JP2019047598A - 電力制御装置、電力制御装置の制御方法 - Google Patents

電力制御装置、電力制御装置の制御方法 Download PDF

Info

Publication number
JP2019047598A
JP2019047598A JP2017167118A JP2017167118A JP2019047598A JP 2019047598 A JP2019047598 A JP 2019047598A JP 2017167118 A JP2017167118 A JP 2017167118A JP 2017167118 A JP2017167118 A JP 2017167118A JP 2019047598 A JP2019047598 A JP 2019047598A
Authority
JP
Japan
Prior art keywords
power
inverter circuit
receiving point
factor
power factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017167118A
Other languages
English (en)
Other versions
JP7209165B2 (ja
Inventor
昌克 栗坂
Masakatsu Kurisaka
昌克 栗坂
浩輝 遠藤
Hiroki Endo
浩輝 遠藤
昌央 横山
Masao Yokoyama
昌央 横山
勉 上野
Tsutomu Ueno
勉 上野
佑介 吉岡
Yusuke Yoshioka
佑介 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2017167118A priority Critical patent/JP7209165B2/ja
Publication of JP2019047598A publication Critical patent/JP2019047598A/ja
Application granted granted Critical
Publication of JP7209165B2 publication Critical patent/JP7209165B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】逆潮流時における系統電圧の上昇を抑えつつ、分散型装置により発電した電力の利用効率を高める。【解決手段】電力系統1と連系する分散型電源用の電力制御装置20であって、分散型電源10から供給される電力を直流から交流に変換して負荷又は前記電力系統に出力するインバータ回路25と、制御装置50と、を含み、前記制御装置50は、前記電力系統1の前記受電点3に対応して設けられた計測器の出力に基づいて、前記受電点3の受電電力Pgridを監視し、前記受電点3が逆潮流である場合、前記インバータ回路25の運転力率COSφを、1より小さい設定値に制御し、前記受電点3が順潮流である場合、前記インバータ回路25の運転力率COSφを、前記設定値よりも大きな値に制御する。【選択図】図3

