JP2019060312A - 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 - Google Patents

圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 Download PDF

Info

Publication number
JP2019060312A
JP2019060312A JP2017186977A JP2017186977A JP2019060312A JP 2019060312 A JP2019060312 A JP 2019060312A JP 2017186977 A JP2017186977 A JP 2017186977A JP 2017186977 A JP2017186977 A JP 2017186977A JP 2019060312 A JP2019060312 A JP 2019060312A
Authority
JP
Japan
Prior art keywords
heat medium
temperature
compressed air
heat
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017186977A
Other languages
English (en)
Other versions
JP6793616B2 (ja
Inventor
松隈 正樹
Masaki Matsukuma
正樹 松隈
浩樹 猿田
Hiroki Saruta
浩樹 猿田
佳直美 坂本
Kanami Sakamoto
佳直美 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017186977A priority Critical patent/JP6793616B2/ja
Publication of JP2019060312A publication Critical patent/JP2019060312A/ja
Application granted granted Critical
Publication of JP6793616B2 publication Critical patent/JP6793616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】吸気温度が変動した場合でも、充放電効率の低下を抑制することができる、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法を提供する。【解決手段】圧縮空気貯蔵発電装置2は、電動機44と、電動機44と接続され、低圧段圧縮機本体9及び高圧段圧縮機本体10を有し、空気を圧縮する圧縮機8と、圧縮機8と接続され、圧縮機8により圧縮された圧縮空気を貯蔵する蓄圧タンク12と、蓄圧タンク12と接続され、蓄圧タンク12から供給される圧縮空気によって駆動される膨張機14と、膨張機14と接続された発電機46と、低圧段圧縮機本体9で圧縮された圧縮空気と熱媒とで熱交換し、熱媒を昇温させるためのインタークーラ21と、インタークーラ21と接続され、熱媒を貯蔵する熱媒タンク48と、低圧段圧縮機本体9で圧縮された後の圧縮空気の温度に基づき、熱媒タンク48からインタークーラ21に供給される熱媒の流量を調整し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定温度に維持する制御部90と、を備える。【選択図】図1

Description

本発明は、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法に関する。
太陽光発電や太陽熱発電などの太陽エネルギーを利用した発電においては、当日の日照状況に影響されて、その発電出力が大きく変動する。例えば、夜間には発電できず、雨天や曇天の日には発電出力が大きく減少する。また、夜明けから日暮れまでの日照状況や、晴れのち曇りといった日照状況の場合、発電出力が一日のうちで大きく変動する。
また、風車を用いた風力発電においては、当日の風向や風力の変化によって、その発電出力が大きく変動する。複数の風車をまとめたウインドファームのような発電設備においては、各風車の発電出力を加算することで、短周期の発電変動は平滑化することができるが、全体としてみると、その発電出力の変動を避けることは難しい。
このような変動する不安定な発電出力を平滑化又は平準化する技術としては、余剰発電電力が生じた際に電気を蓄えておき電力不足時に電気を補う蓄電池がその代表的なものである。そして、余剰発電電力が生じた際に電気の代わりに変換した空気圧力として蓄えておき、必要なときに空気タービン発電機等で電気に再変換する圧縮空気貯蔵(CAES:compressed air energy storage)と呼ばれる技術が知られている。一般に、比較的短周期の変動を均す場合を平滑化と呼び、比較的長周期の変動を均す場合を平準化と呼んでいるが、ここでは両者をまとめて平滑化と表すものとする。
このCAESの技術を利用した代表的な従来技術が、特許文献1から特許文献3に開示されている。ここで、特許文献1から特許文献3のいずれにおいても、圧縮機による圧縮工程で発生する熱を回収することで、エネルギー貯蔵効率を高めている。
また、従来から、スクリュを高圧段と低圧段の2セット備えた2段型のスクリュ式圧縮機が知られている。2段型のスクリュ式圧縮機は、低圧段で圧縮された圧縮空気を高圧段に導入する前に冷却する。このため、単段型の圧縮機に比べて、過昇温になることなく、圧縮できる動作範囲が広いという特徴がある。この2段型のスクリュ式圧縮機を利用した圧縮空気貯蔵発電装置は、特許文献4に開示されている。
また、特許文献5には、システム全体の充放電効率を高めることができるよう予め設定された温度で熱媒タンクに熱媒を貯蔵できるよう構成されたCAESが開示されている。
特開2012−97737号公報 特表2013−512410号公報 特表2013−536357号公報 特開2016−211465号公報 特開2016−211416号公報
ここで、一般の圧縮機では、大気温度が変動して吸気温度に差が生じても、吐出温度に差が生じるだけで特に大きな問題はない。しかし、圧縮空気貯蔵発電装置では、吸気温度が変化し、その結果、吐出温度が変化すると、充放電効率が低下するという課題が存在する。例えば、吸気温度が低下すると、吐出温度からの充分な熱回収を行えず、膨張機によって圧縮空気が膨張される際の圧縮空気の予熱が充分に行えない。その結果、充放電効率が低下する。また、吸気温度が上昇すると、蓄圧タンクに導入される圧縮空気の温度が高くなり、蓄圧タンクからの熱エネルギーの放散によって、充放電効率が低下する。
