JP2019057520A - Sealed battery and manufacturing method for the same - Google Patents

Sealed battery and manufacturing method for the same Download PDF

Info

Publication number
JP2019057520A
JP2019057520A JP2019007102A JP2019007102A JP2019057520A JP 2019057520 A JP2019057520 A JP 2019057520A JP 2019007102 A JP2019007102 A JP 2019007102A JP 2019007102 A JP2019007102 A JP 2019007102A JP 2019057520 A JP2019057520 A JP 2019057520A
Authority
JP
Japan
Prior art keywords
battery
battery outer
current collecting
collecting tab
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019007102A
Other languages
Japanese (ja)
Other versions
JP6765080B2 (en
Inventor
船見 浩司
Koji Funemi
浩司 船見
吉永 光宏
Mitsuhiro Yoshinaga
光宏 吉永
葛西 孝昭
Takaaki Kasai
孝昭 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019007102A priority Critical patent/JP6765080B2/en
Publication of JP2019057520A publication Critical patent/JP2019057520A/en
Application granted granted Critical
Publication of JP6765080B2 publication Critical patent/JP6765080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a sealed battery for securing bonding strength by increasing the bonding area between a battery outer can and a current collector tab while the surface melting area of a melted portion of an outer bottom surface of the battery outer can is reduced so that the connection reliability at a battery pack can be secured, and a manufacturing method for the same.SOLUTION: A laser beam 25 having a smaller spot diameter than the plate thickness of a battery outer can 5 is applied at a predetermined irradiation angle θ to an irradiation position of the bottom surface of the battery outer can 5, and the laser beam is applied while rotated relatively to the battery outer can 5 around the irradiation point 27 of the irradiation position with keeping the angle θ, thereby bonding the battery outer can 5 and a negative electrode collector tab 12 in the battery outer can 5.SELECTED DRAWING: Figure 1

Description

本発明は、密閉型電池及びその製造方法に関し、より詳細には、密閉型電池の電池外装缶と集電タブとの接合部構造及び密閉型電池の製造方法のうちの電池外装缶と集電タブとの接合方法に関する。   The present invention relates to a sealed battery and a manufacturing method thereof, and more specifically, a junction structure between a battery outer can and a current collecting tab of a sealed battery, and a battery outer can and a current collector in a manufacturing method of a sealed battery. The present invention relates to a method for joining with a tab.

従来の密閉型電池及びその製造方法は、電池外装缶とその内部にある集電タブとを接触させ、電池外装缶と集電タブとの間を抵抗溶接で接合している。しかし、抵抗溶接時に発生するスパッタが電池外装缶内部に入り込み、電池の信頼性が悪化するという課題があった。そのため、最近では、電池外装缶の外側からレーザビームを照射して、電池外装缶と集電タブとを接合させて、スパッタ発生を防止している(例えば、特許文献1〜3参照。)。例えば、図22は、特許文献3に記載された従来の密閉型電池及びその製造方法を示す図である。   In a conventional sealed battery and a manufacturing method thereof, a battery outer can and a current collecting tab inside thereof are brought into contact, and the battery outer can and the current collecting tab are joined by resistance welding. However, there is a problem that the spatter generated during resistance welding enters the inside of the battery outer can and deteriorates the reliability of the battery. Therefore, recently, a laser beam is irradiated from the outside of the battery outer can and the battery outer can and the current collecting tab are joined to prevent spattering (see, for example, Patent Documents 1 to 3). For example, FIG. 22 is a diagram showing a conventional sealed battery described in Patent Document 3 and a manufacturing method thereof.

図22において、電池外装缶101の内面底部に集電タブ102が密接されている。電池外装缶101の外側底面からレーザビーム103を照射して、電池外装缶101と集電タブ102とを溶融させて溶融部104を形成し、電池外装缶101と集電タブ2とを接合している。更に、その溶融部104は、集電タブ102を貫通せず、電池外装缶101と集電タブ102とが未貫通接合されているため、電池外装缶101の内部にスパッタは混入しない。図23には、更に、溶融部104を拡大した詳細図を示す。但し、理解しやすいように上下を反転させて、レーザビーム103が図面上方から照射している図に変更している。   In FIG. 22, the current collecting tab 102 is in close contact with the bottom of the inner surface of the battery outer can 101. A laser beam 103 is irradiated from the outer bottom surface of the battery outer can 101 to melt the battery outer can 101 and the current collecting tab 102 to form a melting portion 104, and the battery outer can 101 and the current collecting tab 2 are joined. ing. Furthermore, since the melted portion 104 does not penetrate the current collecting tab 102 and the battery outer can 101 and the current collecting tab 102 are non-penetrated and joined, no spatter is mixed into the battery outer can 101. FIG. 23 further shows an enlarged detailed view of the melting part 104. However, for the sake of easy understanding, the figure is reversed so that the laser beam 103 is irradiated from above.

特許第4175975号公報(図2)Japanese Patent No. 4175975 (FIG. 2) 特許第4547855号公報(図1)Japanese Patent No. 4547855 (FIG. 1) 特許第5306905号公報(図1D)Japanese Patent No. 5306905 (FIG. 1D)

近年、密閉型電池の用途が、車載電池等の大出力及び大電流が求められる用途に急激に拡大してきており、複数個の密閉型電池を接続した組電池が用いられている。例えば、図24に示す組電池の例として、3個の密閉型電池が並列に接続されている。この図24に示すように、その組電池は、連結部材(バスバー)106、107を介して、それぞれ、電池外装缶101の外側底面中央部101b及びもう1方の電極端子105の外側上面中央部と、ワイヤーボンディング108でそれぞれ接続されている。   In recent years, the use of sealed batteries has rapidly expanded to applications that require high output and large current, such as in-vehicle batteries, and assembled batteries in which a plurality of sealed batteries are connected are used. For example, as an example of the assembled battery shown in FIG. 24, three sealed batteries are connected in parallel. As shown in FIG. 24, the assembled battery is connected to the outer bottom center portion 101b of the battery outer can 101 and the outer top center portion of the other electrode terminal 105 via connecting members (bus bars) 106 and 107, respectively. And wire bonding 108 respectively.

しかしながら、前記従来のレーザ溶接による密閉型電池構成では、図23に示すように、電池外装缶101の外側底面に大きな溶融部104が形成されている。そのため、電池外装缶101の外側底面に相対的に大きな表面積を有する溶融部104が存在すると、ワイヤーボンディング108の接合信頼性が低下する。一方、その接合信頼性が低下しないように、溶融部104の表面溶融面積を小さくすると、電池外装缶101と集電タブ102との接合面積も減少して接合強度が低下するという課題を有している。一方、従来の抵抗溶接による密閉型電池構成では、電池外装缶101の外側底面に溶融部104がないため、前記課題は発生しない。しかし、上述した様に、抵抗溶接時に発生するスパッタが電池外装缶内部に入り込み、電池の信頼性が悪化するという課題があった。   However, in the conventional sealed battery configuration by laser welding, as shown in FIG. 23, a large melting portion 104 is formed on the outer bottom surface of the battery outer can 101. Therefore, when the melted portion 104 having a relatively large surface area exists on the outer bottom surface of the battery outer can 101, the bonding reliability of the wire bonding 108 is lowered. On the other hand, if the surface melting area of the melting portion 104 is reduced so that the bonding reliability does not decrease, the bonding area between the battery outer can 101 and the current collecting tab 102 also decreases and the bonding strength decreases. ing. On the other hand, in the conventional sealed battery configuration by resistance welding, the melting portion 104 is not present on the outer bottom surface of the battery outer can 101, so that the above problem does not occur. However, as described above, there has been a problem that spatter generated during resistance welding enters the inside of the battery outer can and deteriorates the reliability of the battery.

本発明は、前記従来のレーザ溶接時における課題を解決するものであって、組電池での接続信頼性を確保することができるように電池外装缶の外側底面の溶融部の表面溶融面積を小さくさせながら、且つ、電池外装缶と集電タブとの接合面積を拡大して接合強度を確保できる密閉型電池及び密閉型電池の製造方法を提供することを目的とする。   The present invention solves the problems in the conventional laser welding, and reduces the surface melting area of the melting portion of the outer bottom surface of the battery outer can so as to ensure connection reliability in the assembled battery. It is another object of the present invention to provide a sealed battery and a method for manufacturing the sealed battery that can secure a bonding strength by enlarging the bonding area between the battery outer can and the current collecting tab.

前記目的を達成するために、本発明の1つの態様にかかる密閉型電池の製造方法は、正極板及び負極板がセパレータを介して捲回されてなる巻取体を形成する工程と、
前記巻取体のそれぞれの極板に、それぞれの集電タブの一端を接続する工程と、
前記巻取体を電池外装缶内に収容する工程と、
前記それぞれの集電タブのうち片方の他端を前記電池外装缶の内面底面部に当接させるように配置する工程と、
前記電池外装缶の板厚より小さいスポット径を有するレーザビームを前記電池外装缶の外側底面の照射位置に、前記外側底面と直交する方向に対して照射角度を付けて照射し、前記照射角度を変化させながら、かつ前記照射位置を通るように直線移動させて、前記電池外装缶と前記電池外装缶の前記内面底面部に当接された前記集電タブとを少なくとも1本の直線形状にレーザ接合する直線形成工程と、
を有する。
In order to achieve the above object, a method for manufacturing a sealed battery according to one aspect of the present invention includes a step of forming a winding body in which a positive electrode plate and a negative electrode plate are wound through a separator,
Connecting one end of each current collecting tab to each electrode plate of the winding body;
Storing the winding body in a battery outer can;
Arranging the other end of one of the current collecting tabs so as to contact the bottom surface of the inner surface of the battery outer can;
A laser beam having a spot diameter smaller than the plate thickness of the battery outer can is irradiated at an irradiation position on the outer bottom surface of the battery outer can with an irradiation angle with respect to a direction orthogonal to the outer bottom surface, and the irradiation angle is The battery outer can and the current collecting tab in contact with the bottom surface of the inner surface of the battery outer can are laser-converted into at least one linear shape while being changed and linearly moved so as to pass through the irradiation position. A straight line forming step to be joined;
Have

前記目的を達成するために、本発明の別の態様にかかる密閉型電池は、正極板及び負極板がセパレータを介して捲回されてなる巻取体を電池外装缶内に収容し、この電池外装缶の開口部を封口板で封口した密閉型電池であって、
前記巻取体のいずれか一方の極板から導出された集電タブと前記電池外装缶の外側底面とが溶接された溶融部を有し、
前記電池外装缶の前記外側底面における前記溶融部の占める面積が、前記電池外装缶と前記集電タブとの接合面における前記溶融部の占める面積より小さく、
前記電池外装缶の前記外側底面における前記溶融部の形状がポイント状であり、かつ、前記電池外装缶と前記集電タブとの前記接合面における前記溶融部の形状が直線形状である。
In order to achieve the above object, a sealed battery according to another aspect of the present invention includes a wound body in which a positive electrode plate and a negative electrode plate are wound through a separator, and accommodates the wound body in a battery outer can. A sealed battery in which an opening of an outer can is sealed with a sealing plate,
A current collector tab derived from any one of the electrode plates of the wound body and an outer bottom surface of the battery outer can have a fusion part welded;
The area occupied by the melted portion on the outer bottom surface of the battery outer can is smaller than the area occupied by the melted portion on the joint surface between the battery outer can and the current collecting tab,
The shape of the melting part on the outer bottom surface of the battery outer can is a point shape, and the shape of the melting part on the joining surface between the battery outer can and the current collecting tab is a linear shape.

以上のように、本発明の前記態様にかかる密閉型電池及びその製造方法によれば、電池外装缶の外側底面のレーザ溶融部の表面溶融面積を小さくさせて組電池での接続信頼性を確保できるようになり、且つ、電池外装缶と集電タブとの実接合面積を拡大させることで、電池外装缶と集電タブとの接合強度を確保することができる。   As described above, according to the sealed battery and the method for manufacturing the same according to the aspect of the present invention, the surface melting area of the laser melting portion of the outer bottom surface of the battery outer can is reduced to ensure connection reliability in the assembled battery. It becomes possible, and the bonding strength between the battery outer can and the current collecting tab can be ensured by expanding the actual bonding area between the battery outer can and the current collecting tab.