Description

本発明は、電力系統と連系する分散型電源の電力制御装置において、インバータ回路のの運転力率を制御する技術に関する。
近年、化石燃料に対する依存の低減や環境問題の観点から、太陽光発電(PV:Photo Voltaic)システムに代表される分散型電源の導入が進められている。PVシステムは太陽光発電パネルで発電された電力を、パワーコンディショナ等の電力制御装置で、インバータ回路を用いて直流から交流に変換して出力している。また、接続された負荷の消費電力を発電量が上回る場合には、余剰電力として、系統電源側に逆潮流することで売電している。こうした電力制御装置に関する先行文献として、下記特許文献1に記載のものがある。
特開2017−127047公報
太陽光発電等の分散型電源により発電した電力の利用効率を高めるには、インバータ回路の運転力率を1に近くすることが望ましい。しかしながら、売電時、分散型電源の出力が系統電源側に逆潮流して系統電圧が上昇する場合があることから、逆潮流となる売電時に、インバータ回路の運転力率を設定値(1よりも小さな値)に抑えることが電気事業者から要請されている。
本発明は上記のような事情に基づいて完成されたものであって、逆潮流時における系統電圧の上昇を抑えつつ、太陽光発電など分散型電源により発電した電力の利用効率を高めることを目的とする。
電力系統と連系する分散型電源用の電力制御装置であって、分散型電源から供給される電力を直流から交流に変換して負荷又は前記電力系統に出力するインバータ回路と、制御装置と、を含み、前記制御装置は、前記電力系統の受電点に対応して設けられた計測器の出力に基づいて、前記受電点の受電電力を監視し、前記受電点が逆潮流である場合、前記インバータ回路の運転力率を、1より小さい設定値に制御し、前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する。
電力系統と連系する分散型電源用の電力制御装置の制御方法であって、前記電力系統の受電点に対応して設けられた計測器の出力に基づいて前記受電点の受電電力を監視し、前記受電点が逆潮流である場合、前記分散型電源から供給される電力を直流から交流に変換して、負荷又は前記電力系統に出力するインバータ回路の運転力率を、1より小さい設定値に制御し、前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する。
本構成では、逆潮流時における系統電圧の上昇を抑えつつ、分散型電源により発電した電力の利用効率を高めることが出来る。
実施形態1における太陽光発電システムのブロック図 制御装置の詳細構造を示すブロック図 運転力率の制御の流れを示すフローチャート図 受電電力と運転力率の変化を示すグラフ 順潮流時の負荷に対する電力の流れを示すブロック図 逆潮流時の負荷に対する電力の流れを示すブロック図 太陽光発電システムの他の実施形態を示すブロック図 受電電力と運転力率の変化を示すグラフ 蓄電装置の放電制御とインバータ回路の力率制御の制御タイミングを示す図
電力系統と連系する分散型電源用の電力制御装置であって、分散型電源から供給される電力を直流から交流に変換して負荷又は前記電力系統に出力するインバータ回路と、制御装置と、を含み、前記制御装置は、前記電力系統の前記受電点に対応して設けられた計測器の出力に基づいて、前記受電点の受電電力を監視し、前記受電点が逆潮流である場合、前記インバータ回路の運転力率を、1より小さい設定値に制御し、前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する。
本構成では、逆潮流時、インバータ回路の運転力率を1よりも小さい設定値に制御するため、電力系統の系統電圧が上昇することを抑制できる。また、順潮流時は、インバータ回路の運転力率を設定値よりも大きな値に制御するため、運転力率を設定値に維持する場合と比べて、分散型電源により発電した電力の利用効率を高めることが出来る。
前記制御装置は、順潮流時に前記受電点の受電電力が第1閾値よりも低下した場合、前記インバータ回路の運転力率を、減少させることが望ましい。本構成によれば、受電点の潮流が順潮流から逆潮流に切り換わる前に、インバータ回路の運転力率が下がるので、逆潮流時に、電力系統の系統電圧が上昇することを抑制できる。
前記第1閾値は、前記受電点の受電電力の計測誤差に基づいて、決定することが望ましい。本構成によれば、受電電力の計測誤差を見込んで、第1閾値を設定していることから、受電電力に計測誤差があっても、受電点の潮流が順潮流から逆潮流に切り換わる前に、インバータ回路の運転力率を下げることが出来る。従って、受電点の潮流が順潮流から逆潮流に切り換わる時に、運転力率が調整されず、逆潮流時に運転力率が高い状態のままになることを抑制できる。
前記受電点における受電電力が第1閾値より大きい第2閾値よりも大きい場合、前記インバータ回路の運転力率を増加させることが好ましい。本構成によれば、受電電力が第2閾値より大きい場合、インバータ回路の運転力率を増加調整することから、受電点の受電電力を抑えることが出来る。また、第1閾値と第2閾値の間の範囲は、運転力率の調整が実行されない制御不感帯である。このような制御不感帯を設けることで、電力制御装置の制御ハンチングを抑制することが出来る。
前記分散型電源と並列に蓄電装置を有する構成において、前記制御装置は、前記インバータ回路の運転力率が設定値よりも高い期間に前記蓄電装置を放電し、運転力率が設定値の期間は、前記蓄電装置の放電を停止することが好ましい。本構成によれば、蓄電装置は、運転力率が設定値よりも高い期間にだけ放電し、運転力率が設定値の期間は放電を停止する。そのため、蓄電装置に貯められたエネルギーを有効活用できる。
<実施形態1>
1.太陽光発電システムSの説明
図1は太陽光発電システムSのブロック図である。
太陽光発電(以下PV:Photo Voltaic)システムSは、太陽光発電パネル10と、パワーコンディショナ20と、から構成されている。太陽光発電パネル10は、本発明の「分散型電源」の一例、パワーコンディショナ20は、本発明の「電力制御装置」の一例である。
