気体を液体中に供給し、液体中に大きな塊として気体を存在させる場合、気体と液体との境界面で圧力波が反射する。この境界面での圧力波の反射は、圧力の脈動の発生要因の一つである。本実施形態では、気泡放出工程の実行で、液体中に多数の細かな気泡Bが分散されるため、気体を液体中に供給し、液体中に大きな塊として気体を存在させる場合よりも、面積の小さい境界面が多数存在することになる。しかも、各境界面の向きはそれぞれ異なる。このため、本実施形態では、圧力波が境界面で反射しても、圧力波が分散されるため、脈動を抑えることができる。
特に、配管中に複数の特定部分3aが存在する場合には、本実施形態では、液体中に大きな塊としての気体を入れる場合よりも、圧力の脈動を抑制することができる。前述したように、気体と液体との境界面では、圧力波が反射する。このため、複数の特定部分の液体中に大きな塊としての気体を入れた場合、複数の特定部分の間で、反射波が繰り返して往復する。よって、この場合、配管内の複数の特定部分の間で、圧力が脈動が生じる。一方、本実施形態では、前述したように、圧力波を分散させることができるため、複数の特定部分の間での反射波の往復を抑制できる。よって、本実施形態では、圧力の脈動を抑えることができる。
以上のように、本実施形態では、液柱分離の発生、及び液柱分離の発生に伴う配管11内の圧力変動を抑制することができる。
また、本実施形態では、液体の流れの上流側Dpu及び下流側Dpd、さらに管延在方向Dp及び放出器延在方向Deに垂直な方向に、気泡放出器31から複数の気泡Bが放出される。言い換えると、本実施形態では、気泡放出器31内で、放出器延在方向Deに延びる放出器軸線Aeに対する放射方向に、気泡放出器31から複数の気泡Bが放出される。このため、本実施形態では、上流側Dpuから気泡放出器31に向ってくる圧力波や下流側Dpdから気泡放出器31に向ってくる圧力波から、気泡放出器31を保護することができる。
なお、本実施形態では、配管3中で、設置レベルが上流側及び下流側の部分と比べて高い部分に、緩和システム10に設けている。ところで、配管中で配管内の静圧が低い部分は、水柱分離が発生する可能性が他の部分に比べて高い。このため、配管中で、補機等の存在で、静圧が低くなる補機等の下流側に、緩和システム10を設けてもよい。
「第二実施形態」
図4及び図5を参照して、管内圧力変動の緩和システムの第二実施形態について説明する。
図4及び図5を参照して、管内圧力変動の緩和システムの第二実施形態について説明する。
本実施形態の緩和システムは、第一実施形態における気泡放出器31の形状を変更したもので、その他の構成は第一実施形態の緩和システム10の構成と同一である。
本実施形態における気泡放出器31aの外形は、図4及び図5に示すように、配管11内を流れる液体に対して流線形である。このため、この気泡放出器31aの管延在方向Dpの長さは、この気泡放出器31aの管延在方向Dp及び放出器延在方向Deに垂直な最大幅Wmaxより長く、且つ、この気泡放出器31aの幅Wは、気泡放出器31aの最大幅Wmaxの位置から、上流側Dpu及び下流側Dpdに向うに連れて次第に狭くなっている。
気泡放出器の外形が流線形でない場合、気泡放出器を基準にして下流側Dpdの圧力が低下し、この部分に液体の渦が形成される。この結果、気泡放出器の存在に起因する圧力損出が大きくなる。本実施形態の気泡放出器31aの外形は、前述したように、流線形である。このため、本実施形態では、気泡放出器31aの下流側Dpdに形成される渦の発生を抑制でき、気泡放出器31aの存在に起因する圧力損出を低減させることができる。よって、本実施形態では、この圧力損出の低減に起因して、気泡放出器31aの下流側Dpdで生じる水柱分離及び再結合の頻度を低減することができる。言い換えると、本実施形態では、圧力の脈動の減衰効果を高めることができる。
なお、第一実施形態の気泡放出器31のように、気泡放出器31の外形が流線形でない場合には、気泡放出器31の外周面33のうち、上流側Dpuを向く外周面部分における孔密度よりも、下流側Dpdを向く外周面部分の孔密度を高くするとよい。このように、下流側Dpdを向く外周面部分の孔密度を高くすると、気泡放出器31から下流側Dpdへ放出される気泡Bの数が多くなり、気泡放出器31の下流側Dpdに形成される液体に渦の発生を抑制できる。このため、下流側Dpdを向く外周面部分の孔密度を高くしても、気泡放出器31の下流側Dpdで生じる水柱分離及び再結合の頻度を低減することができる。