本発明の実施形態における密閉型電池の構成を模式的に示す断面図Sectional drawing which shows the structure of the sealed battery in embodiment of this invention typically 本発明の第1実施形態における溶融部の拡大断面図The expanded sectional view of the fusion part in a 1st embodiment of the present invention. 本発明の第1実施形態における表面溶融部と界面接合部とを含む円形領域を示す図The figure which shows the circular area | region containing the surface fusion | melting part and interface junction part in 1st Embodiment of this invention. 本発明の第1実施形態における密閉型電池の製造方法を示す図The figure which shows the manufacturing method of the sealed battery in 1st Embodiment of this invention. 従来のパルスYAGレーザによる接合方法を示す図The figure which shows the joining method by the conventional pulse YAG laser 本発明の第1実施形態におけるファイバーレーザによる接合方法を示す図The figure which shows the joining method by the fiber laser in 1st Embodiment of this invention. キーホール溶接の原理を説明するための概念図Conceptual diagram for explaining the principle of keyhole welding 本発明の第1実施形態における密閉型電池の製造方法の詳細図Detailed view of the manufacturing method of the sealed battery in the first embodiment of the present invention 本発明の第1実施形態における密閉型電池の製造方法の詳細図Detailed view of the manufacturing method of the sealed battery in the first embodiment of the present invention 本発明の第1実施形態における密閉型電池の製造方法の詳細図Detailed view of the manufacturing method of the sealed battery in the first embodiment of the present invention 本発明の第1実施形態における密閉型電池の製造方法の詳細図Detailed view of the manufacturing method of the sealed battery in the first embodiment of the present invention 本発明の第1実施形態における密閉型電池の製造方法の詳細図Detailed view of the manufacturing method of the sealed battery in the first embodiment of the present invention スパッタ、ブローホール、陥没を示す図Diagram showing spatter, blowhole, and depression スパッタ発生を防止する製造方法の説明図Explanation of manufacturing method to prevent spattering スパッタ発生を防止する製造方法の説明図Explanation of manufacturing method to prevent spattering スパッタ発生を防止する製造方法の説明図Explanation of manufacturing method to prevent spattering ブローホールを防止する製造方法の説明図Explanatory drawing of manufacturing method to prevent blowhole ブローホールを防止する製造方法の説明図Explanatory drawing of manufacturing method to prevent blowhole ブローホールを防止する製造方法の説明図Explanatory drawing of manufacturing method to prevent blowhole 本発明の第2実施形態における溶融部の拡大図The enlarged view of the fusion | melting part in 2nd Embodiment of this invention. 本発明の第2実施形態における表面溶融部と界面接合部を示す図The figure which shows the surface fusion | melting part and interface junction part in 2nd Embodiment of this invention 本発明の第2実施形態における密閉型電池の製造方法を示す図The figure which shows the manufacturing method of the sealed battery in 2nd Embodiment of this invention. 本発明の第2実施形態における密閉型電池の製造方法の詳細図Detailed view of the manufacturing method of the sealed battery in the second embodiment of the present invention 溶融深さが均一である溶融部の拡大図Enlarged view of the melted part with uniform melting depth 接合面積を拡げた溶融部の拡大図Enlarged view of the melted part with increased bonding area 接合面積を拡げた溶融部の製造方法を示す図The figure which shows the manufacturing method of the fusion zone which expanded joint area 本発明の第3実施形態における溶融部の拡大図The enlarged view of the fusion | melting part in 3rd Embodiment of this invention. 本発明の第3実施形態における表面溶融部の例を示す図The figure which shows the example of the surface fusion | melting part in 3rd Embodiment of this invention. 本発明の第3実施形態における界面接合部の例を示す図The figure which shows the example of the interface junction part in 3rd Embodiment of this invention. 特許文献3に記載された従来の密閉型電池及びその製造方法を示す図The figure which shows the conventional sealed type battery described in patent document 3, and its manufacturing method 従来の密閉型電池の溶融部の拡大図Enlarged view of the melting part of a conventional sealed battery 密閉型電池を連結した組電池を示す図The figure which shows the assembled battery which connected the sealed battery

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。更に、他の実施形態との組合せも可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention. Furthermore, combinations with other embodiments are possible.

(密閉型電池の実施形態共通の構成)
図1は、本発明の実施形態における密閉型電池の構成を模式的に示した断面図である。図1に示すように、正極板1と負極板2とがセパレータ3を介して巻き取られた巻取体4が、複数個、電池外装缶5内に絶縁板7,8で挟み込まれた状態で電解液とともに収容されている。電池外装缶5の開口部は、ガスケット6を介して封口板10で封口されている。巻取体4のいずれか一方の極板(例えば、正極板1)から導出された正極集電タブ11は、封口板10に溶融部9を介してレーザ溶接されている。また、他方の極板(例えば、負極板2)から導出された負極集電タブ12は、電池外装缶5の底部で溶融部(レーザ溶融部)13を介してレーザ接合されている。
(Configuration common to sealed battery embodiments)
FIG. 1 is a cross-sectional view schematically showing the configuration of a sealed battery in an embodiment of the present invention. As shown in FIG. 1, a plurality of winding bodies 4 in which a positive electrode plate 1 and a negative electrode plate 2 are wound via a separator 3 are sandwiched between insulating plates 7 and 8 in a battery outer can 5. And is stored together with the electrolyte. The opening of the battery outer can 5 is sealed with a sealing plate 10 via a gasket 6. The positive electrode current collecting tab 11 led out from any one of the electrode plates (for example, the positive electrode plate 1) of the winding body 4 is laser welded to the sealing plate 10 through the melting portion 9. Further, the negative electrode current collecting tab 12 led out from the other electrode plate (for example, the negative electrode plate 2) is laser-bonded via a melting part (laser melting part) 13 at the bottom of the battery outer can 5.

このような密閉型電池は、以下のような製造方法により製造される。   Such a sealed battery is manufactured by the following manufacturing method.

まず、正極板1及び負極板2がセパレータ3を介して捲回又は積層されてなる巻取体4を形成する。   First, a wound body 4 is formed in which the positive electrode plate 1 and the negative electrode plate 2 are wound or laminated with a separator 3 interposed therebetween.

次いで、巻取体4のそれぞれの極板1,2に、それぞれの集電タブ11,12の一端を接続する。   Next, one end of each current collecting tab 11, 12 is connected to each electrode plate 1, 2 of the winding body 4.

次いで、巻取体4を電池外装缶5内に収容する。   Next, the wound body 4 is accommodated in the battery outer can 5.

次いで、集電タブ12の他端を電池外装缶5の内面底面部に当接させるように配置する。   Next, the other end of the current collecting tab 12 is disposed so as to contact the bottom surface of the inner surface of the battery outer can 5.

次いで、電池外装缶5の板厚15より小さいスポット径を有するレーザビーム25を電池外装缶5の外側底面の照射位置、例えば、概略中央に、外側底面と直交する方向(中心軸)26に対して一定の照射角度θを付けて照射し、かつ、その照射点27を中心に電池外装缶5に対して照射角度θを保ったまま相対的に回転照射させて、電池外装缶5とその内部にある集電タブ12とを円環形状又は円板形状にレーザ接合する(図2参照)。   Next, a laser beam 25 having a spot diameter smaller than the plate thickness 15 of the battery outer can 5 is irradiated on the outer bottom surface of the battery outer can 5, for example, approximately in the center with respect to a direction (center axis) 26 orthogonal to the outer bottom surface. The battery outer can 5 and its interior are irradiated with a fixed irradiation angle θ, and rotated relatively with the irradiation angle θ maintained around the irradiation point 27 while maintaining the irradiation angle θ. The current collecting tab 12 is laser-bonded into an annular shape or a disc shape (see FIG. 2).

この結果、電池外装缶5の外側表面の表面溶融部17の面積が、電池外装缶5と集電タブ12との界面接合部18の面積より小さく、電池外装缶5と集電タブ12との溶融部13の、電池外装缶5の外側底面と直交する方向における溶融深さTが、電池外装缶5の底厚15と集電タブ12の板厚15tとの加算和未満となっている。   As a result, the area of the surface melting portion 17 on the outer surface of the battery outer can 5 is smaller than the area of the interface joint 18 between the battery outer can 5 and the current collecting tab 12, and the battery outer can 5 and the current collecting tab 12 The melting depth T in the direction perpendicular to the outer bottom surface of the battery outer can 5 of the melting portion 13 is less than the sum of the bottom thickness 15 of the battery outer can 5 and the plate thickness 15t of the current collecting tab 12.

以下、この最後のレーザ接合工程及び表面溶融部17及び溶融部13の溶融深さT等について、詳細に説明する。   Hereinafter, this last laser bonding step and the melting depth T of the surface melting portion 17 and the melting portion 13 will be described in detail.

(第1実施形態)
(密閉型電池の構成)
図2は、本発明の第1実施形態における、電池外装缶5と負極集電タブ12との溶融部13の拡大図である。図2に示すように、電池外装缶5と負極集電タブ12との溶融部13において、溶融部13の表面溶融幅14は、電池外装缶5の板厚15より小さくなっている。一方、電池外装缶5と負極集電タブ12との接合幅16は、表面溶融幅14、及び、電池外装缶5の板厚15より大きくなっている。また、溶融部13は、負極集電タブ12を貫通しておらず、負極集電タブ12の内部で左右斜め下方向に断面逆V字形状に溶融している。すなわち、電池外装缶5の外側底面と直交する方向における、電池外装缶5と集電タブ12との溶融部13の溶融深さTが、電池外装缶5の底厚(板厚)15と集電タブ12の板厚15tとの加算和未満となっている。なお、溶融部13の表面溶融幅14は、レーザビーム25のスポット径よりも少し大きくなっている。レーザビーム25のスポット径は、電池外装缶5の板厚より小さくなっている。
(First embodiment)
(Configuration of sealed battery)
FIG. 2 is an enlarged view of the melting portion 13 between the battery outer can 5 and the negative electrode current collecting tab 12 in the first embodiment of the present invention. As shown in FIG. 2, in the melting part 13 between the battery outer can 5 and the negative electrode current collecting tab 12, the surface melting width 14 of the melting part 13 is smaller than the plate thickness 15 of the battery outer can 5. On the other hand, the bonding width 16 between the battery outer can 5 and the negative electrode current collecting tab 12 is larger than the surface melt width 14 and the plate thickness 15 of the battery outer can 5. Further, the melting portion 13 does not penetrate the negative electrode current collecting tab 12 and is melted in an inverted V-shaped cross section in the diagonally downward direction left and right inside the negative electrode current collecting tab 12. That is, the melting depth T of the melting portion 13 between the battery outer can 5 and the current collecting tab 12 in the direction orthogonal to the outer bottom surface of the battery outer can 5 is the same as the bottom thickness (plate thickness) 15 of the battery outer can 5 and the current collecting. The sum is less than the sum of the electrical tab 12 and the plate thickness 15t. Note that the surface melting width 14 of the melting part 13 is slightly larger than the spot diameter of the laser beam 25. The spot diameter of the laser beam 25 is smaller than the plate thickness of the battery outer can 5.

図3の(a)は、図2のa−a矢視図であり、電池外装缶5の表面溶融部17を含む円形領域を示しており、図3の電池外装缶5の下部で電池外装缶5と負極集電タブ12とが接合されている。また、図3の(b)は、図2のb−b矢視図であり、電池外装缶5と負極集電タブ12との界面接合部18を示している。すなわち、表面溶融部17より面積が大きな円環形状の界面接合部18で、電池外装缶5と負極集電タブ12とが接合されている。   FIG. 3A is a view taken along the line aa of FIG. 2 and shows a circular region including the surface melting portion 17 of the battery outer can 5. The can 5 and the negative electrode current collecting tab 12 are joined. FIG. 3B is a view taken along the line bb of FIG. 2 and shows an interface joint 18 between the battery outer can 5 and the negative electrode current collecting tab 12. That is, the battery outer can 5 and the negative electrode current collecting tab 12 are joined at the annular interface joining part 18 having a larger area than the surface melting part 17.

(接合装置)
次に、図2で示した溶融部13を形成して、電池外装缶5と負極集電タブ12とを接合する接合装置を図4に示す。図4の接合装置は、レーザ発振器19と、レーザ発振器制御部20と、レーザ加工ヘッド21と、レーザ加工ヘッド21を回転運動させる回転機構部22と、回転制御部23と、及び、全体制御部24とを備えて構成される接合装置である。
(Joining equipment)
Next, FIG. 4 shows a joining apparatus that forms the melted portion 13 shown in FIG. 2 and joins the battery outer can 5 and the negative electrode current collecting tab 12. 4 includes a laser oscillator 19, a laser oscillator control unit 20, a laser processing head 21, a rotation mechanism unit 22 for rotating the laser processing head 21, a rotation control unit 23, and an overall control unit. 24 is a joining apparatus configured to include.