そこで本発明では、吸気温度が変動した場合でも、充放電効率の低下を抑制することができる圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法を提供することを目的とする。
本発明の第1の態様は、圧縮空気貯蔵発電装置は、
入力電力により駆動される電動機と、
前記電動機と機械的に接続され、低圧段圧縮機本体及び高圧段圧縮機本体を有し、空気を圧縮する多段型の圧縮機と、
前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、
前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動される膨張機と、
前記膨張機と機械的に接続された発電機と、
前記低圧段圧縮機本体で圧縮された圧縮空気と熱媒とで熱交換し、熱媒を昇温させるためのインタークーラと、
前記インタークーラと流体的に接続され、熱媒を貯蔵する熱媒タンクと、
前記低圧段圧縮機本体で圧縮された後の圧縮空気の温度に基づき、前記熱媒タンクから前記インタークーラに供給される熱媒の流量を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する制御部と、を備える。
前記構成によれば、低圧段圧縮機本体で圧縮された後の圧縮空気の温度に基づき、インタークーラに供給される熱媒の流量が調整されるので、圧縮機の吸気温度が変動した場合でも、蓄圧タンクに貯蔵される圧縮空気の温度を維持できる。その結果、圧縮空気貯蔵発電装置の充放電効率の低下を抑制することができる。
前記第1の態様は、さらに、次のような構成を備えるのが好ましい。
(1)前記低圧段圧縮機本体と前記インタークーラとを接続する空気配管と、
前記空気配管に設けられた温度センサと、
前記熱媒タンクから前記インタークーラに熱媒を供給する熱媒ポンプと、備え、
前記制御部は、前記温度センサにより検出された圧縮空気の温度により、前記熱媒ポンプの回転数を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する。
前記構成(1)によれば、熱媒ポンプの回転数によってインタークーラに供給される熱媒の流量を調整するので、インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に容易に維持することができる。なおここで、所定温度は、吸気温度変化による圧縮機の圧縮比変化によって生じる圧縮機の吐出温度変化を相殺させる高圧段圧縮機本体の吸気温度に相当する。
(2)前記低圧段圧縮機本体と前記インタークーラとを接続する空気配管と、
前記空気配管に設けられた温度センサと、
前記熱媒タンクと前記インタークーラとを接続する熱媒配管と、
前記熱媒配管に設けられた流量調整弁と、備え、
前記制御部は、前記温度センサにより検出された圧縮空気の温度により、前記流量調整弁の開度を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する。
前記構成(2)によれば、流量調整弁の開度によってインタークーラに供給される熱媒の流量を調整するので、インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に容易に維持することができる。なおここで、所定温度は、吸気温度変化による圧縮機の圧縮比変化によって生じる圧縮機の吐出温度変化を相殺させる高圧段圧縮機本体の吸気温度に相当する。
本発明の第2の態様は、入力電力により電動機を駆動し、
前記電動機と機械的に接続され、低圧段圧縮機本体及び高圧段圧縮機本体を有する多段型の圧縮機により空気を圧縮し、
前記圧縮機により圧縮された圧縮空気を蓄圧タンクに貯蔵し、
前記蓄圧タンクから供給される圧縮空気によって膨張機を駆動し、
前記膨張機と機械的に接続された発電機により発電し、
インタークーラにおいて、前記低圧段圧縮機本体で圧縮された圧縮空気と熱媒タンクから供給された熱媒とで熱交換する、圧縮空気貯蔵発電方法であって、
前記低圧段圧縮機本体で圧縮された後の圧縮空気の温度に基づき、前記インタークーラに供給される熱媒の流量を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する。
前記構成によれば、低圧段圧縮機本体で圧縮された後の圧縮空気の温度に基づき、インタークーラに供給される熱媒の流量が調整されるので、圧縮機の吸気温度が変動した場合でも、蓄圧タンクに貯蔵される圧縮空気の温度を維持できる。その結果、圧縮空気貯蔵発電装置の充放電効率の低下を抑制することができる。
本発明によれば、吸気温度が変動した場合でも、充放電効率の低下を抑制することができる、圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法を提供できる。
本発明の第1実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 充電時の2段型のスクリュ式圧縮機の圧力−温度線図。 本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図。 本発明の第3実施形態に係る圧縮空気貯蔵発電装置の概略構成図。
以下、添付図面を参照して本発明の実施形態を説明する。
(第1実施形態)
図1は、圧縮空気貯蔵(CAES:compressed air energy storage)発電装置2の概略構成図を示している。本実施形態のCAES発電装置2は、再生可能エネルギーを利用して発電する場合に、需要先である電力系統4への出力変動を平滑化するとともに、電力系統4における需要電力の変動に合わせた電力を出力する。CAES発電装置2はまた、風力発電所又は太陽光発電所などの再生可能エネルギーによる発電所6から、トランス等で構成される受送電設備60を介して供給された電力を平滑化し、需要先の電力系統4に電力を出力する。
図1を参照して、本発明の第1実施形態を説明する。CAES発電装置2は、空気経路及び熱媒経路を備えている。空気経路には、主に圧縮機8と、蓄圧タンク12と、膨張機14とが設けられており、これらが空気配管18,19により流体的に接続され、その内部には空気が流れている(図1の破線参照)。熱媒経路には、主に第1熱交換部20と、蓄熱タンク24と、第2熱交換部26と、熱媒タンク48とが設けられており、これらが熱媒配管30により流体的に接続され、その内部には熱媒が流れている(図1の実線参照)。そして、CAES発電装置2は、空気経路及び熱媒経路に設けられる装置を制御する制御部90を備えている。
