JP6710466B2 - Method of manufacturing baked products - Google Patents
Method of manufacturing baked products Download PDFInfo
- Publication number
- JP6710466B2 JP6710466B2 JP2016208630A JP2016208630A JP6710466B2 JP 6710466 B2 JP6710466 B2 JP 6710466B2 JP 2016208630 A JP2016208630 A JP 2016208630A JP 2016208630 A JP2016208630 A JP 2016208630A JP 6710466 B2 JP6710466 B2 JP 6710466B2
- Authority
- JP
- Japan
- Prior art keywords
- fired product
- mass
- foaming agent
- less
- fired
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims description 49
- 239000004088 foaming agent Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 26
- 238000010304 firing Methods 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 22
- 239000008187 granular material Substances 0.000 claims description 21
- 239000010883 coal ash Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000004568 cement Substances 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 14
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 13
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 13
- 238000005469 granulation Methods 0.000 claims description 11
- 230000003179 granulation Effects 0.000 claims description 11
- XJKVPKYVPCWHFO-UHFFFAOYSA-N silicon;hydrate Chemical compound O.[Si] XJKVPKYVPCWHFO-UHFFFAOYSA-N 0.000 claims description 4
- 239000012254 powdered material Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 description 11
- 239000002893 slag Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- 239000011398 Portland cement Substances 0.000 description 6
- 239000010881 fly ash Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004482 other powder Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
本発明は、焼成物の製造方法に関する。 The present invention relates to a method for manufacturing a fired product.
従来、石炭灰を含む原料を造粒した後、高温で加熱することで発泡させた焼成物を、人工軽量骨材等として使用することが知られている。
例えば、特許文献1には、主原料の石炭灰に、発泡剤を混合して粉砕し、該粉砕物をアルカリ金属珪酸塩からなる融点降下剤と湿式混練した後、成型し、ついで乾燥・焼成することを特微とする人工軽量骨材の製造方法が記載されている。
BACKGROUND ART It has been conventionally known to use a fired product obtained by granulating a raw material containing coal ash and then heating it at a high temperature as an artificial lightweight aggregate or the like.
For example, in Patent Document 1, coal ash as a main raw material is mixed with a foaming agent and pulverized, the pulverized product is wet-kneaded with a melting point depressant composed of an alkali metal silicate, then molded, and then dried and fired. A method of manufacturing an artificial lightweight aggregate characterized by the above is described.
本発明の目的は、簡易かつ低コストな方法で、絶乾密度の小さい(例えば、1.3g/cm3以下)、軽量性に優れた焼成物(例えば、土工資材、骨材等)を得ることができる方法を提供することである。 An object of the present invention is to obtain a fired product (for example, earthwork material, aggregate, etc.) having a small absolute dry density (for example, 1.3 g/cm 3 or less) and excellent lightweight by a simple and low-cost method. Is to provide a method that can.
本発明者は、上記課題を解決するために鋭意検討した結果、石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程を含む焼成物の製造方法によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[6]を提供するものである。
[1] 石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程を含むことを特徴とする焼成物の製造方法。
[2] 上記粉状材料と上記発泡剤の合計量中、上記石炭灰の割合が50〜97.99質量%、上記セメントの割合が2〜20質量%、上記発泡剤の割合が0.01〜1質量%であり、かつ、上記水の量が、上記粉状材料100質量部に対して3〜50質量部である前記[1]に記載の焼成物の製造方法。
[3] 上記焼成工程における加熱温度が、1,200〜1,400℃である前記[1]又は[2]に記載の焼成物の製造方法。
[4] 上記焼成物の絶乾密度が、1.3g/cm3以下である前記[1]〜[3]のいずれかに記載の焼成物の製造方法。
MEANS TO SOLVE THE PROBLEM As a result of earnestly studying in order to solve the said subject, this inventor consists of a powdery material containing coal ash and cement, a foaming agent consisting of silicon carbide, and a composition containing water, and has a particle size of 5 mm. The present invention has been completed based on the finding that the above object can be achieved by a method for producing a fired product including a firing step of firing the following granules to obtain a fired product.
That is, the present invention provides the following [1] to [6].
[1] Firing to obtain a fired product, which is made of a composition containing a powdery material containing coal ash and cement, a foaming agent made of silicon carbide, and water, and having a particle size of 5 mm or less A method for producing a fired product, which comprises the steps of:
[2] In the total amount of the powdery material and the foaming agent, the proportion of the coal ash is 50 to 99.99 mass%, the proportion of the cement is 2 to 20 mass%, and the proportion of the foaming agent is 0.01. To 1 mass %, and the amount of water is 3 to 50 parts by mass with respect to 100 parts by mass of the powdery material.
