JP2019033678A - Continuous culture method of microbes - Google Patents

Continuous culture method of microbes Download PDF

Info

Publication number
JP2019033678A
JP2019033678A JP2017155531A JP2017155531A JP2019033678A JP 2019033678 A JP2019033678 A JP 2019033678A JP 2017155531 A JP2017155531 A JP 2017155531A JP 2017155531 A JP2017155531 A JP 2017155531A JP 2019033678 A JP2019033678 A JP 2019033678A
Authority
JP
Japan
Prior art keywords
plate
space
microorganisms
culture
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017155531A
Other languages
Japanese (ja)
Inventor
万里 岩越
Mari Iwakoshi
万里 岩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2017155531A priority Critical patent/JP2019033678A/en
Publication of JP2019033678A publication Critical patent/JP2019033678A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a culture method of microbes capable of improving a collection efficiency of microbes and capable of easily setting a culture condition.SOLUTION: There is provided a continuous culture method of microbes comprising a step for adhering microbes to an inner wall 2a of a plate-shaped member 2 forming a space 1 and/or to a carrier provided in the space 1 in a single layer or bilayer space 1 formed by two or more plate-shaped members 2 having light transmissivity or one or more plate-shaped member 2 having light transmissivity and one or more plate-shaped member 2 having no light transmissivity, and supplying a culture liquid to the plate-shaped member 2 to which microbes are adhered and/or carrier to which microbes are adhered for culturing microbes, in which an interval of the plate-shaped members 2 forming the space 1 is 1-2 mm.SELECTED DRAWING: Figure 1

Description

本発明は、微生物の連続培養方法に関する。   The present invention relates to a method for continuously culturing microorganisms.

地球温暖化その他の地球環境保護への対策として、温暖化ガスの排出を可及的に抑える取り組み等が各国の産業界に強く求められている。クロレラ等の微細藻類や光合成細菌などの微生物は、COを排出しないでエネルギー生産が可能な資源その他の産業上利用可能な資源として非常に有望視されており、商業レベルでの活用及び効率的な製造に期待が寄せられている。 As measures against global warming and other global environmental protection, efforts to reduce greenhouse gas emissions as much as possible are strongly sought by industry in each country. Microalgae such as chlorella and microorganisms such as photosynthetic bacteria are considered very promising as resources that can produce energy without emitting CO 2 and other industrially available resources. There is high expectation for the manufacture.

クロレラ等の微細藻類をエネルギー資源その他の産業上の利用に供するためには、できるだけ低いコストで生産量を向上することが要求されるが、水中で微細藻類を大量培養する場合、大規模なプールやタンクを必要とする。したがって、用地の取得又は設備の大規模化による費用増大等の課題がある。   In order to use microalgae such as chlorella for energy resources and other industrial uses, it is required to improve the production volume at the lowest possible cost. And need a tank. Therefore, there are problems such as cost increase due to acquisition of land or enlargement of facilities.

そこで、土地を有効活用して簡易な設備で単位面積当たりの生産量の向上を図るために、鉛直に立てた担体表面に培養液を自然流下させ、その担体表面で微細藻類等の微生物を継続して増殖させ、自然流下した培養液中から連続的に微生物を回収する培養システムが提案されている(例えば、特許文献1)。この方式では担体表面の薄い水膜が従来法のプール水面に相当し、光(人工光)・炭酸ガス・栄養素を得て順調に光合成がなされる。この方式を格納したユニットでは、担体一枚が同一面積の水面と同等あるいは以上の培養量を得ることおよび担体の並列多層装備により同一床面積当たりでプールなどの従来法の10倍20倍の収穫を期待できる。
さらにこのユニットを上下に積層することで、床面積当たりで従来法の100倍の培養量確保も期待できる。
量のみならず、現状では国内外の生産地が太陽光の豊富な地域に限られている立地制約を克服し、極地や地下さらには宇宙空間でも培養可能になる。
Therefore, in order to effectively use the land and improve the production volume per unit area with simple equipment, the culture solution is allowed to flow down naturally on the surface of the vertical carrier, and microorganisms such as microalgae continue on the carrier surface. Thus, a culture system has been proposed in which microorganisms are continuously collected from a culture solution that has been grown and naturally flowed down (for example, Patent Document 1). In this method, a thin water film on the surface of the carrier corresponds to the pool water surface of the conventional method, and light (artificial light), carbon dioxide gas, and nutrients are obtained and photosynthesis is smoothly performed. In a unit storing this method, a single carrier can obtain a culture volume equal to or greater than the water surface of the same area, and a parallel multi-layer equipment of the carrier can yield 10 times 20 times the conventional method such as a pool per floor area. Can be expected.
Furthermore, by stacking the units up and down, it can be expected to secure a culture amount 100 times that of the conventional method per floor area.
In addition to the quantity, it overcomes the location restrictions that currently limit domestic and overseas production areas to areas with abundant sunlight, making it possible to culture in polar regions, underground, and even in outer space.

特開2013−153744号公報JP 2013-153744 A

しかし、特許文献1に記載された培養システムでは、気相中に略鉛直方向に向けて配された担体に沿って培養液を流下させるものであったため培養液の速度を上げようとすると培養液が飛散し易く、培養された微生物の収集効率が低下するという問題があった。また、培養液の流速のコントロールをし難いため、培養条件の設定が困難であるという問題があった。
また、収集量の確保には微生物の群密度が関係し密度が低いと生育にマイナスの影響を及ぼすので、微生物の個体群密度を上げて光・炭酸ガス・栄養素の供給を行うことが必要となる。すなわち、極小空間での微生物と環境条件の最適化が成り立つことが無駄のない培養を可能とする。
そこで、本発明は、微生物の収集効率を向上させかつ、培養条件の設定が容易な微生物の培養方法を提供する。
However, in the culture system described in Patent Document 1, the culture solution is caused to flow down along a carrier disposed in the gas phase in a substantially vertical direction. Have a problem that the collection efficiency of the cultured microorganisms is reduced. In addition, since it is difficult to control the flow rate of the culture solution, there is a problem that it is difficult to set culture conditions.
In addition, the collection density is related to the group density of microorganisms, and if the density is low, growth is negatively affected. Therefore, it is necessary to increase the population density of microorganisms and supply light, carbon dioxide, and nutrients. Become. That is, it is possible to culture without waste that optimization of microorganisms and environmental conditions in a minimal space can be realized.
Therefore, the present invention provides a microorganism culturing method that improves the collection efficiency of microorganisms and allows easy setting of culture conditions.