パワーコンディショナ20は、コンバータ回路21と、電解コンデンサC1と、インバータ回路25と、フィルタ回路27と、リレー29と、制御装置50と、直流電圧検出部31と、出力電流検出部33と、出力電圧検出部35を備えている。
コンバータ回路21は、太陽光発電パネル10に対して接続されている。コンバータ回路21は、太陽光発電パネル10の出力電圧(直流)を昇圧して出力する。電解コンデンサC1は、コンバータ回路21とインバータ回路25の中間に位置するリンク部23に配置されている。電解コンデンサC1は、リンク部23の電圧を安定させるために設けられている。
太陽光発電パネル10により発電された電力は、コンバータ回路21を介してリンク部23に入力され、その結果として、リンク部23の電圧Vdcが上昇する。
インバータ回路25は、コンバータ回路21の出力側に接続されており、入力される直流電力を交流電力に変換して出力する。より詳細には、インバータ回路25には、太陽光発電パネル10の発電によりリンク部23において基準値より増加した電圧分に相当する電力が入力される。従って、基準値より増加した電圧分に相当する電力が、直流から交流に変換され、インバータ回路25から出力される。
インバータ回路25は、リレー29を介して、系統電源2を交流電源とする電力系統1に接続されている。そのため、パワーコンディショナ20から、受電点3に接続された負荷L又は電力系統1に対して交流電力を供給することが出来る。尚、受電点3は、電力の供給地点であり、図1では、系統1と、負荷Lが設けられた構内の境界部分である。
リレー29は、電力系統1との連系用として設置されている。リレー29を閉じることで、太陽光発電システムSを電力系統1に連系させることが出来る。フィルタ回路27は、インバータ回路25とリレー29との間に配置されている。フィルタ回路27は、リアクトルL1とコンデンサC2から構成されており、インバータ回路25の出力から高調波成分を除去する。
直流電圧検出部31は、リンク部23の電圧Vdcを検出する。直流電圧検出部31により検出されたリンク部23の電圧Vdcは、制御装置50に対して入力される。
出力電流検出部33は、インバータ回路25の出力電流Iinvを検出する。具体的には、出力電流検出部33は、図1に示すように、フィルタ回路27のリアクトルL1とコンデンサC2の間に位置しており、リアクトルL1の電流を検出する。出力電流検出部33により検出されたインバータ回路25の出力電流Iinvは、制御装置50に対して入力される。
出力電圧検出部35は、フィルタ回路27の出力側に接続されており、高調波成分除去後のインバータ回路25の出力電圧Vinvを検出する。出力電流検出部33により検出されたインバータ回路25の出力電流Iinvと、出力電圧検出部35により検出されたインバータ回路25の出力電圧Vinvは、制御装置50に対して入力される。
電力系統1には、受電点3の電力検出用の計器として、外部トランスデューサ等の外部計測器40が設けられている。外部計測器40は、受電電流検出部41と、系統電圧検出部43とを有している。外部計測器40は受電点3に対応して設置されており、受電電流検出部41は、受電点3の受電電流Igridを検出する。系統電圧検出部43は電力系統1の系統電圧Vgridを検出する。外部計測器20は、受電電流Igridと系統電圧Vgridとに基づいて、受電電力(有効電力)Pgridを算出する。外部計測器40により検出された受電電力Pgridは制御装置50に対して入力される。受電電力Pgridは、電力潮流(以下、単に潮流とする)の状態判定に使用される。外部計測器40は、本発明の「計測器」の一例である。
制御装置50は、各検出部31、33、35、40の検出値に基づいて、パワーコンディショナ20の出力や、電力系統1の受電点3における受電電力Pgrid、潮流を監視し、インバータ回路25の運転力率COSφを制御する。
系統電源2から受電点3に向かう潮流が順潮流(Pgrid>0)であり、受電点3から系統電源2に向かう潮流が逆潮流(Pgrid<0)である。図1では、順潮流をA1で示し、逆潮流をA2で示す。
運転力率COSφは、インバータ回路25の出力する皮相電力Sinv[VA]に対する有効電力Pinv[W]の比率である。位相角φは、インバータ回路25の出力電圧Vinvに対する出力電流Iinvの角度である。
COSφ=Pinv/Sinv・・・・・(1)
図2は、制御装置50のうち運転力率COSφの制御に関する制御ブロックを示した図である。制御装置50は、出力電力演算部53、PLL回路55、運転力率指令部57、無効電流指令部59、無効電力制御部61、直流電圧制御部63、出力電流制御部65、インバータ電流制御部67、PWM制御部69を備えている。
出力電力演算部53は、出力電流検出部33及び出力電圧検出部35により検出されるインバータ回路25の出力電流Iinvと出力電圧Vinvより、インバータ回路25の出力する有効電力Pinvと無効電力Qinvを算出する。
PLL回路55は、系統電圧Vgridの検出値から系統電圧Vgridの位相角θを算出する。位相角は、0≦θ<360°である。
運転力率指令部57は、外部計測器40により検出された受電電力Pgridに基づいて、インバータ回路25の運転力率COSφの指令値PFinv*を決定する。具体的には、受電電力Pgridの大きさについて2つの閾値X1、X2を設定している。
そして、運転力率指令部57は、受電電力Pgridが第1閾値X1より小さい場合、力率指令値PFinv*を減少させる。また、受電電力Pgridが第2閾値X2以上の場合、力率指令値PFinv*を増加する。第2閾値X2は、第1閾値X1より大きく(X2>X1)、第2閾値X2は一例として500W、第1閾値X1は一例として400Wである。
無効電力指令部59は、力率指令値PFinv*と、現在出力しているインバータ回路25の有効電力Pinvに応じて、出力しなければならないインバータ回路25の無効電力指令値Qinv*を計算する。具体的には、力率指令値PFinv*と有効電力Pinvの積が、無効電力指令値Qinv*として生成される。