[3] The method for producing a fired product according to the above [1] or [2], wherein the heating temperature in the firing step is 1,200 to 1,400°C.
[4] The method for producing a fired product according to any one of the above [1] to [3], wherein the fired product has an absolutely dry density of 1.3 g/cm 3 or less.
[5] 上記焼成工程の前に、上記粉状材料と上記発泡剤と上記水を混合して、上記組成物を調製する混合工程と、上記組成物を、粒度が5mm以下になるように造粒して、造粒物を得る造粒工程と、上記造粒物を養生して、上記粒体を得る養生工程、を含む前記[1]〜[4]のいずれかに記載の焼成物の製造方法。
[6] 前記[1]〜[5]のいずれかに記載の焼成物の製造方法によって、上記焼成物を得た後、上記焼成物を土工資材または骨材として用いて、造成構造物を構築することを特徴とする造成構造物の構築方法。
[5] A mixing step of preparing the composition by mixing the powdery material, the foaming agent, and water before the firing step, and preparing the composition so that the particle size is 5 mm or less. The fired product according to any one of the above [1] to [4], including a granulation step of granulating to obtain a granulated material, and a curing step of curing the granulated material to obtain the granules. Production method.
[6] After obtaining the fired product by the method for producing a fired product according to any one of [1] to [5], the fired product is used as an earthwork material or an aggregate to construct a structural structure. A method for constructing a building structure, comprising:
本発明の焼成物の製造方法によれば、簡易かつ低コストな方法で、絶乾密度の小さい軽量性に優れた焼成物(例えば、土工資材、骨材等)を得ることができる。 According to the method for producing a fired product of the present invention, it is possible to obtain a fired product (for example, earthwork material, aggregate, etc.) having a small absolute dry density and excellent in lightness by a simple and low-cost method.
本発明の焼成物の製造方法は、石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程を含むものである。以下、工程ごとに詳しく説明する。 The method for producing a fired product of the present invention comprises a composition containing a powdery material containing coal ash and cement, a foaming agent made of silicon carbide, and water, and has a particle size of 5 mm or less. And a firing step of obtaining a fired product. Hereinafter, each step will be described in detail.
[焼成工程]
本工程は、石炭灰およびセメントを含む粉状材料と、炭化ケイ素からなる発泡剤と、水とを含む組成物からなり、かつ、粒度が5mm以下の粒体を焼成して、焼成物を得る焼成工程である。
本発明で用いられる石炭灰としては、フライアッシュ、クリンカアッシュ等が挙げられる。中でも、入手の容易性の観点からフライアッシュが好ましい。
本発明で用いられるセメントは、特に限定されるものではなく、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉セメント、フライアッシュセメント等の混合セメントや、エコセメント等を使用することができる。
また、本発明の粉状材料は、廃棄物利用の促進の観点から、高炉スラグ、製鋼スラグ、溶融スラグ等からなるスラグ粉末を含んでいてもよい。
[Firing process]
This step comprises a composition containing a powdery material containing coal ash and cement, a foaming agent composed of silicon carbide, and water, and the particles having a particle size of 5 mm or less are fired to obtain a fired product. It is a firing process.
Examples of the coal ash used in the present invention include fly ash and clinker ash. Among them, fly ash is preferable from the viewpoint of easy availability.
Cement used in the present invention is not particularly limited, for example, ordinary Portland cement, early strength Portland cement, moderate heat Portland cement, various heat Portland cement and other portland cement, blast furnace cement, fly ash cement and the like. Mixed cement, ecocement, etc. can be used.
Further, the powdery material of the present invention may contain slag powder made of blast furnace slag, steelmaking slag, molten slag, or the like, from the viewpoint of promotion of waste utilization.
なお、本発明において、粉状材料とは、粉状の材料(0.1mm未満の粒度を有するもの;粉体)の集合体であって、石炭灰、セメント、および、必要に応じて配合されるスラグ粉末を意味する。
石炭灰のブレーン比表面積は、好ましくは1,000cm2/g以上、より好ましくは2,000〜6,000cm2/gである。
セメントのブレーン比表面積は、好ましくは1,500cm2/g以上、より好ましくは2,500〜6,000cm2/gである。
スラグ粉末のブレーン比表面積は、好ましくは3,000cm2/g以上、より好ましくは4,000〜8,000cm2/gである。
In addition, in the present invention, the powdery material is an aggregate of powdery materials (those having a particle size of less than 0.1 mm; powder), and is mixed with coal ash, cement, and if necessary. Means slag powder.