まず、図1を参照して空気経路について説明する。空気経路では、吸い込まれた空気は、圧縮機8で圧縮され、蓄圧タンク12に貯蔵される。蓄圧タンク12に貯蔵された圧縮空気は膨張機14に供給され、発電機46の発電に使用される。
圧縮機8は、低圧段圧縮機本体9及び高圧段圧縮機本体10を有する2段型のスクリュ式である。スクリュ式の圧縮機8を使用することで、変動する入力に速やかに追従でき、発電出力も速やかに変更できる。圧縮機8は、モータ(電動機)44を備える。モータ44は、低圧段圧縮機本体9及び高圧段圧縮機本体10の内部の二軸式のスクリュ9a,10aに機械的に接続されている。発電設備6で発電された電力(入力電力)はモータ44に供給され(図1の二点鎖線参照)、この電力によりモータ44が駆動され、スクリュ9a,10aが回転して圧縮機8が作動する。圧縮機8は、モータ44により駆動されると、空気配管18を通じて低圧段圧縮機本体9が吸込口9bより空気を吸引し、圧縮して吐出口9cより吐出し、空気配管18を通じて高圧段圧縮機本体10に圧縮空気を圧送する。空気配管18において、吐出口9cの圧縮空気流れ下流側には、低圧段圧縮機本体9が吐出する圧縮空気の温度を検出する温度センサ91が設けられている。高圧段圧縮機本体10は、空気配管18を通じて吸込口10bより空気を吸引し、圧縮して吐出口10cより吐出し、空気配管18aを通じて蓄圧タンク12に圧縮空気を圧送する。
蓄圧タンク12は、圧縮機8から圧送された圧縮空気を貯蔵する。従って、蓄圧タンク12には、圧縮空気としてエネルギーを蓄積できる。蓄圧タンク12は、空気配管19を通じて、膨張機14に流体的に接続されている。従って、蓄圧タンク12で貯蔵された圧縮空気は、膨張機14に供給される。なお、蓄圧タンク12に貯蔵された圧縮空気は、工場等に直接利用するエアとして供給されてもよい。
膨張機14は、低圧段膨張機本体15及び高圧段膨張機本体16を有する2段型のスクリュ式である。スクリュ式の膨張機14を使用することで、変動する入力に速やかに追従でき、発電出力も速やかに変更できる。膨張機14は、発電機46を備える。発電機46は、低圧段膨張機本体15及び高圧段膨張機本体16の内部の二軸式のスクリュ15a,16aと機械的に接続されている。高圧段膨張機本体16は、給気口16bにおいて空気配管19を通じて蓄圧タンク12と流体的に接続され、給気口16bから圧縮空気が供給される。高圧段膨張機本体16は、供給された圧縮空気により作動し、発電機46を駆動する。高圧段膨張機本体16は、排気口16cから空気配管19を通じて圧縮空気を低圧段膨張機本体15の給気口15bに供給する。低圧段膨張機本体15は、同様に供給された圧縮空気により作動し、発電機46を駆動する。低圧段膨張機本体15は、排気口15cから空気配管19を通じて外部に膨張した空気を排気する。発電機46で発電した電力は、需要先設備4に供給される(図1の二点鎖線参照)。
次に、図1を参照して熱媒経路について説明する。熱媒経路では、第1熱交換部20において圧縮機8で発生した熱を熱媒に回収している。そして、熱回収した熱媒を蓄熱タンク24(蓄熱タンク24a及び蓄熱タンク24b)に貯蔵し、第2熱交換部26において膨張機14で膨張する前の圧縮空気に熱を戻している。第2熱交換部26において熱交換して降温した熱媒は、熱媒タンク48に供給される。そして、熱媒タンク48から第1熱交換部20に再び熱媒が供給され、このように熱媒は循環している。ここで、熱媒の種類は特に限定されておらず、例えば鉱物油やグリコール系の熱媒や高圧水を使用できる。
本実施形態の第1熱交換部20は、インタークーラ21と、アフタークーラ22とを備える。インタークーラ21及びアフタークーラ22は、圧縮機8で発生した熱を熱媒に回収している。従って、インタークーラ21及びアフタークーラ22では、圧縮空気の温度は低下し、熱媒の温度は上昇する。
インタークーラ21は、空気経路において、低圧段圧縮機本体9から高圧段圧縮機本体10に延びる空気配管18に設けられている。また、インタークーラ21は、熱媒経路において、熱媒タンク48から蓄熱タンク24bに延びる熱媒配管30a,30eに設けられている。従って、インタークーラ21は、低圧段圧縮機本体9で圧縮後の圧縮空気と、蓄熱タンク24bに供給される熱媒とで熱交換し、低圧段圧縮機本体9で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30eを通じて蓄熱タンク24bに供給される。
アフタークーラ22は、空気経路において、高圧段圧縮機本体10から蓄圧タンク12に延びる空気配管18aに設けられている。また、アフタークーラ22は、熱媒経路において、熱媒タンク48から蓄熱タンク24aに延びる熱媒配管30d,30cに設けられている。従って、アフタークーラ22は、高圧段圧縮機本体10で圧縮後の圧縮空気と、蓄熱タンク24aに供給される熱媒とで熱交換し、低圧段圧縮機本体9及び高圧段圧縮機本体10で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30cを通じて蓄熱タンク24aに供給される。
これにより、蓄熱タンク24aに高温の熱媒を貯蔵し、これより低温の熱媒を蓄熱タンク24bに貯蔵でき、即ち温度別に熱媒を貯蔵できる。従って、高温と低温で貯蔵された熱媒で2段型のスクリュ式膨張機14に流入する圧縮空気を加熱可能であり、充放電効率を高く維持できる。
蓄熱タンク24a及び蓄熱タンク24bは、大気と断熱された断熱材で周囲が覆われた鋼製タンクである。断熱材で覆う代わりに二重容器として真空断熱すれば、さらに断熱効果を高めることもできる。蓄熱タンク24a及び蓄熱タンク24bには、第1熱交換部20で昇温した熱媒が貯蔵されている。蓄熱タンク24aに貯蔵された熱媒は、熱媒配管30fを通じてインターヒータ28に供給される。蓄熱タンク24bに貯蔵された熱媒は、熱媒配管30gを通じてプレヒータ27に供給される。
温度別に貯蔵された熱媒で2段型のスクリュ式膨張機14に流入する圧縮空気を加熱することで、システム全体での熱効率を最大限高めることができ、充放電効率を高く維持できる。
本実施形態の第2熱交換部26は、プレヒータ27と、インターヒータ28とを備える。プレヒータ27及びインターヒータ28は、膨張機14で膨張前の圧縮空気を加熱する。従って、プレヒータ27及びインターヒータ28では、圧縮空気の温度は上昇し、熱媒の温度は低下する。