無効電力制御部61は、インバータ回路25の無効電力Qinvが無効電力指令値Qinv*に収束するように制御量をPI(Proportional-Integral)演算する。そして、PI演算して求めた制御量からインバータ回路25の無効電流目標値Iqinv*を算出して出力する。
直流電圧制御部63は、リンク部23の直流電圧Vdcが、直流電圧指令値Vdc*に収束するように制御量をPI演算する。そして、PI演算して求めた制御量からインバータ回路25の有効電流目標値Ipinv*を算出して出力する。直流電圧指令値Vdc*は、予め定められた固定値である。
出力電流制御部65は、インバータ回路25の出力電流Iinvが定格を超えないように、電流指令値の上限を算出する。具体的には、インバータ回路25の定格電流及び力率指令値PFinv*に基づいて、有効電流上限値Iplimおよび無効電流上限値Iqlimを算出する。
インバータ電流制御部67は、インバータ回路25の出力電流Iinvが、下記の(2)式で示す電流指令値Iinv*に収束するように制御量をPI演算し、PWM制御部69に対してインバータ回路25をPWM制御するためのデューティ比Dyを出力する。
Iinv*=Ipinv*×sinθ+Iqinv*×cosθ・・・・・(2)
PWM制御部69は、インバータ電流制御部67より入力されるデューティ比Dyに基づいて、インバータ回路25をPWM制御する。具体的には、インバータ回路25を構成する各半導体スイッチ(図略)をPWM制御する。これにより、インバータ回路25の出力電流Iinvが電流指令値Iinv*に調整される。以上のことから、インバータ回路25の運転力率COSφを、運転力率指令部57にて算出した力率指令値PFinv*に制御することが出来る。
2.運転力率COSφの制御
図3はインバータ回路25の運転力率COSφの制御(以下、力率制御)の流れを示すフローチャート図である。
力率制御がスタートすると、制御装置50は、受電点3の受電電力Pgridのデータを、外部計測器40から取得する(S10)。
次に、制御装置50の運転力率指令部57は、外部計測器40により検出された受電電力Pgridを、第2閾値X2と比較する(S20)。第2閾値X2は、例えば500Wである。
運転力率指令部57は、受電点3の受電電力Pgridが第2閾値X2以上の場合(S20:YES)、運転力率COSφの現在値が1.00より小さいか、判定する(S30)。
運転力率指令部57は、運転力率COSφの現在値が1.00より小さい場合、運転力率COSφを所定量Zだけ増加させる力率指令値PFinv*を生成する。所定量Zは、例えば0.01である(S40)。
力率指令値PFinv*が生成されると、インバータ回路25の出力電流Iinvは、インバータ電流制御部67、PWM制御部69により、力率指令値PFinv*に対応した電流指令値Iinv*に調整されることから、インバータ回路25の運転力率COSφは目標値、すなわち現在値よりも所定量Zだけ増加した値に調整される。
一方、運転力率指令部57は、受電点3の受電電力Pgridが第2閾値X2よりも小さい場合(S20:NO)、受電電力Pgridを第1閾値X1と比較する(S50)。第1閾値X1は、例えば400Wである。
運転力率指令部57は、受電点3の受電電力Pgridが第1閾値X1より小さい場合(S50:YES)、現在の運転力率COSφが設定値Yより小さいか、判定する(S60)。設定値Yは、例えば0.85である。
運転力率指令部57は、現在の運転力率COSφが設定値Yより大きい場合、運転力率COSφを所定量Zだけ減少させる力率指令値PFinv*を生成する。所定量Zは、一例として0.01である。
力率指令値PFinv*を生成されると、インバータ回路25の出力電流Iinvは、インバータ電流制御部67、PWM制御部69により、力率指令値PFinv*に対応した電流指令値Iinv*に調整されることから、インバータ回路25の運転力率COSφは目標値、すなわち現在値よりも所定量Zだけ減少した値に調整される。
また、受電電力Pgridが第1閾値X1より大きい場合(S50:NO)、または、運転力率COSφが設定値(Y=0.85)以下である場合(S60:NO)、インバータ回路25の運転力率COSφは現在値に維持される。
上記した力率制御(S10〜S70)は、パワーコンディショナ20が出力を開始するのと同時に実行され、パワーコンディショナ20の出力中は、所定の周期で繰り返し実行される。
次に、インバータ回路25の運転力率COSφの制御例を説明する。図4は負荷変動に伴う、インバータ回路25の有効電力Pinv、受電点3の受電電力Pgrid及び運転力率COSφの時間的変化を示すグラフである。図4中の「破線で示すB1」は負荷Lの消費電力を示し、「太線で示すB2」はインバータ回路25の有効電力Pinv、「一点鎖線で示すB3」は受電端3の受電電力Pgridを示している。
図4では、時刻t1で負荷Lが、重負荷から軽負荷に切り換わっている。重負荷の場合、図5に示すように、受電点3の潮流は順潮流(Pgrid>0)であり、太陽光発電システムSと電力系統1の双方から、負荷Lに対して電力が供給される。
受電点3の受電電力Pgridが500W以上であれば、インバータ回路25の運転力率COSφは、図3に示す力率制御(S10〜S70)が1回実行されるごとに、現在値から0.01ずつ増加して上限値1.00に連続的に調整される。そのため、負荷Lが重負荷の期間(開始〜t1までの期間)、インバータ回路25の運転力率COSφは、上限値1.00に維持される。
負荷Lが重負荷から軽負荷に切り換わる時刻t1以降、受電点3の受電電力Pgridは減少してゆく。そして、太陽光発電システムSの出力だけで、負荷Lの消費電力を全て供給できるようになると、図6に示すように、受電点3の潮流は逆潮流(Pgrid<0)となり、太陽光発電システムSから負荷Lだけでなく、電力系統1側に電力が供給される。
一方、受電点3の受電電力Pgridが低下して第1閾値(X1=400W)よりも小さくなると、インバータ回路25の運転力率COSφは、図3に示す力率制御(S10〜S70)が1回実行されるごとに、0.01ずつ連続的に減少し、設定値(Y=0.85)に調整される。