The Blaine specific surface area of the coal ash is preferably 1,000 cm 2 /g or more, more preferably 2,000 to 6,000 cm 2 /g.
The Blaine specific surface area of the cement is preferably 1,500 cm 2 /g or more, more preferably 2,500 to 6,000 cm 2 /g.
The Blaine specific surface area of the slag powder is preferably 3,000 cm 2 /g or more, more preferably 4,000 to 8,000 cm 2 /g.
本発明で用いる粉状材料(3種類)以外の粉状の材料(以下、「他の粉末」ともいう。)として、炭酸カルシウム微粉末(工業製品、貝殻粉砕物等)、シリカフューム等を用いることができる。
他の粉末の配合量は、上記粉状材料(石炭灰およびセメントを含むもの)と、上記発泡剤(炭化ケイ素からなるもの)の合計量100質量部に対して、好ましくは20質量部以下、より好ましくは10質量部以下である。
なお、炭化ケイ素からなる発泡剤は、粉状であっても、本発明で用いる「粉状材料」には含めないものとする。
炭化ケイ素からなる発泡剤の粒度は、好ましくは30μm以下、より好ましくは20μm以下、特に好ましくは10μm以下である。
As a powdery material (hereinafter also referred to as "other powder") other than the powdery materials (three kinds) used in the present invention, calcium carbonate fine powder (industrial products, crushed shells, etc.), silica fume, etc. are used. You can
The amount of the other powder blended is preferably 20 parts by mass or less with respect to 100 parts by mass of the total amount of the powdery material (containing coal ash and cement) and the foaming agent (made of silicon carbide), It is more preferably 10 parts by mass or less.
The foaming agent made of silicon carbide is not included in the "powder material" used in the present invention even if it is in powder form.
The particle size of the foaming agent made of silicon carbide is preferably 30 μm or less, more preferably 20 μm or less, and particularly preferably 10 μm or less.
後述する造粒工程において上記組成物(粉状材料と発泡剤と水とを含む組成物)の造粒を容易にし、該組成物を造粒してなる造粒物の強度を向上する観点から、該組成物は、粘結材を含んでいてもよい。粘結材としては、ベントナイト、水ガラス等の無機系粘結材や、デンプン、糖蜜、リグニン、ポリビニルアルコール、メチルセルロース、天然ゴム、パルプ廃液等の有機系粘結材が挙げられる。
なお、粘結材は、粉状であっても、本発明で用いる「粉状材料」には含めないものとする。
From the viewpoint of facilitating the granulation of the above composition (a composition containing a powdery material, a foaming agent and water) in the granulation step to be described later, and improving the strength of the granulated product obtained by granulating the composition. The composition may include a binder. Examples of the binder include inorganic binders such as bentonite and water glass, and organic binders such as starch, molasses, lignin, polyvinyl alcohol, methyl cellulose, natural rubber and pulp waste liquid.
Even if the binder is in powder form, it is not included in the "powdered material" used in the present invention.
本発明において、上記粉状材料(必須材料として石炭灰およびセメントを含み、かつ、任意に配合可能な材料としてスラグ粉末を含むもの)と上記発泡剤(炭化ケイ素からなるもの)の合計量中、石炭灰の割合は、好ましくは50〜97.99質量%、より好ましくは70〜97質量%、さらに好ましくは80〜96質量%、特に好ましくは90〜95質量%である。該割合が50質量%以上であれば、得られる焼成物の絶乾密度をより小さくすることができ、軽量性を向上させることができる。また、材料にかかるコストを低減することができる。該割合が97.99質量%を超える場合、石炭灰に対する発泡剤の量が相対的に少なくなるため、発泡が不十分となり、得られる焼成物の絶乾密度が大きくなり、軽量化が不十分となる。
上記粉状材料と上記発泡剤の合計量中、セメントの割合は、好ましくは2〜20質量%、より好ましくは3〜10質量%、特に好ましくは4〜8質量%である。該割合が2質量%以上であれば、上記粉状材料と上記発泡剤と水とを含む組成物からなる粒体の強度(例えば、落下強度)が大きくなり、該粒体の保管、輸送および焼成の際に、該粒体が破壊されにくくなる。該割合が20質量%以下であれば、得られる焼成物の絶乾密度をより小さくすることができる。また、材料にかかるコストを低減することができる。
上記粉体材料がスラグ粉末を含む場合、上記粉状材料と上記発泡剤の合計量中、スラグ粉末の割合は、好ましくは20質量%以下、より好ましくは1〜10質量%である。該割合が20質量%以下であれば、得られる焼成物の絶乾密度をより小さくすることができ、軽量性を向上させることができる。該割合が1質量%以上であれば、廃棄物であるスラグの利用の促進の点で好ましい。
In the present invention, in the total amount of the powdery material (containing coal ash and cement as essential materials, and containing slag powder as a material that can be optionally mixed) and the foaming agent (made of silicon carbide), The proportion of coal ash is preferably 50 to 99.99 mass%, more preferably 70 to 97 mass%, further preferably 80 to 96 mass%, and particularly preferably 90 to 95 mass%. When the ratio is 50% by mass or more, the absolute dry density of the obtained fired product can be further reduced and the lightness can be improved. In addition, the cost of materials can be reduced. When the ratio exceeds 99.99% by mass, the amount of the foaming agent relative to the coal ash becomes relatively small, so that the foaming becomes insufficient, the obtained dried product has a high absolute dry density, and the weight saving is insufficient. Becomes
