JP2019048735A - Production method of fine aggregate - Google Patents

Production method of fine aggregate Download PDF

Info

Publication number
JP2019048735A
JP2019048735A JP2017172945A JP2017172945A JP2019048735A JP 2019048735 A JP2019048735 A JP 2019048735A JP 2017172945 A JP2017172945 A JP 2017172945A JP 2017172945 A JP2017172945 A JP 2017172945A JP 2019048735 A JP2019048735 A JP 2019048735A
Authority
JP
Japan
Prior art keywords
fine aggregate
mass
crushing
particle size
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017172945A
Other languages
Japanese (ja)
Inventor
瞬 新島
Shun Niijima
瞬 新島
吉川 知久
Tomohisa Yoshikawa
知久 吉川
耕一郎 弥栄
Koichiro Iyasaka
耕一郎 弥栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017172945A priority Critical patent/JP2019048735A/en
Publication of JP2019048735A publication Critical patent/JP2019048735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a method capable of producing fine aggregates with small bone-dry density and large coefficient of water absorption in a simple and low cost manner.SOLUTION: The production method of fine aggregates includes: a calcination step of obtaining a burned product by calcinating the grain made of the composition including a powder-like material containing coal ash and cement, a foaming agent consisting of silicon carbide, and water, with its particle size of 5 mm or less; and a crushing step of crushing the burned product so as to obtain the fine aggregates. In the crushing step, the crushing is preferably conducted such that a percentage of the grain with its particle size in the range of 0.15 to 1.2 mm, as the fine aggregates, of 20 mass% or more can be obtained.SELECTED DRAWING: None

Description

本発明は、細骨材の製造方法に関する。   The present invention relates to a method of producing a fine aggregate.

従来、石炭灰を含む原料を造粒した後、高温で加熱することで発泡させた焼成物を、人工軽量骨材等として使用することが知られている。
例えば、特許文献1には、主原料の石炭灰に、発泡剤を混合して粉砕し、該粉砕物をアルカリ金属珪酸塩からなる融点降下剤と湿式混練した後、成型し、ついで乾燥・焼成することを特微とする人工軽量骨材の製造方法が記載されている。該製造方法に用いる発泡剤としては、酸化鉄、炭化珪素、及び炭材が挙げられている。
BACKGROUND ART Conventionally, it is known to use a calcined material foamed by heating at high temperature after granulating a raw material containing coal ash as an artificial lightweight aggregate and the like.
For example, in Patent Document 1, coal ash as a main raw material is mixed with a foaming agent and pulverized, and the pulverized product is wet-kneaded with a melting point depressant consisting of an alkali metal silicate, and then molded, and then dried and calcined. SUMMARY OF THE INVENTION A method of making an artificial lightweight aggregate is described. As a foaming agent used for this manufacturing method, iron oxide, silicon carbide, and a carbon material are mentioned.

特開2000−290050号公報Japanese Patent Laid-Open No. 2000-290050

本発明の目的は、簡易かつ低コストな方法で、絶乾密度が小さく(例えば、1.5g/cm以下)、かつ、吸水率の大きな(例えば、10.0%以上)骨材を製造することができる方法を提供することである。 An object of the present invention is to produce an aggregate having a low absolute density (for example, 1.5 g / cm 3 or less) and a large water absorption (for example, 10.0% or more) by a simple and inexpensive method. It is to provide a method that can be done.

本発明者は、上記課題を解決するために鋭意検討した結果、特定の組成物からなり、かつ、粒度が5mm以下の粒体を焼成した後、得られた焼成物を破砕して細骨材を得る方法によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[3]を提供するものである。
[1] 石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程と、上記焼成物を破砕して、細骨材を得る破砕工程、を含む細骨材の製造方法。
[2] 上記破砕工程において、上記細骨材として、粒度が0.15〜1.2mmの範囲内である粒体の割合が、20質量%以上であるものが得られるように、破砕を行う前記[1]に記載の細骨材の製造方法。
[3] 上記組成物が、融点降下剤を含まず、かつ、上記細骨材の絶乾密度が、1.5g/cm以下である前記[1]又は[2]に記載の細骨材の製造方法。
As a result of intensive studies to solve the above problems, the inventor of the present invention has fired fine particles of a specific composition and having a particle size of 5 mm or less, and then crushing the obtained fired product to obtain a fine aggregate. It has been found that the above object can be achieved according to the method for obtaining.
That is, the present invention provides the following [1] to [3].
[1] Firing comprising a composition comprising a powdery material containing coal ash and cement, a foaming agent comprising silicon carbide, and water, and firing particles having a particle size of 5 mm or less to obtain a fired product A method for producing a fine aggregate, comprising the steps of: crushing the fired product to obtain a fine aggregate.
[2] In the crushing step, the fine aggregate is crushed so that the ratio of particles having a particle size in the range of 0.15 to 1.2 mm is 20% by mass or more. The manufacturing method of the fine aggregate as described in said [1].
[3] The fine aggregate according to the above [1] or [2], wherein the composition does not contain a melting point depressant and the bone dry density of the fine aggregate is 1.5 g / cm 3 or less Manufacturing method.

本発明の細骨材の製造方法によれば、簡易かつ低コストな方法で、絶乾密度が小さく(例えば、1.5g/cm以下)、かつ、吸水率の大きな(例えば、10.0%以上)細骨材を得ることができる。 According to the method for producing a fine aggregate of the present invention, the bone dry density is small (for example, 1.5 g / cm 3 or less) and the water absorption rate is large (for example, 10.0) by a simple and low-cost method. % Or more) fine aggregate can be obtained.

本発明の細骨材の製造方法は、石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程と、該焼成物を破砕して、細骨材を得る破砕工程、を含むものである。以下、工程ごとに詳しく説明する。   The method for producing a fine aggregate according to the present invention comprises calcining particles having a particle size of 5 mm or less and comprising a composition comprising a powdery material containing coal ash and cement, a foaming agent comprising silicon carbide, and water. And calcining the calcined product, and crushing the calcined product to obtain a fine aggregate. Each step will be described in detail below.