そのため、受電点3の潮流が順潮流から逆潮流に切り換わる時刻t3以降、インバータ回路25の運転力率COSφは、設定値0.85に維持される。
以上のことから、逆潮流(Pgrid<0)時に、電力系統1の系統電圧Vgridが上昇することを抑制できる。
また更に、負荷Lが軽負荷から重負荷に切り換わると、受電点3の受電電力Pgridは増加して、受電点3の潮流は、逆潮流から順潮流に切り換わる。図4の例では、時間を逆に辿るような変化(t4⇒t5)として考えることが出来る。
受電電力Pgridが第2閾値(X2=500W)よりも大きくなる時刻t5以降、インバータ回路25の運転力率COSφは、制御装置50により、0.01刻みで連続的に増加調整され、設定値0.85から上限値1.00まで変化する。そして、受電点3が順潮流であって、受電電力Pgridが第2閾値X2よりも大きい期間、インバータ回路25の運転力率COSφは、上限値1.00に維持される。
順潮流時に、運転力率COSφを増加させることで、インバータ回路25の出力する有効電力Pinvが増加するため、電力系統1から受電点3に供給される受電電力Pgridを抑えることが可能となる。
4.閾値の設定
制御装置50は、受電点3の受電電力Pgridを第1閾値(X1>0)と比較して、インバータ回路25の運転力率COSφを減少させている。このようにすることで、受電点3の潮流が順潮流から逆潮流に切り換わる前に、インバータ回路25の運転力率COSφが下がるので、逆潮流時に、電力系統1の系統電圧Vgridが上昇することを抑制できる。
また第1閾値X1は、受電点3の受電電力Pgridの計測誤差に基づいて、決定している。具体的には、受電点3の受電電力Pgridは、受電電流検出部41により検出された受電点3の受電電流Igridと、系統電圧検出部43により検出された系統電圧Vgridと、から算出している。
外部計測器40による受電電力Pgridの最大計測誤差は±4%である。最大計測誤差±4%を、外部計測器40の定格計測値10kWに対する誤差量に換算すると、10kW×4%である。従って、受電電力Pgridの最大計測誤差は、400Wである。
以上のことから、第1閾値X1を400Wとし、受電電力Pgridの最大計測誤差と同じ値にしている。このように、受電電力Pgridの計測誤差を見込んで、第1閾値X1を設定しておくことで、受電電力Pgridに計測誤差があっても、受電点3の潮流が順潮流から逆潮流に切り換わる前に、インバータ回路25の運転力率COSφを下げることが出来、逆潮流時に、運転力率COSφが高い状態まま調整されない状態になることを抑制できる。
また、制御装置50は、受電点3の受電電力Pgridを第2閾値(X2>X1)と比較して、インバータ回路25の運転力率COSφを増加させている。
このように、インバータ回路25の運転力率COSφを調整する閾値Xとして、2つの閾値X1、X2を設けている。2つの閾値X1、X2の間の範囲(400W〜500W)は、運転力率COSφの調整が実行されない制御不感帯である。制御不感帯を設けることで、インバータ回路25の制御ハンチングを抑制することが出来る。
また第2閾値X2は、力率制御による、インバータ回路25の有効電力Pinvの分解能に基づいて、決定されている。具体的に説明すると、インバータ回路25の定格出力は、10kWで、力率指令値PFinv*の分解能は、0.01であり、力率制御による、インバータ回路25の有効電力Pinvの分解能は100Wである。
本実施形態では、第1閾値(X1=400W)に対して、有効電力Pinvの分解能100Wを加えた数値500Wを、第2閾値X2としている。
5.効果説明
本構成では、逆潮流時、インバータ回路25の運転力率COSφを1よりも小さい設定値Yに制御するため、電力系統1の系統電圧Vgridが上昇することを抑制できる。また、順潮流時は、インバータ回路25の運転力率COSφを設定値Yよりも大きな値に制御するため、運転力率COSφを設定値Yに維持する場合と比べて、太陽光発電パネル10により発電した電力の利用効率を高めることが出来る。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)実施形態1では、分散型電源の一例として、太陽光発電パネル10を示した。分散型電源は、需要地に隣接して分散配置される小規模な発電設備全般の総称であり、例えば、太陽光発電装置10以外にも、風力発電装置、バイオマス発電装置などが含まれる。風力発電装置やバイオマス発電装置等の交流発電装置の場合、発電装置の出力を整流器で整流して直流に変換してからリンク部23に接続し、リンク部23の直流電力をインバータ回路25で交流電力に変換するシステムにするとよい。
(2)実施形態1では、電力制御装置の一例として、PV用のパワーコンディショナ20を示した。電力制御装置は、少なくとも、インバータ回路25と、制御装置50を備えた構成であればよく、コンバータ回路21、電解コンデンサC1、リンク部23、フィルタ回路27、リレー29等は、無くてもよい。
(3)実施形態1では、外部計測器40により、受電点3の受電電力Pgridを検出した。これ以外にも、例えば、受電電流Igridの計測と系統電圧Vgridの計測をそれぞれ別の計測器で行い、受電電流Igridと系統電圧Vgridの計測値から、制御装置50にて受電電力(有効電力)Pgridを算出するようにしてもよい。例えば、受電電流Igridの瞬時値と系統電圧Vgridの瞬時値の積の平均値から、受電電力(有効電力)Pgridを求めることが出来る。
(4)実施形態1では、逆潮流時における運転力率COSφの設定値Yを0.85とした。設定値Yは1よりも小さな値であればよく、0.85以外の数値でもよい。また、運転力率COSφの増減は0.01刻みで行う場合に限らず、例えば、0.02刻みなど、他の調整幅としてもよい。
(5)実施形態1では、受電点3の受電電力Pgridについて、2つの閾値X1、X2を設定し、受電電力Pgridが第1閾値X1よりも小さい場合、力率指令値PFinv*を減少させることにより、逆潮流時(Pgrid<0)の運転力率COSφを下げて、設定値(Y=0.85)とした。また、受電電力Pgridが第2閾値X2よりも大きい場合、力率指令値PFinv*を増加させることにより、順潮流時(Pgrid>0)の運転力率COSφを設定値(Y=0.85)よりも大きな値とした。