In the total amount of the powdery material and the foaming agent, the proportion of cement is preferably 2 to 20% by mass, more preferably 3 to 10% by mass, and particularly preferably 4 to 8% by mass. When the proportion is 2% by mass or more, the strength (eg, drop strength) of the granules made of the composition containing the powdery material, the foaming agent, and water is increased, and the storage, transportation, and During firing, the granules are less likely to be destroyed. When the proportion is 20% by mass or less, the absolute dry density of the obtained fired product can be further reduced. In addition, the cost of materials can be reduced.
When the powder material contains slag powder, the proportion of the slag powder in the total amount of the powder material and the foaming agent is preferably 20% by mass or less, more preferably 1 to 10% by mass. When the proportion is 20% by mass or less, the absolute dry density of the obtained fired product can be further reduced, and the lightness can be improved. When the ratio is 1% by mass or more, it is preferable from the viewpoint of promoting the use of waste slag.
上記粉状材料と上記発泡剤(炭化ケイ素)の合計量中、発泡剤の割合は、好ましくは0.01〜1質量%、より好ましくは0.04〜0.8質量%、特に好ましくは0.08〜0.6質量%である。該割合が0.01質量%以上であれば、得られる焼成物の絶乾密度をより小さくすることができる。該割合が1質量%以下であれば、材料にかかるコストを低減することができる。
また、水の量は、後述する造粒工程における造粒手段等に応じて適宜定めればよいが、上記粉状材料100質量部に対して、好ましくは3〜50質量部、より好ましくは5〜40質量部、さらに好ましくは8〜35質量部、特に好ましくは10〜30質量部である。該量が3質量部以上であれば、造粒をより容易に行うことができる。該量が50質量部以下であれば、上記組成物からなる粒体の強度(例えば、落下強度)がより大きくなり、該粒体の保管、輸送および焼成の際に、該粒体が破壊されにくくなる。
The proportion of the foaming agent in the total amount of the powdery material and the foaming agent (silicon carbide) is preferably 0.01 to 1% by mass, more preferably 0.04 to 0.8% by mass, and particularly preferably 0. 0.08 to 0.6% by mass. When the proportion is 0.01% by mass or more, the absolute dry density of the obtained fired product can be further reduced. When the ratio is 1% by mass or less, the cost of materials can be reduced.
The amount of water may be appropriately determined depending on the granulating means in the granulating step described below, etc., but is preferably 3 to 50 parts by mass, more preferably 5 parts by mass with respect to 100 parts by mass of the powdery material. To 40 parts by mass, more preferably 8 to 35 parts by mass, and particularly preferably 10 to 30 parts by mass. When the amount is 3 parts by mass or more, granulation can be performed more easily. When the amount is 50 parts by mass or less, the strength (for example, drop strength) of the granules made of the composition is increased, and the granules are destroyed during storage, transportation and firing of the granules. It gets harder.
上述した組成物(粉状材料と発泡剤と水とを含む組成物)が、粘結材を含む場合、上記粉状材料と上記発泡剤と粘結材の合計量中、粘結材の割合は、好ましくは1〜10質量%、より好ましくは2〜9質量%、特に好ましくは3〜8質量%である。該割合が1質量%以上であれば、上記組成物からなる粒体の強度(例えば、落下強度)がより大きくなり、該粒体の保管、輸送および焼成の際に、該粒体が破壊されにくくなる。該割合が10質量%以下であれば、材料にかかるコストの過度の増大を防ぐことができる。 When the above-mentioned composition (composition containing a powdery material, a foaming agent and water) contains a binder, the ratio of the binder in the total amount of the powdery material, the foaming agent and the binder. Is preferably 1 to 10% by mass, more preferably 2 to 9% by mass, and particularly preferably 3 to 8% by mass. When the ratio is 1% by mass or more, the strength (eg, drop strength) of the granules made of the composition increases, and the granules are destroyed during storage, transportation and firing of the granules. It gets harder. When the ratio is 10% by mass or less, it is possible to prevent an excessive increase in the cost of the material.