この接合装置において、回転機構部22は、電池外装缶5の底面の中央中心軸線C1上に設置され、電池外装缶5の中心軸26を中心として回転できるようになっている。その回転機構部22には、レーザ加工ヘッド21がある一定の照射角度θになるように取付けられている。ここで、照射角度θは、電池外装缶5の外側底面の概略中央の中央中心軸線(中心軸)26とレーザビーム25の軸方向(光軸)とのなす角度を示している。レーザ加工ヘッド21から出射されるレーザビーム25は、電池外装缶5の板厚15より小さいスポット径を有する。レーザ加工ヘッド21から出たレーザビーム25は、その一定の照射角度θで電池外装缶5の外側底面の概略中央のほぼ中心位置にジャストフォーカス(焦点)で照射される。その照射される位置が照射点であり、電池外装缶5の中心軸26、すなわち、回転機構部22の回転軸26が通過する点である。また、回転機構部22の回転軸26と、レーザビーム25の照射位置(照射点)27が一致するように、レーザ加工ヘッド21が回転機構部22に取付けられている。一方、電池外装缶5と負極集電タブ12とは、位置決め加圧治具(図示せず)により、各々が位置決めされ隙間が開かないように密着されている。   In this joining apparatus, the rotation mechanism unit 22 is installed on the central central axis C <b> 1 on the bottom surface of the battery outer can 5, and can rotate around the central axis 26 of the battery outer can 5. A laser processing head 21 is attached to the rotation mechanism 22 so as to have a certain irradiation angle θ. Here, the irradiation angle θ represents an angle formed by the central central axis (center axis) 26 at the approximate center of the outer bottom surface of the battery outer can 5 and the axial direction (optical axis) of the laser beam 25. The laser beam 25 emitted from the laser processing head 21 has a spot diameter smaller than the plate thickness 15 of the battery outer can 5. The laser beam 25 emitted from the laser processing head 21 is irradiated with a just focus (focal point) at a substantially central position of the approximate center of the outer bottom surface of the battery outer can 5 at the fixed irradiation angle θ. The irradiated position is an irradiation point, which is a point through which the central axis 26 of the battery outer can 5, that is, the rotation axis 26 of the rotation mechanism unit 22 passes. In addition, the laser processing head 21 is attached to the rotation mechanism unit 22 so that the rotation shaft 26 of the rotation mechanism unit 22 and the irradiation position (irradiation point) 27 of the laser beam 25 coincide with each other. On the other hand, the battery outer can 5 and the negative electrode current collecting tab 12 are in close contact with each other by a positioning and pressing jig (not shown) so that a gap is not opened.

この状態で回転制御部23により回転機構部22が回転軸26回りに1回転すると、レーザ加工ヘッド21は同じ照射位置27を保ったままで、回転軸26に対して一定の角度θで1回転して、電池外装缶5と負極集電タブ12とが接合される。   In this state, when the rotation mechanism unit 22 makes one rotation around the rotation axis 26 by the rotation control unit 23, the laser processing head 21 rotates once with a constant angle θ with respect to the rotation axis 26 while keeping the same irradiation position 27. Thus, the battery outer can 5 and the negative electrode current collecting tab 12 are joined.

まず始めに、一例として、この接合装置で使用しているレーザ発振器19、及び、レーザ加工ヘッド21から出たレーザビーム25のビーム品質(集光スポット径)について言及する。   First, as an example, the laser oscillator 19 used in this bonding apparatus and the beam quality (condensed spot diameter) of the laser beam 25 emitted from the laser processing head 21 will be described.

電池外装缶5の板厚は通常0.2〜0.5mmであり、負極集電タブ12の板厚は通常0.1〜0.2mm程度である。このような薄板の重ね合わせレーザ接合に対して、特許文献1〜3では、パルスYAGレーザなどを用いてパルス的にポイント的にレーザ溶接されている。パルスYAGレーザのスポット径はφ0.6mm程度であり、電池外装缶5の板厚より大きく、熱伝導型のレーザ溶接になっている。   The plate thickness of the battery outer can 5 is usually 0.2 to 0.5 mm, and the plate thickness of the negative electrode current collecting tab 12 is usually about 0.1 to 0.2 mm. In Patent Documents 1 to 3, laser welding is performed in a pointwise manner using a pulsed YAG laser or the like, for such a thin plate overlapping laser joining. The spot diameter of the pulse YAG laser is about φ0.6 mm, which is larger than the plate thickness of the battery outer can 5 and is heat conduction type laser welding.

(従来のパルスYAGレーザによる接合方法の課題)
図5は、電池外装缶5に対して従来のパルスYAGレーザを使用する場合における接合方法を示す図である。
(Problems of bonding method using conventional pulsed YAG laser)
FIG. 5 is a view showing a joining method when a conventional pulse YAG laser is used for the battery outer can 5.

レーザビーム25は、電池外装缶5の上表面に照射され、まず、電池外装缶5の上表面が溶融して、溶融部13が形成される(図5(a)参照)。   The laser beam 25 is applied to the upper surface of the battery outer can 5, and first, the upper surface of the battery outer can 5 is melted to form the melted portion 13 (see FIG. 5A).

次に、レーザビーム25が照射され続けると、溶融部13が熱伝導的に拡がっていくが、電池外装缶5と負極集電タブ12との間には空気層があり、熱伝導的に分断されている。このため、一時的に、溶融部13は、電池外装缶5のみに留まり、負極集電タブ12が溶融していない状態が発生する(図5(b)参照)。   Next, when the laser beam 25 continues to be irradiated, the melted portion 13 spreads in a heat conductive manner, but there is an air layer between the battery outer can 5 and the negative electrode current collecting tab 12, and the heat conduction is divided. Has been. For this reason, the melting part 13 temporarily stays only in the battery outer can 5 and the negative electrode current collecting tab 12 is not melted (see FIG. 5B).

更に、レーザビーム25が照射され続け、電池外装缶5と負極集電タブ12とが密着されていると、溶融部13の熱エネルギが負極集電タブ12に伝わり、負極集電タブ12が溶融して負極集電タブ12と電池外装缶5とが接合される(図5(c)参照)。このときの溶融部13の電池外装缶5上の表面溶融サイズは、熱伝導で拡がっているため、レーザビーム25のスポット径φ0.6mmより大きく、一例として、φ1mm程度となる。   Furthermore, when the laser beam 25 is continuously irradiated and the battery outer can 5 and the negative electrode current collecting tab 12 are in close contact with each other, the thermal energy of the melting portion 13 is transmitted to the negative electrode current collecting tab 12 and the negative electrode current collecting tab 12 is melted. Then, the negative electrode current collecting tab 12 and the battery outer can 5 are joined (see FIG. 5C). Since the surface melt size on the battery outer can 5 of the melting part 13 at this time is expanded by heat conduction, the spot diameter of the laser beam 25 is larger than φ0.6 mm, and is about φ1 mm as an example.

一方、一例として、各々の密閉型電池の各電極を連結するためのワイヤボンドの材質はアルミニウム材料であり、その線径はφ0.2mmである。そのアルミニウムのワイヤボンドを超音波振動させて加圧接合させるため、その先端接合部は、線径φ0.2mmの約2倍である0.4mmに広がる。一般に、電池外装缶5の材質は、鉄に数μmのニッケルメッキが施されており、そのニッケルメッキとアルミニウムのワイヤボンドとが合金化されて接合される。一方、アルミニウムと鉄とは合金化しないため、電池外装缶5にニッケルメッキがないと、アルミニウムのワイヤボンドは電池外装缶5に接合されない。本例における電池外装缶5の溶融部13の表面溶融部は、ニッケルメッキが溶融して、鉄とニッケルの合金化状態となっている。そのため、その表面溶融部に対してはアルミニウムのワイヤボンドの接合性は低下する。つまり、このアルミニウムのワイヤボンドの先端接合サイズより、溶融部13の表面溶融サイズが大きいため、その溶融部13でのアルミワイヤボンドの接合信頼性が低下する。逆に、その表面溶融サイズがアルミニウムのワイヤボンドの先端接合サイズより小さいと、その影響が減少するため、接合強度が確保される。   On the other hand, as an example, the material of the wire bond for connecting each electrode of each sealed battery is an aluminum material, and its wire diameter is 0.2 mm. Since the aluminum wire bond is ultrasonically vibrated and pressure bonded, the tip bonded portion extends to 0.4 mm, which is about twice the wire diameter φ0.2 mm. In general, the material of the battery outer can 5 is nickel plating of several μm on iron, and the nickel plating and aluminum wire bond are alloyed and joined. On the other hand, since aluminum and iron are not alloyed, the aluminum wire bond is not bonded to the battery outer can 5 unless the battery outer can 5 has nickel plating. The surface melting portion of the melting portion 13 of the battery outer can 5 in this example is in an alloyed state of iron and nickel by melting the nickel plating. Therefore, the bondability of the aluminum wire bond is lowered with respect to the surface melting portion. That is, since the surface melt size of the melted part 13 is larger than the tip joint size of the aluminum wire bond, the joining reliability of the aluminum wire bond at the melted part 13 is lowered. On the contrary, if the surface melt size is smaller than the tip bond size of the aluminum wire bond, the influence is reduced, so that the bonding strength is ensured.

また、電池外装缶5より負極集電タブ12の方が、板厚が薄く熱容量が小さいため、負極集電タブ12に熱エネルギが伝わりやすく、負極集電タブ12を直ぐに貫通溶融してしまう場合もある(図5(d)参照)。溶融部13が負極集電タブ12を貫通溶融すると、電池内部にスパッタが混入して短絡又は発火不良につながり、不良となる。   Further, since the negative electrode current collecting tab 12 is thinner than the battery outer can 5 and has a smaller heat capacity, heat energy is easily transmitted to the negative electrode current collecting tab 12 and the negative electrode current collecting tab 12 is immediately penetrated and melted. (See FIG. 5 (d)). When the melting part 13 penetrates and melts the negative electrode current collecting tab 12, spatter is mixed inside the battery, leading to a short circuit or poor ignition, resulting in a failure.

一方、図5(b)において、投入レーザパワーが強すぎると、レーザビーム25のスポット径が大きく、電池外装缶5の板厚が薄いため、電池外装缶5の溶融部13に穴あき28が発生し(図5(b’)参照)、更には、負極集電タブ12にも穴あき28が発生し(図5(d’)参照)、電池の漏液不良となる。   On the other hand, in FIG. 5B, if the input laser power is too strong, the spot diameter of the laser beam 25 is large, and the plate thickness of the battery outer can 5 is thin. (See FIG. 5 (b ′)), and further, a hole 28 is formed in the negative electrode current collecting tab 12 (see FIG. 5 (d ′)), resulting in a battery leakage failure.

そのため、熱伝導型のレーザ溶接ではなく、深溶け込み型のレーザ溶接(キーホール溶接)ができれば、表面溶融面積が微小になるため、ワイヤボンドの接合信頼性が確保でき、また、貫通溶接及び穴あき28の防止が可能になる。例えば、ファイバーレーザは従来のパルスYAGレーザよりはるかにレーザビーム品質に優れているため、スポット径を例えばφ0.02mm程度に非常に小さくすることができる。そのため、集光点のパワー密度を非常に強くすることができる。   Therefore, if deep penetration type laser welding (keyhole welding) can be performed instead of heat conduction type laser welding, the surface melting area becomes small, so that the bonding reliability of wire bonds can be ensured, and through welding and hole welding are possible. The perforation 28 can be prevented. For example, since the fiber laser is far superior in laser beam quality to the conventional pulse YAG laser, the spot diameter can be made very small, for example, about φ0.02 mm. Therefore, the power density at the condensing point can be made very strong.

(第1実施形態におけるファイバーレーザによる接合方法)
図6は、本発明の第1実施形態におけるファイバーレーザによる接合方法を示す図である。
(Joint method using fiber laser in the first embodiment)
FIG. 6 is a diagram showing a bonding method using a fiber laser in the first embodiment of the present invention.

まず、ファイバーレーザから出たレーザビーム25Dは、電池外装缶5の上表面に局所的に照射されて、電池外装缶5に溶融部13Bが形成されると共に、レーザ照射部のパワー密度が高いために溶融部13Bの中央部で気化し、その金属蒸気の蒸発反発力によりキーホール29が形成される(図6(a)参照)。   First, the laser beam 25D emitted from the fiber laser is locally irradiated on the upper surface of the battery outer can 5 to form the melted portion 13B in the battery outer can 5 and the power density of the laser irradiated portion is high. Then, it is vaporized at the center of the melting part 13B, and the keyhole 29 is formed by the evaporation repulsive force of the metal vapor (see FIG. 6A).

次に、そのキーホール29の内部にレーザビーム25Dが入射していくと、キーホール29の内面でレーザビーム25Dが反射して、キーホール29が深く成長していく(図6(b)参照)。   Next, when the laser beam 25D enters the keyhole 29, the laser beam 25D is reflected from the inner surface of the keyhole 29, and the keyhole 29 grows deeply (see FIG. 6B). ).