プレヒータ27は、空気経路において、蓄圧タンク12から高圧段膨張機本体16に延びる空気配管19に設けられている。また、プレヒータ27は、熱媒経路において、蓄熱タンク24bから熱媒タンク48に延びる熱媒配管30g,30hに設けられている。従って、プレヒータ27は、高圧段膨張機本体16で膨張前の圧縮空気と、蓄熱タンク24bから供給される熱媒とで熱交換し、高圧段膨張機本体16での膨張前の圧縮空気を加熱している。ここで降温した熱媒は、熱媒配管30hを通じて熱媒タンク48に供給される。
インターヒータ28は、空気経路において、高圧段膨張機本体16から低圧段膨張機本体15に延びる空気配管19に設けられている。また、インターヒータ28は、熱媒経路において、蓄熱タンク24aから熱媒タンク48に延びる熱媒配管30f,30iに設けられている。従って、インターヒータ28は、低圧段膨張機本体15で膨張前の圧縮空気と、蓄熱タンク24aから供給される熱媒とで熱交換し、低圧段膨張機本体15での膨張前の圧縮空気を加熱している。このように、圧縮空気を高圧段膨張機本体16と低圧段膨張機本体15の間で加熱しているので、過冷却になることなく、より発電量も増大できる。ここで降温した熱媒は、熱媒配管30iを通じて熱媒タンク48に回収される。
熱媒タンク48は、第2熱交換部26(プレヒータ27及びインターヒータ28)で熱交換して降温した熱媒を貯蔵する。従って、熱媒タンク48内の熱媒は、通常、蓄熱タンク24内の熱媒よりも温度が低い。熱媒タンク48に貯蔵されている熱媒は、熱媒配管30jを通じて第1熱交換部20にそれぞれ供給される。
このように、本実施形態では3つの熱媒を貯蔵するタンク24a,24b,48が設けられている。蓄熱タンク24aの温度T1、蓄熱タンク24bの温度T2、及び熱媒タンク48の温度T3を比べると、T1が最も高く、次いでT2、そしてT3が最も低い。即ち、T1>T2>T3の関係が成立している。
熱媒タンク48から第1熱交換部20に延びる熱媒配管30jには、第3熱交換部34が設けられている。第3熱交換部34では、第1熱交換部20に供給される熱媒と、冷却水との間で熱交換して熱媒の温度を所定の温度まで低下させている。
第3熱交換部34は、第1熱交換部20の上流側に配置されているので、第3熱交換部34によって第1熱交換部20に流入する熱媒の温度を所定の温度に維持できる。その結果、第1熱交換部20における熱交換を安定的に行うことができ、充放電効率を向上できる。
熱媒配管30j,30f,30gには、熱媒を流動させるためのポンプ50a〜50cがそれぞれ設けられている。ポンプ50a(熱媒ポンプ)は熱媒タンク48下流に配置され、ポンプ50bは蓄熱タンク24a下流に配置され、ポンプ50cは蓄熱タンク24b下流に配置されている。
以下、制御部90によるインタークーラ21への熱媒流量の調整について説明する。
制御部90は、温度センサ91によって低圧段圧縮機本体9が吐出する圧縮空気の温度を検出する。ここで、外気温度が変動し、低圧段圧縮機本体9の吸気温度が変動すると、制御部90は、温度センサ91による圧縮空気の温度変化から、ポンプ50aの回転数を増減させ、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を調整する。
例えば、制御部90は、温度センサ91によって圧縮空気の温度の低下を検出すると、ポンプ50aの回転数を減少させ、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を減少させる。その結果、インタークーラ21において、圧縮空気と熱媒との熱交換量が減少し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定温度(第1温度)に維持する。なおここで、第1温度は、吸気温度低下による圧縮機8の吐出温度低下を相殺させる高圧段圧縮機本体10の吸気温度に相当する。
その結果、高圧段圧縮機本体10へ圧送された圧縮空気の温度が一定に維持され、圧縮機8の吸気温度が低い場合でも、膨張機14の給気温度を一定に維持することができる。したがって、CAES発電装置2の充放電効率の低下を抑制することができる。
また、制御部90は、温度センサ91によって圧縮空気の温度の上昇を検出すると、ポンプ50aの回転数を増加させ、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を増加させる。その結果、インタークーラ21において、圧縮空気と熱媒との熱交換量が増加し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定温度(第2温度)に維持する。なおここで、第2温度は、吸気温度上昇による圧縮機8の吐出温度増加を相殺させる高圧段圧縮機本体10の吸気温度に相当する。
その結果、高圧段圧縮機本体10へ圧送された圧縮空気の温度が一定に維持され、圧縮機8の吸気温度が高い場合でも、蓄圧タンク12に導入される圧縮空気の温度を一定に維持することができる。したがって、高圧段圧縮機本体10の吸気温度を、高圧段圧縮機本体10として許容されるべき所定の吸気温度以下に抑制することができ、圧縮機の安定運転、ひいてはCAES発電装置2の安定運転が可能となる。
図2は、充電時の2段型のスクリュ式圧縮機8の圧力−温度線図である。縦軸は圧力(MPa)、横軸は温度(K)を表す。図2では、圧縮機8の吸気温度が設計標準値(約30℃)の場合の圧力−温度線図が実線で、圧縮機8の吸気温度が設計標準値より低い(約0℃)の場合の圧力−温度線図が破線で示されている。なお、図2の圧力−温度線図は、p−h線図(圧力−比エンタルピー線図)に置き換えることができる。
圧縮機の吸気温度が設計標準値の場合、図2では、状態S1から状態S2は、低圧段圧縮機本体9での吸気過程を示し、状態S2から状態S3は、低圧段圧縮機本体9での吸気の内部閉じこみから吐出口9cまでの圧縮仕事過程を示している。状態S3から状態S4は、インタークーラ21での冷却過程を示している。状態S4から状態S5は、高圧段圧縮機本体10での吸気過程を示し、状態S5から状態S6は、高圧段圧縮機本体10での吸気の内部閉じこみから吐出口10cまでの圧縮仕事過程を示している。状態S6から状態S7は、アフタークーラ22での冷却過程を示している。
図2では、状態S2から状態S3及び状態S5から状態S6は断熱過程を想定した等エントロピー変化である。状態S1から状態S7までの圧縮空気の温度の遷移を見ると、状態S1で約30℃、状態S2で約35℃、状態S3で約154℃、状態S4で約45℃、状態S5で約65℃、状態S6で約163℃、そして状態S7で約45℃である。なお、状態S1〜S7の圧力・温度等の条件は一例であって、これに限定されるものではない。