本発明者らは、上記課題を達成すべく鋭意検討した結果、板状部材あるいは管状部材等を用いて形成した空間内で培養液を供給して微生物を培養する方法において、前記空間を形成する板状部材の間隔を1〜2mmとし、板状部材間を薄い帯状の空間にすることにより、微生物の個体群密度を上げやすくするとともに微生物に培養液を効率的に与えて微生物の安定した増殖を維持することを見出し、本発明を完成するに至った。
すなわち本発明は、
(1)2以上の透光性を有する板状部材、又は、1以上の透光性を有する板状部材及び1以上の透光性を有しない板状部材を用いて形成される単層又は複層の空間内で、前記空間を形成する板状部材の内壁、及び/又は、前記空間内に備えられた担体に微生物を付着させ、前記微生物を付着させた板状部材及び/又は前記微生物を付着させた担体に、培養液を供給して微生物を培養する工程を有し、前記空間を形成する板状部材の間隔が1〜2mmである微生物の連続培養方法、
に関し、
(2)前記微生物を培養する工程において、前記空間を培養液で満たす(1)に記載の微生物の連続培養方法、
(3)前記板状部材の一方又は両方の面側から光照射する(1)又は(2)に記載の微生物の連続培養方法、
(4)前記培養液が炭酸ガスを含む(1)〜(3)のいずれか一項に記載の微生物の連続培養方法、
(5)前記透光性を有する板状部材が炭酸ガス透過性である(1)〜(4)のいずれか一項に記載の微生物の連続培養方法、
(6)前記空間から排出された培養液を、再び前記空間に供給して微生物の培養を行う(1)〜(5)のいずれか一項に記載の微生物の連続培養方法、
(7)前記空間から排出される培養液の一部または全部から微生物を回収する工程を有する(1)〜(6)のいずれか一項に記載の微生物の連続培養方法、
(8)前記空間内を加圧して、当該空間内に蓄積又は滞留している微生物を回収する工程を有する(1)〜(7)のいずれか一項に記載の微生物の連続培養方法、
(9)前記板状部材は、鉛直方向、水平方向又は傾斜して配置されている(1)〜(8)のいずれか一項に記載の微生物の連続培養方法、
(10)前記空間を形成する板状部材の内壁の少なくとも一方に、高さ10〜100μmの突起が形成されている(1)〜(9)のいずれか一項に記載の微生物の連続培養方法、
(11)微生物が、微細藻類である(1)〜(10)いずれか一項に記載の微生物の連続培養方法、に関する。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have formed the space in a method of culturing microorganisms by supplying a culture solution in a space formed using a plate-like member or a tubular member. The interval between the plate members is set to 1 to 2 mm, and the space between the plate members is made into a thin band-like space, so that the population density of microorganisms can be easily increased and the culture solution is efficiently given to the microorganisms to stably grow the microorganisms. The inventors have found that the present invention is maintained and have completed the present invention.
That is, the present invention
(1) A single layer formed using a plate-like member having two or more translucency, or a plate-like member having one or more translucency and one or more plate-like members having no translucency In a multi-layered space, the plate-like member and / or the microorganism to which the microorganism is attached by attaching microorganisms to the inner wall of the plate-like member forming the space and / or the carrier provided in the space. A method for continuously culturing microorganisms, comprising a step of culturing microorganisms by supplying a culture solution to a carrier to which is attached, wherein the interval between the plate-like members forming the space is 1 to 2 mm,
Regarding
(2) In the step of culturing the microorganism, the method for continuously culturing a microorganism according to (1), wherein the space is filled with a culture solution,
(3) The method for continuous culture of microorganisms according to (1) or (2), wherein light is irradiated from one or both sides of the plate-like member,
(4) The method for continuously culturing a microorganism according to any one of (1) to (3), wherein the culture solution contains carbon dioxide gas,
(5) The continuous culture method for microorganisms according to any one of (1) to (4), wherein the translucent plate-like member is carbon dioxide permeable,
(6) The method for continuous culture of microorganisms according to any one of (1) to (5), wherein the culture solution discharged from the space is supplied to the space again to culture the microorganism.
(7) The method for continuously culturing microorganisms according to any one of (1) to (6), including a step of recovering microorganisms from a part or all of the culture solution discharged from the space,
(8) The method for continuously culturing microorganisms according to any one of (1) to (7), including a step of pressurizing the space and collecting the microorganisms accumulated or staying in the space.
(9) The continuous culture method for microorganisms according to any one of (1) to (8), wherein the plate-like member is arranged in a vertical direction, a horizontal direction, or an inclination.
(10) The method for continuously culturing a microorganism according to any one of (1) to (9), wherein a protrusion having a height of 10 to 100 μm is formed on at least one of the inner walls of the plate-like member forming the space. ,
(11) The method for continuously culturing a microorganism according to any one of (1) to (10), wherein the microorganism is a microalgae.

本発明の微生物の培養方法は、板状部材の間隔を1〜2mmにして形成した薄い帯状の空間内で、培養液を供給して群密度を上げやすい状態で微生物を培養することにより、採光量・炭酸ガス量・培養液量を無駄なく利用して微生物の収集効率を向上させることができるとともに、培養液の流下速度の調整を容易にして、培養条件を容易に設定することができるという効果を奏する。   In the method for culturing microorganisms of the present invention, light is obtained by culturing microorganisms in a thin strip-shaped space formed with a spacing of 1 to 2 mm between plate-like members in a state in which the culture solution is supplied and the group density is easily increased. It is possible to improve the collection efficiency of microorganisms by using the amount, the amount of carbon dioxide gas, and the amount of the culture solution without waste, and it is possible to easily adjust the flow rate of the culture solution and easily set the culture conditions There is an effect.

本発明の微生物の培養方法を実施可能な微生物培養システムの一部を模式的に示した斜視図である。It is the perspective view which showed typically a part of microorganism culture system which can implement the cultivation method of the microorganisms of this invention. 本発明の微生物の培養方法を実施可能な微生物培養システムを筐体3の内部を示して模式的に示した図である。It is the figure which showed the inside of the housing | casing 3 typically, and showed the microorganism culture system which can implement the cultivation method of the microorganisms of this invention. (a)図2をA−A線で矢視した断面図の例である。(b)図2をA−A線で矢視した断面図の他の例である。(A) It is an example of sectional drawing which looked at FIG. 2 by the AA line. (B) It is another example of sectional drawing which looked at FIG. 2 by the AA line. 本発明の微生物の培養方法を実施可能な微生物培養システムの変形例を筐体3の内部を示して模式的に示した図である。It is the figure which showed the inside of the housing | casing 3 typically, and showed the modification of the microorganism culture system which can implement the microorganisms cultivation method of this invention.

以下、本発明の微生物の連続培養方法の実施形態について説明する。   Hereinafter, embodiments of the method for continuously culturing microorganisms of the present invention will be described.

本発明の一実施形態の微生物の連続培養方法は、2以上の透光性を有する板状部材、又は、1以上の透光性を有する板状部材及び1以上の透光性を有しない板状部材を用いて形成される単層又は複層の空間内で、前記空間を形成する板状部材の内壁、及び/又は、前記空間内に備えられた担体に微生物を付着させ、前記微生物を付着させた板状部材及び/又は前記微生物を付着させた担体に培養液を供給して微生物を培養する工程を有し、前記空間を形成する板状部材の間隔が1〜2mmであることを特徴とする。   The method for continuously culturing microorganisms according to an embodiment of the present invention includes a plate-like member having two or more translucency, or a plate-like member having one or more translucency and a plate having no one or more translucency. In a single-layer or multi-layer space formed by using a member, a microorganism is attached to the inner wall of the plate-like member forming the space and / or a carrier provided in the space, and the microorganism is Having a step of culturing microorganisms by supplying a culture solution to the adhered plate-like member and / or the carrier to which the microorganism is adhered, and the interval between the plate-like members forming the space is 1 to 2 mm Features.

具体的に、本発明の微生物の連続培養方法は、(1)複数の板状部材を用いて形成された薄い帯状の又は偏平な空間内で、微生物を付着させた板状部材及び/又は微生物を付着させた担体に培養液を供給して微生物を培養する工程と、(2)空間から排出される培養液の一部または全部から微生物を回収する工程と、(3)微生物を回収した後の培養液を再度空間内に供給する工程とを有する。なお、工程(1)の後に、(1−2)空間内を加圧して、空間内に蓄積又は滞留している微生物を回収する工程を有していてもよい。   Specifically, the method for continuously culturing microorganisms of the present invention includes (1) a plate-like member and / or microorganisms to which microorganisms are attached in a thin strip-like or flat space formed using a plurality of plate-like members. A step of culturing microorganisms by supplying a culture solution to the carrier on which the material is adhered, (2) a step of recovering microorganisms from a part or all of the culture solution discharged from the space, and (3) after recovering the microorganisms The step of supplying the culture solution in the space again. In addition, after a process (1), you may have the process of pressurizing the inside of space (1-2) and collect | recovering the microorganisms accumulate | stored or staying in the space.