本工程において、上述した粉状材料、発泡剤および水を含む組成物からなる粒体の粒度は、5mm以下、好ましくは0.5〜4mm、より好ましくは1〜3.5mmである。該粒度が5mmを超えると、粒体を十分に発泡させるために、(a)加熱温度をより高くする、(b)加熱時間をより長くする、(c)融点降下剤を添加する必要がある、等の点で、焼成にかかるコストが高くなる。また、該粒度が5mm以下であれば、石炭灰に含まれている未燃炭素が燃焼して除去されるため、得られる焼成物の品質を一定にすることができる。該粒度が0.5mm以上であれば、焼成物の取扱いがより容易となる。
なお、「粒体の粒度」とは、粒体における最大寸法(例えば、断面がだ円である粒体においては、長軸の寸法をいう。)をいう。
In this step, the particle size of the granules made of the composition containing the above powdery material, the foaming agent and water is 5 mm or less, preferably 0.5 to 4 mm, more preferably 1 to 3.5 mm. If the particle size exceeds 5 mm, it is necessary to add (a) a higher heating temperature, (b) a longer heating time, and (c) a melting point depressant in order to sufficiently foam the granules. , Etc., the cost for firing becomes high. If the particle size is 5 mm or less, unburned carbon contained in the coal ash is burned and removed, so that the quality of the obtained burned material can be made constant. When the particle size is 0.5 mm or more, handling of the fired product becomes easier.
The "grain size" means the maximum dimension of the grain (for example, in the grain having an elliptical cross section, the major axis dimension).
本工程における加熱温度は、好ましくは1,200〜1,400℃、より好ましくは1,210〜1,350℃、特に好ましくは1,220〜1,300℃である。該温度が1,200℃以上であれば、得られる焼成物の絶乾密度をより小さくすることができる。該温度が1,400℃を超える場合、得られる焼成物の絶乾密度が低下する効果が頭打ちになると共に、焼成に要するコストが過度に増大する。
加熱時間は、焼成装置によっても異なるが、好ましくは5分間以上、より好ましくは8分間以上、特に好ましくは10分間以上である。該時間が5分間以上であれば、得られる焼成物の絶乾密度をより小さくすることができる。加熱時間の上限は、好ましくは30分間以下、より好ましくは20分間以下、特に好ましくは15分間以下である。該時間が30分間を超える場合、得られる焼成物の絶乾密度が低下する効果が頭打ちになると共に、焼成に要するコストが過度に増大する。
また、上記加熱時間は、焼成を行う際に、焼成(加熱)における最高温度(例えば、1,250℃)から15℃を減算した温度以上の温度(例えば、1,235℃以上)を維持している時間を意味する。
焼成装置としては、特に限定されるものではないが、連続的に焼成を行うことができ、得られる焼成物の品質を安定させる観点から、内燃式または外燃式のロータリーキルンが好ましい。
The heating temperature in this step is preferably 1,200 to 1,400°C, more preferably 1,210 to 1,350°C, and particularly preferably 1,220 to 1,300°C. When the temperature is 1,200°C or higher, the absolute dry density of the obtained fired product can be further reduced. If the temperature exceeds 1,400° C., the effect of lowering the absolute dry density of the obtained fired product reaches a ceiling, and the cost required for firing excessively increases.
The heating time varies depending on the firing apparatus, but is preferably 5 minutes or longer, more preferably 8 minutes or longer, and particularly preferably 10 minutes or longer. If the time is 5 minutes or more, the absolute dry density of the obtained baked product can be further reduced. The upper limit of the heating time is preferably 30 minutes or less, more preferably 20 minutes or less, and particularly preferably 15 minutes or less. When the time exceeds 30 minutes, the effect of decreasing the absolute dry density of the obtained fired product reaches a ceiling, and the cost required for firing excessively increases.
Further, the above heating time is maintained at a temperature (for example, 1,235° C. or higher) equal to or higher than a temperature obtained by subtracting 15° C. from the maximum temperature (for example, 1,250° C.) during firing (heating) when performing firing. Means time spent.
The calcining device is not particularly limited, but an internal combustion type or external combustion type rotary kiln is preferable from the viewpoint of being capable of continuously calcining and stabilizing the quality of the calcined product obtained.