更に、レーザビーム25Dを照射し続けると、キーホール29が深く成長し、溶融部13Bも負極集電タブ12まで達する(図6(c)参照)。   Further, when the laser beam 25D is continuously irradiated, the keyhole 29 grows deeply, and the melting portion 13B reaches the negative electrode current collecting tab 12 (see FIG. 6C).

次いで、レーザ照射が停止すると(図6(d)参照)、キーホール29が消滅して溶融部13Bが凝固し、電池外装缶5と負極集電タブ12とが接合される。一例として、ファイバーレーザのスポット径はφ0.02〜0.05mmと小さく、溶融部13Bの表面溶融サイズも約0.1mmと小さくなる。この表面溶融サイズは、ワイヤボンドの先端接合サイズよりかなり小さいため、その溶融部13でのワイヤボンドの接合信頼性は確保できる。   Next, when the laser irradiation is stopped (see FIG. 6D), the keyhole 29 disappears, the molten portion 13B is solidified, and the battery outer can 5 and the negative electrode current collecting tab 12 are joined. As an example, the spot diameter of the fiber laser is as small as φ 0.02 to 0.05 mm, and the surface melt size of the melting part 13B is also as small as about 0.1 mm. Since the surface melt size is considerably smaller than the wire bond tip joint size, the wire bond joint reliability at the melted portion 13 can be ensured.

(キーホール溶接の原理)
図7は、キーホール溶接の原理を説明するための概念図である。図7は、厚みhの板状部材201に、レーザビーム202を照射することによって、直径Xのキーホール203が生成された状態を示している。キーホール203は、溶融した板状部材201の金属蒸気の蒸発反発力Paと、溶融した板状部材201の表面張力Psとが均衡することによって維持される。
(Keyhole welding principle)
FIG. 7 is a conceptual diagram for explaining the principle of keyhole welding. FIG. 7 shows a state where a keyhole 203 having a diameter X is generated by irradiating a plate-like member 201 having a thickness h with a laser beam 202. The keyhole 203 is maintained by balancing the evaporation repulsion force Pa of the metal vapor of the molten plate member 201 and the surface tension Ps of the molten plate member 201.

このとき、キーホール203の表面エネルギE(X)は、一般に、以下の式(1)で表される(例えば、宮本勇「シングルモードファイバーレーザによる金属フォイルの微細高速溶接」;第58回レーザ加工学会論文集;2003年3月を参照)。   At this time, the surface energy E (X) of the keyhole 203 is generally expressed by the following formula (1) (for example, Isamu Miyamoto “Fine High-Speed Welding of Metal Foil with a Single Mode Fiber Laser”; 58th Laser (See Processing Society Proceedings; March 2003).

E(X)=πG[hX+1/2(D−X)]・・・式(1)
ここで、Gは、板状部材201の液体金属の表面エネルギで、Dは溶融領域204の直径である。
E (X) = πG [hX + 1/2 (D 2 −X 2 )] (1)
Here, G is the surface energy of the liquid metal of the plate-like member 201, and D is the diameter of the melting region 204.

式(1)から、以下の式(2)が得られる。   From the equation (1), the following equation (2) is obtained.

dE/dX=πG(h−X)・・・式(2)
式(2)から、X>hの場合、dE/dX<0となり、キーホール203の直径Xの増大(dX)により、表面エネルギEは減少(dE)するため、キーホール203は穴あきとなる。一方、X<hの場合、dE/dX>0となり、キーホール203の直径Xの増大(dX)により、表面エネルギEは増大(dE)するため、キーホール203の直径Xは収縮して、蒸発反発力Paと均衡する。
dE / dX = πG (h−X) (2)
From equation (2), when X> h, dE / dX <0, and the surface energy E decreases (dE) due to the increase in the diameter X of the keyhole 203 (dX). Become. On the other hand, in the case of X <h, dE / dX> 0, and the surface energy E increases (dE) due to the increase in the diameter X of the keyhole 203 (dX), so the diameter X of the keyhole 203 contracts, Equilibrium with evaporation repulsion force Pa.

従って、板状部材201の厚みhより小さいスポット径を有するレーザビーム202を用いれば、安定したキーホール溶接を行うことができる。更には、板状部材201の厚みhより、キーホール溶接により形成された溶融領域204の直径Dを小さくすることで、より安定したキーホール溶接を行うことができる。   Therefore, if the laser beam 202 having a spot diameter smaller than the thickness h of the plate-like member 201 is used, stable keyhole welding can be performed. Furthermore, by reducing the diameter D of the fusion region 204 formed by keyhole welding from the thickness h of the plate-like member 201, more stable keyhole welding can be performed.

一方、図6で示したようなキーホール溶接では表面溶融サイズが小さい分、実際の接合界面での接合サイズも小さくなり、所定の接合強度が確保できなくなる。そのため、図2、図3に示すように、表面溶融サイズを小さくしたままで、実際の接合界面での接合サイズが大きくできる接合方法が必要となってくる。   On the other hand, in the keyhole welding as shown in FIG. 6, since the surface melt size is small, the joint size at the actual joint interface is also small, and a predetermined joint strength cannot be secured. Therefore, as shown in FIG. 2 and FIG. 3, a bonding method is required that can increase the bonding size at the actual bonding interface while keeping the surface melt size small.

(表面溶融サイズが小さくても接合サイズを大きくする接合方法)
次に、表面溶融サイズが小さいけれども接合サイズを大きくすることができるように、図4で示された接合装置で、レーザ発振器19としてファイバーレーザを用いて、電池外装缶5と負極集電タブ12とを接合する方法について図8A〜図8Eを用いて詳細に説明する。
(A joining method that increases the joint size even if the surface melt size is small)
Next, using the fiber laser as the laser oscillator 19 in the bonding apparatus shown in FIG. 4 so that the bonding size can be increased although the surface melt size is small, the battery outer can 5 and the negative electrode current collecting tab 12 are used. A method of joining the two will be described in detail with reference to FIGS. 8A to 8E.

図8Aには、左上の図(a)としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図と、左下の図(b)としてそのA−A’断面図、右上の図(c)としてそのB’−B断面図とをそれぞれ示している。他の図8B〜図8Eも、レーザ接合工程の状態が異なるだけで、同様な図をそれぞれ示している。   8A shows a top view of a circular region as viewed from the laser irradiation side (bottom surface side of the battery outer can 5) as the upper left figure (a), and a cross-sectional view taken along the line AA ′ as a lower left figure (b). (C) of the figure shows a B′-B cross-sectional view thereof. The other FIG. 8B to FIG. 8E also show similar views except for the state of the laser bonding process.

まず、図8Aにおいて、始めに、レーザビーム25は、上面図(a)から見て右側(A’)から中心軸に向けて、そして、A−A’断面図(b)では上方から左下方向に照射角度θで電池外装缶5に照射され、照射角度θと同じ方向に溶融部13及びキーホール29が電池外装缶5と負極集電タブ12とに形成される。更に、レーザビーム25は、電池外装缶5の鉛直方向に対して常に一定の角度θで、上面図(a)において時計周りに回転していく。   First, in FIG. 8A, first, the laser beam 25 is directed from the right side (A ′) toward the central axis as viewed from the top view (a), and from the top to the bottom left in the AA ′ sectional view (b). The battery outer can 5 is irradiated to the battery outer can 5 and the negative electrode current collecting tab 12 in the same direction as the irradiation angle θ. Further, the laser beam 25 always rotates clockwise in the top view (a) at a constant angle θ with respect to the vertical direction of the battery outer can 5.

次いで、図8Bは、図8Aから90度回転後の状態で、レーザビーム25は、上面図(a)から見て下側(B’)から中心軸に向けて、そして、B’−B断面図(c)では左下側から照射角度θで電池外装缶5に照射され、照射角度θと同じ方向に溶融部13及びキーホール29が電池外装缶5と負極集電タブ12とに形成されている。レーザビーム25が照射されて通り過ぎ去った位置(A−A’断面図(b)参照)では、溶融部13の内部ではキーホール29が消滅して、溶融部13が凝固し、電池外装缶5と負極集電タブ12とが左下方向沿いの部分で接合されている。   Next, FIG. 8B shows a state after being rotated 90 degrees from FIG. 8A, and the laser beam 25 is directed from the lower side (B ′) toward the central axis as viewed from the top view (a), and the B′-B cross section. In FIG. 6C, the battery outer can 5 is irradiated from the lower left side at an irradiation angle θ, and the melting part 13 and the keyhole 29 are formed in the battery outer can 5 and the negative electrode current collecting tab 12 in the same direction as the irradiation angle θ. Yes. At the position where the laser beam 25 is irradiated and passed (see AA ′ cross-sectional view (b)), the keyhole 29 disappears inside the melting portion 13, the melting portion 13 is solidified, and the battery outer can 5 is solidified. And the negative electrode current collecting tab 12 are joined at a portion along the lower left direction.

次いで、図8Cは、図8Bから更に90度回転後の状態で、レーザビーム25は、上面図(a)から見て左側(A)から中心軸に向けて、そして、A−A’断面図(b)では左上側から照射角度θで電池外装缶5に照射され、照射角度θと同じ方向に溶融部13及びキーホール29が電池外装缶5と負極集電タブ12とに形成されている。一方、一度、レーザビーム25は、A−A’断面図(b)において右上側から照射されているため、電池外装缶5と負極集電タブ12とが左下方向沿いの部分で接合されている。また、レーザビーム25が照射され通り過ぎ去った位置(B’−B断面図(c)参照)では、溶融部13の内部ではキーホール29が消滅して、溶融部13が凝固し、電池外装缶5と負極集電タブ12とが左上方向沿いの部分で接合されている。   Next, FIG. 8C is a state after a further 90 ° rotation from FIG. 8B, and the laser beam 25 is directed from the left side (A) toward the central axis as viewed from the top view (a), and is a cross-sectional view along AA ′. In (b), the battery outer can 5 is irradiated from the upper left side at an irradiation angle θ, and the melting portion 13 and the keyhole 29 are formed in the battery outer can 5 and the negative electrode current collecting tab 12 in the same direction as the irradiation angle θ. . On the other hand, since the laser beam 25 is once irradiated from the upper right side in the AA ′ sectional view (b), the battery outer can 5 and the negative electrode current collecting tab 12 are joined at a portion along the lower left direction. . Further, at the position where the laser beam 25 is irradiated and passed (see B′-B cross-sectional view (c)), the keyhole 29 disappears inside the melting portion 13, the melting portion 13 is solidified, and the battery outer can 5 and the negative electrode current collection tab 12 are joined at a portion along the upper left direction.

次いで、図8Dは、図8Cから更に90度回転後の状態で、レーザビーム25は、上面図(a)から見て上側(B)から中心軸に向けて、そして、B’−B断面図(c)では左上側から照射角度θで電池外装缶5に照射され、照射角度θと同じ方向に溶融部13及びキーホール29が電池外装缶5と負極集電タブ12とに形成されている。一方、一度、レーザビーム25は、B’−B断面図(c)において左下側から照射されているため、電池外装缶5と負極集電タブ12とが左上方向沿いの部分で接合されている。また、レーザビーム25が照射され通り過ぎ去った位置(A−A’断面図(b)参照)では、溶融部13の内部ではキーホール29が消滅して、溶融部13が凝固し、電池外装缶5と負極集電タブ12とが左下及び右下方向沿いの部分で接合されている。   Next, FIG. 8D shows a state after a further 90 degrees rotation from FIG. 8C, and the laser beam 25 is directed from the upper side (B) toward the central axis as seen from the top view (a), and is a cross-sectional view along B′-B. In (c), the battery outer can 5 is irradiated from the upper left side at an irradiation angle θ, and the melting portion 13 and the keyhole 29 are formed in the battery outer can 5 and the negative electrode current collecting tab 12 in the same direction as the irradiation angle θ. . On the other hand, since the laser beam 25 is once irradiated from the lower left side in the B′-B cross-sectional view (c), the battery outer can 5 and the negative electrode current collecting tab 12 are joined at a portion along the upper left direction. . Further, at the position where the laser beam 25 is irradiated and passed (see AA ′ cross-sectional view (b)), the keyhole 29 disappears inside the melting portion 13, the melting portion 13 is solidified, and the battery outer can 5 and the negative electrode current collecting tab 12 are joined at portions along the lower left and lower right directions.

そして、図8Eは、図8Dから更に90度回転して、結局、図8Aから360度1周回転後のレーザ照射完了後の上面図(a)と断面図(b)及び(c)である。キーホール29は既に消滅して溶融部13で電池外装缶5と負極集電タブ12とが接合されており、前述の図2で示されたような断面形状を形成させることができる。また、電池外装缶5の上表面ではポイント状となっており、一方、電池外装缶5と負極集電タブ12との接合面は円環形状となり、前述の図3で示された溶融状態を実現することができる。   8E is a top view (a) and sectional views (b) and (c) after completion of laser irradiation after rotating 90 degrees further from FIG. 8D and finally rotating 360 degrees once from FIG. 8A. . The keyhole 29 has already disappeared, and the battery outer can 5 and the negative electrode current collecting tab 12 are joined to each other at the melting portion 13, and a cross-sectional shape as shown in FIG. 2 can be formed. Further, the upper surface of the battery outer can 5 has a point shape, while the joint surface between the battery outer can 5 and the negative electrode current collecting tab 12 has an annular shape, and the molten state shown in FIG. Can be realized.

以上述べたように、電池外装缶5の板厚より小さいスポット径を有するレーザビーム25を電池外装缶5の底面の概略中央に一定の角度θを付けて照射し、且つ、その照射点27を中心に電池外装缶5に対してその角度θを保ったまま相対的に回転させることにより、電池外装缶5とその内部にある負極集電タブ12とを接合する。本構成によって、電池外装缶5の外側底面のレーザ溶融部13の表面溶融面積を小さくし、且つ、電池外装缶5と負極集電タブ12との接合面積を拡大することができる。   As described above, the laser beam 25 having a spot diameter smaller than the plate thickness of the battery outer can 5 is irradiated with a certain angle θ on the approximate center of the bottom surface of the battery outer can 5, and the irradiation point 27 is The battery outer can 5 and the negative electrode current collecting tab 12 inside the battery outer can 5 are joined by rotating relatively with the angle θ maintained at the center. With this configuration, the surface melting area of the laser melting portion 13 on the outer bottom surface of the battery outer can 5 can be reduced, and the bonding area between the battery outer can 5 and the negative electrode current collecting tab 12 can be increased.

(スパッタ飛散による課題)
一方、前記した第1実施形態による製造方法だけでは、図9の(a)にA’−A断面図として示すように、溶接開始時に電池外装缶5にレーザビーム25が急激に照射されることがあるため、キーホール29が形成されると同時に、スパッタ30と呼ばれる金属溶融物が飛び出す場合が考えられる。もしスパッタ30が発生すると、発生したスパッタ30が電池に付着したり、周囲の接合装置に付着したりする。また、溶融部13がスパッタ30として飛散するため、図9の(b)にA’−A断面図として示すように電池外装缶5の溶融部13に陥没部31が生じて製品不良となる。また、逆に、もし溶接終了時にレーザビーム25が急激に停止すると、溶融終了直前に存在していたキーホール29が、電池外装缶5の溶融部13の内部にブローホール32として残存する場合がある(図9(c)のA’−A断面図参照)。また、そのキーホール29が溶融部13で埋まらず、電池外装缶5の溶融部13の表面に陥没部31が発生して製品不良となる場合がある(図9(d)のA’−A断面図参照)。
(Problems caused by spattering)
On the other hand, with the manufacturing method according to the first embodiment described above, the battery outer can 5 is suddenly irradiated with the laser beam 25 at the start of welding, as shown in FIG. Therefore, it is conceivable that a metal melt called sputter 30 is ejected at the same time as the keyhole 29 is formed. If the sputter 30 is generated, the generated spatter 30 adheres to the battery or to the surrounding bonding device. Further, since the melted portion 13 is scattered as the sputter 30, as shown in FIG. 9B as a cross-sectional view along A′-A, a depressed portion 31 is generated in the melted portion 13 of the battery outer can 5, resulting in a product defect. Conversely, if the laser beam 25 is suddenly stopped at the end of welding, the keyhole 29 that existed immediately before the end of melting may remain as a blowhole 32 inside the melting portion 13 of the battery outer can 5. (Refer to the A'-A cross-sectional view of FIG. 9C). Further, the keyhole 29 is not filled with the melted portion 13, and a depressed portion 31 is generated on the surface of the melted portion 13 of the battery outer can 5 to cause a product defect (A′-A in FIG. 9D). (See cross-sectional view).

(レーザ照射開始準備工程)
次に、これらの製品不良を防止するための製造方法について説明する。
(Laser irradiation start preparation process)
Next, a manufacturing method for preventing these product defects will be described.

まず、図10A〜図10Cは、スパッタ30の発生を防止する方法を説明するための図である。   First, FIGS. 10A to 10C are views for explaining a method for preventing the generation of the sputter 30. FIG.

本製造法は、以前、図8A〜図8Eにて説明した製造方法において、図8Aでの溶接開始前に、事前にレーザ出力を徐々に上げながら、徐々に接合していく方法である。言わば、レーザ接合工程の開始前(溶接開始前)の一定時間において、レーザ照射開始準備工程を備えるものである。例えば、レーザ照射開始準備工程として、実際に接合開始される接合位置(図8A=図10C参照)よりも90度回転手前でレーザビーム25によるレーザ照射を開始し、レーザ出力を0(W)から所定の接合用出力まで上げていく。その直後の状態を図10Aに示している。図10Aの左側の図としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図(a)と、右側の図として上面図(a)のB’−B断面図(b)とをそれぞれ示している。図10Bの左側の図としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図(a)と、右側の図として上面図(a)のC’−C断面図(b)とをそれぞれ示している。図10Cの左側の図としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図(a)と、右側の図として上面図(a)のA’−A断面図(b)とをそれぞれ示している。図10Aにおいて、右側のB’−B断面図(b)で電池外装缶5には、ほんの少ししか溶融部13が見られず、かつ、まだキーホール29は形成されていない。そのため、溶融部13の表面部において、スパッタ30は発生しない。なお、図10CのA’−A断面図(b)は、図10Aなどと比較しやすくするため、図10Cの(a)のA’−A断面図を90度反時計方向に回転した状態で図示している。   This manufacturing method is a method in which, in the manufacturing method described previously with reference to FIGS. 8A to 8E, the laser output is gradually increased in advance and gradually joined before starting welding in FIG. 8A. In other words, a laser irradiation start preparation step is provided for a fixed time before the start of the laser joining step (before the start of welding). For example, in the laser irradiation start preparation step, laser irradiation with the laser beam 25 is started 90 degrees before the bonding position where bonding is actually started (see FIG. 8A = FIG. 10C), and the laser output is changed from 0 (W). The output is increased to a predetermined joining output. The state immediately after that is shown in FIG. 10A. 10A is a top view (a) of a circular region viewed from the laser irradiation side (bottom surface side of the battery outer can 5) as a left side view, and a B′-B cross-sectional view (b) of the top view (a) as a right side view. ). 10B is a top view (a) of a circular region viewed from the laser irradiation side (the bottom surface side of the battery outer can 5) as a left side view, and a C′-C cross-sectional view (b) of the top view (a) as a right side view. ). 10A is a top view (a) of a circular region viewed from the laser irradiation side (bottom surface side of the battery outer can 5) as a left side view of FIG. 10C, and an A′-A cross-sectional view (b) of the top view (a) as a right side view. ). In FIG. 10A, the battery outer can 5 shows only a small portion of the melted portion 13 and the keyhole 29 is not yet formed in the B′-B cross-sectional view (b) on the right side. Therefore, no spatter 30 is generated on the surface portion of the melting portion 13. Note that the A′-A cross-sectional view (b) of FIG. 10C is a state in which the A′-A cross-sectional view of FIG. 10C (a) is rotated 90 degrees counterclockwise for easy comparison with FIG. 10A and the like. It is shown.

更に、図10Aから45度回転が進んだ状態が、図10Bであり、その溶融部13が図10Aよりも更に深くなり、キーホール29も形成されている。   Furthermore, FIG. 10B shows a state in which the rotation of 45 degrees has progressed from FIG. 10A, and its melting part 13 becomes deeper than FIG. 10A, and a keyhole 29 is also formed.

そして、更に、図10Bから45度回転が進んだ状態が、図10Cであり、溶融部13が負極集電タブ12に到達して電池外装缶5と負極集電タブ12との接合が開始される。このように、レーザ接合工程での溶接開始前にレーザ照射開始準備工程として、事前にレーザ出力を所定の接合用出力まで徐々に上げながら溶融部13を徐々に深く形成して接合していくことにより、スパッタ30の発生を防止することができる。   Further, the state in which the rotation of 45 degrees has advanced from FIG. 10B is FIG. 10C, and the melting portion 13 reaches the negative electrode current collecting tab 12 and the joining of the battery outer can 5 and the negative electrode current collecting tab 12 is started. The As described above, as a laser irradiation start preparation step before starting welding in the laser joining step, the melted portion 13 is gradually formed deeply and joined while gradually raising the laser output to a predetermined joining output in advance. Therefore, the generation of the sputter 30 can be prevented.

(レーザ照射終了準備工程)
一方、図11A〜図11Cは、キーホール29の起因のブローホール32を防止する方法を説明するための図である。言わば、レーザ接合工程の終了後(溶接終了後)の一定時間において、レーザ照射終了準備工程を備えるものである。本製造法は、以前、図8A〜図8Eにて説明した製造方法において、レーザ照射終了準備工程として、図8Eでの溶接終了後にもレーザ出力を所定の接合用出力から徐々に下げながら接合していく方法である。なお、図11Aの左側の図としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図(a)と、右側の図として上面図(a)のA’−A断面図(b)とをそれぞれ示している。なお、図11AのA’−A断面図(b)は、図10Aなどと比較しやすくするため、図11Aの(a)のA’−A断面図を90度反時計方向に回転した状態で図示している。図11Bの左側の図としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図(a)と、右側の図として上面図(a)のC’−C断面図(b)とをそれぞれ示している。図11Cの左側の図としてレーザ照射側(電池外装缶5の底面側)から見た円形領域の上面図(a)と、右側の図として上面図(a)のB’−B断面図(b)とをそれぞれ示している。
(Laser irradiation end preparation process)
On the other hand, FIGS. 11A to 11C are diagrams for explaining a method for preventing the blowhole 32 caused by the keyhole 29. In other words, the laser irradiation end preparation step is provided for a fixed time after the end of the laser joining step (after the end of welding). In this manufacturing method, in the manufacturing method described previously with reference to FIGS. 8A to 8E, as a laser irradiation end preparation step, the laser output is joined while gradually decreasing from a predetermined joining output even after the end of welding in FIG. 8E. It is a way to go. 11A is a top view (a) of a circular region viewed from the laser irradiation side (bottom surface side of the battery outer can 5) as a left side view of FIG. 11A, and an A′-A cross-sectional view of the top view (a) as a right side view. (B) is shown respectively. Note that the A′-A cross-sectional view (b) of FIG. 11A is a state in which the A′-A cross-sectional view of FIG. 11A (a) is rotated 90 degrees counterclockwise for easy comparison with FIG. 10A and the like. It is shown. 11B is a top view (a) of a circular region viewed from the laser irradiation side (the bottom surface side of the battery outer can 5) as a left side view, and a C′-C cross-sectional view (b) of the top view (a) as a right side view. ). 11C is a top view (a) of the circular region viewed from the laser irradiation side (the bottom surface side of the battery outer can 5) as a left side view of FIG. 11C, and a B′-B cross-sectional view (b) of the top view (a) as a right side view. ).

例えば、1周回転後の接合位置(図8E=図11A参照)から、レーザ出力を接合用出力から徐々に下げて、45度回転が進んだ状態が図11Bであり、図11Aよりもキーホール29の深さは浅くなっている。   For example, FIG. 11B shows a state where the laser output is gradually lowered from the joining output from the joining position after one rotation (see FIG. 8E = FIG. 11A), and the 45 degree rotation is advanced, and FIG. The depth of 29 is shallow.

更に、図11Bから45度回転が進んでレーザビーム25のレーザ出力が停止した状態が図11Cであり、キーホール29は消滅している。そのため、キーホール29に起因したブローホール32は、発生しない。   Furthermore, FIG. 11C shows a state in which the rotation of the laser beam 25 has stopped by 45 ° rotation from FIG. 11B, and the keyhole 29 has disappeared. Therefore, the blow hole 32 caused by the keyhole 29 does not occur.

(変形例)
これまでの第1実施形態の説明において、本溶接時の1回転中のレーザ出力は同じ接合用出力としているが、1回転中でレーザ溶接が進んでいくと、電池外装缶5と負極集電タブ12との全体温度が徐々に上昇し、同じレーザ出力でも溶融深さが深くなってくる場合があり、負極集電タブ12を貫通してしまう可能性がでてくる。その場合には、1回転中のレーザ溶接時のレーザ出力を接合用出力から徐々に下げて、溶融深さが均一に且つ貫通しないように制御するのが望ましい。
(Modification)
In the description of the first embodiment thus far, the laser output during one rotation at the time of main welding is the same output for joining, but when laser welding proceeds during one rotation, the battery outer can 5 and the negative electrode current collector are collected. The overall temperature with the tab 12 gradually increases, and the melting depth may increase even with the same laser output, and the negative current collecting tab 12 may be penetrated. In that case, it is desirable that the laser output during laser welding during one rotation is gradually lowered from the joining output so that the melt depth is uniform and does not penetrate.

(効果)
以上のように、本発明の第1実施形態にかかる密閉型電池及びその製造方法によれば、電池外装缶5の板厚15より小さいスポット径を有するレーザビーム25を電池外装缶5の外側底面の照射位置(例えば概略中央)に、外側底面と直交する方向に対して一定の照射角度θを付けて照射し、かつ、その照射点を中心に電池外装缶5に対して照射角度θを保ったまま相対的に回転照射させて、電池外装缶5とその内部にある集電タブ12とを円形、例えば円環形状にレーザ接合するようにしている。この結果、電池外装缶5の外側底面のレーザ溶融部13の表面溶融面積を小さくさせることで、組電池での接続信頼性を確保することができるようになり、且つ、電池外装缶5と集電タブ12との実接合面積を拡大させることで、電池外装缶5と集電タブ11,12との接合強度を確保することができる。
(effect)
As described above, according to the sealed battery and the manufacturing method thereof according to the first embodiment of the present invention, the laser beam 25 having a spot diameter smaller than the plate thickness 15 of the battery outer can 5 is applied to the outer bottom surface of the battery outer can 5. Is irradiated at a certain irradiation angle θ with respect to the direction perpendicular to the outer bottom surface, and the irradiation angle θ is maintained with respect to the battery outer can 5 around the irradiation point. The battery outer can 5 and the current collecting tab 12 in the battery outer can 5 and the current collecting tab 12 inside the battery outer can 5 are laser-bonded in a circular shape, for example, an annular shape. As a result, by reducing the surface melting area of the laser melting portion 13 on the outer bottom surface of the battery outer can 5, connection reliability in the assembled battery can be secured, and the battery outer can 5 and the battery outer can By expanding the actual bonding area with the electric tab 12, the bonding strength between the battery outer can 5 and the current collecting tabs 11 and 12 can be ensured.

(第2実施形態)
(密閉型電池の構成)
図12は、本発明の第2実施形態における、電池外装缶5と負極集電タブ12との溶融部13の拡大図である。図12に示すように、電池外装缶5と負極集電タブ12との溶融部13において、溶融部13の表面溶融幅14は、電池外装缶5の板厚15より小さくなっている。一方、電池外装缶5と負極集電タブ12との接合幅16は、表面溶融幅14、及び、電池外装缶5の板厚15より大きくなっている。また、溶融部13は、負極集電タブ12を貫通しておらず、負極集電タブ12の内部で断面扇形状に溶融している。
(Second Embodiment)
(Configuration of sealed battery)
FIG. 12 is an enlarged view of the melting portion 13 between the battery outer can 5 and the negative electrode current collecting tab 12 in the second embodiment of the present invention. As shown in FIG. 12, in the melting portion 13 between the battery outer can 5 and the negative electrode current collecting tab 12, the surface melting width 14 of the melting portion 13 is smaller than the plate thickness 15 of the battery outer can 5. On the other hand, the bonding width 16 between the battery outer can 5 and the negative electrode current collecting tab 12 is larger than the surface melt width 14 and the plate thickness 15 of the battery outer can 5. Further, the melting portion 13 does not penetrate the negative electrode current collecting tab 12 and is melted in a fan shape in cross section inside the negative electrode current collecting tab 12.

図13の(a)は図12の溶融部13の拡大図で、電池外装缶5の外側(図面上方)から見た表面溶融部17を含む円形領域を示しており、その電池外装缶5の下部で電池外装缶5と負極集電タブ12とが接合されている。図13の(b)は電池外装缶5と負極集電タブ12との界面接合部18を示している。すなわち、表面溶融部17より面積が大きな円板形状の界面接合部18で、電池外装缶5と負極集電タブ12とが接合されている。よって、図13の(b)で示したように、第1実施形態における円環形状の接合面積が表面溶融部17の面積より大きいため、接合強度を上げることができる。   FIG. 13A is an enlarged view of the melting portion 13 of FIG. 12, and shows a circular region including the surface melting portion 17 viewed from the outside (upper side of the drawing) of the battery outer can 5. The battery outer can 5 and the negative electrode current collecting tab 12 are joined at the lower part. FIG. 13B shows the interface joint 18 between the battery outer can 5 and the negative electrode current collecting tab 12. That is, the battery outer can 5 and the negative electrode current collecting tab 12 are joined at the disk-shaped interface joint 18 having a larger area than the surface melting part 17. Therefore, as shown in FIG. 13B, the annular bonding area in the first embodiment is larger than the area of the surface melting portion 17, so that the bonding strength can be increased.

(接合装置)
次に、図12で示した溶融部13を形成して、電池外装缶5と負極集電タブ12とを接合する接合装置を図14に示す。図14の接合装置構成は、第1実施形態で示した図4の接合装置とほぼ同じ構成であり、異なっている所は、回転機構部22の代わりに備えられた、レーザ加工ヘッド21を動かす機構部33の機能である。この機構部33には、機構部制御部23Bの制御の下に、電池外装缶5のほぼ中心軸を中心としてレーザ加工ヘッド21を矢印A方向に正逆回転運動させる回転運動機構33Aと、電池外装缶5のほぼ中心軸に対してレーザ加工ヘッド21の照射角度θを矢印B方向に変える照射角度調整機構33Bを有している。
(Joining equipment)
Next, FIG. 14 shows a joining apparatus that forms the melting part 13 shown in FIG. 12 and joins the battery outer can 5 and the negative electrode current collecting tab 12. The configuration of the joining apparatus in FIG. 14 is substantially the same as the configuration of the joining apparatus in FIG. 4 shown in the first embodiment. The difference is that the laser machining head 21 provided in place of the rotating mechanism unit 22 is moved. This is a function of the mechanism unit 33. The mechanism unit 33 includes a rotary motion mechanism 33A for rotating the laser processing head 21 forward and backward in the direction of arrow A about the substantially central axis of the battery outer can 5 under the control of the mechanism control unit 23B, and a battery. An irradiation angle adjusting mechanism 33B that changes the irradiation angle θ of the laser processing head 21 in the direction of arrow B with respect to the substantially central axis of the outer can 5 is provided.

この接合装置において、レーザ加工ヘッド21から出たレーザビーム25は、電池外装缶5のほぼ中心位置にジャストフォーカスで照射される。更に、その照射位置27を変えずに、照射角度θのみを変化させながら、その照射位置27を中心に回転させてレーザ照射させる。その結果、図12に示した断面扇形状の溶融部13が形成され、電池外装缶5と負極集電タブ12とを接合することができる。   In this bonding apparatus, the laser beam 25 emitted from the laser processing head 21 is irradiated to the substantially central position of the battery outer can 5 with a just focus. Further, without changing the irradiation position 27, only the irradiation angle θ is changed, and the laser irradiation is performed by rotating the irradiation position 27 as a center. As a result, the cross-section fan-shaped melting portion 13 shown in FIG. 12 is formed, and the battery outer can 5 and the negative electrode current collecting tab 12 can be joined.

(接合方法)
次に、この図14で示した接合装置を用いて、電池外装缶5と負極集電タブ12とを接合する方法について、図15で詳細に説明する。なお、基本的な接合方法は、第1実施形態で示した図4とほぼ同じであり、その同じ部分は省略し、異なる部分のみ説明する。図15の(a)〜(d)は、1回転レーザ照射毎の電池外装缶5と負極集電タブ12との断面図における溶融部13を示している。
(Joining method)
Next, a method for joining the battery outer can 5 and the negative electrode current collecting tab 12 using the joining apparatus shown in FIG. 14 will be described in detail with reference to FIG. The basic joining method is almost the same as that in FIG. 4 shown in the first embodiment, and the same parts are omitted, and only different parts will be described. (A)-(d) of FIG. 15 has shown the fusion | melting part 13 in sectional drawing of the battery exterior can 5 and the negative electrode current collection tab 12 for every rotation laser irradiation.

まず始めに、レーザビーム25は、電池外装缶5に対して中心軸方向沿いに垂直に近い照射角度θ=θ0で1回転照射され、負極集電タブ12とポイント的に接合される(図15の(a)参照)。更に、照射位置27を変えずに照射角度θを徐々に変化(θ=θ1〜θ3)させながら回転させることで、電池外装缶5の上表面の溶融部面積を増加させることなく、電池外装缶5と負極集電タブ12との接合面積を広げていくことができる(図15の(b)〜(d)参照)。なお、本方法では、レーザ溶接の接合部が中央から外側に広がる方向であるが、逆に、レーザ溶接の接合部が外側から中央部に狭まる方向でも良い。   First, the laser beam 25 is irradiated to the battery outer can 5 by one rotation at an irradiation angle θ = θ0 that is nearly perpendicular along the central axis direction, and is joined to the negative electrode current collecting tab 12 in a point manner (FIG. 15). (See (a)). Further, by rotating the irradiation angle θ gradually (θ = θ1 to θ3) without changing the irradiation position 27, the battery outer can can be increased without increasing the melted area of the upper surface of the battery outer can 5. 5 and the negative electrode current collecting tab 12 can be expanded (see (b) to (d) of FIG. 15). In this method, the laser welding joint extends from the center to the outside, but conversely, the laser welding joint may narrow from the outside to the center.

(変形例)
一方、本第2実施形態による製造方法では、図12に示すように負極集電タブ12への溶融部13の断面形状は、下端縁が下向き凸の円弧形状を有する下向きの扇形状であり、溶融部13の溶融深さは中央部で深く周辺部で浅くなっている。負極集電タブ12の板厚が厚いときには問題がないが、板厚が薄くなると、負極集電タブ12の中央部で溶融部13が貫通してしまい、製品不良となる場合がある。そこで、図16で示すように、溶融部13の断面形状が下向きの扇形状ではなく、負極集電タブ12に対して、溶融部13の断面形状の下端が均一な溶融深さにして、貫通しないように改善する必要がある。そのためには、図14において、溶接開始時のレーザビーム25の照射角度θが小さいときにレーザ出力を接合用出力から下げ、その後、レーザ照射角度θが大きくなるにつれて(θ=θ1→θ3)、レーザ出力を接合用出力に向けて増加させるように、全体制御部24でレーザ発振器制御部20と機構部制御部23Bとを介してレーザ発振器19と機構部33とを制御する。このように構成すれば、溶融部13が、負極集電タブ12に対して均一な溶融深さとなり、且つ、負極集電タブ12の貫通を防止することができる。
(Modification)
On the other hand, in the manufacturing method according to the second embodiment, as shown in FIG. 12, the cross-sectional shape of the melted portion 13 to the negative electrode current collecting tab 12 is a downward fan shape having a circular arc shape whose lower end edge is downwardly convex. The melting depth of the melting part 13 is deep at the center and shallow at the periphery. There is no problem when the plate thickness of the negative electrode current collector tab 12 is thick, but when the plate thickness is reduced, the melted portion 13 may penetrate through the central portion of the negative electrode current collector tab 12, resulting in a product defect. Accordingly, as shown in FIG. 16, the cross-sectional shape of the melted portion 13 is not a downward fan shape, and the lower end of the cross-sectional shape of the melted portion 13 has a uniform melt depth with respect to the negative electrode current collecting tab 12. It is necessary to improve so as not to. For this purpose, in FIG. 14, when the irradiation angle θ of the laser beam 25 at the start of welding is small, the laser output is lowered from the bonding output, and thereafter, as the laser irradiation angle θ increases (θ = θ1 → θ3). The overall control unit 24 controls the laser oscillator 19 and the mechanism unit 33 via the laser oscillator control unit 20 and the mechanism unit control unit 23B so that the laser output is increased toward the bonding output. If comprised in this way, the fusion | melting part 13 will become a uniform fusion depth with respect to the negative electrode current collection tab 12, and the penetration of the negative electrode current collection tab 12 can be prevented.

(変形例)
また、更に、電池外装缶5と負極集電タブ12との接合強度を上げる為には、電池外装缶5と負極集電タブ12との接合面積を増加させる必要がある。レーザ照射角度θを更に大きくして接合面積を広げる方策があるが、レーザ照射角度θが大きくなるとレーザビーム25の電池外装缶5に対する反射率が上がり(逆に、吸収率は低下する)、更に、斜めに深く溶接しなければいけないので、レーザの投入パワーも増大させる必要がある。このため、一般的には得策ではない。
(Modification)
Furthermore, in order to increase the bonding strength between the battery outer can 5 and the negative electrode current collecting tab 12, it is necessary to increase the bonding area between the battery outer can 5 and the negative electrode current collecting tab 12. There is a measure to further increase the laser irradiation angle θ to increase the bonding area. However, as the laser irradiation angle θ increases, the reflectance of the laser beam 25 with respect to the battery outer can 5 increases (conversely, the absorption rate decreases). Since it is necessary to weld deeply at an angle, it is also necessary to increase the laser input power. For this reason, it is generally not a good idea.

そのため、図17の(a)、(b)で示すように電池外装缶5の表面上の溶融部13を少し広げて、電池外装缶5と負極集電タブ12との接合幅16を広げて接合強度を向上させる製造方法を、図18を用いて説明する。従来と異なる所は、レーザ照射位置27がレーザ加工ヘッド21の回転軸26上になく、レーザビーム25の光軸(軸方向)と前記回転軸26との交点34を中心として、レーザ加工ヘッド21が動く所である。レーザ加工ヘッド21を、前記回転軸26を中心に回転させ、且つ、前記交点34を中心にレーザ照射角度θを変化させながら、レーザビーム25を電池外装缶5に照射することで、図17の(a)、(b)で示したような溶融部13を形成させることができる。なお、図17の(b)に示すように、表面溶融部17は円環形状となっている。   Therefore, as shown in FIGS. 17A and 17B, the melting portion 13 on the surface of the battery outer can 5 is slightly widened, and the bonding width 16 between the battery outer can 5 and the negative electrode current collecting tab 12 is widened. A manufacturing method for improving the bonding strength will be described with reference to FIG. The difference from the prior art is that the laser irradiation position 27 is not on the rotation axis 26 of the laser processing head 21, and the laser processing head 21 is centered on the intersection 34 between the optical axis (axial direction) of the laser beam 25 and the rotation axis 26. Is where the moves. By irradiating the battery outer can 5 with the laser beam 25 while rotating the laser processing head 21 about the rotation shaft 26 and changing the laser irradiation angle θ about the intersection 34, the battery outer can 5 of FIG. The melting part 13 as shown in (a) and (b) can be formed. Note that, as shown in FIG. 17B, the surface melting portion 17 has an annular shape.

(第3実施形態)
(密閉型電池の構成)
先の第1及び第2実施形態では、溶融部13及び界面接合部18が回転対称であったが、本発明での溶融部13及び界面接合部18は、回転対称に限られるものではない。回転対称ではない例について、以下に説明する。
(Third embodiment)
(Configuration of sealed battery)
In the previous first and second embodiments, the melting portion 13 and the interface joint 18 are rotationally symmetric, but the melting portion 13 and the interface joint 18 in the present invention are not limited to rotational symmetry. An example that is not rotationally symmetric will be described below.

図19は、本発明の第3実施形態における、電池外装缶5と負極集電タブ12との溶融部13の拡大図である。図19の(a)のA−A’断面図では、電池外装缶5と負極集電タブ12との溶融部13は、負極集電タブ12を貫通しておらず、電池外装缶5の上表面から負極集電タブ12に向かって3方向に溶融している。図19の(b)は、電池外装缶5の外側(図19の(a)の上方)から見た表面溶融部17を含む円形領域を示しており、その電池外装缶5の下部で電池外装缶5と負極集電タブ12とが接合されている。図19の(c)は、電池外装缶5と負極集電タブ12との界面接合部18を示しており、図19の(a)で示した3方向に溶融している溶融部13に沿って、少なくとも1本、一例としては、3本の直線形状の界面接合部18で接合されている。一方、図19の(d)は、図19の(b)のB’−B断面図であり、溶融部13は、図19(c)と異なり、断面が下向きの扇形状又は台形となって、電池外装缶5と負極集電タブ12とが接合されている。なお、図16の説明と同様に、溶接開始時のレーザビーム25の照射角度θが小さいときにレーザ出力を接合用出力から下げ、その後、レーザ照射角度θが大きくなるにつれて(θ=θ1→θ3)、レーザ出力を接合用出力に向けて増加させるようにすれば、図19の(d)のように台形とすることができる。   FIG. 19 is an enlarged view of the melting part 13 between the battery outer can 5 and the negative electrode current collecting tab 12 in the third embodiment of the present invention. In the AA ′ cross-sectional view of FIG. 19A, the melting portion 13 between the battery outer can 5 and the negative electrode current collecting tab 12 does not penetrate the negative electrode current collecting tab 12, and It melts in three directions from the surface toward the negative electrode current collecting tab 12. FIG. 19B shows a circular region including the surface melting portion 17 viewed from the outside of the battery outer can 5 (above FIG. 19A). The can 5 and the negative electrode current collecting tab 12 are joined. (C) of FIG. 19 shows the interface joint 18 between the battery outer can 5 and the negative electrode current collector tab 12, and is along the melted part 13 melted in the three directions shown in (a) of FIG. 19. At least one, for example, three linear interface joints 18 are joined. On the other hand, (d) of FIG. 19 is a B′-B cross-sectional view of (b) of FIG. 19, and the melting part 13 has a fan-shaped or trapezoidal shape with a downward cross section unlike FIG. 19 (c). The battery outer can 5 and the negative electrode current collecting tab 12 are joined. Similarly to the description of FIG. 16, when the irradiation angle θ of the laser beam 25 at the start of welding is small, the laser output is lowered from the bonding output, and thereafter, as the laser irradiation angle θ increases (θ = θ1 → θ3). If the laser output is increased toward the bonding output, a trapezoidal shape can be obtained as shown in FIG.

このように、表面溶融部17の面積に比べて、3本の直線形状の界面接合部18の合計面積が大きくなり、そのような大きな面積の界面接合部18で電池外装缶5と負極集電タブ12とが接合されているため、接合強度を向上させることができる。   As described above, the total area of the three linear interface joints 18 is larger than the area of the surface melted part 17, and the battery outer can 5 and the negative electrode current collector are formed by the interface joint 18 having such a large area. Since the tab 12 is joined, joint strength can be improved.

(接合方法)
次に、図19で示した溶融部13と、表面溶融部17と、界面接合部18とを形成し、電池外装缶5と負極集電タブ12とを、例えば図14の接合装置で接合する接合する方法について説明する。
(Joining method)
Next, the melted part 13, the surface melted part 17, and the interface joining part 18 shown in FIG. 19 are formed, and the battery outer can 5 and the negative electrode current collecting tab 12 are joined by, for example, the joining apparatus of FIG. A method of joining will be described.

まず始めに、図19の(a)に示すように、レーザ加工ヘッド21から射出されるレーザビーム25Aは、電池外装缶5のほぼ中心位置である照射位置27に中心軸方向沿いに垂直方向にジャストフォーカスで照射させる。   First, as shown in FIG. 19A, the laser beam 25A emitted from the laser processing head 21 is perpendicular to the irradiation position 27 that is substantially the center position of the battery outer can 5 along the central axis direction. Irradiate with just focus.

更に、図19の(d)に示すように、その照射位置27を中心に、例えばB’−B断面の平面と平行な平面内でかつ照射角度θを所定範囲(例えば±30度程度)内で変化させつつレーザビーム25Aを連続的にレーザ照射させることで、図19の(c)に示す真ん中の直線形状の界面接合部18で、かつ、図19の(d)に示す扇形又は台形の溶融部13が形成される。   Further, as shown in FIG. 19 (d), with the irradiation position 27 as the center, for example, in a plane parallel to the plane of the B′-B cross section, and the irradiation angle θ within a predetermined range (for example, about ± 30 degrees). By continuously irradiating the laser beam 25A with the laser beam 25A, the linear interface joint 18 shown in FIG. 19C and the fan-shaped or trapezoidal shape shown in FIG. 19D are obtained. A melting part 13 is formed.

次に、図19の(a)に示すように、レーザビーム25Aの光軸に対して右側に傾斜してレーザ照射角度を向かって右方向から、レーザビーム25Bを先ほどと同じ位置に照射し、更に、図19の(d)に示すように、その照射位置27を中心に、例えばB’−B断面の平面と平行な平面内でかつ照射角度θを所定範囲(例えば±30度程度)内で変化させて連続的にレーザ照射させる。この結果、図19の(c)に示す右端の直線形状の界面接合部18で、かつ、図19の(d)に示す扇形又は台形の溶融部13が形成される。   Next, as shown in FIG. 19 (a), the laser beam 25B is irradiated to the same position as before from the right direction with the laser irradiation angle inclined to the right with respect to the optical axis of the laser beam 25A, Further, as shown in FIG. 19 (d), with the irradiation position 27 as the center, for example, in a plane parallel to the plane of the B′-B cross section, and the irradiation angle θ within a predetermined range (for example, about ± 30 degrees). The laser is continuously irradiated with the change. As a result, the straight-line interface joint 18 at the right end shown in FIG. 19C and the fan-shaped or trapezoidal melted portion 13 shown in FIG. 19D are formed.

その後、図19の(a)に示すように、レーザビーム25Aの光軸に対して左側に傾斜してレーザ照射角度を向かって左方向からレーザビーム25Cを先ほどと同じ位置に照射し、更に、図19の(d)に示すように、その照射位置27を中心に、例えばB’−B断面の平面と平行な平面内でかつ照射角度θを所定範囲(例えば±30度程度)内で変化させて連続的にレーザ照射させる。この結果、図19の(c)に示す左端の直線形状の界面接合部18で、かつ、図19の(d)に示す扇形又は台形の溶融部13が形成される。   Thereafter, as shown in FIG. 19 (a), the laser beam 25C is irradiated from the left direction toward the laser irradiation angle inclined toward the left side with respect to the optical axis of the laser beam 25A. As shown in FIG. 19D, the irradiation angle 27 is changed within a predetermined range (for example, about ± 30 degrees) around the irradiation position 27, for example, in a plane parallel to the plane of the B′-B cross section. Then, laser irradiation is continuously performed. As a result, a linear interface joint 18 at the left end shown in FIG. 19C and a fan-shaped or trapezoidal melting part 13 shown in FIG. 19D are formed.

このようにすれば、表面溶融部17の面積に比べて、3本の直線形状の界面接合部18の合計面積が大きくなり、そのような大きな面積の界面接合部18で電池外装缶5と負極集電タブ12とが接合することができるため、接合強度を向上させることができる。   In this way, the total area of the three linear interface joints 18 is larger than the area of the surface melted part 17, and the battery outer can 5 and the negative electrode can be formed by the interface joints 18 having such a large area. Since the current collecting tab 12 can be bonded, the bonding strength can be improved.

(変形例)
なお、本第3実施形態では、表面溶融部17の形状は、小さな円形のポイント状であるが、図20(a)〜(d)で示すように、1本線形状、2本線形状、四角枠形状、四角形状などでも良い。これは、レーザビーム25の照射角度を順次変えて接合していくことで実現することができる。また、本第3実施形態では、界面接合部18の形状は、3本線形状であるが、図21(a)〜(d)で示すように、1本線形状、2本線形状、四角枠形状、四角形状などでも良い。これも、レーザビーム25の照射角度を順次変えて接合していくことで実現することができる。
(Modification)
In the third embodiment, the shape of the surface melting portion 17 is a small circular point shape. However, as shown in FIGS. 20A to 20D, a single line shape, a double line shape, and a square frame are used. The shape, square shape, etc. may be sufficient. This can be realized by sequentially changing the irradiation angle of the laser beam 25 and joining. In the third embodiment, the shape of the interface bonding portion 18 is a three-line shape, but as shown in FIGS. 21A to 21D, a single-line shape, a two-line shape, a square frame shape, It may be a square shape. This can also be realized by sequentially changing the irradiation angle of the laser beam 25 and joining.

(第1〜第3実施形態の効果)
以上説明してきたように、前記第1〜第3実施形態にかかる前記製造方法によれば、電池外装缶5の板厚15より小さいスポット径を有するレーザビーム25を電池外装缶5の外側底面の照射位置(例えば概略中央)に、外側底面と直交する方向に対して一定の照射角度θを付けて照射し、かつ、その照射点を中心に電池外装缶5に対して照射角度θを保ったまま相対的に回転照射させて電池外装缶5とその内部にある集電タブ12とを円形(円環形状又は円板形状)にレーザ接合するか、又は、電池外装缶5に対して照射角度θを変化させながら直線移動させて、電池外装缶5とその内部に配置された集電タブ12とを少なくとも1本の直線形状にレーザ接合するようにしている。この結果、電池外装缶5の底面の表面溶融部17の溶融面積を小さくし、且つ、電池外装缶5と負極集電タブ12との界面接合部18の接合面積を拡大して、接合強度を確保することができる。
(Effects of the first to third embodiments)
As described above, according to the manufacturing method according to the first to third embodiments, the laser beam 25 having a spot diameter smaller than the plate thickness 15 of the battery outer can 5 is applied to the outer bottom surface of the battery outer can 5. The irradiation position (for example, approximately the center) was irradiated with a fixed irradiation angle θ with respect to the direction orthogonal to the outer bottom surface, and the irradiation angle θ was maintained with respect to the battery outer can 5 around the irradiation point. The battery outer can 5 and the current collecting tab 12 inside the battery outer can 5 and the current collecting tab 12 are laser-joined in a circular shape (annular shape or disk shape), or the irradiation angle with respect to the battery outer can 5 The battery outer can 5 and the current collecting tab 12 disposed inside the battery outer can 5 and the current collecting tab 12 are laser-bonded in at least one linear shape by linearly moving while changing θ. As a result, the melting area of the surface melting portion 17 on the bottom surface of the battery outer can 5 is reduced, and the bonding area of the interface bonding portion 18 between the battery outer can 5 and the negative electrode current collecting tab 12 is increased to increase the bonding strength. Can be secured.

(変形例)
なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記実施形態では、電池外装缶5及び負極集電タブ12に対してレーザビーム25を回転させるように構成しているが、これに限られるものではなく、レーザビーム25に対して電池外装缶5及び負極集電タブ12を回転させるようにしてもよい。
(Modification)
In addition, this invention is not limited to the said embodiment, It can implement in another various aspect. For example, in the above-described embodiment, the laser beam 25 is rotated with respect to the battery outer can 5 and the negative electrode current collecting tab 12, but the present invention is not limited to this. The can 5 and the negative electrode current collecting tab 12 may be rotated.

なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士又は変形例同士の組み合わせ又は実施形態と実施例又は変形例との組み合わせが可能であると共に、異なる実施形態又は実施例又は変形例の中の特徴同士の組み合わせも可能である。   In addition, it can be made to show the effect which each has by combining arbitrary embodiment or modification of the said various embodiment or modification suitably. In addition, combinations of the embodiments, combinations of the examples or modifications, or combinations of the embodiment and the examples or modifications are possible, and features of different embodiments, examples, or modifications may be combined. Combinations are possible.

本発明の密閉型電池及びその製造方法は、電池外装缶底面の溶融面積を小さくし、且つ、電池外装缶と集電タブの接合面積を拡大し接合強度を確保することができるため、複数個の密閉型電池を接続した組電池に適用することができる。なお、本発明が適用される密閉型電池は、その種類に特に制限はなく、リチウムイオン二次電池の他、ニッケル水素電池、又は、ニッカド電池などにも適用することができる。また、円筒型二次電池に限らず、角形二次電池、又は、一次電池にも適用し得る。更に、電極群は、正極板及び負極板はセパレータを介して捲回されたものに限らず、積層されたものでも良い。   The sealed battery and the manufacturing method thereof according to the present invention can reduce the melting area of the bottom surface of the battery outer can, and can increase the bonding area between the battery outer can and the current collecting tab to ensure the bonding strength. The present invention can be applied to an assembled battery to which a sealed battery is connected. The type of the sealed battery to which the present invention is applied is not particularly limited, and can be applied to a nickel-metal hydride battery, a nickel cadmium battery, or the like in addition to a lithium ion secondary battery. Further, the present invention can be applied not only to the cylindrical secondary battery but also to a square secondary battery or a primary battery. Further, the electrode group is not limited to the positive electrode plate and the negative electrode plate wound via a separator, but may be a stacked one.

1 正極板
2 負極板
3 セパレータ
4 巻取体
5 電池外装缶
6 ガスケット
7 上部絶縁板
8 下部絶縁板
9 溶融部
10 封口板
11 正極集電タブ
12 負極集電タブ
13,13B 溶融部
14 表面溶融幅
15 板厚
16 接合幅
17 表面溶融部
18 界面接合部
19 レーザ発振器
20 レーザ発振器制御部
21 レーザ加工ヘッド
22 回転機構部
23 回転制御部
23B 機構部制御部
24 全体制御部
25,25A,25B,25C,25D レーザビーム
26 回転機構部の回転軸(電池外装缶の底面の中心軸)
27 レーザビームの照射位置
28 穴あき
29 キーホール
30 スパッタ
31 陥没部
32 ブローホール
33 機構部
33A 回転運動機構
33B 照射角度調整機構
θ 照射角度
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Winding body 5 Battery exterior can 6 Gasket 7 Upper insulating plate 8 Lower insulating plate 9 Melting part 10 Sealing plate 11 Positive electrode current collection tab 12 Negative electrode current collection tab 13, 13B Melting part 14 Surface melting Width 15 Plate thickness 16 Joining width 17 Surface melting part 18 Interface joining part 19 Laser oscillator 20 Laser oscillator control part 21 Laser processing head 22 Rotation mechanism part 23 Rotation control part 23B Mechanism part control part 24 Overall control part 25, 25A, 25B, 25C, 25D Laser beam 26 Rotation axis of rotation mechanism (center axis of bottom surface of battery case)
27 Laser beam irradiation position 28 Perforated 29 Keyhole 30 Sputter 31 Depressed part 32 Blow hole 33 Mechanism part 33A Rotation motion mechanism 33B Irradiation angle adjustment mechanism θ Irradiation angle

Claims (4)

正極板及び負極板がセパレータを介して捲回されてなる巻取体を形成する工程と、
前記巻取体のそれぞれの極板に、それぞれの集電タブの一端を接続する工程と、
前記巻取体を電池外装缶内に収容する工程と、
前記それぞれの集電タブのうち片方の他端を前記電池外装缶の内面底面部に当接させるように配置する工程と、
前記電池外装缶の板厚より小さいスポット径を有するレーザビームを前記電池外装缶の外側底面の照射位置に、前記外側底面と直交する方向に対して照射角度を付けて照射し、前記照射角度を変化させながら、かつ前記照射位置を通るように直線移動させて、前記電池外装缶と前記電池外装缶の前記内面底面部に当接された前記集電タブとを少なくとも1本の直線形状にレーザ接合する直線形成工程と、
を有する密閉型電池の製造方法。
Forming a wound body in which a positive electrode plate and a negative electrode plate are wound through a separator;
Connecting one end of each current collecting tab to each electrode plate of the winding body;
Storing the winding body in a battery outer can;
Arranging the other end of one of the current collecting tabs so as to contact the bottom surface of the inner surface of the battery outer can;
A laser beam having a spot diameter smaller than the plate thickness of the battery outer can is irradiated at an irradiation position on the outer bottom surface of the battery outer can with an irradiation angle with respect to a direction orthogonal to the outer bottom surface, and the irradiation angle is The battery outer can and the current collecting tab in contact with the bottom surface of the inner surface of the battery outer can are laser-converted into at least one linear shape while being changed and linearly moved so as to pass through the irradiation position. A straight line forming step to be joined;
The manufacturing method of the sealed battery which has this.
正極板及び負極板がセパレータを介して捲回されてなる巻取体を電池外装缶内に収容し、この電池外装缶の開口部を封口板で封口した密閉型電池であって、
前記巻取体のいずれか一方の極板から導出された集電タブと前記電池外装缶の外側底面とが溶接された溶融部を有し、
前記電池外装缶の前記外側底面における前記溶融部の占める面積が、前記電池外装缶と前記集電タブとの接合面における前記溶融部の占める面積より小さく、
前記電池外装缶の前記外側底面における前記溶融部の形状がポイント状であり、かつ、前記電池外装缶と前記集電タブとの前記接合面における前記溶融部の形状が直線形状である、密閉型電池。
A wound battery in which a positive electrode plate and a negative electrode plate are wound through a separator is housed in a battery outer can, and a sealed battery in which an opening of the battery outer can is sealed with a sealing plate,
A current collector tab derived from any one of the electrode plates of the wound body and an outer bottom surface of the battery outer can have a fusion part welded;
The area occupied by the melted portion on the outer bottom surface of the battery outer can is smaller than the area occupied by the melted portion on the joint surface between the battery outer can and the current collecting tab,
The shape of the melting part on the outer bottom surface of the battery outer can is a point shape, and the shape of the melting part on the joining surface between the battery outer can and the current collecting tab is a linear type. battery.
前記溶融部は、前記電池外装缶と前記集電タブとの積層方向の断面において、扇形形状または台形形状である、請求項2に記載の密閉型電池。   The sealed battery according to claim 2, wherein the melting part has a fan shape or a trapezoidal shape in a cross section in the stacking direction of the battery outer can and the current collecting tab. 前記溶融部の、前記電池外装缶の前記外側底面と直交する方向における溶融深さが、前記電池外装缶の底厚と前記集電タブの板厚との加算和未満である請求項2または3に記載の密閉型電池。   The melting depth of the melting portion in a direction orthogonal to the outer bottom surface of the battery outer can is less than a sum of a bottom thickness of the battery outer can and a plate thickness of the current collecting tab. The sealed battery according to 1.
JP2019007102A 2019-01-18 2019-01-18 Sealed battery and its manufacturing method Active JP6765080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007102A JP6765080B2 (en) 2019-01-18 2019-01-18 Sealed battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007102A JP6765080B2 (en) 2019-01-18 2019-01-18 Sealed battery and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015054521A Division JP6643646B2 (en) 2015-03-18 2015-03-18 Sealed battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2019057520A true JP2019057520A (en) 2019-04-11
JP6765080B2 JP6765080B2 (en) 2020-10-07

Family

ID=66107834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007102A Active JP6765080B2 (en) 2019-01-18 2019-01-18 Sealed battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6765080B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021190A (en) * 1983-06-24 1985-02-02 シヤ−キ・エス・ア Spot welding by laser beam
JPH06155058A (en) * 1992-11-26 1994-06-03 Mazda Motor Corp Laser beam overlapped welding method
JPH10202387A (en) * 1997-01-21 1998-08-04 Suzuki Motor Corp Welding method and device using the method
JP2008238209A (en) * 2007-03-27 2008-10-09 Tokyu Car Corp Laser welding method and laser welding equipment
JP2008290083A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Method and apparatus for lap laser welding
JP2010003686A (en) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
WO2010016182A1 (en) * 2008-08-08 2010-02-11 パナソニック株式会社 Sealed secondary battery, and method for manufacturing the battery
JP2010069516A (en) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp Connection structure of electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021190A (en) * 1983-06-24 1985-02-02 シヤ−キ・エス・ア Spot welding by laser beam
JPH06155058A (en) * 1992-11-26 1994-06-03 Mazda Motor Corp Laser beam overlapped welding method
JPH10202387A (en) * 1997-01-21 1998-08-04 Suzuki Motor Corp Welding method and device using the method
JP2008238209A (en) * 2007-03-27 2008-10-09 Tokyu Car Corp Laser welding method and laser welding equipment
JP2008290083A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Method and apparatus for lap laser welding
JP2010003686A (en) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
WO2010016182A1 (en) * 2008-08-08 2010-02-11 パナソニック株式会社 Sealed secondary battery, and method for manufacturing the battery
JP2010069516A (en) * 2008-09-19 2010-04-02 Mitsubishi Electric Corp Connection structure of electronic equipment

Also Published As

Publication number Publication date
JP6765080B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6643646B2 (en) Sealed battery and method of manufacturing the same
JP4647707B2 (en) Manufacturing method of sealed secondary battery
WO2011016200A1 (en) Hermetically sealed battery and method for manufacturing the same
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP6183555B2 (en) Tab welding method for battery pack
JP6064228B2 (en) Laser cutting apparatus and laser cutting method
KR101418899B1 (en) Method for jointing metal foils in a superposed way and joint structure
JP4923313B2 (en) Sealed battery and manufacturing method thereof
JP2009099488A (en) Secondary battery and its manufacturing method
JP2016207412A (en) Laser weldment and laser welding quality determination method for battery
JP2005040853A (en) Laser welding method
JP6920636B2 (en) Battery manufacturing method
JP2002042769A (en) Secondary battery and its manufacturing method
JP2020013733A (en) Power storage device and manufacturing method thereof
JP6765080B2 (en) Sealed battery and its manufacturing method
JP2020004643A (en) Power storage device
JP6820560B2 (en) Battery manufacturing method
JP2018202478A (en) Laser-sealing port device
JP6493188B2 (en) Battery manufacturing method
KR102571995B1 (en) Method of manufacturing a secondary battery and secondary battery manufactured thereby
CN105960722B (en) Electrical storage device and electrical storage device manufacturing method
JP2024516692A (en) Cylindrical secondary battery to which laser welding is applied and its manufacturing method, battery pack including such secondary battery, and automobile
WO2022270595A1 (en) Welding method, metal laminate, electrical component, and electrical product
JP2011079010A (en) Laser welding method and joined body
WO2023157810A1 (en) Laser welding method and metal joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200828

R151 Written notification of patent or utility model registration

Ref document number: 6765080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151