[焼成工程]
本工程は、石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る工程である。
本発明で用いられる石炭灰の例としては、フライアッシュ、クリンカアッシュ等が挙げられる。中でも、入手の容易性の観点からフライアッシュが好ましい。
本発明で用いられるセメントは、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、フライアッシュセメント等の混合セメントや、エコセメント等が挙げられる。
また、上記粉状材料は、廃棄物利用の促進の観点から、スラグ粉末を含んでいてもよい。スラグ粉末の例としては、高炉スラグ、製鋼スラグ、溶融スラグ等が挙げられる。
[Firing process]
The present step comprises calcining particles having a particle size of 5 mm or less to obtain a fired product, comprising a composition comprising a powdery material comprising coal ash and cement, a foaming agent comprising silicon carbide, and water. It is a process.
Examples of coal ash used in the present invention include fly ash, clinker ash and the like. Among them, fly ash is preferable from the viewpoint of the availability.
The cement used in the present invention is not particularly limited. For example, various portland cements such as ordinary portland cement, early strength portland cement, moderate heat portland cement, low temperature portland cement, blast furnace cement, fly ash cement, etc. Mixed cement, eco-cement, etc. may be mentioned.
Moreover, the said powdery material may contain slag powder from a viewpoint of promotion of waste utilization. Examples of slag powder include blast furnace slag, steelmaking slag, molten slag and the like.

なお、本発明において、粉状材料とは、粉状の材料(0.1mm未満の粒度を有するもの;粉体)の集合体であって、石炭灰、セメント、および、必要に応じて配合されるスラグ粉末を意味する。
石炭灰のブレーン比表面積は、入手の容易性等の観点から、好ましくは1,000cm/g以上、より好ましくは2,000〜6,000cm/gである。
セメントのブレーン比表面積は、入手の容易性等の観点から、好ましくは1,500cm/g以上、より好ましくは2,500〜6,000cm/gである。
スラグ粉末のブレーン比表面積は、入手の容易性等の観点から、好ましくは3,000cm/g以上、より好ましくは4,000〜8,000cm/gである。
In the present invention, the powdery material is an aggregate of powdery materials (having a particle size of less than 0.1 mm; powder), and is blended with coal ash, cement, and as required. Mean slag powder.
The brane specific surface area of the coal ash is preferably 1,000 cm 2 / g or more, more preferably 2,000 to 6,000 cm 2 / g, from the viewpoint of availability and the like.
The bran specific surface area of cement is preferably 1,500 cm 2 / g or more, more preferably 2,500 to 6,000 cm 2 / g, from the viewpoint of availability and the like.
The brane specific surface area of the slag powder is preferably 3,000 cm 2 / g or more, more preferably 4,000 to 8,000 cm 2 / g, from the viewpoint of availability and the like.

本発明で用いられる粉状材料(必須材料として石炭灰およびセメントを含み、かつ、任意に配合可能な材料としてスラグ粉末を含むもの)以外の粉状の材料(以下、「他の粉末」ともいう。)として、炭酸カルシウム微粉末(工業製品、貝殻粉砕物等)、シリカフューム等を用いることができる。ここで、「他の粉末」は、本発明で用いられる「粉体材料」に包含されないものとする。
他の粉末の配合量は、上記粉状材料と、炭化ケイ素からなる発泡剤の合計量100質量部に対して、好ましくは20質量部以下、より好ましくは10質量部以下である。
Powdered materials (hereinafter also referred to as "other powders") other than the powdery materials used in the present invention (including coal ash and cement as essential materials and optionally containing slag powder as materials that can be optionally blended) Calcium carbonate fine powder (industrial products, crushed shells etc.), silica fume etc. can be used as. Here, the "other powder" is not included in the "powder material" used in the present invention.
The compounding amount of the other powder is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the total amount of the powdery material and the foaming agent made of silicon carbide.

本発明で用いられる炭化ケイ素からなる発泡剤の粒度は、各材料を混合して造粒する際に、該材料の混合物中に発泡剤を偏りなく均一に分散させて、良好な発泡状態を得る観点から、好ましくは30μm以下、より好ましくは20μm以下、特に好ましくは15μm以下である。
なお、炭化ケイ素からなる発泡剤は、粉状であっても、本発明で用いられる「粉状材料」に包含されないものとする。
The particle size of the blowing agent made of silicon carbide used in the present invention makes it possible to uniformly disperse the blowing agent uniformly in the mixture of the materials when mixing and granulating the respective materials to obtain a good foaming state. From the viewpoint, it is preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less.
In addition, even if it is powdery, the foaming agent which consists of silicon carbide shall not be included in the "powdery material" used by this invention.

後述する造粒工程において上記組成物(上記粉状材料と上記発泡剤と水とを含む組成物)の造粒を容易にし、該組成物を造粒してなる造粒物の強度を向上させる観点から、該組成物は、粘結材を含んでいてもよい。粘結材の例としては、ベントナイト、水ガラス等の無機系粘結材や、デンプン、糖蜜、リグニン、ポリビニルアルコール、メチルセルロース、天然ゴム、パルプ廃液等の有機系粘結材が挙げられる。
なお、粘結材は、粉状であっても、本発明で用いられる「粉状材料」に包含されないものとする。
Granulation of the composition (composition containing the powdery material, the foaming agent and water) is facilitated in the granulation step to be described later, and the strength of the granulated product formed by granulating the composition is improved. From the point of view, the composition may contain a caking agent. Examples of the caking agent include inorganic caking agents such as bentonite and water glass, and organic caking agents such as starch, molasses, lignin, polyvinyl alcohol, methyl cellulose, natural rubber, and pulp waste liquor.
In addition, even if it is powdery, a caking additive shall not be included in the "powdery material" used by this invention.

本発明において、上記粉状材料と上記発泡剤の合計量中、石炭灰の割合は、好ましくは59〜97.99質量%、より好ましくは70〜97質量%、さらに好ましくは80〜96質量%、特に好ましくは90〜95質量%である。該割合が59質量%以上であれば、得られる細骨材の絶乾密度をより小さくすることができ、軽量性を向上させることができる。また、得られる細骨材の吸水率をより大きくすることができる。さらに、材料にかかるコストを低減することができる。該割合が97.99質量%を超える場合、石炭灰に対する発泡剤の量が相対的に少なくなるため、発泡が不十分となり、得られる細骨材の絶乾密度が大きくなり、軽量化が不十分となる。また、得られる細骨材の吸水率が小さくなる。   In the present invention, the ratio of coal ash is preferably 59 to 97.99% by mass, more preferably 70 to 97% by mass, still more preferably 80 to 96% by mass in the total amount of the powdery material and the foaming agent. And particularly preferably 90 to 95% by mass. When the proportion is 59% by mass or more, the bone dry density of the obtained fine aggregate can be further reduced, and the lightness can be improved. In addition, the water absorption of the fine aggregate obtained can be further increased. Furthermore, the cost of the material can be reduced. If the proportion exceeds 97.99% by mass, the amount of the foaming agent relative to the coal ash becomes relatively small, so that the foaming becomes insufficient, the bone dry density of the obtained fine aggregate becomes large, and the weight reduction is not possible. It will be enough. In addition, the water absorption of the fine aggregate to be obtained is reduced.