[混合工程、造粒工程、養生工程]
焼成工程の前に、上述した粉状材料と発泡剤と水を混合して、組成物を調製する混合工程と、該組成物を、粒度が5mm以下になるように造粒して、造粒物を得る造粒工程と、該造粒物を養生して、粒体を得る養生工程を設けてもよい。
混合工程において、上述した粉状材料と発泡剤と水を混合する方法は、特に限定されるものではなく、公知のミキサーを用いればよい。また、各材料を混合する順序は問わず、各材料を同時に混合して組成物を調製してもよく、材料を別々に混合して組成物を調製してもよい。
[Mixing process, granulation process, curing process]
Prior to the firing step, a mixing step of mixing the above-mentioned powdery material, a foaming agent and water to prepare a composition, and granulating the composition to a particle size of 5 mm or less You may provide the granulation process which obtains a thing, and the curing process which cures this granulation product and obtains a granular body.
In the mixing step, the method of mixing the powdery material, the foaming agent and water described above is not particularly limited, and a known mixer may be used. Further, regardless of the order of mixing the respective materials, the materials may be mixed simultaneously to prepare the composition, or the materials may be mixed separately to prepare the composition.
造粒工程において、前工程(混合工程)で調製された組成物を造粒する方法としては、特に限定されるものではなく、パンペレタイザー等の一般的な造粒機を用いて造粒すればよい。
養生工程において、前工程(造粒工程)で得られた造粒物を養生する方法としては、特に限定されるものではなく、造粒物を養生して得られる粒体が、保管、輸送および焼成の際に破壊されない程度に十分な強度を有するような条件(例えば、5〜40℃で、12時間以上、好ましくは20時間以上の養生時間)で養生すればよい。
In the granulation step, the method of granulating the composition prepared in the previous step (mixing step) is not particularly limited, and may be granulated using a general granulator such as a pan pelletizer. Good.
In the curing step, the method of curing the granules obtained in the previous step (granulation step) is not particularly limited, and the granules obtained by curing the granules are stored, transported and It may be cured under conditions (for example, 5 to 40° C., 12 hours or longer, preferably 20 hours or longer) having sufficient strength not to be destroyed during firing.
なお、上述した混合工程の後、調製された組成物を造粒することなく養生し、次いで、固化した塊状の組成物について、粉砕と分級の両方またはいずれか一方を行うことで、所望の粒度の粒体を調製して、焼成工程で用いられる粒体としてもよい。 After the above-mentioned mixing step, the prepared composition is cured without granulation, and then the solidified lump composition is crushed and/or classified to obtain a desired particle size. The particles may be prepared and used as the particles used in the firing step.
本発明において得られる焼成物の絶乾密度は、好ましくは1.3g/cm3以下、より好ましくは1.2g/cm3以下、さらに好ましくは1.0g/cm3以下、特に好ましくは0.9g/cm3以下である。該密度が1.3g/cm3以下であれば、得られた焼成物を、軽量な土工資材や骨材として好適に使用することができる。該密度の下限値は、特に限定されないが、通常、0.3g/cm3である。 The absolute dry density of the fired product obtained in the present invention is preferably 1.3 g/cm 3 or less, more preferably 1.2 g/cm 3 or less, still more preferably 1.0 g/cm 3 or less, and particularly preferably 0. It is 9 g/cm 3 or less. When the density is 1.3 g/cm 3 or less, the obtained fired product can be suitably used as a lightweight earthwork material or aggregate. The lower limit of the density is not particularly limited, but is usually 0.3 g/cm 3 .
本発明の焼成物の製造方法によれば、融点降下剤等を使用しなくても、より低い加熱温度、および、より短い加熱時間で、十分に発泡させた焼成物を得ることができる。
本発明で得られた焼成物は、絶乾密度が小さいことから、土工資材(盛土用、埋立用等の資材)または骨材(コンクリート用骨材、アスファルト用骨材、防犯用砂利等)として、造成構造物(盛土、埋立地、コンクリート硬化体、アスファルト硬化体、敷設された防犯用砂利層)の構築に好適に用いることができる。
According to the method for producing a fired product of the present invention, a fully foamed fired product can be obtained at a lower heating temperature and a shorter heating time without using a melting point depressant or the like.
Since the fired product obtained in the present invention has a low absolute dry density, it is used as an earthwork material (material for embankment, landfill, etc.) or aggregate (aggregate for concrete, aggregate for asphalt, gravel for crime prevention, etc.). It can be suitably used for constructing a constructed structure (embankment, landfill, hardened concrete, hardened asphalt, laid gravel layer for crime prevention).