蓄熱タンク24aには、アフタークーラ22で加熱されて昇温した熱媒が貯蔵される。これは、図2の状態S6から状態S7で圧縮空気と熱交換した熱媒に対応する。状態S6は状態S3よりも温度が高いため、蓄熱タンク24aには蓄熱タンク24bに貯蔵される熱媒より温度が高い熱媒が貯蔵される。
蓄熱タンク24bには、インタークーラ21で加熱されて昇温した熱媒が貯蔵される。これは、図2の状態S3から状態S4で圧縮空気と熱交換した熱媒に対応する。状態S3は状態S6よりも温度が低いため、蓄熱タンク24bには蓄熱タンク24aに貯蔵される熱媒より温度が低い熱媒が貯蔵される。
圧縮機の吸気温度が設計標準値より低い場合、図2では、状態C1から状態C2は低圧段圧縮機本体9での高温の圧縮空気の内部漏れによる吸気加熱過程を示し、状態C2から状態C3は低圧段圧縮機本体9での吸気の内部閉じこみから吐出口9cまでの圧縮仕事過程を示している。状態C3から状態C4は、インタークーラ21での冷却過程を示している。状態C4から状態C5は高圧段圧縮機本体10での高温の圧縮空気の内部漏れによる吸気加熱過程を示し、状態C5から状態C6は高圧段圧縮機本体10での吸気の内部閉じこみから吐出口10cまでの過程を示している。状態C6から状態C7は、アフタークーラ22での冷却過程を示している。
図2では、状態C2から状態C3及び状態C5から状態C6は、圧縮仕事過程での高温の圧縮空気の内部漏れに吸気温度の上昇を含む、断熱過程を想定した等エントロピー変化である。例示した状態C1から状態C7までの圧縮空気の温度の遷移を見ると、状態C1で約0℃、状態C2で約5℃、状態C3で約154℃、状態C4で約60℃、状態C5で約65℃、状態C6で約163℃、そして状態C7で約45℃である。なお、状態S1〜S7の圧力・温度等の条件は一例であって、これに限定されるものではない。
ここで、状態C3から状態C4では、制御部90は、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を減少させている。したがって、状態C4の圧縮空気の温度(吸気温度から算出される第1温度)は、状態S4の圧縮空気の温度より高くなる。その結果、状態C4の圧縮空気の圧力が上昇し、高圧段圧縮機本体10での圧縮比が低下しても、状態C6の圧縮空気の温度は、状態S6の圧縮空気の温度と同等となり、高圧段圧縮機本体10の吐出温度を維持することができ、CAES発電装置2の充放電効率の低下を抑制することができる。
蓄熱タンク24aには、アフタークーラ22で加熱されて昇温した熱媒が貯蔵される。これは、図2の状態C6から状態C7で圧縮空気と熱交換した熱媒に対応する。状態C6は状態C3よりも温度が高いため、蓄熱タンク24aには蓄熱タンク24bに貯蔵される熱媒より温度が高い熱媒が貯蔵される。
蓄熱タンク24bには、インタークーラ21で加熱されて昇温した熱媒が貯蔵される。これは、図2の状態C3から状態C4で圧縮空気と熱交換した熱媒に対応する。状態C3は状態C6よりも温度が低いため、蓄熱タンク24bには蓄熱タンク24aに貯蔵される熱媒より温度が低い熱媒が貯蔵される。したがって、吸気温度が設計温度から変動する場合でも、蓄熱タンク24aに貯蔵される熱媒の温度と蓄熱タンク24bに貯蔵される熱媒の温度との大小関係が変化することはない。
(第2実施形態)
上記第1実施形態では、制御部90は、ポンプ50aの回転数を変化させることによって熱媒の流量を変化させているが、ポンプ50aは流量一定のポンプでもよい。図3は、ポンプ50aが流量一定のポンプである場合の、本発明の第2実施形態に係る圧縮空気貯蔵発電装置の概略構成図である。
図3に示すように、本実施形態では、ポンプ50aからインタークーラ21までの熱媒配管30aに流量調整弁92が設けられる。制御部90は、流量調整弁92の開度を調整することによって、インタークーラ21へ供給される熱媒の流量を調整する。具体的には、制御部90は、温度センサ91によって圧縮空気の温度の低下を検出すると、流量調整弁92の開度を小さくすることによって、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を減少させる。その結果、インタークーラ21において、圧縮空気と熱媒との熱交換量が減少し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定の第1温度に維持する。
その結果、高圧段圧縮機本体10へ圧送された圧縮空気の温度が一定に維持され、圧縮機8の吸気温度が低い場合でも、膨張機14の吸気温度を一定に維持することができる。したがって、CAES発電装置2の充放電効率の低下を抑制することができる。
また、制御部90は、温度センサ91によって圧縮空気の温度の上昇を検出すると、流量調整弁92の開度を大きくすることによって、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を増加させる。その結果、インタークーラ21において、圧縮空気と熱媒との熱交換量が増加し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定の第2温度に維持する。
その結果、高圧段圧縮機本体10へ圧送された圧縮空気の温度が一定に維持され、圧縮機8の吸気温度が高い場合でも、蓄圧タンク12に導入される圧縮空気の温度を一定に維持することができる。したがって、CAES発電装置2の充放電効率の低下を抑制することができる。
なお、第2実施形態においても、第1実施形態と同様、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定の第1温度に維持するので、第2実施形態は、第1実施形態で説明した圧力−温度線図と同様の圧力−温度線図を示す。
上記実施形態では、2種の蓄熱タンク24(蓄熱タンク24a及び蓄熱タンク24b)が設けられているが、3種以上の蓄熱タンクが設けられてもよい。また、蓄熱タンク24a又は蓄熱タンク24bの一方又は両方が2つ以上設けられてもよい。さらに、物理的に1つの蓄熱タンク24の内部が仕切られて、高温用の熱媒と低温用の熱媒とが分けて貯蔵されるようにしてもよい。なお、上記実施形態では、熱媒の温度差を考慮して、蓄熱タンク24a及び蓄熱タンク24bが設けられているが、1つの蓄熱タンクでインタークーラ21及びアフタークーラ22からの熱媒を受け取るように構成されてもよい。以下、1つの蓄熱タンクでインタークーラ21及びアフタークーラ22からの熱媒を受け取るように構成した実施形態を示す。