「第三実施形態」
図6を参照して、管内圧力変動の緩和システムの第三実施形態について説明する。
図6を参照して、管内圧力変動の緩和システムの第三実施形態について説明する。
本実施形態の緩和システムは、第二実施形態における気泡放出器31aの形状を変更したもので、その他の構成は第二実施形態の緩和システムの構成と同一である。
本実施形態の気泡放出器31bの外周面33には、図6に示すように、気泡保持部として機能する複数の凸部35が形成されている。複数の凸部35が形成されていると、複数の凸部35間に形成される凹部に、気泡放出器31bから放出された気泡Bが一時的に保持される。すなわち、本実施形態では、配管11内の圧力が低下し、気体供給機21から配管11内に気体が供給された後も、気泡放出器31bの周りに複数の気泡Bが保持される。このため、本実施形態では、水撃が生じた後、圧力が脈動している間でも、気泡放出器31b周りに複数の気泡Bを存在させることができ、脈動の減衰効果を高めることができる。
また、本実施形態では、また、圧力が脈動している間、気泡放出器31bの外周面33に保持されている複数の気泡Bにより、圧力波からこの気泡放出器31bを保護することができる。
なお、本実施形態では、気泡放出器31bの外周面33に複数の凸部35を形成しているが、図7に示すように、気泡放出器31cの外周面33に複数の凹部36を形成してもよい。この場合でも、本実施形態と同様、結果として、気泡放出器31cの外周面33に凹凸が形成されることに変わりはない。このため、気泡放出器31cの外周面33に複数の凹部36を形成しても、複数の凹部36が気泡保持部として機能し、本実施形態と同様の効果を得ることができる。
また、本実施形態は、第二実施形態の変形例であるが、第一実施形態の気泡放出器31の外周面33に、複数の凸部35又は複数の凹部36を形成してもよい。
「変形例」
以上の実施形態における気体供給機21は、配管11内の圧力が低下したときに外気を配管11内に供給する真空破壊弁である。しかしながら、気体供給機21は、配管11内の圧力が、配管11内を流れる液体の飽和蒸気圧に近くなった又はこの飽和蒸気圧以下になった時に、配管11内に非凝縮性の気体を供給できれば、如何なるものでもよい。例えば、気体供給機21は、配管11内の圧力を検知する圧力計と、この圧力計で検知された圧力に応じて開閉動作する電磁弁とで構成してもよい。また、配管11内に供給する気体は、外気である必要はなく、例えば、タンク内に入れられている高圧の空気や窒素等の非凝縮性の気体であってもよい。
以上の実施形態における気体供給機21は、配管11内の圧力が低下したときに外気を配管11内に供給する真空破壊弁である。しかしながら、気体供給機21は、配管11内の圧力が、配管11内を流れる液体の飽和蒸気圧に近くなった又はこの飽和蒸気圧以下になった時に、配管11内に非凝縮性の気体を供給できれば、如何なるものでもよい。例えば、気体供給機21は、配管11内の圧力を検知する圧力計と、この圧力計で検知された圧力に応じて開閉動作する電磁弁とで構成してもよい。また、配管11内に供給する気体は、外気である必要はなく、例えば、タンク内に入れられている高圧の空気や窒素等の非凝縮性の気体であってもよい。
管本体12内での気泡放出器の径方向Drの長さは、管本体12の内径の半分以上の長さであればよい。但し、管本体12内の径方向Drの全域にわたって気泡Bを放出するためには、以上の各実施形態のように、管本体12内での気泡放出器の径方向Drの長さは、管本体12の内径と実質的に同じ長さであることが好ましい。すなわち、気泡放出器は、管本体12の内周面上の点のうち径方向Drで互いに対向する第一点から第二点まで延びていることが好ましい。
以上の実施形態の放出器延在方向Deは、管本体12の径方向Drに一致している。しかしながら、放出器延在方向Deは、管本体12の径方向Drに一致していなくてもよく、この径方向Drの成分を含む方向であればよい。
以上の実施形態の気泡放出器は、管本体12に直接接続され、この管本体12に固定されている。しかしながら、図8に示すように、気泡放出器31dは、気体供給機21に直接接続され、この気体供給機21に固定されていてもよい。このように、気泡放出器31dが気体供給機21に直接接続されていると、気体供給機21を配管11に固定することで、気泡放出器31dを配管11内にセットすることができる。このため、気泡放出器31dの設置作業を簡略化できる。なお、気泡放出器31dと気体供給機21との接続形態は、溶接接続でも、ネジ接続でもよい。
1:液体供給元装置
2:液体受入装置
3:配管
3a:特定部分
4:ポンプ
10:緩和システム
11:システム配管(又は単に配管)
12:管本体
14:接続管
15:接続フランジ
20:緩和装置
21:気体供給機
22:弁ケース
23:ケース本体
24:気体吸込口
25:接続管
26:接続フランジ
27:弁体
28:弾性体
31,31a,31b,31c,31d:気泡放出器
32:内部空間
33:外周面
34:孔
35:凸部
36:凹部
B:気泡
Ap:管軸線
Ae:放出器軸線
Dp:管延在方向
Dpu:上流側
Dpd:下流側
Dr:径方向
De:放出器延在方向
2:液体受入装置
3:配管
3a:特定部分
4:ポンプ
10:緩和システム
11:システム配管(又は単に配管)
12:管本体
14:接続管
15:接続フランジ
20:緩和装置
21:気体供給機
22:弁ケース
23:ケース本体
24:気体吸込口
25:接続管
26:接続フランジ
27:弁体
28:弾性体
31,31a,31b,31c,31d:気泡放出器
32:内部空間
33:外周面
34:孔
35:凸部
36:凹部
B:気泡
Ap:管軸線
Ae:放出器軸線
Dp:管延在方向
Dpu:上流側
Dpd:下流側
Dr:径方向
De:放出器延在方向
Claims (11)
- 液体が流れる配管内に配置され、筒状を成す気泡放出器と、
前記気泡放出器の内部空間に気体を供給する気体供給機と、
を備え、
前記気泡放出器には、前記内部空間から外側に貫通する複数の孔が形成されている、
管内圧力変動の緩和装置。 - 請求項1に記載の管内圧力変動の緩和装置において、
前記気泡放出器は、前記内部空間から複数の前記孔を経て前記配管内の液体中に放出された気体である気泡を前記気泡放出器の外周面に保持する気泡保持部を有する、
管内圧力変動の緩和装置。 - 請求項2に記載の管内圧力変動の緩和装置において、
前記気泡放出器の外周面には、複数の凸部又は複数の凹部が形成され、
前記気泡保持部は、前記複数の凸部又は前記複数の凹部を有する、
管内圧力変動の緩和装置。 - 請求項1から3のいずれか一項に記載の管内圧力変動の緩和装置において、
前記気泡放出器は、前記気体供給機に接続されている、
管内圧力変動の緩和装置。 - 請求項1から4のいずれか一項に記載の管内圧力変動の緩和装置と、
前記配管とを備え、
前記緩和装置は、前記配管に設けられている、
管内圧力変動の緩和システム。 - 請求項5に記載の管内圧力変動の緩和システムにおいて、
前記気泡放出器は、前記配管の径方向の成分を含む方向である放出器延在方向に延びている、
管内圧力変動の緩和システム。 - 請求項6に記載の管内圧力変動の緩和システムにおいて、
前記気泡放出器における前記径方向の長さは、前記配管の内径の半分以上の長さである、
管内圧力変動の緩和システム。 - 請求項6又は7に記載の管内圧力変動の緩和システムにおいて、
前記気泡放出器は、前記配管の内周面上の点うち前記径方向で互いに対向する第一点から第二点まで延びている、
管内圧力変動の緩和システム。 - 請求項5から8のいずれか一項に記載の管内圧力変動の緩和システムにおいて、
前記気泡放出器は、前記配管内を流れる前記液体に対して流線形状を成している、
管内圧力変動の緩和システム。 - 液体が流れる配管内に気体を供給する気体供給工程と、
前記気体供給工程で前記配管内に至った気体を前記配管内の液体中に複数の気泡として強制分散させる気泡放出工程と、
を実行する管内圧力変動の緩和方法。 - 請求項10に記載の管内圧力変動の緩和方法において、
前記気泡放出工程では、前記液体の流れの上流側及び下流側に少なくても向かって気泡を放出させる、
管内圧力変動の緩和方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186539A JP2019060436A (ja) | 2017-09-27 | 2017-09-27 | 管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017186539A JP2019060436A (ja) | 2017-09-27 | 2017-09-27 | 管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019060436A true JP2019060436A (ja) | 2019-04-18 |
Family