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)石炭灰:「JIS A 6201 (コンクリート用フライアッシュ)」に規定されるフライアッシュII種、ブレーン比表面積;3,000cm2/g
(2)セメント:普通ポルトランドセメント、太平洋セメント社製、ブレーン比表面積;3,300cm2/g
(3)炭化ケイ素:屋久島電工社製、商品名「GC−4000FC」、粒度;10μm以下
(4)水:上水道水
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[Materials used]
(1) Coal ash: Fly ash type II specified in “JIS A 6201 (fly ash for concrete)”, Blaine specific surface area; 3,000 cm 2 /g
(2) Cement: ordinary Portland cement, Taiheiyo Cement Co., Blaine specific surface area: 3,300 cm 2 /g
(3) Silicon carbide: manufactured by Yakushima Electric Co., Ltd., trade name “GC-4000FC”, particle size: 10 μm or less (4) Water: tap water
[実施例1〜3]
上記材料を表1に示す配合割合で、ナウターミキサーを用いて混合した後、パンペレタイザーを用いて、粒度が3mmとなるように造粒して、造粒物を得た。得られた造粒物の集合体を、20℃の条件下で24時間養生して、粒度が3mmである粒体の集合体を得た。
得られた粒体の集合体を、電気炉を用いて、500℃から表1に示す加熱温度まで20℃/分で昇温し、該加熱温度に到達した後、該加熱温度で10分間焼成して、焼成物を得た。
[比較例1]
炭化ケイ素を使用しない以外は、実施例1と同様にして、焼成物を得た。
実施例1等について、得られた焼成物の絶乾密度を、「JIS A 1109(細骨材の密度及び吸水率試験方法)」に準拠して測定した。
結果を表1に示す。
[Examples 1 to 3]
The above materials were mixed at a blending ratio shown in Table 1 using a Nauta mixer, and then granulated using a pan pelletizer so that the particle size was 3 mm to obtain a granulated product. The obtained aggregate of granules was aged at 20° C. for 24 hours to obtain an aggregate of granules having a particle size of 3 mm.
The obtained aggregate of particles was heated from 500° C. to a heating temperature shown in Table 1 at 20° C./minute using an electric furnace, and after reaching the heating temperature, baked at the heating temperature for 10 minutes. Then, a fired product was obtained.
[Comparative Example 1]
A fired product was obtained in the same manner as in Example 1 except that silicon carbide was not used.
For Example 1 and the like, the absolute dry density of the obtained fired product was measured according to “JIS A 1109 (test method for density and water absorption of fine aggregate)”.
The results are shown in Table 1.
表1から、実施例1〜3において、1,225℃の加熱温度で焼成した場合における焼成物の絶乾密度(0.67〜1.25g/cm3)は、比較例1において、1,225℃の加熱温度で焼成した場合における焼成物の絶乾密度(1.74g/cm3)よりも小さいことがわかる。
また、実施例1〜3において、1,250℃の加熱温度で焼成した場合における焼成物の絶乾密度(0.53〜1.04g/cm3)は、比較例1において、1,250℃の加熱温度で焼成した場合における焼成物の絶乾密度(1.48g/cm3)よりも小さいことがわかる。
さらに、実施例1〜3において、1,275℃の加熱温度で焼成した場合における焼成物の絶乾密度(0.39〜0.83g/cm3)は、比較例1において、1,275℃の加熱温度で焼成した場合における焼成物の絶乾密度(1.30g/cm3)よりも小さいことがわかる。
このように、本発明の焼成物の製造方法によって得られた焼成物(実施例1〜3)の絶乾密度は、発泡剤(炭化ケイ素)を用いておらず、かつ、同じ加熱温度で焼成した場合における焼成物(比較例1)の絶乾密度と比べて小さいことがわかる。
From Table 1, in Examples 1 to 3, the absolute dry density (0.67 to 1.25 g/cm 3 ) of the fired product when fired at a heating temperature of 1,225° C. was 1, It can be seen that it is smaller than the absolute dry density (1.74 g/cm 3 ) of the fired product when fired at a heating temperature of 225°C.
Further, in Examples 1 to 3, the absolute dry density (0.53 to 1.04 g/cm 3 ) of the fired product when fired at a heating temperature of 1,250° C. was 1,250° C. in Comparative Example 1. It can be seen that it is smaller than the absolute dry density (1.48 g/cm 3 ) of the fired product when fired at the heating temperature of 1.