上記粉状材料と上記発泡剤の合計量中、セメントの割合は、好ましくは2〜20質量%、より好ましくは3〜10質量%、特に好ましくは4〜8質量%である。該割合が2質量%以上であれば、上記粉状材料と上記発泡剤と水とを含む組成物からなる粒体の強度(例えば、落下強度)が大きくなり、該粒体の保管、輸送および焼成の際に、該粒体が破壊されにくくなる。該割合が20質量%以下であれば、得られる細骨材の絶乾密度をより小さくすることができ、軽量性を向上させることができる。また、得られる細骨材の吸水率をより大きくすることができる。さらに、材料にかかるコストを低減することができる。
上記粉体材料がスラグ粉末を含む場合、上記粉状材料と上記発泡剤の合計量中、スラグ粉末の割合は、好ましくは20質量%以下、より好ましくは1〜10質量%である。該割合が20質量%以下であれば、得られる細骨材の絶乾密度をより小さくすることができ、軽量性を向上させることができる。また、吸水率をより大きくすることができる。該割合が1質量%以上であれば、廃棄物であるスラグの利用の促進の点で好ましい。
The proportion of cement in the total amount of the powdery material and the foaming agent is preferably 2 to 20% by mass, more preferably 3 to 10% by mass, and particularly preferably 4 to 8% by mass. If the proportion is 2% by mass or more, the strength (for example, the drop strength) of the granules comprising the composition comprising the powdery material, the foaming agent and water increases, and the granules are stored, transported and At the time of firing, the particles are less likely to be broken. When the ratio is 20% by mass or less, the bone dry density of the obtained fine aggregate can be further reduced, and the lightness can be improved. In addition, the water absorption of the fine aggregate obtained can be further increased. Furthermore, the cost of the material can be reduced.
When the powder material contains slag powder, the proportion of the slag powder is preferably 20% by mass or less, more preferably 1 to 10% by mass, in the total amount of the powdery material and the foaming agent. When the ratio is 20% by mass or less, the bone dry density of the obtained fine aggregate can be further reduced, and the lightness can be improved. In addition, the water absorption rate can be further increased. If this ratio is 1 mass% or more, it is preferable at the point of promotion of utilization of the slag which is a waste.

上記粉状材料と上記発泡剤の合計量中、発泡剤の割合は、好ましくは0.01〜1.00質量%、より好ましくは0.04〜0.90質量%、さらに好ましくは0.08〜0.80質量%、さらに好ましくは0.20〜0.70質量%、特に好ましくは0.30〜0.60質量%である。該割合が0.01質量%以上であれば、得られる細骨材の絶乾密度をより小さくすることができ、軽量性を向上させることができる。また、吸水率をより大きくすることができる。該割合が1.00質量%以下であれば、材料にかかるコストを低減することができる。
また、水の量は、後述する造粒工程における造粒手段等に応じて適宜定めればよいが、上記粉状材料100質量部に対して、好ましくは3〜50質量部、より好ましくは5〜40質量部、さらに好ましくは8〜35質量部、特に好ましくは9〜30質量部である。該量が3質量部以上であれば、造粒をより容易に行うことができる。該量が50質量部以下であれば、上記組成物からなる粒体の強度(例えば、落下強度)がより大きくなり、該粒体の保管、輸送および焼成の際に、該粒体が破壊されにくくなる。
The proportion of the foaming agent in the total amount of the powdery material and the foaming agent is preferably 0.01 to 1.00% by mass, more preferably 0.04 to 0.90% by mass, and still more preferably 0.08. It is -0.80 mass%, more preferably 0.20-0.70 mass%, particularly preferably 0.30-0.60 mass%. When the proportion is 0.01% by mass or more, the bone dry density of the obtained fine aggregate can be further reduced, and the lightness can be improved. In addition, the water absorption rate can be further increased. If the ratio is 1.00% by mass or less, the cost for the material can be reduced.
The amount of water may be appropriately determined according to the granulation means and the like in the granulation step to be described later, but preferably 3 to 50 parts by mass, more preferably 5 with respect to 100 parts by mass of the powdery material. The amount is 40 to 40 parts by mass, more preferably 8 to 35 parts by mass, and particularly preferably 9 to 30 parts by mass. If the amount is 3 parts by mass or more, granulation can be performed more easily. If the amount is 50 parts by mass or less, the strength (for example, the drop strength) of the particles made of the above composition becomes greater, and the particles are broken during storage, transportation and firing of the particles. It becomes difficult.

上述した組成物(粉状材料と発泡剤と水とを含む組成物)が、粘結材を含む場合、上記粉状材料と上記発泡剤と粘結材の合計量中、粘結材の割合は、好ましくは1〜10質量%、より好ましくは2〜9質量%、特に好ましくは3〜8質量%である。該割合が1質量%以上であれば、上記組成物からなる粒体の強度(例えば、落下強度)がより大きくなり、該粒体の保管、輸送および焼成の際に、該粒体が破壊されにくくなる。該割合が10質量%以下であれば、材料にかかるコストの過度の増大を防ぐことができる。   When the composition described above (composition containing a powdery material, a foaming agent and water) contains a caking agent, the proportion of the caking agent in the total amount of the powdery material, the foaming agent and the caking agent Is preferably 1 to 10% by mass, more preferably 2 to 9% by mass, and particularly preferably 3 to 8% by mass. If the proportion is 1% by mass or more, the strength (for example, the drop strength) of the particles made of the above composition becomes greater, and the particles are broken during storage, transportation and firing of the particles. It becomes difficult. If the proportion is 10% by mass or less, it is possible to prevent an excessive increase in cost for the material.