(1)板状部材を用いて形成される薄い帯状の又は偏平な空間内で、微生物を付着させた板状部材及び/又は微生物を付着させた担体に培養液を供給して微生物を培養する工程
この工程では、空間を形成する板状部材の内壁に微生物を付着させるか、空間内に備えた担体に微生物を付着させるか、又は板状部材の内壁及び担体の両方に微生物を付着させて、培養液を供給して微生物を培養する。
(1) In a thin strip-like or flat space formed by using a plate-like member, a culture solution is supplied to the plate-like member to which microorganisms are attached and / or a carrier to which microorganisms are attached to culture the microorganisms. Step In this step, microorganisms are attached to the inner wall of the plate-like member forming the space, microorganisms are attached to the carrier provided in the space, or microorganisms are attached to both the inner wall and the carrier of the plate-like member. The culture solution is supplied to culture the microorganism.

図1に示すように、板状部材を用いて形成される空間1は、例えば2枚以上の板状部材2を互いの板面2aが略平行になるように対向配置させて、対向する2枚の板状部材2,2の内壁2a,2a間に1層ずつ形成されている。
板状部材2を用いて形成される空間1は、単層であっても複層であってもよい。
板状部材2,2同士の間隔、すなわち空間1の1層の厚さLは、1mm以上2mm以下で、板状部材2,2の間が薄い帯状又は偏平な空間になっていることが好ましい。
As shown in FIG. 1, the space 1 formed by using plate-like members is, for example, two or more plate-like members 2 that are opposed to each other so that their plate surfaces 2 a are substantially parallel to each other. One layer is formed between the inner walls 2a, 2a of the plate-like members 2, 2.
The space 1 formed using the plate-like member 2 may be a single layer or multiple layers.
The interval between the plate-like members 2, 2, that is, the thickness L of one layer of the space 1 is preferably 1 mm or more and 2 mm or less, and the space between the plate-like members 2, 2 is preferably a thin strip or flat space. .

板状部材2は、全て透光性を有していてもよいし、いずれの空間1にも光が届く限り、板状部材2のうち1以上の板状部材2が透光性を有し、他の1以上の板状部材2は透光性を有していなくてもよい。
また、板状部材2の厚さは、特に限定されないが透光性等の観点から薄く形成されていることが好ましい。
The plate-like members 2 may all be translucent, and one or more plate-like members 2 of the plate-like members 2 are translucent as long as light reaches any space 1. The other one or more plate-like members 2 may not have translucency.
The thickness of the plate-like member 2 is not particularly limited, but is preferably formed thin from the viewpoint of translucency and the like.

例えば、空間1が2層以上ある場合、板状部材2を3つ用いることになるが、両外側が透光性を有しない板状部材2であると、空間1内に光が届き難く、好ましくない。2層以上の空間1を設ける場合は、一方の外側のみに透光性を有しない板状部材2を用い、他は透光性を有する板状部材2を用いることができる。この場合は、透光性を有する板状部材2から透光性を有しない板状部材2に向かって光が照射されるようにするとよい。   For example, when the space 1 has two or more layers, three plate-like members 2 are used. However, if the outer sides are plate-like members 2 that do not have translucency, it is difficult for light to reach the space 1. It is not preferable. When providing the space 1 of two or more layers, the plate-shaped member 2 which does not have translucency can be used only on one outer side, and the plate-shaped member 2 which has translucency can be used for others. In this case, it is preferable that light is irradiated from the plate-like member 2 having translucency toward the plate-like member 2 having no translucency.

また、2層以上の空間1を設ける場合は、少なくとも両外側に透光性を有する板状部材2を用いて、両外側から光を照射することで空間1内に光を届けることもできる。
なお、光が届き難い板状部材2又は透光性を有しない板状部材2の光を受け得る側の板面に、反射シートが配されていてもよい。
Moreover, when providing the space 1 of two or more layers, light can also be delivered in the space 1 by irradiating light from both outer sides using the plate-shaped member 2 which has translucency at least on both outer sides.
In addition, the reflective sheet may be distribute | arranged to the plate | board surface of the side which can receive the light of the plate-shaped member 2 which light cannot reach easily, or the plate-shaped member 2 which does not have translucency.

本明細書において、上記「透光性を有する板状部材2」における「透光性を有する」とは、微生物が吸収し得る波長400〜700nmの光を50%以上透過する場合を意味する。
「透光性を有しない板状部材2」における「透光性を有しない」とは、波長400〜700nmの光の透過率が50%未満である場合を意味する。
In the present specification, the term “having translucency” in the “translucent plate-like member 2” means that 50% or more of light having a wavelength of 400 to 700 nm that can be absorbed by microorganisms is transmitted.
“No translucency” in the “plate-like member 2 having no translucency” means a case where the transmittance of light having a wavelength of 400 to 700 nm is less than 50%.

板状部材2の形状は、特に限定されるものではなく、収容される筐体に合わせて、矩形、その他の多角形、円形、楕円形等に形成することができる。互いに対向配置される板状部材2は、同形状に形成されており、配置方向に視たときに互いに重なり合うように配置されているとよい。
板状部材2,2間は、1mm以上2mm以下の範囲で配置されるため、板状部材2の内壁2aの全体においてこの間隔を保つために、スペーサが適宜配置されていてもよい。
The shape of the plate-like member 2 is not particularly limited, and can be formed in a rectangular shape, other polygonal shapes, a circular shape, an elliptical shape, or the like according to the housing to be accommodated. The plate-like members 2 arranged to face each other are preferably formed in the same shape and arranged so as to overlap each other when viewed in the arrangement direction.
Since the space between the plate-like members 2 and 2 is arranged in the range of 1 mm or more and 2 mm or less, a spacer may be appropriately arranged in order to keep this distance in the entire inner wall 2 a of the plate-like member 2.

板状部材2,2同士の間に形成される空間1は、微生物の培養空間1となるとともに、培養液の流路になる。したがって、培養液の供給部及び導出部を除いて、板状部材2の端部間を封止し、空間1において培養された微生物及び供給した培養液が板状部材2の外に飛散等することを防止できるようになっていてもよい。   A space 1 formed between the plate-like members 2 and 2 serves as a culture space 1 for microorganisms and a flow path for a culture solution. Therefore, except for the supply part and the lead-out part of the culture solution, the end portions of the plate member 2 are sealed, and the microorganisms cultured in the space 1 and the supplied culture solution are scattered outside the plate member 2. It may be possible to prevent this.

板状部材2としては、板状部材2同士の間隔を1mm以上2mm以下に保てる限り、ガラス状の変形し難い部材の他、シート状、フィルム状の部材であってもよい。
透光性を有する板状部材2の材質としては特に限定されず、例えばガラス、アクリル、ポリスチレン、塩化ビニル等の透明なものが挙げられる。
The plate-like member 2 may be a sheet-like or film-like member in addition to a glass-like member that is not easily deformed as long as the interval between the plate-like members 2 can be maintained at 1 mm or more and 2 mm or less.
It does not specifically limit as a material of the plate-shaped member 2 which has translucency, For example, transparent things, such as glass, an acryl, a polystyrene, a vinyl chloride, are mentioned.

透光性を有する板状部材2としては、炭酸ガス透過性のものが好ましい。微生物の増殖中は、培養液中の炭酸ガスが徐々に消費されるが、透光性を有する板状部材2が炭酸ガス透過性であると、培養中も外部の炭酸ガスを空間1内に取り込むので、培養液や空間1内に炭酸ガスを追加する必要がなくなるか、追加する量を減らすことが可能となる。
透光性を有しない板状部材2の材質としては特に限定されない。
As the plate-like member 2 having translucency, one having carbon dioxide gas permeability is preferable. During the growth of microorganisms, carbon dioxide in the culture solution is gradually consumed. However, if the plate-like member 2 having translucency is permeable to carbon dioxide, outside carbon dioxide is introduced into the space 1 even during cultivation. Since it takes in, it becomes unnecessary to add a carbon dioxide gas in a culture solution or the space 1, or it becomes possible to reduce the amount to add.
It does not specifically limit as a material of the plate-shaped member 2 which does not have translucency.

本工程では、空間1を形成する板状部材2の内壁2aに微生物を付着させ、微生物を付着させた板状部材2に培養液を供給して微生物を培養することができる。板状部材2の内壁2aに微生物を付着させて培養する場合、板状部材2は、内壁2aの少なくとも一方に、高さ10〜100μmの突起(不図示)が形成されていることが好ましい。又は、板状部材2には、微生物を付着させ易くする凹部又は孔が形成されていてもよい。
板状部材2の内壁2aに突起、凹部又は孔が形成されていることで、微生物が板状部材2に付着しやすく、培養中に容易に剥がれ難くなる。
In this step, microorganisms can be attached to the inner wall 2a of the plate-like member 2 forming the space 1, and the culture solution can be supplied to the plate-like member 2 to which the microorganisms are attached to culture the microorganisms. When culturing with microorganisms attached to the inner wall 2a of the plate-like member 2, the plate-like member 2 preferably has a protrusion (not shown) having a height of 10 to 100 μm formed on at least one of the inner walls 2a. Alternatively, the plate-like member 2 may be formed with a recess or a hole that makes it easier for microorganisms to adhere.
By forming protrusions, recesses or holes on the inner wall 2a of the plate-like member 2, microorganisms are likely to adhere to the plate-like member 2 and are not easily removed during culture.

本発明の方法では、板状部材2を用いて形成される空間1内に微生物を付着させた不図示の担体を配し、空間1内及びこの担体に培養液を供給して微生物を培養することもできる。担体に微生物を付着させて培養する場合、担体は、板状部材2のいずれかの内壁2aに沿って設けられていてもよいし、板状部材2の内壁2aに接触しない状態で備えられていてもよい。又は、板状部材2間に挟持されていてもよい。   In the method of the present invention, a carrier (not shown) having microorganisms attached thereto is disposed in a space 1 formed by using the plate-like member 2, and a culture solution is supplied into the space 1 and this carrier to culture the microorganisms. You can also. When culturing with microorganisms attached to the carrier, the carrier may be provided along any one of the inner walls 2a of the plate-like member 2 or provided in a state not in contact with the inner wall 2a of the plate-like member 2. May be. Alternatively, it may be sandwiched between the plate-like members 2.

担体は、空間1にそれぞれ備えることが可能で、微生物を付着できるとともに、供給された培養液を内部に浸透させつつ流動させることが可能なものであれば特に限定されず、例えば、綿ブロード、リント布等からなる薄膜や、多孔質状の薄板等の内部に空隙を有する部材からなるシート体が挙げられる。担体が透過性を有しているとなおよい。   The carrier can be provided in each space 1 and is not particularly limited as long as it can attach microorganisms and can flow while supplying the culture broth inside. For example, cotton broad, Examples thereof include a thin film made of lint cloth or the like, or a sheet body made of a member having a void inside a porous thin plate or the like. More preferably, the carrier is permeable.

担体の形状は、特に限定されないが、シート状のものであれば1層の空間1内に設置が容易である。また、全体の厚さが2mm以下であれば、担体の数は1つに限定されるものではなく、2以上設けられていてもよい。
1層以上の空間1を形成する複数の板状部材2は、図2に例示すような筐体3内に収容され且つ筐体3内で固定されているとよい。筐体3は、図3(a),(b)に示すように、板状の平板10と側板11とを有し、板状部材2を収容可能な内部空間を形成している。筐体3には、透過性を有する材質のものが好適に用いられる。
The shape of the carrier is not particularly limited, but it can be easily installed in one layer of space 1 if it is a sheet. If the total thickness is 2 mm or less, the number of carriers is not limited to one, and two or more carriers may be provided.
The plurality of plate-like members 2 forming the space 1 having one or more layers are preferably accommodated in a housing 3 as illustrated in FIG. 2 and fixed in the housing 3. As shown in FIGS. 3A and 3B, the housing 3 includes a plate-like flat plate 10 and a side plate 11, and forms an internal space in which the plate-like member 2 can be accommodated. The casing 3 is preferably made of a transparent material.

板状部材2は、鉛直方向、水平方向又は傾斜して配置することができる。
板状部材2を鉛直方向又は傾斜して配置する場合、板状部材2の上端から下端に向かって培養液を供給し、培養液を上下方向に流下させる。
板状部材2が鉛直方向又は傾斜して配置される場合、板状部材2により形成される空間1は、上端、下端、左右両端が開いた状態でもよく、左右両端が閉塞された構造や、図2に示すように筐体3等に収容されて封止されていてもよい。具体的には例えば、図3(a)に示すように、板状部材2を収容する筐体3の側板11が板状部材2,2間を閉塞していてもよいし、図3(b)に示すように、板状部材2,2の側端部との間に隙間を設けていてもよい。板状部材2,2の側端部が閉じられている場合は、筐体3と各板状部材2が管状部材を構成している。
The plate-like member 2 can be arranged in the vertical direction, the horizontal direction, or inclined.
When the plate-like member 2 is arranged vertically or inclined, the culture solution is supplied from the upper end to the lower end of the plate-like member 2 and the culture solution is caused to flow down in the vertical direction.
When the plate-like member 2 is arranged in the vertical direction or inclined, the space 1 formed by the plate-like member 2 may be in a state where the upper end, the lower end, and the left and right ends are open, As shown in FIG. 2, it may be accommodated in the housing 3 or the like and sealed. Specifically, for example, as shown in FIG. 3A, the side plate 11 of the housing 3 that accommodates the plate-like member 2 may block between the plate-like members 2 and 2, or FIG. ), A gap may be provided between the side end portions of the plate-like members 2 and 2. When the side ends of the plate-like members 2 and 2 are closed, the housing 3 and each plate-like member 2 constitute a tubular member.

板状部材2を水平方向に配置する場合には、例えば図2に示すように、供給部4と培養液を排出する導出部5を除いて閉じられた筐体3内に板状部材2を収容して循環流路7を接続し、培養液をポンプP等によって筐体3の供給部4から供給して、培養液を効率よく循環させるとよい。この場合において、筐体3の培養液の導出部5において培養液を吸引し、培養液の流動を更に円滑にすることもできる。また、流路をらせん状にして流速を制御することもできる。   When the plate-like member 2 is arranged in the horizontal direction, for example, as shown in FIG. 2, the plate-like member 2 is placed in a closed casing 3 except for the supply unit 4 and the lead-out unit 5 that discharges the culture solution. It is good to circulate the culture solution efficiently by accommodating the circulation channel 7 and supplying the culture solution from the supply unit 4 of the housing 3 by the pump P or the like. In this case, the culture fluid can be sucked in the culture fluid outlet 5 of the housing 3 to further facilitate the flow of the culture fluid. The flow rate can also be controlled by spiraling the flow path.

培養液は、空間1を略満たすように供給される。したがって、微生物を付着させた板状部材2の内壁2a又は板状部材2間に担体が配された場合の担体は、培養液の供給中は液相内に配されたに等しい状態となる。空間1が培養液で満たされていると、板状部材2及び/又は担体に付着した微生物に効率よく培養液が供給され、微生物が安定して増殖する。   The culture solution is supplied so as to substantially fill the space 1. Therefore, the carrier in the case where the carrier is arranged between the inner wall 2a of the plate-like member 2 or the plate-like member 2 to which microorganisms are attached is in a state equivalent to that arranged in the liquid phase during the supply of the culture solution. When the space 1 is filled with the culture solution, the culture solution is efficiently supplied to the microorganisms attached to the plate-like member 2 and / or the carrier, and the microorganisms are stably propagated.

空間1内で微細藻類等の微生物の安定した細胞増殖を維持し、ガス(CO)交換をしやすくするために必要な最小限の水分及び/又は養分を与えるためには、植え付け量にもよるが、0.5m以上の板状部材2及び/又は担体の場合は、当初は1000mL/h/m以上、その後は徐々に増加させ5000mL/h/m2の流速で培養液を流すことが必要である。このため、培養液の流速が1500mL/h/mに至るまでは、流速の増加に伴い微生物の流出量も上昇するが、6000mL/h/m以上では流出量の伸びは鈍化する。好ましくは1500mL/h/m以上である。なお、培養液の流速は、板状部材2の内壁2a又は担体の表面の任意の箇所において測定した値である。 In order to maintain the stable cell growth of microorganisms such as microalgae in space 1 and to provide the minimum moisture and / or nutrients necessary to facilitate gas (CO 2 ) exchange, According, but for 0.5 m 2 or more plate members 2 and / or carriers, initially 1000 mL / h / m 2 or more, then the flow of culture solution at a flow rate of 5000 mL / h / m 2 gradually increased It is necessary. For this reason, until the flow rate of the culture solution reaches 1500 mL / h / m 2 , the outflow amount of microorganisms increases as the flow rate increases, but the increase in outflow amount slows down at 6000 mL / h / m 2 or more. Preferably it is 1500 mL / h / m 2 or more. The flow rate of the culture solution is a value measured at an arbitrary location on the inner wall 2a of the plate-like member 2 or the surface of the carrier.

一方、流速が大きすぎると、藻類等の微生物が板状部材2の内壁2a及び/又は担体に固着し難くなり、増殖率が低下する、養液相が厚くなりCOの交換が行い難くなる、又は物理的刺激により藻類等の微生物にストレスがかかる、といった問題が生じる。
培養液は、連続的に供給することもできるし、間欠的に供給してもよい。連続的に供給するとは、所望の量の微生物が得られるまで培養液を止めることなく供給することである。
On the other hand, if the flow rate is too high, microorganisms such as algae are difficult to adhere to the inner wall 2a of the plate-like member 2 and / or the carrier, the growth rate decreases, the nutrient solution phase becomes thick, and it becomes difficult to exchange CO 2. Or a problem that stress is applied to microorganisms such as algae due to physical stimulation.
The culture solution can be supplied continuously or intermittently. To supply continuously is to supply the culture solution without stopping until a desired amount of microorganisms is obtained.

なお、培養液としては、微生物を通常の方法により培養して、微生物の濃度を高めることが可能な培地の希釈液であれば、特に制限されず、培地としては、例えばCHU培地、JM培地、MDM培地などの一般的な無機培地を用いることが出来る。さらに、培地としては、ガンボーグB5培地、BG11培地、HSM培地の各種培地の希釈液が好ましい。無機培地には、窒素源としてCa(NO・4HOやKNO、NHClが、その他の主要な栄養成分としてKHPOやMgSO・7HO、FeSO・7HOなどが含まれる。また、培地には、微生物の生育に影響を与えない抗生物質等を添加してもよい。培地のpHは4〜10が好ましい。また、可能な場合には、各種産業から排出される廃水等も利用してよい。 The culture solution is not particularly limited as long as it is a diluted solution of a medium capable of increasing the concentration of microorganisms by culturing microorganisms by an ordinary method. Examples of the culture medium include CHU medium, JM medium, A general inorganic medium such as an MDM medium can be used. Furthermore, as the culture medium, dilute solutions of various media such as Gamborg B5 medium, BG11 medium, and HSM medium are preferable. In the inorganic medium, Ca (NO 3 ) 2 .4H 2 O, KNO 3 , and NH 4 Cl are used as nitrogen sources, and KH 2 PO 4 , MgSO 4 .7H 2 O, and FeSO 4 .7H are used as other main nutrient components. 2 O and the like are included. Moreover, you may add the antibiotics etc. which do not affect the growth of microorganisms to a culture medium. The pH of the medium is preferably 4-10. If possible, wastewater discharged from various industries may be used.

本発明の方法において、培養液は炭酸ガスを含むことが好ましい。培養液が炭酸ガスを十分含んでいると、微生物の培養を行う間、空間1内に炭酸ガスを補充する必要がなく、装置を簡略化することができる。   In the method of the present invention, the culture solution preferably contains carbon dioxide gas. When the culture solution sufficiently contains carbon dioxide, it is not necessary to replenish carbon dioxide in the space 1 during the cultivation of microorganisms, and the apparatus can be simplified.

培養液は、具体的には、例えば図2に示すように、空間1の上方又は一方に設けられた供給部4から供給される。供給部4には循環流路7が接続されており、循環流路7を介して接続された不図示の培養液貯留タンク及び養分補給タンクから供給できるようになっていてもよい。   Specifically, for example, as shown in FIG. 2, the culture solution is supplied from a supply unit 4 provided above or on one side of the space 1. A circulation channel 7 is connected to the supply unit 4 and may be supplied from a culture solution storage tank and a nutrient replenishment tank (not shown) connected via the circulation channel 7.

培養液の供給能力は、培養液の空間1内の流下速度を5mL/h/m以上から6000mL/h/mまでとし得るものであることが望ましい。この変動幅は微生物の増殖に応じたものである。たとえばクロレラにおいては成長して4分裂し、16時間でそれぞれが分裂前の大きさに成長する。分裂当初は、養分は少量で足りるが成長期には十分に与えることが必要である。これにより、微生物の周囲を常に新鮮な培養液で満たして増殖を維持しつつ、微生物を培養液とともに連続して自然流下させることができる。また、随時、培養液の流速を変化させたり、担体に振動等の衝撃を与えたりすることにより、担体に付着している微生物の表層部を強制的に落下させると、下層部の光合成が活発になり増殖し回収量を増加させることができる。 Supply capacity of the culture, it is desirable to flow down speed in the space 1 of the culture solution as it is capable of from 5mL / h / m 2 or more to 6000mL / h / m 2. This fluctuation range corresponds to the growth of microorganisms. For example, in chlorella, it grows and divides into four, and in 16 hours each grows to the size before division. At the beginning of division, a small amount of nutrients is sufficient, but it is necessary to give enough during the growth period. Thereby, the microorganisms can be allowed to flow naturally together with the culture solution while always maintaining the growth by always filling the periphery of the microorganism with a fresh culture solution. In addition, when the surface layer of microorganisms adhering to the carrier is forcibly dropped by changing the flow rate of the culture solution or applying an impact such as vibration to the carrier, photosynthesis in the lower layer is active. Can grow and increase the amount recovered.

本工程における微生物の培養は、光照射しながら行うことが好ましい。
光照射部は、板状部材2の内壁2a及び/又は不図示の担体に光を照射する部材であり、例えば、光源として板状をなす蛍光灯、有機EL又はLED等を備えており、適宜、増殖に適した波長や光量を有する光を照射するように構成している。光照射部が照射する光の波長は、380〜780nmの範囲であればよい。赤色光のみで増殖が可能な微生物に対しては、光照射部は光合成に適した赤色光のみを照射できるとよい。なお、クロレラ等の微生物は赤色光のみで良好に増殖し得る。また、光照射部による光の照射は、連続照射でなくとも、100〜10,000Hzの間欠照射光であってもよい。更に、培養システムを屋外に設置し、太陽光を利用することも可能である。屋内設置のまま、太陽光を導入し、人工光と組み合わせることも有効である。
The culture of the microorganism in this step is preferably performed while irradiating with light.
The light irradiation unit is a member that irradiates light to the inner wall 2a of the plate-like member 2 and / or the carrier (not shown), and includes, for example, a plate-like fluorescent lamp, organic EL, or LED as a light source. It is configured to irradiate light having a wavelength and light amount suitable for proliferation. The wavelength of the light irradiated by the light irradiation unit may be in the range of 380 to 780 nm. For microorganisms that can grow only with red light, the light irradiation unit should be able to irradiate only red light suitable for photosynthesis. Microorganisms such as chlorella can grow well only with red light. Further, the light irradiation by the light irradiation unit may be intermittent irradiation light of 100 to 10,000 Hz, instead of continuous irradiation. Furthermore, it is possible to install the culture system outdoors and use sunlight. It is also effective to introduce sunlight and combine it with artificial light while it is installed indoors.

本工程では、空間1の透明性を有する板状部材2に光照射しながら微生物を培養することができる。空間1を形成する板状部材2が全て透光性を有する板状部材2の場合、空間1の一方から光を照射すればすべての層に光が届くが、例えば2層の空間1を形成する中心の板状部材2が透光性を有しない場合、2つの空間1の外側から光を照射する必要がある。
2以上の空間1の外側の一方を形成する板状部材2として透光性を有しない板状部材2を用いる場合、その透光性を有しない板状部材2の外側からの光照射は不要である。
In this step, microorganisms can be cultured while irradiating the plate-like member 2 having transparency of the space 1 with light. When all the plate-like members 2 forming the space 1 are plate-like members 2 having translucency, if light is irradiated from one side of the space 1, light reaches all layers, but for example, a two-layer space 1 is formed. When the central plate-like member 2 that does not have translucency, it is necessary to irradiate light from outside the two spaces 1.
When the plate-like member 2 having no translucency is used as the plate-like member 2 forming one of the outer sides of the two or more spaces 1, light irradiation from the outside of the plate-like member 2 having no translucency is unnecessary. It is.

(1−2)空間1内を加圧して、空間1内に蓄積又は滞留している微生物を回収する工程
本工程では、培養液や気体の供給により空間1内の板状部材2の内壁2a及び担体に圧力をかけ、微生物を板状部材2の内壁2a及び/又は担体から剥離させ、用意しておいた流下タンク等の容器の培養液中に沈殿させ、更に前記容器の下方に設置した収穫容器に取り込む方法で微生物を回収する。板状部材2の内壁2a及び/又は担体に定着している微生物の表層を削り取ることで下層部の光合成を活性化し、分裂増殖を開始させることができる。以上の動作を繰り返すことにより、微生物を連続的に培養しつつ、培養された微生物が収穫される。
(1-2) Step of pressurizing the space 1 and recovering microorganisms accumulated or staying in the space 1 In this step, the inner wall 2a of the plate-like member 2 in the space 1 is supplied by supplying a culture solution or gas. Then, pressure is applied to the carrier, the microorganisms are peeled off from the inner wall 2a of the plate-like member 2 and / or the carrier, precipitated in a culture solution in a prepared container such as a falling tank, and further placed below the container. Microorganisms are recovered by taking them into a harvesting container. By scraping off the surface layer of microorganisms fixed on the inner wall 2a of the plate-like member 2 and / or the carrier, photosynthesis in the lower layer can be activated and divisional proliferation can be started. By repeating the above operation, the cultured microorganisms are harvested while continuously culturing the microorganisms.

培養液の供給により空間1内を加圧する場合、培養液の流速は微生物の培養時より早い1200mL/h/m以上が好ましく、2000mL/h/m以上がより好ましい。
気体の供給により空間1内を加圧する場合、気体の種類は特に限定されず、空気、ハロゲンガスなど、微生物の増殖に影響のないものを用いることができる。気体の供給量は、0.1m/h以上が好ましい。
When pressurizing the interior space 1 by the supply of the culture solution, the flow rate of the culture early 1200mL / h / m 2 or more preferably from the culture of the microorganism, 2000mL / h / m 2 or more is more preferable.
When pressurizing the space 1 by supplying gas, the type of gas is not particularly limited, and a gas that does not affect the growth of microorganisms, such as air or halogen gas, can be used. The gas supply amount is preferably 0.1 m 3 / h or more.

(2)空間1から排出される培養液の一部または全部から微生物を回収する工程
培養された微生物を回収する工程では、培養液により培養液の流れを早くする等して微生物を板状部材2の内壁2a及び/又は担体から剥離させ、用意しておいた流下タンク等の容器6の培養液中に沈殿させ、更に前記容器6とは別に用意した不図示の収穫容器に取り込む方法で微生物を回収する。
(2) Step of recovering microorganisms from a part or all of the culture solution discharged from space 1 In the step of recovering the cultured microorganisms, the microorganisms are removed from the plate member by accelerating the flow of the culture solution using the culture solution. The microorganisms are peeled off from the inner wall 2a and / or the carrier 2 and settled in a culture solution in a prepared container 6 such as a falling tank and further taken into a harvesting container (not shown) prepared separately from the container 6. Recover.

本工程の実施には、図2に示す流下タンク6を用いることができる。
流下タンク6は、空間1から流出した微生物を含む培養液の貯留槽であり、空間1から流出する培養液を受けられるようになっている。空間1から流出した微生物を含む培養液は、流下タンク6において微生物を高濃度に含む沈殿と、微生物を殆ど含まない上清である培養液とに分離される。
収穫容器は、流下タンク6で分離された微生物を高濃度に含む沈殿を収容する容器である。
For the implementation of this step, the falling tank 6 shown in FIG. 2 can be used.
The flow-down tank 6 is a reservoir for a culture solution containing microorganisms that have flowed out of the space 1, and can receive the culture solution flowing out of the space 1. The culture solution containing microorganisms flowing out from the space 1 is separated in the flow-down tank 6 into a precipitate containing microorganisms at a high concentration and a culture solution that is a supernatant containing almost no microorganisms.
The harvesting container is a container for storing a precipitate containing a high concentration of microorganisms separated in the falling tank 6.

(3)微生物を回収した後の培養液を再度空間1内に供給する工程
微生物を回収した後の培養液を再度空間1内に供給する工程では、流下タンク6等の容器で分離された培養液(上清液)を回収して再度空間1内に供給する。
微生物を含む培養液が図2に示す供給部4に再供給されることにより、適宜不図示の培養液貯留タンクからの培養液の供給が調整され、不図示の養分補給タンクから必要な養分が適宜供給され、培養液と共に空間1内に供給される。
(3) Step of supplying the culture solution after collecting the microorganisms into the space 1 again In the step of supplying the culture solution after collecting the microorganisms into the space 1 again, the culture separated in a container such as the falling tank 6 The liquid (supernatant liquid) is collected and supplied into the space 1 again.
When the culture solution containing microorganisms is re-supplied to the supply unit 4 shown in FIG. 2, supply of the culture solution from a culture solution storage tank (not shown) is appropriately adjusted, and necessary nutrients are supplied from a nutrient supply tank (not shown). It is appropriately supplied and supplied into the space 1 together with the culture solution.

本工程の実施においては、図2に示すような循環流路7を用いることができる。
循環流路7は、流下タンク6で分離された培養液(上清液)を回収して再度空間1内に供給する管状の部材である。循環流路7上にはポンプPが設けてあり、これにより回収された培養液を汲み上げることができる。汲み上げられた培養液は再度空間1内に供給される。再度空間1内に供給される培養液は、流下タンク6内で分離された上清であるが、微生物を含んでいてもよい。
In carrying out this step, a circulation channel 7 as shown in FIG. 2 can be used.
The circulation channel 7 is a tubular member that collects the culture solution (supernatant solution) separated in the flow-down tank 6 and supplies it again into the space 1. A pump P is provided on the circulation channel 7, and the collected culture solution can be pumped up. The pumped culture solution is supplied again into the space 1. The culture solution supplied again into the space 1 is the supernatant separated in the flow-down tank 6, but may contain microorganisms.

なお、図4に示すように、循環流路7に、連結自在な接続部8を設け、接続を解除したときには接続部8の一方を他の配管と接続して適宜培養液に養分を追加できるようになっていてもよい。また、図2に示した例では、循環流路7の途中で3方弁を用いて流下タンク6に培養した微生物を排出できる構成を示したが、上記同様、循環流路7に接続部8を設け、接続を解除した一方から微生物を直接排出できるようにしてもよい。   In addition, as shown in FIG. 4, the connection part 8 which can be connected is provided in the circulation flow path 7, and when a connection is cancelled | released, one side of the connection part 8 can be connected with another piping, and a nutrient can be added suitably to a culture solution. It may be like this. In the example shown in FIG. 2, a configuration in which microorganisms cultured in the flow-down tank 6 can be discharged in the middle of the circulation channel 7 using a three-way valve is shown. May be provided so that microorganisms can be discharged directly from one of the disconnected ends.

培養システムで培養対象とする微生物は特に限定されず、例えば、クロレラ(系統学的に分けられたパラクロレラを含む)、セネデスムス、ボトリオコッカス、スティココッカス、ナンノクロリス、デスモデスムス等の微細藻類等が挙げられ、より具体的には、Chlorella kessleri、Chlorella vulgaris、Chlorella saccharophila等のクロレラ;分子系統解析によりトレボキシア藻網として分類されるParachlorella kessleri(Chlorella kessleri);セネデスムス属に属するSenedesmus obliquus;スティココッカス属に属するStichococcus ampliformis、ナンノクロリス属に属するNannochloris bacillaris;デスモデスムス属に属するDesmodesmus subspicatus等が挙げられる。その他、付着性の珪藻やシュードコリシスティス、又はシアノバクテリア、更には小型の紅藻や緑藻も可能である。また、この中には、遺伝子組換えしたシアノバクテリアや微細藻類も含まれる。また、培養システムを用いて、例えば、オーランチオキトリウム等の光合成を行わない卵菌類を、有機廃液を用いて培養することも可能である。   Microorganisms to be cultured in the culture system are not particularly limited. For example, microalgae such as chlorella (including phylogenetically separated parachlorella), Senedesmus, Botryococcus, Sticococcus, Nannochloris, desmodesmus, etc. More specifically, Chlorella kessleri, Chlorella vulgaris, Chlorella saccharophila, and other chlorella; Stichiococcus ampliformis belonging to the genus, N belonging to the genus Nannochloris nnochloris bacillaris; Desmodesmus subspicatus like belonging to Desumodesumusu genus. In addition, adherent diatoms, Pseudocollistis, cyanobacteria, and even small red and green algae are possible. This also includes genetically modified cyanobacteria and microalgae. It is also possible to cultivate oomycetes that do not perform photosynthesis, such as auranthiochytrium, using an organic waste liquid, using a culture system.

本発明においては、培養対象とする微生物は光合成微生物であることが好ましく、その場合、培養システムは光照射部が必須である。
なお、培養システムを用いて光合成を行わずに増殖できる微生物を培養する場合は、光照射部はなくてもよい。
In the present invention, the microorganism to be cultured is preferably a photosynthetic microorganism. In this case, the culture system requires a light irradiation unit.
In addition, when cultivating a microorganism that can grow without performing photosynthesis using a culture system, the light irradiation unit may not be provided.

本発明の微生物の培養方法によれば、空間1を1mm以上2mm以下にして薄い帯状又は偏平な空間とし、微生物の群密度を上げやすい状態にして培養液で満たせるようにしている。したがって、採光量・炭酸ガス量・培養液量を無駄なく利用して微生物の収集効率を向上させるという効果を奏する。また、空間1に連続的に培養液を供給できるようにしているため、培養液を自然流下させる場合に比べて培養液の流速をコントロールし易くなる。
また、図2又は図4に示したような閉管路を形成する微生物培養装置を用いることにより、培養液を流路や微生物の培養領域以外に飛散させたりすることなく、原料を効率的に使用することができ、微生物の培養効率を向上させることができるという効果を奏する。
According to the microorganism culturing method of the present invention, the space 1 is 1 mm or more and 2 mm or less to form a thin strip or flat space so that the group density of microorganisms can be easily increased and filled with the culture solution. Therefore, there is an effect that the collection efficiency of microorganisms is improved by using the amount of collected light, the amount of carbon dioxide gas, and the amount of culture solution without waste. In addition, since the culture solution can be continuously supplied to the space 1, it is easier to control the flow rate of the culture solution than when the culture solution is allowed to flow naturally.
In addition, by using a microorganism culture apparatus that forms a closed channel as shown in FIG. 2 or FIG. 4, the raw material can be used efficiently without scattering the culture solution outside the flow path and the microorganism culture region. It is possible to improve the culture efficiency of microorganisms.

1・・・空間
2・・・板状部材
2a・・・内壁
DESCRIPTION OF SYMBOLS 1 ... Space 2 ... Plate-shaped member 2a ... Inner wall

Claims (11)

2以上の透光性を有する板状部材、又は、1以上の透光性を有する板状部材及び1以上の透光性を有しない板状部材を用いて形成される単層又は複層の空間内で、前記空間を形成する板状部材の内壁、及び/又は、前記空間内に備えられた担体に微生物を付着させ、前記微生物を付着させた板状部材及び/又は前記微生物を付着させた担体に、培養液を供給して微生物を培養する工程を有し、
前記空間を形成する板状部材の間隔が1〜2mmである微生物の連続培養方法。
A single layer or multiple layers formed by using a plate-like member having two or more translucency, or a plate-like member having one or more translucency and one or more plate-like members having no translucency In the space, microorganisms are attached to the inner wall of the plate-like member forming the space and / or the carrier provided in the space, and the plate-like member to which the microorganism is attached and / or the microorganism is attached. Supplying the culture medium to the carrier and culturing the microorganism,
A method for continuously culturing microorganisms, wherein an interval between plate-like members forming the space is 1 to 2 mm.
前記微生物を培養する工程において、前記空間を培養液で満たす請求項1に記載の微生物の連続培養方法。   The method for continuously culturing microorganisms according to claim 1, wherein, in the step of culturing the microorganisms, the space is filled with a culture solution. 前記板状部材の一方又は両方の面側から光照射する請求項1又は2に記載の微生物の連続培養方法。   The method for continuously culturing microorganisms according to claim 1 or 2, wherein light is irradiated from one or both sides of the plate-like member. 前記培養液が炭酸ガスを含む請求項1〜3のいずれか一項に記載の微生物の連続培養方法。   The method for continuous culture of microorganisms according to any one of claims 1 to 3, wherein the culture solution contains carbon dioxide gas. 前記透光性を有する板状部材が炭酸ガス透過性である請求項1〜4のいずれか一項に記載の微生物の連続培養方法。   The continuous culture method for microorganisms according to any one of claims 1 to 4, wherein the plate member having translucency is carbon dioxide permeable. 前記空間から排出された培養液を、再び前記空間に供給して微生物の培養を行う請求項1〜5のいずれか一項に記載の微生物の連続培養方法。   The method for continuously culturing microorganisms according to any one of claims 1 to 5, wherein the culture solution discharged from the space is supplied to the space again to culture the microorganism. 前記空間から排出される培養液の一部または全部から微生物を回収する工程を有する請求項1〜6のいずれか一項に記載の微生物の連続培養方法。   The method for continuously culturing microorganisms according to any one of claims 1 to 6, further comprising a step of collecting the microorganisms from a part or all of the culture solution discharged from the space. 前記空間内を加圧して、当該空間内に蓄積又は滞留している微生物を回収する工程を有する請求項1〜7のいずれか一項に記載の微生物の連続培養方法。   The method for continuously culturing microorganisms according to any one of claims 1 to 7, further comprising a step of pressurizing the space and recovering microorganisms accumulated or staying in the space. 前記板状部材は、鉛直方向、水平方向又は傾斜して配置されている請求項1〜8のいずれか一項に記載の微生物の連続培養方法。   The said plate-shaped member is the continuous culture | cultivation method of the microorganisms as described in any one of Claims 1-8 arrange | positioned in the perpendicular direction, the horizontal direction, or inclining. 前記空間を形成する板状部材の内壁の少なくとも一方に、高さ10〜100μmの突起が形成されている請求項1〜9のいずれか一項に記載の微生物の連続培養方法。   The method for continuously culturing microorganisms according to any one of claims 1 to 9, wherein a protrusion having a height of 10 to 100 µm is formed on at least one of the inner walls of the plate-like member forming the space. 微生物が、微細藻類である請求項1〜10いずれか一項に記載の微生物の連続培養方法。   The method for continuously culturing a microorganism according to any one of claims 1 to 10, wherein the microorganism is a microalgae.
JP2017155531A 2017-08-10 2017-08-10 Continuous culture method of microbes Pending JP2019033678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155531A JP2019033678A (en) 2017-08-10 2017-08-10 Continuous culture method of microbes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155531A JP2019033678A (en) 2017-08-10 2017-08-10 Continuous culture method of microbes