上記以外にも、以下の方法で、運転力率COSφを調整しもよい。受電点3における受電電力Pgridの正負に基づいて、受電点3の潮流が順潮流か逆潮流か、を判別する。逆潮流時(Pgrid<0)には、運転力率COSφを設定値(Y=0.85)に制御する。一方、順潮流時(Pgrid>0)には、順潮流時(Pgrid>0)の運転力率COSφを設定値(Y=0.85)よりも大きな値に制御する。
(6)実施形態1では、第1閾値X1は、受電電力Pgridの最大計測誤差400Wと同じ値とした。第1閾値X1は、受電電力Pgridの平均な計測誤差に対して、安全率を乗算した数値としてもよい。要は、受電電力Pgridの計測誤差に基づいて、決定されるものであればよい。
(7)実施形態1では、太陽光発電システムSの一例として、太陽光発電パネル10と、パワーコンディショナ20から構成されたシステムを示した。これ以外にも、図7に示すように、太陽光発電システムS1は、太陽光発電パネル10と並列に蓄電装置100を有するシステムでもよい。蓄電装置100は、例えば、太陽光発電パネル10の余剰電力で蓄電し、必要に応じて放電することにより、太陽光発電パネル10の余剰電力を有効活用することが出来る。また、太陽光発電システムS1用のパワーコンディショナ200は、実施形態1のパワーコンディショナ20と比べて、コンバータ回路21の数が相違しており、PV用のコンバータ回路21Aと、蓄電装置100用のコンバータ回路21Bをリンク部23に対して並列に設けている。
図7に示すように、太陽光発電パネル10と蓄電装置100とを有する太陽光発電システムS1では、インバータ回路25の運転力率COSφが設定値Yよりも高い期間に蓄電装置100を放電し、運転力率COSφが設定値Yである期間は、放電を停止するとよい。
制御装置50から送られる指令に対する応答速度は、インバータ回路25の運転力率COSφの制御速度よりも、蓄電装置100の充放電量の制御速度の方が、十分に早い。例えば、運転力率COSφの制御速度は±1%/0.5s毎に対して、充放電量の制御速度は、±100%/0.5s毎である。
パワーコンディショナ200は、蓄電装置100の充放電制御とインバータ回路25の力率制御について、指令に対する応答速度の相違を利用して、放電停止後に力率調整が完了するようにタイミングを調整している。
図8は、パワーコンディショナ200の運転制御例であり、日中など太陽光発電パネル10の発電時について、受電電力Pgridと運転力率COSφの変化を示したグラフである。図8中の「破線で示すB1」は負荷Lの消費電力を示し、「太線で示すB2」はインバータ回路25の有効電力Pinv、「一点鎖線で示すB3」は受電点3の受電電力Pgridを示している。
時刻t1よりも前の期間は、重負荷で順潮流していることから、インバータ回路25の運転力率COSφは、制御装置50により、上限値である1に制御されている。また、制御装置50は、受電電力Pgridが第1閾値X1よりも大きい場合、コンバータ回路21Bを介して蓄電装置100を出力状態に制御する。従って、時刻t1よりも以前の期間(受電電力Pgridが第1閾値X1よりも大きい期間)、太陽光発電システムS1は、太陽光発電パネル10と蓄電装置100を併用した出力状態となる。
負荷変動により、時刻t1以降、受電電力Pgridが減少し始める。その後、受電電力Pgridが第1閾値X1を下回る時刻taにて、図9に示すように、制御装置50は、インバータ回路25に対して運転力率COSφを減少する指令を送り、それと同時に、コンバータ回路21Bに対して放電を停止する指令を送る。すなわち、蓄電装置100の放電を停止する閾値も、力率減少調整時と同様に、第1閾値X1を用いている。
時刻taで双方に指令が送られると、図8、9に示すように、時刻ta〜時刻tbの期間T1に、応答速度の速い蓄電装置100がまず放電を停止し、時刻tb以降は、太陽光発電パネル10のみの出力となる。
また、応答速度の遅いインバータ回路25の運転力率COSφは、放電制御と同様に、時刻ta以降は減少方向に調整される。しかし、上記した応答速度の相違から、期間T1での変化は小さく、実質的には、図8に示すように、放電停止後の時刻tb〜tcの期間T2にて、ほぼ上限値から設定値(Y=0.85)に減少調整され、時刻tc以降、インバータ回路25は、運転力率COSφが設定値(Y=0.85)での運転状態となる。図8では、便宜上、期間T1と期間T2を同等の長さとして図示しているが、実際は、期間T1よりも期間T2の方が長い。
以上のように、制御装置50は、運転力率COSφが設定値(Y=0.85)に調整される以前に、蓄電装置100の放電を停止させる。そのため、蓄電装置100は、運転力率COSφが設定値(Y=0.85)よりも高い期間にだけ放電し、運転力率COSφが設定値(Y=0.85)の期間は放電を停止する。そのため、蓄電装置100に貯められたエネルギーを有効活用できる。
また、上記の例では、受電電力Pgridが第1閾値X1を下回る時刻taにて、インバータ回路25に対して運転力率COSφを減少する指令を送り、それと同時に、コンバータ回路21Bに対して放電を停止する指令を送った。
放電を停止させる指令は、必ずしも、運転力率COSφを減少する指令と、同時である必要はない。すなわち、運転力率COSφが設定値Yに調整される前に、蓄電装置100の放電を停止出来ればよく、例えば、第1閾値X1とは別の閾値X3(X3>X1)を用いて、インバータ回路25に対して運転力率COSφを減少する指令を送る前に、コンバータ回路21Bに対して放電を停止する指令を送るようにしてもよい。
1...電力系統
2...系統電源
3...受電点
10...太陽光発電パネル(本発明の「分散型電源」の一例)
20...パワーコンディショナ(本発明の「電力制御装置」の一例)
21...コンバータ回路
25...インバータ回路
27...フィルタ回路
29...リレー
40...外部計測器(本発明の「計測器」の一例)
50...制御装置
X1、X2...第1閾値、第2閾値