(第3実施形態)
図4を参照して、本発明の第3実施形態を説明する。この本発明の第3実施形態は、1つの蓄熱タンク24(蓄熱タンク24c)でインタークーラ21及びアフタークーラ22からの熱媒を受け取るように構成した実施形態である。なお、この本発明の第3実施形態は、本発明の第1実施形態、第2実施形態と多くの共通の構成品を含む。それら共通の構成品については同一の番号を付し、それらの説明については割愛する。
図4に示すとおり、熱媒配管30k,30nは、熱媒配管30jから分岐している。熱媒配管30p、30mは蓄熱タンク24cの上流側で合流している。また、熱媒配管30r,30gは蓄熱タンク24cの下流側で分岐している。熱媒配管30s、30tは熱媒タンク48の上流側で合流している。熱媒配管30k,30n,30r,30qには、熱媒を流動させるためのポンプ50a,50d,50c,50bがそれぞれ設けられている。ポンプ50a(熱媒ポンプ)は熱媒タンク48の下流側の熱媒配管30kに配置され、ポンプ50dは熱媒タンク48の下流側の熱媒配管30nに配置され、ポンプ50bは蓄熱タンク24cの下流側の熱媒配管30qに配置され、ポンプ50cは蓄熱タンク24cの下流側の熱媒配管30rに配置されている。
インタークーラ21は、空気経路において、低圧段圧縮機本体9から高圧段圧縮機本体10に延びる空気配管18に設けられている。また、インタークーラ21は、熱媒経路において、熱媒タンク48から蓄熱タンク24cに延びる熱媒配管30k,30pに設けられている。従って、インタークーラ21は、低圧段圧縮機本体9で圧縮後の圧縮空気と、蓄熱タンク24cに供給される熱媒とで熱交換し、低圧段圧縮機本体9で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30pを通じて蓄熱タンク24cに供給される。
アフタークーラ22は、空気経路において、高圧段圧縮機本体10から蓄圧タンク12に延びる空気配管18aに設けられている。また、アフタークーラ22は、熱媒経路において、熱媒タンク48から蓄熱タンク24cに延びる熱媒配管30n,30mに設けられている。従って、アフタークーラ22は、高圧段圧縮機本体10で圧縮後の圧縮空気と、蓄熱タンク24cに供給される熱媒とで熱交換し、低圧段圧縮機本体9及び高圧段圧縮機本体10で発生した圧縮熱を熱媒に回収している。ここで昇温した熱媒は、熱媒配管30mを通じて蓄熱タンク24cに供給される。
空気配管18において、インタークーラ21の下流側で且つ高圧段圧縮機本体10の上流側には、インタークーラ21にて熱媒と熱交換した圧縮空気の温度を検出する温度センサ95が設けられている。
蓄熱タンク24cは、上述した蓄熱タンク24a,24bと同様の構成のものであり、大気と断熱された断熱材で周囲が覆われた鋼製タンクである。
プレヒータ27は、空気経路において、蓄圧タンク12から高圧段膨張機本体16に延びる空気配管19に設けられている。また、プレヒータ27は、熱媒経路において、蓄熱タンク24cから熱媒タンク48に延びる熱媒配管30r,30sに設けられている。従って、プレヒータ27は、高圧段膨張機本体16で膨張前の圧縮空気と、蓄熱タンク24cから供給される熱媒とで熱交換し、高圧段膨張機本体16での膨張前の圧縮空気を加熱している。ここで降温した熱媒は、熱媒配管30sを通じて熱媒タンク48に供給される。
インターヒータ28は、空気経路において、高圧段膨張機本体16から低圧段膨張機本体15に延びる空気配管19に設けられている。また、インターヒータ28は、熱媒経路において、蓄熱タンク24cから熱媒タンク48に延びる熱媒配管30q,30tに設けられている。従って、インターヒータ28は、低圧段膨張機本体15で膨張前の圧縮空気と、蓄熱タンク24cから供給される熱媒とで熱交換し、低圧段膨張機本体15での膨張前の圧縮空気を加熱している。このように、圧縮空気を高圧段膨張機本体16と低圧段膨張機本体15の間で加熱しているので、過冷却になることなく、より発電量も増大できる。ここで降温した熱媒は、熱媒配管30tを通じて熱媒タンク48に回収される。
熱媒タンク48は、第2熱交換部26(プレヒータ27及びインターヒータ28)で熱交換して降温した熱媒を貯蔵する。従って、熱媒タンク48内の熱媒は、通常、蓄熱タンク24c内の熱媒よりも温度が低い。熱媒タンク48に貯蔵されている熱媒は、熱媒配管30jを通じて第1熱交換部20に供給される。
このように、本実施形態では2つの熱媒を貯蔵するタンク24,48が設けられている。蓄熱タンク24cの温度T4、及び熱媒タンク48の温度T5を比べると、T4が高く、T5が低い。即ち、T4>T5の関係が成立している。
熱媒タンク48から第1熱交換部20に延びる熱媒配管30jには、第3熱交換部34が設けられている。第3熱交換部34では、第1熱交換部20に供給される熱媒と、冷却水との間で熱交換して熱媒の温度を所定の温度まで低下させている。なお、熱媒配管30jにおいて、第3熱交換部34の下流側で且つ第1熱交換部20の上流側には、第3熱交換部34にて冷却水と熱交換した熱媒の度度を検出する温度センサ93が設けられている。また、第3熱交換部34を通じる冷却水の流路において、その第3熱交換部34の上流側には、冷却水の流量を調整可能な流路調整弁94が設けられる。
制御部90は、流量調整弁94の開度を調整することによって、第3熱交換部34へ供給される冷却水の流量を調整する。具体的には、制御部90は、温度センサ93によって熱媒の温度の低下を検出すると、流量調整弁94の開度を小さくすることによって、第3熱交換部34へ供給される冷却水の流量の流量を減少させる。その結果、第3熱交換部34において、熱媒と冷却水との熱交換量が減少し、第3熱交換部34によって第1熱交換部20に流入する熱媒の温度を所定の温度に維持できる。その結果、第1熱交換部20における熱交換を安定的に行うことができ、充放電効率を向上できる。
以下、制御部90によるインタークーラ21への熱媒流量の調整について説明する。
制御部90は、温度センサ95によって低圧段圧縮機本体9が吐出する圧縮空気の温度を検出する。ここで、外気温度が変動し、低圧段圧縮機本体9の吸気温度が変動すると、制御部90は、温度センサ95による圧縮空気の温度変化から、ポンプ50aの回転数を増減させ、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を調整する。