本工程において、上述した粉状材料、発泡剤および水を含む組成物からなる粒体の粒度は、5mm以下、好ましくは0.5〜4mm、より好ましくは1〜3.5mm、さらに好ましくは1.5〜3.5mm、特に好ましくは2〜3.5mmである。該粒度が5mmを超えると、粒体を十分に発泡させるために、(a)加熱温度をより高くする、(b)加熱時間をより長くする、(c)融点降下剤を添加する、のいずれか一つ以上を行う必要がある点で、焼成にかかるコストが高くなる。また、該粒度が5mm以下であれば、石炭灰に含まれている未燃カーボンが燃焼して除去されるため、得られる細骨材の品質の変動を少なくすることができる。該粒度が0.5mm以上であれば、適度な粒度を有する細骨材を得ることができる。
なお、「粒体の粒度」とは、粒体における最大寸法(例えば、断面がだ円である粒体においては、長軸の寸法をいう。)をいう。
In this step, the particle size of the particles comprising the above-mentioned powdery material, the foaming agent and the composition containing water is 5 mm or less, preferably 0.5 to 4 mm, more preferably 1 to 3.5 mm, still more preferably 1 0.5 to 3.5 mm, particularly preferably 2 to 3.5 mm. If the particle size exceeds 5 mm, either (a) the heating temperature is higher, (b) the heating time is longer, (c) a melting point depressant is added, in order to sufficiently foam the particles. The cost of firing is increased by the need to do one or more. In addition, if the particle size is 5 mm or less, unburned carbon contained in the coal ash is burned and removed, so that the fluctuation of the quality of the fine aggregate obtained can be reduced. If the particle size is 0.5 mm or more, a fine aggregate having an appropriate particle size can be obtained.
In addition, "the particle size of a granule" means the largest dimension (For example, in the granule whose cross section is an ellipse, the dimension of a major axis.) In a granule.

本工程における焼成(加熱)温度は、得られる細骨材について、絶乾密度をより小さくし、かつ、吸水率をより大きくする観点からは、好ましくは1,100℃以上、より好ましくは1,150℃以上、さらに好ましくは1,210℃以上、さらに好ましくは1,240℃以上、特に好ましくは1,260℃以上である。
該焼成(加熱)温度は、焼成に要するエネルギーのコストを低減する観点からは、好ましくは1,400℃以下、より好ましくは1,350℃以下、さらに好ましくは1,325℃以下、さらに好ましくは1,320℃以下、さらに好ましくは1,310℃以下、さらに好ましくは1,300℃以下、さらに好ましくは1,290℃以下、さらに好ましくは1,280℃以下、特に好ましくは1,270℃以下である。
なお、該焼成(加熱)温度が1,400℃を超える場合、得られる細骨材の絶乾密度が低下する効果、および、吸水率が大きくなる効果が頭打ちになると共に、焼成に要するエネルギーのコストが過度に増大する。
The firing (heating) temperature in this step is preferably 1,100 ° C. or more, more preferably 1, from the viewpoint of making the bone dry density smaller and the water absorption coefficient larger for the fine aggregate to be obtained. It is 150 ° C. or more, more preferably 1,210 ° C. or more, further preferably 1,240 ° C. or more, particularly preferably 1,260 ° C. or more.
The firing (heating) temperature is preferably 1,400 ° C. or less, more preferably 1,350 ° C. or less, further preferably 1,325 ° C. or less, more preferably from the viewpoint of reducing the cost of energy required for firing. 1,320 ° C. or less, more preferably 1,310 ° C. or less, further preferably 1,300 ° C. or less, more preferably 1,290 ° C. or less, further preferably 1,280 ° C. or less, particularly preferably 1,270 ° C. or less It is.
In addition, when the firing (heating) temperature exceeds 1,400 ° C., the effect of decreasing the dry density of the fine aggregate to be obtained and the effect of increasing the water absorption coefficient reach a ceiling, and the energy required for firing Costs increase excessively.

焼成(加熱)時間は、焼成装置によっても異なるが、好ましくは5分間以上、より好ましくは8分間以上、特に好ましくは10分間以上である。該時間が5分間以上であれば、得られる細骨材の絶乾密度をより小さくし、かつ、得られる細骨材の吸水率をより大きくすることができる。焼成時間の上限は、好ましくは30分間、より好ましくは20分間、特に好ましくは15分間である。該時間が30分間を超える場合、得られる細骨材の絶乾密度が低下する効果、および、吸水率が大きくなる効果が頭打ちになると共に、焼成に要するエネルギーのコストが過度に増大する。
また、上記焼成時間は、焼成を行う際に、焼成(加熱)における最高温度(例えば、1,250℃)から15℃を減算した温度以上の温度(例えば、1,235℃以上)を維持している時間を意味する。
焼成装置としては、特に限定されるものではないが、連続的に焼成を行うことができ、かつ、得られる細骨材の品質を安定させる観点から、内燃式または外燃式のロータリーキルンが好ましい。
The baking (heating) time varies depending on the baking apparatus, but is preferably 5 minutes or more, more preferably 8 minutes or more, particularly preferably 10 minutes or more. If the time is 5 minutes or more, the bone dry density of the obtained fine aggregate can be further reduced, and the water absorption of the obtained fine aggregate can be further increased. The upper limit of the baking time is preferably 30 minutes, more preferably 20 minutes, and particularly preferably 15 minutes. When the time exceeds 30 minutes, the effect of lowering the bone dry density of the fine aggregate to be obtained and the effect of increasing the water absorption rate reach a ceiling, and the cost of energy required for firing excessively increases.
In addition, when the baking is performed, the baking time is maintained at a temperature (eg, 1,235 ° C. or more) equal to or higher than a maximum temperature (eg, 1,250 ° C.) in baking (heating) minus 15 ° C. Mean time
The firing apparatus is not particularly limited, but is preferably an internal combustion type or an external combustion type rotary kiln from the viewpoint of being able to perform firing continuously and stabilizing the quality of the obtained fine aggregate.

[破砕工程]
本工程は、焼成工程で得られた焼成物を破砕して、細骨材を得る工程である。
本工程において、焼成物を破砕することによって、焼成物(破砕後に得られる細骨材)の吸水率をより大きくすることができる。また、融点降下材等を使用しなくても、所望の品質の細骨材を得ることができる。
焼成物の破砕方法の例としては、特に限定されるものではなく、例えば、ボールミル、ロッドミル、ディスクミル、またはジョークラッシャー等を用いた通常の方法が挙げられる。
上記破砕は、得られる細骨材の吸水率をより大きくする観点から、得られる細骨材中、粒度が0.15〜1.2mmの範囲内である粒体の割合が、20質量%以上(好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上、特に好ましくは60質量%以上)となるように行なうことが好ましい。
[Crushing process]
This step is a step of crushing the fired product obtained in the firing step to obtain a fine aggregate.
In the present step, by crushing the fired product, it is possible to further increase the water absorption of the fired product (fine aggregate obtained after crushing). Further, fine aggregate of desired quality can be obtained without using a melting point depressant or the like.
Examples of the method of crushing the fired product are not particularly limited, and examples thereof include a common method using a ball mill, a rod mill, a disc mill, a jaw crusher or the like.
From the viewpoint of increasing the water absorption rate of the fine aggregate to be obtained, the above-mentioned crushing has a ratio of 20% by mass or more of particles having a particle size in the range of 0.15 to 1.2 mm in the fine aggregate to be obtained It is preferable to carry out so as to be preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and particularly preferably 60% by mass or more.

[混合工程、造粒工程、および養生工程]
焼成工程の前に、上述した粉状材料と発泡剤と水を混合して、組成物を調製する混合工程と、該組成物を、粒度が5mm以下になるように造粒して、造粒物を得る造粒工程と、該造粒物を養生して、粒体を得る養生工程を設けてもよい。
混合工程において、上述した粉状材料と発泡剤と水を混合する方法の例としては、特に限定されるものではなく、例えば、公知のミキサーを用いた方法が挙げられる。また、各材料を混合する順序は、特に限定されるものではなく、各材料を同時に混合して組成物を調製してもよく、あるいは、各材料を別々に混合して組成物を調製してもよい。
[Mixing process, granulation process, and curing process]
Before the firing step, the above-mentioned powdery material, a foaming agent and water are mixed to prepare a composition, and the composition is granulated so as to have a particle size of 5 mm or less, and granulated. A granulating step of obtaining a substance and a curing step of curing the granulated product to obtain granules may be provided.
In the mixing step, examples of the method of mixing the powdery material, the foaming agent, and the water described above are not particularly limited, and examples thereof include methods using a known mixer. In addition, the order of mixing each material is not particularly limited, and each material may be mixed simultaneously to prepare a composition, or each material is separately mixed to prepare a composition. It is also good.

造粒工程において、前工程(混合工程)で調製された組成物を造粒する方法の例としては、特に限定されるものではなく、例えば、パンペレタイザー等の一般的な造粒機を用いて造粒する方法が挙げられる。
養生工程において、前工程(造粒工程)で得られた造粒物を養生する方法の例としては、特に限定されるものではなく、例えば、造粒物を養生して得られる粒体が、保管、輸送および焼成の際に破壊されない程度に十分な強度を有するような条件(例えば、5〜40℃で、12時間以上、好ましくは20時間以上の養生時間)で養生する方法が挙げられる。
In the granulation step, an example of a method for granulating the composition prepared in the previous step (mixing step) is not particularly limited, and for example, using a general granulator such as a pan pelletizer A method of granulation is mentioned.
In the curing step, examples of the method of curing the granulated product obtained in the previous step (granulation step) are not particularly limited, and, for example, granules obtained by curing the granulated product are A method of curing under conditions (for example, 5 to 40 ° C., a curing time of 12 hours or more, preferably 20 hours or more) having sufficient strength not to be destroyed during storage, transportation and baking can be mentioned.

なお、上述した混合工程の後、調製された組成物を造粒することなく養生し、次いで、固化した塊状の組成物について、粉砕と分級の両方またはいずれか一方を行うことで、所望の粒度を有する粒体を調製して、この粒体を焼成工程で用いてもよい。   After the mixing step described above, the prepared composition is cured without granulation, and then the solidified bulk composition is subjected to grinding and / or classification to obtain the desired particle size. The granules may be prepared and used in the firing step.

[粒度調整工程]
破砕工程の後に、焼成物を破砕してなる細骨材の粒度を調整して、粒度の調整された細骨材を得る粒度調整工程を設けてもよい。
細骨材の粒度を調整することによって、各種の用途に適した、所望の粒度分布を有する細骨材を得ることができる。
粒度の調整方法の例としては、篩い等を用いて分級を行う方法等が挙げられる。
Particle size adjustment process
After the crushing step, the particle size of the fine aggregate obtained by crushing the fired product may be adjusted to provide a particle size adjusting step for obtaining a fine aggregate having a controlled particle size.
By adjusting the particle size of the fine aggregate, it is possible to obtain a fine aggregate having a desired particle size distribution suitable for various applications.
As an example of the adjustment method of particle size, the method etc. which classify using a sieve etc. are mentioned.

本発明において得られる細骨材の絶乾密度は、好ましくは1.5g/cm以下、より好ましくは1.4g/cm以下、さらに好ましくは1.3g/cm以下、さらに好ましくは1.2g/cm以下、特に好ましくは1.0g/cm以下である。該密度が1.5g/cm以下であれば、得られた細骨材を、軽量細骨材として好適に使用することができる。該密度の下限値は、特に限定されないが、通常、0.3g/cmである。
また、本発明において得られる細骨材の吸水率は、好ましくは10.0%以上、より好ましくは15.0%以上、特に好ましくは18.0%以上である。該吸水率が10.0%以上であれば、特定の用途(例えば、猫のトイレ用(糞尿排泄用)の砂や、エサとなる藻等が生育し易い、エビ等の魚介類の養殖場における水底の砂など)を対象にした軽量細骨材として、好適に使用することができる。該吸水率の上限値は、特に限定されないが、通常、90%である。
細骨材の吸水率(単位:質量%)とは、吸水量×100/絶乾密度(=(表乾密度−絶乾密度)×100/絶乾密度)をいう。
The bone dry density of the fine aggregate obtained in the present invention is preferably 1.5 g / cm 3 or less, more preferably 1.4 g / cm 3 or less, still more preferably 1.3 g / cm 3 or less, still more preferably 1 .2g / cm 3 or less, particularly preferably 1.0 g / cm 3 or less. If the density is 1.5 g / cm 3 or less, the obtained fine aggregate can be suitably used as a lightweight fine aggregate. The lower limit value of the density is not particularly limited, but is usually 0.3 g / cm 3 .
Further, the water absorption rate of the fine aggregate obtained in the present invention is preferably 10.0% or more, more preferably 15.0% or more, and particularly preferably 18.0% or more. If the water absorption rate is 10.0% or more, a fish farm such as shrimp for which sand for specific use (for example, cat litter (for excrement excrement), algae which becomes food, etc. are easily grown) Can be suitably used as a lightweight fine aggregate intended for sand in the bottom of the water The upper limit value of the water absorption rate is not particularly limited, but is usually 90%.
The water absorption rate (unit: mass%) of the fine aggregate refers to the amount of water absorption × 100 / absolute density (= (table dry density−absolute density) × 100 / absolute density).

本発明の細骨材の製造方法によれば、融点降下剤等を使用しなくても、より低い加熱温度、および、より短い加熱時間で、十分に発泡させた細骨材を得ることができ、製造にかかるコストを低減することができる。
本発明で得られた細骨材は、絶乾密度が小さく、かつ、吸水率が大きいことから、例えば、特定の用途(例えば、猫のトイレ用(糞尿排泄用)の砂や、藻等が生育し易い、エビ等の魚介類の養殖場における水底の砂など)を対象にした軽量細骨材として、好適に使用することができる。
According to the method for producing a fine aggregate of the present invention, it is possible to obtain a sufficiently foamed fine aggregate at a lower heating temperature and a shorter heating time, without using a melting point depressant or the like. The cost of manufacturing can be reduced.
The fine aggregate obtained in the present invention has a low absolute density and a high water absorption rate, and therefore, it can be used, for example, in sand, algae, etc. It can be suitably used as a light-weight fine aggregate intended for easy-growing, sand on the bottom of a fish or other fish culture ground such as shrimp, etc.).

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)石炭灰:「JIS A 6201 (コンクリート用フライアッシュ)」に規定されるフライアッシュII種、ブレーン比表面積;3,000cm/g
(2)セメント:普通ポルトランドセメント、太平洋セメント社製、ブレーン比表面積;3,300cm/g
(3)炭化ケイ素:屋久島電工社製、商品名「GC−4000FC」、粒度;10μm以下
(4)水:上水道水
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[Material used]
(1) Coal ash: fly ash type II specified in “JIS A 6201 (fly ash for concrete)”, specific surface area of brane: 3,000 cm 2 / g
(2) Cement: Ordinary portland cement, manufactured by Pacific Cement Co., Ltd., Blaine specific surface area: 3,300 cm 2 / g
(3) Silicon carbide: manufactured by Yakushima Denko, trade name "GC-4000FC", particle size: 10 μm or less (4) Water: tap water

[実施例1]
上記材料を表1に示す配合割合で、ナウターミキサーを用いて混合した後、パンペレタイザーを用いて、粒度が3mmとなるように造粒して、造粒物を得た。得られた造粒物の集合体を、20℃の条件下で24時間養生して、粒度が3mmである粒体の集合体を得た。
得られた粒体の集合体を、電気炉を用いて、500℃から表1に示す焼成温度まで20℃/分で昇温し、該焼成温度に到達した後、該焼成温度で10分間焼成して、焼成物を得た。得られた焼成物は、粒度が10〜15mmの範囲内である粒体の割合が75質量%以上である粒状物であった。
得られた焼成物を破砕して、細骨材を得た。得られた細骨材の、粒度が0.15mm〜1.2mmの範囲内である粒体の割合は、60質量%以上であった。
得られた焼成物(破砕前のもの)の絶乾密度および吸水率、並びに、該焼成物を破砕してなる細骨材の絶乾密度および吸水率を、「JIS A 1109(細骨材の密度及び吸水率試験方法)」に準拠して測定した。
Example 1
The above materials were mixed using the Nauta mixer at the mixing ratio shown in Table 1, and then granulated using a pan pelletizer so that the particle size was 3 mm, to obtain a granulated product. The resulting aggregate of granules was aged at 20 ° C. for 24 hours to obtain aggregates of particles having a particle size of 3 mm.
The resulting aggregate of particles is heated at a rate of 20 ° C./minute from 500 ° C. to a firing temperature shown in Table 1 using an electric furnace, and after reaching the firing temperature, firing is carried out for 10 minutes at the firing temperature. The baked product was obtained. The obtained fired product was a granular material in which the ratio of particles having a particle size in the range of 10 to 15 mm was 75% by mass or more.
The obtained fired product was crushed to obtain a fine aggregate. In the obtained fine aggregate, the ratio of particles having a particle size in the range of 0.15 mm to 1.2 mm was 60% by mass or more.
The bone dry density and water absorption rate of the obtained fired product (prior to crushing), and the bone dry density and water absorbance of a fine aggregate obtained by crushing the fired product are described in “JIS A 1109 (fine aggregate It measured based on "density and a water absorption coefficient test method".

また、細骨材の絶乾密度と焼成物の絶乾密度の比(細骨材の絶乾密度/焼成物の絶乾密度:表1中、「細骨材/焼成物」の欄中の「絶乾密度」)、および、細骨材の吸水率と焼成物の吸水率の比(細骨材の吸水率/焼成物の吸水率:表1中、「細骨材/焼成物」の欄中の「吸水率」)を算出した。
さらに、1,250℃で焼成した場合において、得られた焼成物(表2中の「破砕前」)と、該焼成物を破砕した後、目開き寸法が1.2mmである篩を用いて分級を行い、粒度を1.2mm以下に調整してなる細骨材(表2中の「破砕後」)の各々について、表2に示す粒度における積算頻度を測定した。
結果を表1〜2に示す。
In addition, the ratio of the bone dry density of fine aggregate to the bone dry density of fired material (Bone dry density of fine aggregate / bone dry density of fired material: Table 1 in the column of "fine aggregate / baked material" “Extreme dry density”), and the ratio of the water absorption of fine aggregate to the water absorption of baked matter (water absorption of fine aggregate / water absorption of baked matter: in Table 1, “fine aggregate / baked” The "water absorption" in the column was calculated.
Furthermore, in the case of firing at 1,250 ° C., after using the obtained fired product (“before crushing” in Table 2) and the fired product, using a sieve having an opening size of 1.2 mm Classification was performed, and the integrated frequency in the particle size shown in Table 2 was measured for each of the fine aggregate ("after crushing" in Table 2) obtained by adjusting the particle size to 1.2 mm or less.
The results are shown in Tables 1-2.

[実施例2〜3]
石炭灰及び炭化ケイ素の各量を表1に示すものに定めた以外は実施例1と同様にして、細骨材を得た。
[比較例1]
炭化ケイ素を使用しない以外は実施例1と同様にして、細骨材を得た。
実施例2〜3及び比較例1について、得られた焼成物(破砕前のもの)の絶乾密度および吸水率、並びに、該焼成物を破砕してなる細骨材の絶乾密度および吸水率を、実施例1と同様にして測定した。
結果を表1に示す。
[Examples 2 to 3]
Fine aggregate was obtained in the same manner as in Example 1 except that the amounts of coal ash and silicon carbide were determined as shown in Table 1.
Comparative Example 1
Fine aggregate was obtained in the same manner as Example 1 except that silicon carbide was not used.
With respect to Examples 2 to 3 and Comparative Example 1, the bone dry density and the water absorption rate of the obtained fired product (prior to crushing), and the bone dry density and the water absorbance of a fine aggregate obtained by crushing the fired product Were measured in the same manner as in Example 1.
The results are shown in Table 1.

Figure 2019048735
Figure 2019048735

Figure 2019048735
Figure 2019048735

表1から、実施例1〜3において、各焼成温度(1,225〜1,300℃)で焼成した場合における、細骨材の絶乾密度(焼成温度1,225℃:0.90〜1.30g/cm、焼成温度1,250℃:0.70〜1.15g/cm、焼成温度1,275℃:0.55〜1.00g/cm、焼成温度1,300℃:0.50〜0.90g/cm)は、各々、比較例1において、1,225〜1,300℃で焼成した場合における細骨材の絶乾密度(焼成温度1,225℃:1.65g/cm、焼成温度1,250℃:1.50g/cm、焼成温度1,275℃:1.40g/cm、焼成温度1,300℃:1.30g/cm)よりも小さいことがわかる。
また、実施例1〜3において、各焼成温度(1,225〜1,300℃)で焼成した場合における、細骨材の吸水率(焼成温度1,225℃:18.2〜44.0%、焼成温度1,250℃:22.7〜58.0%、焼成温度1,275℃:24.2〜71.0%、焼成温度1,300℃:29.8〜87.4%)は、各々、比較例1の細骨材の吸水率(焼成温度1,225℃:9.1%、焼成温度1,250℃:12.1%、焼成温度1,275℃:14.6%、焼成温度1,300℃:17.7%)よりも極めて大きいことがわかる。
From Table 1, in Examples 1 to 3, the bone dry density (baking temperature 1, 225 ° C .: 0.90 to 1) in the case of firing at each firing temperature (1, 225 to 1, 300 ° C.) .30 g / cm 3 , firing temperature 1,250 ° C .: 0.70 to 1.15 g / cm 3 , firing temperature 1,275 ° C .: 0.55 to 1.00 g / cm 3 , firing temperature 1,300 ° C .: 0 .50~0.90g / cm 3), respectively, in Comparative example 1, fine aggregate of absolute dry density (sintering temperature 1,225 ° C. in the case where baking at 1,225~1,300 ℃: 1.65g / Cm 3 , firing temperature 1,250 ° C .: 1.50 g / cm 3 , firing temperature 1,275 ° C .: 1.40 g / cm 3 , firing temperature 1,300 ° C .: 1.30 g / cm 3 ) I understand.
In Examples 1 to 3, the water absorption rate of the fine aggregate (baking temperature 1,225 ° C .: 18.2 to 44.0%) when fired at each firing temperature (1,225 to 1,300 ° C.) Baking temperature 1,250 ° C .: 22.7 to 58.0%, Baking temperature 1,275 ° C .: 24.2 to 71.0%, Baking temperature 1,300 ° C .: 29.8 to 87.4%) Water absorption of the fine aggregate of Comparative Example 1 (Firing temperature 1,225 ° C .: 9.1%, Firing temperature 1,250 ° C .: 12.1%, Firing temperature 1,275 ° C .: 14.6%, respectively) It can be seen that the firing temperature is extremely larger than 1,300 ° C. (17.7%).

また、実施例1〜3において、焼成物の吸水率と、細骨材(焼成物を粉砕してなるもの)の吸水率を比較すると、細骨材の吸水率は、焼成物の吸水率よりも大きくなることがわかる。すなわち、焼成物を粉砕することで、細骨材の吸水率をより大きくすることができることがわかる。
特に、1,250℃以上の焼成温度で焼成した場合の実施例1〜3の、焼成物の吸水率と該焼成物を粉砕してなる細骨材の吸水率の上昇の程度(細骨材の吸水率から焼成物の吸水率を減算したもの;焼成温度1,250℃:17.1〜43.0%、焼成温度1,275℃:19.3〜45.6%、焼成温度1,300℃:24.8〜76.1%)は、比較例1の、焼成物の吸水率と該焼成物を粉砕してなる細骨材の吸水率の上昇の程度(焼成温度1,250℃:9.8%、焼成温度1,275℃:9.2%、焼成温度1,300℃:7.4%)よりも、極めて大きいことがわかる。
なお、比較例1の細骨材の吸水率と焼成物の吸水率の比は、焼成温度が1,225℃から1,300℃へと上昇するに従って、小さくなることがわかる。
これに対して、実施例1〜3の細骨材の吸水率と焼成物の吸水率の比は、焼成温度が1,225℃から1,300℃へと上昇するに従って、大きくなることがわかる。
このことから、実施例1〜3では、焼成物を粉砕することにより吸水率がより大きくなるが、その効果は、焼成温度が大きくなる程、より大きくなることがわかる。
Further, in Examples 1 to 3, when the water absorption rate of the fired product and the water absorption rate of the fine aggregate (formed by crushing the fired product) are compared, the water absorption rate of the fine aggregate is more than that of the fired product. Can also be seen. That is, it is understood that the water absorption of the fine aggregate can be further increased by crushing the fired product.
In particular, the degree of increase in the water absorption of the fired product and the water absorption of the fine aggregate obtained by pulverizing the fired product of Examples 1 to 3 when fired at a firing temperature of 1,250 ° C. or higher (fine aggregate Of the water absorption rate of the sintered product minus the water absorption rate of the baked product; baking temperature 1,250 ° C .: 17.1 to 43.0%, baking temperature 1,275 ° C .: 19.3 to 45.6%, baking temperature 1, 300 ° C .: 24.8 to 76.1%) is the degree of increase in the water absorption of the fired product of Comparative Example 1 and the water absorption of the fine aggregate obtained by grinding the fired product (baking temperature: 1,250 ° C.) It can be seen that it is extremely larger than 9.8%, firing temperature 1,275 ° C .: 9.2%, and firing temperature 1,300 ° C .: 7.4%).
In addition, it turns out that the ratio of the water absorption rate of the fine aggregate of the comparative example 1 and the water absorption rate of a baked product becomes small as a calcination temperature rises from 1,225 degreeC to 1,300 degreeC.
On the other hand, it turns out that the ratio of the water absorption of the fine aggregate of Examples 1-3 and the water absorption of a baked product becomes large as a calcination temperature rises from 1,225 ° C to 1,300 ° C. .
From this, in Examples 1-3, although a water absorption rate becomes larger by grind | pulverizing baked products, it turns out that the effect becomes so large that baking temperature becomes large.