Claims (6)

  1. 電力系統と連系する分散型電源用の電力制御装置であって、
    分散型電源から供給される電力を直流から交流に変換して負荷又は前記電力系統に出力するインバータ回路と、
    制御装置と、を含み、
    前記制御装置は、
    前記電力系統の受電点に対応して設けられた計測器の出力に基づいて、前記受電点の受電電力を監視し、
    前記受電点が逆潮流である場合、前記インバータ回路の運転力率を、1より小さい設定値に制御し、
    前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する、電力制御装置。
  2. 請求項1に記載の電力制御装置であって、
    前記制御装置は、
    順潮流時に前記受電点の受電電力が第1閾値よりも低下した場合、前記インバータ回路の運転力率を減少させる、電力制御装置。
  3. 請求項2に記載の電力制御装置であって、
    前記第1閾値は、前記受電点の受電電力の計測誤差に基づいて、決定されている、電力制御装置。
  4. 請求項2又は請求項3に記載の電力制御装置であって、
    前記受電点における受電電力が第1閾値より大きい第2閾値よりも大きい場合、前記インバータ回路の運転力率を増加させる、電力制御装置。
  5. 請求項1〜請求4のうちいずれか一項に記載の電力制御装置であって、
    前記分散型電源と並列に蓄電装置を有する構成において、
    前記制御装置は、
    前記インバータ回路の運転力率が設定値よりも高い期間に前記蓄電装置を放電し、運転力率が設定値の期間は、前記蓄電装置の放電を停止する、電力制御装置。
  6. 電力系統と連系する分散型電源用の電力制御装置の制御方法であって、
    前記電力系統の受電点に対応して設けられた計測器の出力に基づいて前記受電点の受電電力を監視し、
    前記受電点が逆潮流である場合、
    前記分散型電源から供給される電力を直流から交流に変換して、負荷又は前記電力系統に出力するインバータ回路の運転力率を、1より小さい設定値に制御し、
    前記受電点が順潮流である場合、
    前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する、電力制御装置の制御方法。
JP2017167118A 2017-08-31 2017-08-31 電力制御装置、電力制御装置の制御方法 Active JP7209165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167118A JP7209165B2 (ja) 2017-08-31 2017-08-31 電力制御装置、電力制御装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167118A JP7209165B2 (ja) 2017-08-31 2017-08-31 電力制御装置、電力制御装置の制御方法