例えば、制御部90は、温度センサ95によって圧縮空気の温度の低下を検出すると、ポンプ50aの回転数を減少させ、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を減少させる。その結果、インタークーラ21において、圧縮空気と熱媒との熱交換量が減少し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定温度(第1温度)に維持する。なおここで、第1温度は、吸気温度低下による圧縮機8の圧縮比低下によって生じる圧縮機8の吐出温度低下を相殺させる高圧段圧縮機本体10の吸気温度に相当する。
その結果、高圧段圧縮機本体10へ圧送された圧縮空気の温度が一定に維持され、圧縮機8の吸気温度が低い場合でも、膨張機14の吸気温度を一定に維持することができる。したがって、CAES発電装置2の充放電効率の低下を抑制することができる。
また、制御部90は、温度センサ95によって圧縮空気の温度の上昇を検出すると、ポンプ50aの回転数を増加させ、熱媒タンク48からインタークーラ21へ供給される熱媒の流量を増加させる。その結果、インタークーラ21において、圧縮空気と熱媒との熱交換量が増加し、インタークーラ21において熱媒と熱交換した圧縮空気の温度を所定温度(第2温度)に維持する。なおここで、第2温度は、吸気温度上昇による圧縮機8の圧縮比増加によって生じる圧縮機8の吐出温度増加を相殺させる高圧段圧縮機本体10の吸気温度に相当する。
その結果、高圧段圧縮機本体10へ圧送された圧縮空気の温度が一定に維持され、圧縮機8の吸気温度が高い場合でも、蓄圧タンク12に導入される圧縮空気の温度を一定に維持することができる。したがって、CAES発電装置2の充放電効率の低下を抑制することができる。
上記のいずれの実施形態でも、圧縮機8及び膨張機14が2段型であるが、2段型に限定されるものではなく、3段以上の多段型であってもよい。また、圧縮機8及び膨張機14の数はそれぞれ1台であるが、並列に複数台を設置してもよい。
2 圧縮空気貯蔵発電装置(CAES発電装置)
4 電力系統
6 発電所
8 圧縮機
9 低圧段圧縮機本体
9a スクリュ
9b 吸込口
9c 吐出口
10 高圧段圧縮機本体
10a スクリュ
10b 吸込口
10c 吐出口
12 蓄圧タンク
14 膨張機
15 低圧段膨張機本体
15a スクリュ
15b 給気口
15c 排気口
16 高圧段膨張機本体
16a スクリュ
16b 給気口
16c 排気口
18,18a,19 空気配管
20 第1熱交換部
21 インタークーラ
22 アフタークーラ
24 蓄熱タンク
24a 蓄熱タンク
24b 蓄熱タンク
24c 蓄熱タンク
26 第2熱交換部
27 プレヒータ
28 インターヒータ
30a,30c,30d,30e,30f,30g,30h,30i,30j,30k,30m,30n,30p,30q,30r,30s,30t 熱媒配管
34 第3熱交換部
44 モータ(電動機)
46 発電機
48 熱媒タンク
50a,50b,50c,50d ポンプ
60 受送電設備
90 制御部
91 温度センサ
92 流量調整弁
93 温度センサ
94 流量調整弁
95 温度センサ

Claims (4)

  1. 入力電力により駆動される電動機と、
    前記電動機と機械的に接続され、低圧段圧縮機本体及び高圧段圧縮機本体を有し、空気を圧縮する多段型の圧縮機と、
    前記圧縮機と流体的に接続され、前記圧縮機により圧縮された圧縮空気を貯蔵する蓄圧タンクと、
    前記蓄圧タンクと流体的に接続され、前記蓄圧タンクから供給される圧縮空気によって駆動される膨張機と、
    前記膨張機と機械的に接続された発電機と、
    前記低圧段圧縮機本体で圧縮された圧縮空気と熱媒とで熱交換し、熱媒を昇温させるためのインタークーラと、
    前記インタークーラと流体的に接続され、熱媒を貯蔵する熱媒タンクと、
    前記低圧段圧縮機本体で圧縮された後の圧縮空気の温度に基づき、前記熱媒タンクから前記インタークーラに供給される熱媒の流量を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する制御部と、を備える圧縮空気貯蔵発電装置。
  2. 前記低圧段圧縮機本体と前記インタークーラとを接続する空気配管と、
    前記空気配管に設けられた温度センサと、
    前記熱媒タンクから前記インタークーラに熱媒を供給する熱媒ポンプと、備え、
    前記制御部は、前記温度センサにより検出された圧縮空気の温度により、前記熱媒ポンプの回転数を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する、請求項1記載の圧縮空気貯蔵発電装置。
  3. 前記低圧段圧縮機本体と前記インタークーラとを接続する空気配管と、
    前記空気配管に設けられた温度センサと、
    前記熱媒タンクと前記インタークーラとを接続する熱媒配管と、
    前記熱媒配管に設けられた流量調整弁と、備え、
    前記制御部は、前記温度センサにより検出された圧縮空気の温度により、前記流量調整弁の開度を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する、請求項1記載の圧縮空気貯蔵発電装置。
  4. 入力電力により電動機を駆動し、
    前記電動機と機械的に接続され、低圧段圧縮機本体及び高圧段圧縮機本体を有する多段型の圧縮機により空気を圧縮し、
    前記圧縮機により圧縮された圧縮空気を蓄圧タンクに貯蔵し、
    前記蓄圧タンクから供給される圧縮空気によって膨張機を駆動し、
    前記膨張機と機械的に接続された発電機により発電し、
    インタークーラにおいて、前記低圧段圧縮機本体で圧縮された圧縮空気と熱媒タンクから供給された熱媒とで熱交換する、圧縮空気貯蔵発電方法であって、
    前記低圧段圧縮機本体で圧縮された後の圧縮空気の温度に基づき、前記インタークーラに供給される熱媒の流量を調整し、前記インタークーラにおいて熱媒と熱交換した圧縮空気の温度を所定温度に維持する、圧縮空気貯蔵発電方法。
JP2017186977A 2017-09-27 2017-09-27 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法 Active JP6793616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186977A JP6793616B2 (ja) 2017-09-27 2017-09-27 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186977A JP6793616B2 (ja) 2017-09-27 2017-09-27 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Publications (2)