ID=66178101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017186539A Pending JP2019060436A (ja) | 2017-09-27 | 2017-09-27 | 管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019060436A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111599492A (zh) * | 2020-05-09 | 2020-08-28 | 哈尔滨工程大学 | 一种抑压管及应用该抑压管的抑压水池 |
KR20220135553A (ko) * | 2021-03-30 | 2022-10-07 | 김수연 | 응축수 배관의 수격 방지 장치 |
CN116085159A (zh) * | 2023-03-31 | 2023-05-09 | 哈尔滨工程大学 | 一种基于多级自调压力耗散实现稳定喷射的共轨喷油器 |
-
2017
- 2017-09-27 JP JP2017186539A patent/JP2019060436A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111599492A (zh) * | 2020-05-09 | 2020-08-28 | 哈尔滨工程大学 | 一种抑压管及应用该抑压管的抑压水池 |
KR20220135553A (ko) * | 2021-03-30 | 2022-10-07 | 김수연 | 응축수 배관의 수격 방지 장치 |
KR102505758B1 (ko) | 2021-03-30 | 2023-03-06 | 김수연 | 응축수 배관의 수격 방지 장치 |
CN116085159A (zh) * | 2023-03-31 | 2023-05-09 | 哈尔滨工程大学 | 一种基于多级自调压力耗散实现稳定喷射的共轨喷油器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019060436A (ja) | 管内圧力変動の緩和装置、これを備える緩和システム、及び管内圧力変動の緩和方法 | |
AU2018363539B2 (en) | Pulsation damping system | |
KR101783248B1 (ko) | 수직장축펌프 성능시험장치 | |
JP4533958B2 (ja) | 蓄圧注水タンク | |
JP4533957B2 (ja) | 蓄圧注水タンク及びフローダンパの製造方法 | |
JP6218867B2 (ja) | 凝縮設備 | |
JP5978304B2 (ja) | パイプ及び配管によって生じる騒音を減衰させるための方法 | |
JP2017160878A (ja) | インジェクタ型昇圧装置及びランキンサイクルシステム | |
US20210231030A1 (en) | Steam bypass conduit | |
KR200438619Y1 (ko) | 수격방지용 에어챔버 시스템 | |
JP2934848B2 (ja) | 水噴霧方式高温排気冷却器 | |
JP6462223B2 (ja) | 配管防護装置および原子力設備 | |
JP2916840B2 (ja) | アングル弁 | |
WO2018131104A1 (ja) | 気液混合器 | |
JPS6018960B2 (ja) | 原子炉格納容器 | |
JP6603593B2 (ja) | 凝縮器 | |
JP2013254253A (ja) | 調圧弁 | |
KR100643123B1 (ko) | 초저온 액화가스 기액분리기의 흡입구 분사노즐 | |
JP6830818B2 (ja) | 分岐管 | |
JP2007120417A (ja) | 燃料供給システムの配管振動抑制装置 | |
JP6886156B1 (ja) | スチームトラップ | |
UA46178C2 (uk) | Піногенератор (варіанти) | |
KR20130136084A (ko) | 선박 엔진용 고감쇠 톱 브레이싱 장치의 축압기 | |
KR102505758B1 (ko) | 응축수 배관의 수격 방지 장치 | |
US20220219030A1 (en) | Fire suppression apparatus |