Publications (1)

Publication Number Publication Date
JP2019033678A true JP2019033678A (en) 2019-03-07

Family

ID=65635889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155531A Pending JP2019033678A (en) 2017-08-10 2017-08-10 Continuous culture method of microbes

Country Status (1)

Country Link
JP (1) JP2019033678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195646A1 (en) * 2019-03-26 2020-10-01 株式会社村田製作所 Microorganism culture kit
WO2022186001A1 (en) * 2021-03-01 2022-09-09 本田技研工業株式会社 Culture apparatus and culture method
JP7440910B2 (en) 2020-10-30 2024-02-29 株式会社BrainGild Culture device and method for manufacturing culture target

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315382A (en) * 1989-06-14 1991-01-23 Terumo Corp Base material and base material unit for culturing cell, bioreactor and external circulation type therapeutic device
JPH04190782A (en) * 1990-11-27 1992-07-09 Mitsubishi Heavy Ind Ltd Bioreactor
JPH05501953A (en) * 1990-09-19 1993-04-15 ベリー,エリック・スコット Continuous high-density cell culture system
JPH08280377A (en) * 1995-04-14 1996-10-29 Dainippon Printing Co Ltd Culturing apparatus
JPH10150974A (en) * 1996-11-22 1998-06-09 Kaiyo Bio Technol Kenkyusho:Kk Apparatus for culturing photosynthetic microorganism and culturing method
JP2011062123A (en) * 2009-09-16 2011-03-31 Hamamatsu Photonics Kk Method for culturing planktonic microalgae
JP2012157274A (en) * 2011-01-31 2012-08-23 Fujifilm Corp Method for adherent culturing of photosynthetic microorganism
JP2013085534A (en) * 2011-10-20 2013-05-13 Eco Renaissance Entec:Kk Method for culturing microalgae
JP2016005439A (en) * 2014-06-20 2016-01-14 学校法人東京薬科大学 Culture apparatus and culture method of microalgae
WO2016158039A1 (en) * 2015-03-31 2016-10-06 三井化学株式会社 Medical instrument, fluorinated cyclic olefin polymer, fluorinated cyclic olefin polymer composition, and cell culture method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315382A (en) * 1989-06-14 1991-01-23 Terumo Corp Base material and base material unit for culturing cell, bioreactor and external circulation type therapeutic device
JPH05501953A (en) * 1990-09-19 1993-04-15 ベリー,エリック・スコット Continuous high-density cell culture system
JPH04190782A (en) * 1990-11-27 1992-07-09 Mitsubishi Heavy Ind Ltd Bioreactor
JPH08280377A (en) * 1995-04-14 1996-10-29 Dainippon Printing Co Ltd Culturing apparatus
JPH10150974A (en) * 1996-11-22 1998-06-09 Kaiyo Bio Technol Kenkyusho:Kk Apparatus for culturing photosynthetic microorganism and culturing method
JP2011062123A (en) * 2009-09-16 2011-03-31 Hamamatsu Photonics Kk Method for culturing planktonic microalgae
JP2012157274A (en) * 2011-01-31 2012-08-23 Fujifilm Corp Method for adherent culturing of photosynthetic microorganism
JP2013085534A (en) * 2011-10-20 2013-05-13 Eco Renaissance Entec:Kk Method for culturing microalgae
JP2016005439A (en) * 2014-06-20 2016-01-14 学校法人東京薬科大学 Culture apparatus and culture method of microalgae
WO2016158039A1 (en) * 2015-03-31 2016-10-06 三井化学株式会社 Medical instrument, fluorinated cyclic olefin polymer, fluorinated cyclic olefin polymer composition, and cell culture method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195646A1 (en) * 2019-03-26 2020-10-01 株式会社村田製作所 Microorganism culture kit
JPWO2020195646A1 (en) * 2019-03-26 2021-12-23 株式会社村田製作所 Microbial culture kit
JP7238969B2 (en) 2019-03-26 2023-03-14 株式会社村田製作所 Microbial culture kit
JP7440910B2 (en) 2020-10-30 2024-02-29 株式会社BrainGild Culture device and method for manufacturing culture target
WO2022186001A1 (en) * 2021-03-01 2022-09-09 本田技研工業株式会社 Culture apparatus and culture method

Similar Documents

Publication Publication Date Title
JP6152933B2 (en) Chlorella culture system and chlorella culture method
BR112015008979B1 (en) PHOTOBIORREACTOR AND PROCESS FOR CROP AND MICRO ALGAE GROWTH
CN1860223A (en) Cell cultivation and breeding method.
CN105238675A (en) Photobioreactor
CN108060058B (en) Photobioreactor for high-density microalgae cultivation
RU2678129C2 (en) Photobioreactor for co2 biosequestration with immobilised biomass of algae or cyanobacteria
JP2019033678A (en) Continuous culture method of microbes
CN111647501A (en) Multilayer stacking adsorption type microalgae biomembrane photobioreactor based on light guide carrier
CN104328031A (en) Surface growth type culture plate, culture unit and culture system and method
CN103289888A (en) Inserting-plate type microalgae semi-dry solid adherent culture device
WO2019009221A1 (en) Culturing device, carrier, and culture subject collection method
JP2011062123A (en) Method for culturing planktonic microalgae
CN104328030A (en) Surface growth type culture plate having sandwich structure, surface growing culture system and surface growing culture method
TWI674318B (en) Microorganisms culture system
CN204298382U (en) Overlay film perforated plate construction superficial growth formula culture plate, cultivation unit and culture systems
JP2019033682A (en) Microbe culture system and microbe culture method
KR101654593B1 (en) Method for mass culturing photosynthetic microalgae by additional supply of environmental water
CN105483001A (en) Photobioreactor system used for air purification
JP2019010037A (en) Culture and recovery method of microorganism
JP2019037182A (en) Microorganism culture system
CN204151337U (en) The surface growth formula photosynthetic microorganism culture plate of nucleocapsid structure, cultivate unit and system
JP2019004809A (en) Method for culturing microorganisms
US20200199505A1 (en) Production process for high purity algae
CN104974976B (en) A kind of immobilized cultivation method of cell
WO2020213632A1 (en) Culture device, carrier supporting device, and method for producing culture target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102