Publication Number Publication Date
JP2019060312A true JP2019060312A (ja) 2019-04-18
JP6793616B2 JP6793616B2 (ja) 2020-12-02

Family

ID=66177118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186977A Active JP6793616B2 (ja) 2017-09-27 2017-09-27 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Country Status (1)

Country Link
JP (1) JP6793616B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377675B2 (ja) 2019-11-01 2023-11-10 日産自動車株式会社 内燃機関の吸気温度制御方法及び内燃機関の吸気温度制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115859A (ja) * 1999-10-19 2001-04-24 Toshiba Corp Caes発電システム
US20120011857A1 (en) * 2009-03-24 2012-01-19 Concepts Eti, Inc. High-Flow-Capacity Centrifugal Hydrogen Gas Compression Systems, Methods and Components Therefor
US20140026584A1 (en) * 2012-07-30 2014-01-30 Apex Compressed Air Energy Storage, Llc Compressed air energy storage system having variable generation modes
JP2016048063A (ja) * 2014-08-27 2016-04-07 株式会社神戸製鋼所 圧縮流体貯蔵発電装置
JP2016211416A (ja) * 2015-05-08 2016-12-15 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115859A (ja) * 1999-10-19 2001-04-24 Toshiba Corp Caes発電システム
US20120011857A1 (en) * 2009-03-24 2012-01-19 Concepts Eti, Inc. High-Flow-Capacity Centrifugal Hydrogen Gas Compression Systems, Methods and Components Therefor
US20140026584A1 (en) * 2012-07-30 2014-01-30 Apex Compressed Air Energy Storage, Llc Compressed air energy storage system having variable generation modes
JP2016048063A (ja) * 2014-08-27 2016-04-07 株式会社神戸製鋼所 圧縮流体貯蔵発電装置
JP2016211416A (ja) * 2015-05-08 2016-12-15 株式会社神戸製鋼所 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377675B2 (ja) 2019-11-01 2023-11-10 日産自動車株式会社 内燃機関の吸気温度制御方法及び内燃機関の吸気温度制御装置

Also Published As

Publication number Publication date
JP6793616B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6510876B2 (ja) 圧縮空気貯蔵発電方法および圧縮空気貯蔵発電装置
US10655505B2 (en) Compressed air energy storage and power generation device and compressed air energy storage and power generation method
JP6343587B2 (ja) 圧縮空気貯蔵発電方法及び圧縮空気貯蔵発電装置
JP6571491B2 (ja) ヒートポンプ
WO2016181884A1 (ja) 圧縮空気貯蔵発電装置
JP6456236B2 (ja) 圧縮空気貯蔵発電装置
JP6511378B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6913044B2 (ja) 圧縮空気貯蔵発電装置
WO2016203980A1 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
CN108779712B (zh) 压缩空气贮藏发电装置
JP2016211436A (ja) 圧縮空気貯蔵発電装置
JP2023038673A (ja) 圧縮空気貯蔵発電装置
JP6793616B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
JP6815369B2 (ja) 圧縮空気貯蔵発電装置および圧縮空気貯蔵発電方法
JP6731377B2 (ja) 圧縮空気貯蔵発電装置及び圧縮空気貯蔵発電方法
CN110892139A (zh) 压缩空气贮藏发电装置
JP6906013B2 (ja) ヒートポンプ
JP2019173608A (ja) 圧縮空気貯蔵発電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R151 Written notification of patent or utility model registration

Ref document number: 6793616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151