Publications (2)

Publication Number Publication Date
JP2019047598A true JP2019047598A (ja) 2019-03-22
JP7209165B2 JP7209165B2 (ja) 2023-01-20

Family

ID=65816688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167118A Active JP7209165B2 (ja) 2017-08-31 2017-08-31 電力制御装置、電力制御装置の制御方法

Country Status (1)

Country Link
JP (1) JP7209165B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126110A (ja) * 2018-01-12 2019-07-25 株式会社Gsユアサ 電力制御装置、電力制御装置の制御方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935534A (ja) * 1982-08-20 1984-02-27 株式会社日立製作所 電力変換装置
JPH08182197A (ja) * 1994-12-22 1996-07-12 Toshiba Corp 分散型電源システム
JPH1141817A (ja) * 1997-07-24 1999-02-12 Sanyo Electric Co Ltd 系統連系インバータ
JP2009159754A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd 太陽光発電システム
US20140097807A1 (en) * 2012-10-05 2014-04-10 Petra Solar, Inc. Methods and Systems for Mitigation of Intermittent Generation Impact on Electrical Power Systems
JP2016093081A (ja) * 2014-11-11 2016-05-23 Jxエネルギー株式会社 電源システム及び制御装置
JP2016123238A (ja) * 2014-12-25 2016-07-07 京セラ株式会社 蓄電装置及び蓄電装置の制御方法
JP2016185018A (ja) * 2015-03-26 2016-10-20 田淵電機株式会社 系統電圧抑制制御装置及び系統電圧抑制制御方法
JP2017121149A (ja) * 2015-12-29 2017-07-06 三菱電機株式会社 電力変換装置
JP2017121140A (ja) * 2015-12-28 2017-07-06 田淵電機株式会社 分散型電源システム、電力変換装置及び力率制御方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935534A (ja) * 1982-08-20 1984-02-27 株式会社日立製作所 電力変換装置
JPH08182197A (ja) * 1994-12-22 1996-07-12 Toshiba Corp 分散型電源システム
JPH1141817A (ja) * 1997-07-24 1999-02-12 Sanyo Electric Co Ltd 系統連系インバータ
JP2009159754A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd 太陽光発電システム
US20140097807A1 (en) * 2012-10-05 2014-04-10 Petra Solar, Inc. Methods and Systems for Mitigation of Intermittent Generation Impact on Electrical Power Systems
JP2016093081A (ja) * 2014-11-11 2016-05-23 Jxエネルギー株式会社 電源システム及び制御装置
JP2016123238A (ja) * 2014-12-25 2016-07-07 京セラ株式会社 蓄電装置及び蓄電装置の制御方法
JP2016185018A (ja) * 2015-03-26 2016-10-20 田淵電機株式会社 系統電圧抑制制御装置及び系統電圧抑制制御方法
JP2017121140A (ja) * 2015-12-28 2017-07-06 田淵電機株式会社 分散型電源システム、電力変換装置及び力率制御方法
JP2017121149A (ja) * 2015-12-29 2017-07-06 三菱電機株式会社 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126110A (ja) * 2018-01-12 2019-07-25 株式会社Gsユアサ 電力制御装置、電力制御装置の制御方法
JP7040029B2 (ja) 2018-01-12 2022-03-23 株式会社Gsユアサ 電力制御装置、電力制御装置の制御方法

Also Published As

Publication number Publication date
JP7209165B2 (ja) 2023-01-20

Similar Documents

Publication Publication Date Title
US8284574B2 (en) Method and apparatus for controlling an inverter using pulse mode control
US8279649B2 (en) Apparatus and method for controlling a power inverter
US9608447B2 (en) Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system
JP5681785B2 (ja) 電力変換装置
JP2007249341A (ja) 水素製造システム
JPWO2012169013A1 (ja) 太陽光発電システムの運転制御装置
US8358523B2 (en) Method of operating an inverter by turning off the switching at a zero transition of the alternating output current
JP7312968B2 (ja) エネルギーシステムおよびその運転方法ならびにバーチャルパワープラントシステム
CN106655257B (zh) 基于新能源混合供电的港口岸电的能量管理系统及方法
JP7209165B2 (ja) 電力制御装置、電力制御装置の制御方法
CN116581763A (zh) 用于配电网中光伏逆变器系统工作模式选择切换的方法
TWI505597B (zh) 智慧型微電網電力品質管理的操作系統
JP6849546B2 (ja) 系統連系用電力変換装置
JP4258452B2 (ja) パワーコンディショナの制御装置、パワーコンディショナの制御方法およびコージェネレーションシステム
JP7040029B2 (ja) 電力制御装置、電力制御装置の制御方法
JP2007082317A (ja) 電力システム
JP2018170931A (ja) 電力変換装置、電力変換システム
KR100740764B1 (ko) 부스터 기능과 병렬 컨버터 기능을 가지는 계통연계형무정전 하이브리드 인버터 장치
JP5294908B2 (ja) 電力変換装置
KR200416152Y1 (ko) 부스터 기능과 병렬 컨버터 기능을 가지는 계통연계형무정전 하이브리드 인버터 장치
JP2020137275A (ja) 電源システム、電力変換装置、及び電力変換装置の制御方法
JP2015053817A (ja) 電力変換装置
JP7459627B2 (ja) 電力制御装置、電力制御装置の制御方法、交流発電システム。
JP2019041554A (ja) パワーコンディショナ及びその送出電力制御方法
JP2022133626A (ja) 電力制御装置、グリッド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7209165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150