Claims (3)

石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程と、
上記焼成物を破砕して、細骨材を得る破砕工程、
を含む細骨材の製造方法。
A firing step comprising firing a powder having a particle size of 5 mm or less, comprising a composition comprising a powdery material comprising coal ash and cement, a foaming agent comprising silicon carbide, and water, and obtaining a fired product,
A crushing step of crushing the fired product to obtain a fine aggregate;
A method of producing a fine aggregate comprising:
上記破砕工程において、上記細骨材として、粒度が0.15〜1.2mmの範囲内である粒体の割合が、20質量%以上であるものが得られるように、破砕を行う請求項1に記載の細骨材の製造方法。   In the crushing step, crushing is performed so that a ratio of particles having a particle size in the range of 0.15 to 1.2 mm is 20% by mass or more as the fine aggregate. The manufacturing method of the fine aggregate as described in-. 上記組成物が、融点降下剤を含まず、かつ、上記細骨材の絶乾密度が、1.5g/cm以下である請求項1又は2に記載の細骨材の製造方法。 It said composition contains no melting point lowering agent, and oven dry density of the fine aggregate method of producing a fine aggregate according to claim 1 or 2 is 1.5 g / cm 3 or less.
JP2017172945A 2017-09-08 2017-09-08 Production method of fine aggregate Pending JP2019048735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017172945A JP2019048735A (en) 2017-09-08 2017-09-08 Production method of fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172945A JP2019048735A (en) 2017-09-08 2017-09-08 Production method of fine aggregate

Publications (1)

Publication Number Publication Date
JP2019048735A true JP2019048735A (en) 2019-03-28

Family

ID=65905406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172945A Pending JP2019048735A (en) 2017-09-08 2017-09-08 Production method of fine aggregate

Country Status (1)

Country Link
JP (1) JP2019048735A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826070A (en) * 1981-08-11 1983-02-16 株式会社神戸製鋼所 Manufacture of artificial sand
JPS5826069A (en) * 1981-08-11 1983-02-16 株式会社神戸製鋼所 Artificial sand
JPH11180752A (en) * 1997-12-24 1999-07-06 Ube Ind Ltd Mortar composition
JP2000290050A (en) * 1999-04-01 2000-10-17 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2005225717A (en) * 2004-02-13 2005-08-25 Taiheiyo Cement Corp Method for producing artificial lightweight aggregate and artificial lightweight aggregate
JP2007153633A (en) * 2005-11-30 2007-06-21 Taiheiyo Material Kk Granulated material for artificial aggregate, artificial aggregate and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826070A (en) * 1981-08-11 1983-02-16 株式会社神戸製鋼所 Manufacture of artificial sand
JPS5826069A (en) * 1981-08-11 1983-02-16 株式会社神戸製鋼所 Artificial sand
JPH11180752A (en) * 1997-12-24 1999-07-06 Ube Ind Ltd Mortar composition
JP2000290050A (en) * 1999-04-01 2000-10-17 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2005225717A (en) * 2004-02-13 2005-08-25 Taiheiyo Cement Corp Method for producing artificial lightweight aggregate and artificial lightweight aggregate
JP2007153633A (en) * 2005-11-30 2007-06-21 Taiheiyo Material Kk Granulated material for artificial aggregate, artificial aggregate and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"構造用軽量コンクリート骨材", JIS A 5002:1999, JPN6021017879, 1999, ISSN: 0004639197 *

Similar Documents

Publication Publication Date Title
CN107021775A (en) A kind of method that utilization dregs prepares light ceramic
KR101794362B1 (en) Ore fine agglomerate to be used in sintering process and production process of ore fines agglomerate
JPH0611659B2 (en) Manufacturing method of low water absorption artificial lightweight aggregate
TWI542284B (en) Granule containing livestock's blood and sheel as additives for fish feed or formula feed and manufacturing method of it
CN107324745A (en) A kind of light wall material and preparation method thereof
RU2005110360A (en) METHOD FOR PRODUCING GRANULATED PENOSILICATE-PENOSILICATE GRAVEL
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP2019095401A (en) Method for predicting strength of artificial lightweight aggregate
JP2019048735A (en) Production method of fine aggregate
KR20170083773A (en) Activation method for powder from wasted oyster shell
JPS5830380A (en) Treatment for incineration ash of sewage sludge
TWM580581U (en) High-performance sludge recycling treatment system
JP6710466B2 (en) Method of manufacturing baked products
TWI686363B (en) Textile sludge reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
JP3892545B2 (en) Lightweight aggregate manufacturing method
JP4509269B2 (en) Artificial aggregate and method for producing the same
TW202037575A (en) Waste incineration fly ash resources reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
JP2019151527A (en) Method of manufacturing lightweight aggregate
TWI687388B (en) Clean water sludge reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
TWI685476B (en) Pulp sludge reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
JP7403252B2 (en) Cement products and methods of manufacturing cement products
JP3746802B2 (en) Method for producing hollow fired body
CN115849935A (en) Preparation method of coal gangue based high-strength ceramsite
JP2003026468A (en) Method of manufacturing ceramic product using sewer sludge incineration ash as raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116