Further, in Examples 1 to 3, the absolute dry density (0.39 to 0.83 g/cm 3 ) of the fired product when fired at a heating temperature of 1,275° C. was 1,275° C. in Comparative Example 1. It can be seen that it is smaller than the absolute dry density (1.30 g/cm 3 ) of the fired product when fired at the heating temperature of 1.
As described above, the absolutely dry densities of the fired products (Examples 1 to 3) obtained by the method for producing a fired product of the present invention do not use a foaming agent (silicon carbide), and are fired at the same heating temperature. It can be seen that it is smaller than the absolute dry density of the calcined product (Comparative Example 1).
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208630A JP6710466B2 (en) | 2016-10-25 | 2016-10-25 | Method of manufacturing baked products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208630A JP6710466B2 (en) | 2016-10-25 | 2016-10-25 | Method of manufacturing baked products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018070387A JP2018070387A (en) | 2018-05-10 |
JP6710466B2 true JP6710466B2 (en) | 2020-06-17 |
Family
ID=62113424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016208630A Active JP6710466B2 (en) | 2016-10-25 | 2016-10-25 | Method of manufacturing baked products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6710466B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611659B2 (en) * | 1986-02-14 | 1994-02-16 | 宇部興産株式会社 | Manufacturing method of low water absorption artificial lightweight aggregate |
JPH04238845A (en) * | 1990-12-29 | 1992-08-26 | Onoda Cement Co Ltd | Method for preventing fusion of lightweight aggregate |
JP3402001B2 (en) * | 1995-07-11 | 2003-04-28 | 宇部興産株式会社 | Manufacturing method of artificial lightweight aggregate |
JP3267152B2 (en) * | 1996-04-19 | 2002-03-18 | 宇部興産株式会社 | Manufacturing method of coal ash lightweight aggregate |
JP3188200B2 (en) * | 1996-11-15 | 2001-07-16 | 石川県 | Manufacturing method of artificial lightweight aggregate |
JP2958754B2 (en) * | 1997-04-22 | 1999-10-06 | 北海道 | Method for producing ceramic foam |
JP4377256B2 (en) * | 2004-02-13 | 2009-12-02 | 太平洋セメント株式会社 | Manufacturing method of artificial lightweight aggregate |
JP2007176743A (en) * | 2005-12-28 | 2007-07-12 | Taiheiyo Material Kk | Mortar or concrete admixture for suppressing neutralization and rust-preventing method for reinforced mortar or concrete |
-
2016
- 2016-10-25 JP JP2016208630A patent/JP6710466B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018070387A (en) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5031131B2 (en) | Cement mixed material, cement additive, and mixed cement manufacturing method | |
KR101420293B1 (en) | Preparation method of soil brick with high compressive strength and low water-absorption ratio using non-baking formation | |
KR101659257B1 (en) | A Composite of Hauyne cement by using fly ash of fluidize-bed boiler and Waste Aluminium Powder and manufacturing method thereof | |
JP2007015893A (en) | Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash | |
KR100591060B1 (en) | composition of lightweight aggregate and menufacturing method of lightweight aggregate thereby | |
JP2001163647A (en) | Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method | |
JP2019095401A (en) | Method for predicting strength of artificial lightweight aggregate | |
JP5282877B2 (en) | Artificial aggregate manufacturing method and concrete manufacturing method | |
JP6710466B2 (en) | Method of manufacturing baked products | |
JP2010180094A (en) | Method for manufacturing water-retentive block | |
JP2006298730A (en) | Method of firing incineration ash and sintered compact obtained by the same method | |
JP4377256B2 (en) | Manufacturing method of artificial lightweight aggregate | |
JP2603599B2 (en) | Artificial lightweight aggregate and manufacturing method thereof | |
JP2018070389A (en) | Production method of burned product | |
JP2008143766A (en) | Method of manufacturing porous water absorbing ceramic | |
GB2512606A (en) | A lightweight aggregate and a concrete comprising the lightweight aggregate | |
JP2019151527A (en) | Method of manufacturing lightweight aggregate | |
WO2011064815A1 (en) | Rice hull ash for cement admixture | |
JP4509269B2 (en) | Artificial aggregate and method for producing the same | |
JP2007153633A (en) | Granulated material for artificial aggregate, artificial aggregate and its manufacturing method | |
JPH0977530A (en) | Vitreous hardened body and its production | |
JP2000034179A (en) | Production of water-holding granular sintered compact | |
JP2001163648A (en) | Producing method of artificial aggregate using waste incineration ash and artificial aggregate | |
JP2019048735A (en) | Production method of fine aggregate | |
JP2002226248A (en) | Cement mixture containing porous fired body and method for improving strength of cement mixture by addition of the porous fired body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6710466 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |