JPH04190782A - Bioreactor - Google Patents

Bioreactor

Info

Publication number
JPH04190782A
JPH04190782A JP2321237A JP32123790A JPH04190782A JP H04190782 A JPH04190782 A JP H04190782A JP 2321237 A JP2321237 A JP 2321237A JP 32123790 A JP32123790 A JP 32123790A JP H04190782 A JPH04190782 A JP H04190782A
Authority
JP
Japan
Prior art keywords
algae
gas
vessel
container
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321237A
Other languages
Japanese (ja)
Inventor
Hiroyo Matsumoto
松本 曠世
Norio Shioji
塩地 則夫
Akihiro Hamazaki
彰弘 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2321237A priority Critical patent/JPH04190782A/en
Publication of JPH04190782A publication Critical patent/JPH04190782A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes

Abstract

PURPOSE:To obtain a bioreactor capable of converting CO2 into O2 by photosynthesis by passing fine algae and culture medium into a vessel in which a gas- exchangeable hollow fiber membrane and optical fiber having high light permeable property are integrated, feeding CO2 from the side wall and irradiating the optical fiber with light from light source. CONSTITUTION:In a bioreactor capable of converting CO2 into O2 utilizing photosynthesis of fine algae, the fine algae and culture medium are passed through a vessel in which a number of hollow yarn membranes 6 having high light permeability and gas-exchangeable and a number of optical fibers 7 closely arranged to the vicinity thereof are integrated and CO2 riched gas inlet 3 communication a gas chamber of a vessel is provided behind the flow direction of side wall of the vessel and O2 riched gas inlet 4 communicating with the gas chamber is provided on the upper stream of flow direction of side wall of the vessel and a feed port 1 for feeding fine algae and culture liquid into a hollow yarn membrane 6 is provided on one end of the vessel and outlet 2 is provided on other end of vessel and the fine algae is irradiated with light from light source 8. Thereby CO2 is converted to O2 utilizing photosynthesis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイオリアクタに関し、特に微細藻類の光合成
を利用してC02を02に変換するバイオリアクタに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bioreactor, and particularly to a bioreactor that converts CO2 into O2 using photosynthesis of microalgae.

〔従来の技術〕[Conventional technology]

微細藻類の光合成機能を利用するバイオリアクタは今後
下記2万面に応用されることが考えられている。
It is thought that bioreactors that utilize the photosynthetic function of microalgae will be applied to the following 20,000 areas in the future.

(1)宇宙における生命維持装置として、人間や他の動
物の排出したCD2を02に変換するガス交換を行うと
ともに、食糧や飼料を生産する装置(閉鎖系生命維持シ
ステム) (2)  火力発電所から排出したCO2を固定する装
置。
(1) As a life support system in space, a device that performs gas exchange to convert CD2 emitted by humans and other animals into 02, and also produces food and feed (closed life support system) (2) Thermal power plant A device that fixes CO2 emitted from

従来の微細藻類の光合成機能を利用するバイオリアクタ
の概略図を第5図に示す。
FIG. 5 shows a schematic diagram of a conventional bioreactor that utilizes the photosynthetic function of microalgae.

すなわち、従来のバイオリアクタは本質的に藻類培養槽
20及びガス交換器19の二つの要素より構成され、藻
類培養槽20は光エネルギーを推進力とする下記〔1)
の反応にてCO2、H2O及び肥料(P、N主成分)よ
り、02と藻体(主成分は、炭素、窒素、酸素、燐、水
素)を得るものである。
That is, the conventional bioreactor essentially consists of two elements: an algae culture tank 20 and a gas exchanger 19, and the algae culture tank 20 uses light energy as the driving force [1] below.
In this reaction, 02 and algae (main components are carbon, nitrogen, oxygen, phosphorus, and hydrogen) are obtained from CO2, H2O, and fertilizer (main components are P and N).

CD□十H,O+肥料十光エネルギー →02+藻体  (1) 又、ガス交換器19は人工肺と呼ばれる疎水性多孔質膜
を中空糸状に成形したものをモジュール状に加圧したも
ので、中空糸の内外の二酸化炭素及び酸素の濃度差を利
用して、(1〕式に必要な二酸化炭素を供給すると共に
、(1〕式で発生した酸素を排出する機能をもつもので
ある。(1)式に必要な光エネルギーは光源8からガラ
スやアクリル等で作られている培養槽本体21の表面を
通じて供給され、肥料(液体状)は肥料タンク16から
肥料注入ポンプ14にて肥料注入ライン15を介して培
養槽本体21に送られる。
CD □ 10H, O + Fertilizer 10 Light Energy → 02 + Algae (1) The gas exchanger 19 is a pressurized module made of a hydrophobic porous membrane called an oxygenator formed into a hollow fiber shape. Utilizing the difference in concentration of carbon dioxide and oxygen inside and outside the hollow fiber, it has the function of supplying the carbon dioxide necessary for equation (1) and exhausting the oxygen generated in equation (1). 1) The light energy required for the formula is supplied from the light source 8 through the surface of the culture tank body 21 made of glass, acrylic, etc., and the fertilizer (liquid) is supplied from the fertilizer tank 16 to the fertilizer injection line by the fertilizer injection pump 14. 15 to the culture tank main body 21.

また、肥料が送られると同時に、(1)式で生成した藻
体は培養槽本体21内の肥料を含む液体と一緒に藻体回
収ライン17を通じて回収される。
Further, at the same time as the fertilizer is sent, the algae produced by the formula (1) are collected through the algae collection line 17 together with the liquid containing the fertilizer in the culture tank body 21.

培養槽20内部は、攪拌器18にて充分攪拌される。微
細藻類は直径10μm程度の小さい粒子であるので培養
液中に完全に懸濁する。
The inside of the culture tank 20 is sufficiently stirred by the stirrer 18. Since microalgae are small particles with a diameter of about 10 μm, they are completely suspended in the culture solution.

培養槽20内部の培養液は藻類を含んだまま循環ポンプ
11により培養液入口1を介してガス交換器19へ送ら
れる。ガス交換器19中の中空子膜6の内径は数100
μmと微細藻類が充分通れる程大きいので、閉塞せず微
細藻はそのまま通過する。
The culture solution inside the culture tank 20 is sent to the gas exchanger 19 via the culture solution inlet 1 by the circulation pump 11 while containing algae. The inner diameter of the hollow membrane 6 in the gas exchanger 19 is several hundred
It is large enough to allow microalgae to pass through, so the microalgae can pass through without being blocked.

一方、CO2発生源24からもガス循環ポンプ23によ
りC02富化ガスがガス入口3を介してガス交換器19
に送られる。ガス交換器19ではガスと液が中空糸膜6
を介して間接接触する。
On the other hand, CO2-enriched gas is also supplied from the CO2 generation source 24 by the gas circulation pump 23 to the gas exchanger 19 via the gas inlet 3.
sent to. In the gas exchanger 19, the gas and liquid pass through the hollow fiber membrane 6.
through indirect contact.

ガス交換器19へ送られてきた培養液は(1)式の反応
によりC’0.2a度が低く 02a度が高くなってい
るので液とガス間のガス濃度差によりC02はガスから
液に、02は液からガスに移動する。
The culture solution sent to the gas exchanger 19 has a low C'0.2a degree and a high 02a degree due to the reaction of equation (1), so the C02 changes from gas to liquid due to the gas concentration difference between the liquid and gas. , 02 move from liquid to gas.

従って、ガス出口4からはCO,S度が低く02富化さ
れたガスが、一方、培養液出口2からは、0、濃度が低
くC02富化された藻体を含む培養液が出てくる。培養
液は培養槽20本体ヘリサイクルされ、02富化ガスは
02消費部25に供給される。
Therefore, from the gas outlet 4 comes a gas enriched with 02 with a low concentration of CO and S, while from the culture solution outlet 2 a culture solution containing algae with a low concentration of 0 and enriched with CO2 comes out. . The culture solution is recycled to the main body of the culture tank 20, and the 02 enriched gas is supplied to the 02 consumption section 25.

バイオリアクタの光合成速度は光強度■。が一定の場合
、光路長(光が藻体に達する距離)と藻体濃度に依存し
、光路長をできる限り小さくして、かつ藻体濃度を高く
して運転すればよいことは自明である。
The rate of photosynthesis in a bioreactor depends on the light intensity ■. When is constant, it depends on the optical path length (the distance that light reaches the algae) and the algae concentration, and it is obvious that the operation should be made with the optical path length as small as possible and the algae concentration high. .

単位藻体当りの02発発生度Kp:1.28X105[
:mol−L/(kg−cells−h)) 、光強度
I。
02 incidence per unit algal body Kp: 1.28X105 [
:mol-L/(kg-cells-h)), light intensity I.

: 20,000 [1ux ] 、吸光係数E:13
0[1/m ・(kg−cells/m3) ]の時、
円柱状バイオリアクタの半径1〔m〕を変化させた時の
藻体濃度[kg−cells/m3]に対する02発発
生度Cd  02/1−槽h〕の計算例を図表化すると
第6図のようになる。
: 20,000 [1ux], extinction coefficient E: 13
When 0 [1/m ・(kg-cells/m3) ],
An example of calculation of the 02 incidence Cd 02/1-tank h] against the algae concentration [kg-cells/m3] when the radius 1 [m] of the cylindrical bioreactor is changed is shown in Figure 6. It becomes like this.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記に示したように、バイオリアクタの光合成速度は光
強度■。一定の場合、光行路長と藻体濃度に依存し、光
路長をできる限り小さくして、かつ、藻体濃度を高くし
て運転すれば効率(単位バイオリアクタ一体積当たりの
光合成速度)がよくなる。
As shown above, the photosynthesis rate in a bioreactor depends on the light intensity■. In a certain case, efficiency (photosynthesis rate per unit bioreactor volume) will improve if the light path length is made as small as possible and the algae concentration is increased. .

従って、現状のバイオリアクタでは光合成の効率を上げ
ると、容積が小さくなるた約、総量としての光合成速度
が小さくなるという問題がある。すなわち、効率と総量
は相反し同時に満足することができないという問題があ
る。
Therefore, in current bioreactors, there is a problem in that increasing the efficiency of photosynthesis reduces the volume and therefore the total rate of photosynthesis. That is, there is a problem that efficiency and total amount are contradictory and cannot be satisfied at the same time.

従って、現状のバイオリアクタの設計では、使用目的に
見合った光合成の効率と総量を考慮して光路長と藻体濃
度を決定している。
Therefore, in the current design of bioreactors, the optical path length and algae concentration are determined by considering the efficiency and total amount of photosynthesis suitable for the purpose of use.

現状では、光路長は数センチのオーダーが限界なので藻
体濃度は1 [kg−cells/m’ 〕程度の薄い
濃度でしか培養できない。従って、藻体を回収する場合
の効率が悪い。
At present, the optical path length is limited to the order of several centimeters, so cultivation is only possible at a thin algae concentration of about 1 [kg-cells/m']. Therefore, the efficiency of collecting algal bodies is poor.

本発明は上記技術水準に鑑み、光合成効率が高く、光合
成総量の低下が殆んどないバイオリアクタを提供しよう
とするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a bioreactor with high photosynthetic efficiency and almost no decrease in the total amount of photosynthesis.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は微細藻類と培養液を流通させ、光透過性が高く
かつガス交換可能な多数の中空系膜と該中空糸膜に近接
配置した多数の光ファイバをモジュール状に一体化した
容器、該容器の側壁の流れ方向後流に設けられ、かつ該
容器の気室に連通ずるCD、富化ガス入口、該容器の側
壁の流れ方向上流に設けられ、かつ該容器の気室に連通
する0゜富化ガス出口、該容器の一端に設けられ、かつ
微細藻類と培養液を中空糸膜内に供給する供給口、該容
器の他端に設けられ、かつ増殖した微細藻類と培養液を
排出する排出口、前記光ファイバに照射する光源及び前
記供給口に培養液を補給する手段を具備することを特徴
とするバイオリアクタである。
The present invention relates to a container in which microalgae and a culture solution are distributed, and which integrates a large number of hollow membranes with high optical transparency and gas exchangeability into a module, and a large number of optical fibers arranged in close proximity to the hollow fiber membranes. an enriched gas inlet located upstream of the side wall of the container in the flow direction and communicating with the air chamber of the container;゜Enriched gas outlet, supply port provided at one end of the container to supply microalgae and culture solution into the hollow fiber membrane, provided at the other end of the container to discharge grown microalgae and culture solution The bioreactor is characterized in that the bioreactor is equipped with a discharge port for replenishing the optical fiber, a light source for irradiating the optical fiber, and a means for replenishing the supply port with a culture solution.

〔作用〕[Effect]

本発明のバイオリアクタは中空糸膜が1本1本バイオリ
アクタということができ、中空糸膜の直径は1/10m
mオーダーとすることができるので、事実上の光路長を
従来の数cIIIのオーダーから1/10mmオーダー
まで低減することが可能となる。従って第6図より下記
が言える。
The bioreactor of the present invention can be said to be a bioreactor in which each hollow fiber membrane has a diameter of 1/10 m.
Since the optical path length can be on the order of m, the actual optical path length can be reduced from the conventional order of several cIII to the order of 1/10 mm. Therefore, the following can be said from FIG.

(1)光合成効率は従来の数10倍以上が可能(2)藻
体濃度も従来の1 〔kg−cells/m3]程度か
ら、15 [kg−cells/m3:]以上まで増加
させることが可能 また、中空系膜は第2図に示したように多数を東にして
使用し、かつ、−本一本が高効率のバイオリアクタと言
えるので、光合成総量も大きいと予想される。
(1) Photosynthetic efficiency can be several tens of times higher than before (2) Algae concentration can be increased from the conventional 1 [kg-cells/m3] to over 15 [kg-cells/m3:] Moreover, as shown in FIG. 2, many hollow membranes are used facing toward the east, and each membrane can be said to be a highly efficient bioreactor, so it is expected that the total amount of photosynthesis will be large.

〔実施例〕〔Example〕

本発明の一実施態様の装置構成を第1図とそのA−A’
断面図である第2図によって説明し、該装置の主要部の
組み立てかたを第3図によって説明する。
The apparatus configuration of one embodiment of the present invention is shown in FIG.
This will be explained with reference to FIG. 2, which is a sectional view, and how to assemble the main parts of the device will be explained with reference to FIG. 3.

先ず、第3図によって本発明装置の主要部を説明する。First, the main parts of the apparatus of the present invention will be explained with reference to FIG.

円筒形容器(ポリカーボネイト等のプラスチック)26
に、光ファイバ7及び中空糸膜6を適度な本数ずつ組み
合わせたものを入れ、円筒容器26の両端の口をエポキ
シ樹脂等の接着剤27で固める。
Cylindrical container (plastic such as polycarbonate) 26
A combination of an appropriate number of optical fibers 7 and hollow fiber membranes 6 is placed in the cylindrical container 26, and the openings at both ends of the cylindrical container 26 are hardened with an adhesive 27 such as epoxy resin.

次に、円筒容器26の両端に、培養液入口1及び液室5
からなるキャップ28並びに培養液出口2及び液室5か
らなるキャップ29を接着剤でくっつけることにより本
発明装置の主要部ができ上がる。
Next, the culture solution inlet 1 and the liquid chamber 5 are placed at both ends of the cylindrical container 26.
The main part of the apparatus of the present invention is completed by attaching the cap 28 consisting of the culture medium outlet 2 and the liquid chamber 5 with an adhesive.

次に、第1図、第2図によって本発明の概略の作用を説
明する。
Next, the general operation of the present invention will be explained with reference to FIGS. 1 and 2.

藻類の増殖に必要な肥料と藻体を含む藻類培養液は培養
液入口1から液室5に入りそこで液が分散して各中空糸
膜6に入る。
An algal culture solution containing fertilizer and alga bodies necessary for the growth of algae enters a liquid chamber 5 from a culture solution inlet 1, where the liquid is dispersed and enters each hollow fiber membrane 6.

中空糸膜6内で以下のことが行われる。藻類は中空糸膜
6外よりCO7及び光エネルギーの供給を受は光合成を
行い酸素発生と藻体の増加を行う。発生した酸素は中空
糸膜6外へ出てい(。
The following occurs within the hollow fiber membrane 6. The algae receive supply of CO7 and light energy from outside the hollow fiber membrane 6, perform photosynthesis, generate oxygen, and increase the number of algae bodies. The generated oxygen exits the hollow fiber membrane 6 (.

上記の反応が中空系膜6内で行われながら、藻類培養液
は液室5を経て液出口2の方へ液は流れていく。
While the above reaction is carried out within the hollow membrane 6, the algae culture solution flows through the liquid chamber 5 toward the liquid outlet 2.

一方、ガス側供給はCO□を豊富に含むガスがガス入口
3より入り、気室9内の中空糸膜6と光ファイバ7の間
を通りガス出口4より出る。
On the other hand, on the gas side, gas rich in CO□ enters from the gas inlet 3, passes between the hollow fiber membrane 6 in the air chamber 9 and the optical fiber 7, and exits from the gas outlet 4.

この間にガスの濃度差の関係より次のようなガス移動が
起こる。CO2は中空糸膜6の外側より内側の藻類培養
液の方へ吸収される。一方、中空糸膜6内の光合成反応
で生成した酸素は中空糸膜6内より外側の気室9の方へ
排出される。
During this time, the following gas movement occurs due to the difference in gas concentration. CO2 is absorbed from the outside of the hollow fiber membrane 6 toward the algae culture solution inside. On the other hand, oxygen generated by the photosynthetic reaction within the hollow fiber membrane 6 is discharged from the inside of the hollow fiber membrane 6 toward the air chamber 9 outside.

光源8から藻類への光の供給は光ファイバ7を用いて光
を中空系膜6の外側まで誘導する。
Light is supplied from the light source 8 to the algae by guiding the light to the outside of the hollow membrane 6 using an optical fiber 7.

光ファイバ7と中空糸膜6は第2図に示すように互いに
隣合わせにする。
The optical fiber 7 and the hollow fiber membrane 6 are placed next to each other as shown in FIG.

第4図に本発明によるバイオリアクタを用いたCL処理
システムの概略図を示す。
FIG. 4 shows a schematic diagram of a CL treatment system using a bioreactor according to the present invention.

このシステムはバイオリアクタ10及び肥料を供給する
ラインと藻体を回収するラインよりなる。
This system consists of a bioreactor 10, a line for supplying fertilizer, and a line for collecting algae.

CO□発生源24からきたCO3を豊富に含むガスは、
ガス循環ポンプ23の働きによりガス入口3から入り気
室9を通りガス出口4からでる間に中空糸膜6の内側に
吸収後、藻類の光合成により 02に変換される。光合
成により発生した02は中空糸膜6内より気室9側へし
み出して来た後、ガス出口4から放出され02消費部2
5に送られる。
The CO3-rich gas coming from CO□ source 24 is
Through the action of the gas circulation pump 23, the gas enters from the gas inlet 3, passes through the air chamber 9, and exits from the gas outlet 4. After being absorbed inside the hollow fiber membrane 6, it is converted into 02 by photosynthesis of algae. 02 generated by photosynthesis seeps out from inside the hollow fiber membrane 6 to the air chamber 9 side, and is then released from the gas outlet 4 to the 02 consumption section 2.
Sent to 5.

藻類は液入口1から入り液出口2から出る間に光合成を
行いCO2の処理を行うと共に藻体自身の増殖も行う。
The algae enter through the liquid inlet 1 and exit through the liquid outlet 2, performing photosynthesis, processing CO2, and also propagating the algae themselves.

従って、液入口1の藻体の濃度よりも液出口2の藻体の
濃度の方が高くなっている。増殖した分の藻体は藻体回
収ライン17より回収されるが、液入口1で藻体の種が
必要なので、藻体の一部を分岐点12より藻体リサイク
ルライン22を経てバイオリアクタ10と循環ポンプの
作用によりリサイクルさせる。
Therefore, the concentration of algae at the liquid outlet 2 is higher than the concentration of algae at the liquid inlet 1. The grown algae are collected through the algae collection line 17, but since algae seeds are needed at the liquid inlet 1, a part of the algae is sent from the branch point 12 through the algae recycling line 22 to the bioreactor 10. and recycled by the action of a circulation pump.

また、光合成により消費される肥料は、藻類の肥料タン
ク16より肥料注入ポンプ14の働きで肥料注入ライン
15を通じて藻体リサイクルライン22との合流点に供
給される。
Further, the fertilizer consumed by photosynthesis is supplied from the algae fertilizer tank 16 to the junction with the algae recycling line 22 through the fertilizer injection line 15 by the action of the fertilizer injection pump 14.

〔発胡の効果〕[Effect of Hathu]

本発明は従来装置に比して下記の利点がある。 The present invention has the following advantages over conventional devices.

(1)光合成効率が従来の数10倍が可能中空糸中空糸
直径は1/10mmオーダーなので、光路長を従来の数
Cl1lのオーダーから、1/10mmオーダーまで低
減することが可能となる。従って、第6図より光合成効
率は従来の数10倍であることがわかる。
(1) Photosynthetic efficiency can be several tens of times higher than that of conventional hollow fibers Since the diameter of the hollow fiber is on the order of 1/10 mm, it is possible to reduce the optical path length from the conventional order of several Cl11 to the order of 1/10 mm. Therefore, it can be seen from FIG. 6 that the photosynthetic efficiency is several ten times that of the conventional method.

(2)光合成総量の低下は殆どない。(2) There is almost no decrease in the total amount of photosynthesis.

中空糸中空糸直径は1/10mmオーダーであるので、
中空糸内を流れる藻類の培養液総量は相当少なくなるが
、中空糸本数を数1000本と増加させることが可能で
あること、並びに、効率が従来の数10倍が可能である
ことを考慮すると、光合成総量の低下は殆どない。
Since the hollow fiber hollow fiber diameter is on the order of 1/10 mm,
Although the total amount of algae culture fluid flowing through the hollow fibers will be considerably smaller, considering that it is possible to increase the number of hollow fibers to several thousand, and that the efficiency can be several ten times higher than conventional methods. , there is almost no decrease in the total amount of photosynthesis.

(3)  上記より、従来のバイオリアクタでは不可能
であった光合成効率(単位バイオリアクタ体積当たりの
光合成速度)と光合成総量の両方を同時に向上させるこ
とが可能である。
(3) From the above, it is possible to simultaneously improve both the photosynthetic efficiency (photosynthetic rate per unit bioreactor volume) and the total amount of photosynthesis, which was impossible with conventional bioreactors.

(4)藻体濃度を現状の10倍以上の高い濃度で運転で
きるので藻体を回収する時の効率がよい。
(4) Since the operation can be performed at a concentration of algae that is 10 times higher than the current concentration, the efficiency when collecting algae is good.

(5)従来は2つの部品であったガス交換装置と培養槽
本体を一体化しているのでコンパクトである。
(5) It is compact because the gas exchange device and the culture tank body, which were conventionally two parts, are integrated.

(6)背型反応器で流れが層流でよいため攪拌が不要と
なる。
(6) Since the flow is laminar in the back type reactor, stirring is not necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明バイオリアクタの主要部の構成図、第2
図は第1図のA−A断面図、第3図は本発明バイオリア
クタの主要部の組み立て説明図、第4図は本発明バイオ
リアクタの作用の説明図、第5図は従来のバイオリアク
タの構成図、第6図は円柱状バイオリアクタの半径を変
化させた時の藻体濃度に対する02発発生度の計算例を
図表化した図である。
Figure 1 is a configuration diagram of the main parts of the bioreactor of the present invention, Figure 2
The figure is a sectional view taken along the line A-A in Figure 1, Figure 3 is an explanatory diagram of the assembly of the main parts of the bioreactor of the present invention, Figure 4 is an explanatory diagram of the action of the bioreactor of the present invention, and Figure 5 is a conventional bioreactor. Fig. 6 is a diagram illustrating an example of calculation of the incidence of 02 outbreaks with respect to the algae concentration when the radius of the cylindrical bioreactor is changed.

Claims (1)

【特許請求の範囲】[Claims] 微細藻類と培養液を流通させ、光透過性が高くかつガス
交換可能な多数の中空糸膜と該中空糸膜に近接配置した
多数の光ファイバをモジュール状に一体化した容器、該
容器の側壁の流れ方向後流に設けられ、かつ該容器の気
室に連通するCO_2富化ガス入口、該容器の側壁の流
れ方向上流に設けられ、かつ該容器の気室に連通するO
_2富化ガス出口、該容器の一端に設けられ、かつ微細
藻類と培養液を中空糸膜内に供給する供給口、該容器の
他端に設けられ、かつ増殖した微細藻類と培養液を排出
する排出口、前記光ファイバに照射する光源及び前記供
給口に培養液を補給する手段を具備することを特徴とす
るバイオリアクタ。
A container in which microalgae and a culture solution are distributed, a large number of hollow fiber membranes with high optical transparency and gas exchange capability, and a large number of optical fibers arranged in close proximity to the hollow fiber membranes are integrated into a module, and a side wall of the container. a CO_2-enriched gas inlet downstream of the container in the flow direction and communicating with the air chamber of the container;
_2 Enriched gas outlet, provided at one end of the container and supplying the microalgae and culture solution into the hollow fiber membrane, provided at the other end of the container and discharging the grown microalgae and culture solution. A bioreactor comprising: a discharge port for supplying a culture medium to the optical fiber; a light source for irradiating the optical fiber; and a means for replenishing the supply port with a culture solution.
JP2321237A 1990-11-27 1990-11-27 Bioreactor Pending JPH04190782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321237A JPH04190782A (en) 1990-11-27 1990-11-27 Bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321237A JPH04190782A (en) 1990-11-27 1990-11-27 Bioreactor

Publications (1)

Publication Number Publication Date
JPH04190782A true JPH04190782A (en) 1992-07-09

Family

ID=18130346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321237A Pending JPH04190782A (en) 1990-11-27 1990-11-27 Bioreactor

Country Status (1)

Country Link
JP (1) JPH04190782A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195423A (en) * 2002-12-20 2004-07-15 Kanji Motomura Deodorization apparatus using photosynthetic bacteria
US7176024B2 (en) * 2003-05-30 2007-02-13 Biolex, Inc. Bioreactor for growing biological materials supported on a liquid surface
US7176017B2 (en) 2001-07-13 2007-02-13 Co2 Solution Inc. Triphasic bioreactor and process for gas effluent treatment
CN102776117A (en) * 2011-05-12 2012-11-14 现代自动车株式会社 Photobioreactor for culturing microalgae using hollow fiber membrane
CN103477969A (en) * 2013-09-18 2014-01-01 天津海友佳音生物科技股份有限公司 Macro-algae closed culture device facilitating culture medium replacement
CN104190343A (en) * 2014-09-03 2014-12-10 华北电力大学 Multi-fiber reaction channel reactor with reversely arranged light source
US9518248B2 (en) 2010-11-15 2016-12-13 Cornell University Optofluidic photobioreactor apparatus, method, and applications
JP2019033678A (en) * 2017-08-10 2019-03-07 日本曹達株式会社 Continuous culture method of microbes
JP2020171235A (en) * 2019-04-11 2020-10-22 テルモ株式会社 Cell culture apparatus and bioreactor
CN112368516A (en) * 2018-07-12 2021-02-12 美诺两合公司 Air purifier

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176017B2 (en) 2001-07-13 2007-02-13 Co2 Solution Inc. Triphasic bioreactor and process for gas effluent treatment
US7579185B2 (en) 2001-07-13 2009-08-25 Co2 Solution Inc. Triphasic process for gas effluent treatment
JP2004195423A (en) * 2002-12-20 2004-07-15 Kanji Motomura Deodorization apparatus using photosynthetic bacteria
US7176024B2 (en) * 2003-05-30 2007-02-13 Biolex, Inc. Bioreactor for growing biological materials supported on a liquid surface
US10604733B2 (en) 2010-11-15 2020-03-31 Cornell University Optofluidic photobioreactor apparatus, method, and applications
US9518248B2 (en) 2010-11-15 2016-12-13 Cornell University Optofluidic photobioreactor apparatus, method, and applications
US11186812B2 (en) 2010-11-15 2021-11-30 Cornell University Optofluidic photobioreactor apparatus, method, and applications
CN102776117A (en) * 2011-05-12 2012-11-14 现代自动车株式会社 Photobioreactor for culturing microalgae using hollow fiber membrane
CN102776117B (en) * 2011-05-12 2015-08-19 现代自动车株式会社 Use the bioreactor for cultivating microalgae of hollow-fibre membrane
CN103477969A (en) * 2013-09-18 2014-01-01 天津海友佳音生物科技股份有限公司 Macro-algae closed culture device facilitating culture medium replacement
CN104190343A (en) * 2014-09-03 2014-12-10 华北电力大学 Multi-fiber reaction channel reactor with reversely arranged light source
JP2019033678A (en) * 2017-08-10 2019-03-07 日本曹達株式会社 Continuous culture method of microbes
CN112368516A (en) * 2018-07-12 2021-02-12 美诺两合公司 Air purifier
EP3821175B1 (en) * 2018-07-12 2023-08-09 Miele & Cie. KG Air cleaner
JP2020171235A (en) * 2019-04-11 2020-10-22 テルモ株式会社 Cell culture apparatus and bioreactor

Similar Documents

Publication Publication Date Title
Takano et al. CO 2 removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers
US11186812B2 (en) Optofluidic photobioreactor apparatus, method, and applications
KR101282625B1 (en) Photo-bioreactor for culturing micro algae using hollow fiber membrane
US4446236A (en) Apparatus for a photochemical reaction
US4897359A (en) Apparatus for oxygenating culture medium
GB1448176A (en) Method for in vitro propagation and maintenance of cells
CN111411033B (en) Controllable particle size microbubble generator for economic microalgae culture
JPH04190782A (en) Bioreactor
US20190127675A1 (en) Microfluidic chip modules, systems, and methods for improving air quality
KR20130123043A (en) Closed type of photo-bio reacting apparatus
US20150175946A1 (en) Photobioreactor for microalgae cultivation having arc-type partition structure for forming vortices
JP3283982B2 (en) Culture device for photosynthetic organisms
CN101401979B (en) Extracorporeal circulation pool of artificial liver support system
JPH07176A (en) Culture device for photosynthetic microorganism
JP3049183B2 (en) Culture device for photosynthetic organisms
KR102064539B1 (en) optical biology
JPS62220183A (en) Culture device for fine alga
CN108395993B (en) Use method of microbubble photobioreactor for economic microalgae culture
Oguchi et al. Closed and continuous algae cultivation system for food production and gas exchange in CELSS
CN109182102A (en) A kind of circular ring type bioreactor for microdisk electrode
CN208829656U (en) A kind of bioreactor of uniform illumination distribution
JPS6027379A (en) Biochemical reactor
US20180057782A1 (en) Low energy photobioreactor system
CN203280815U (en) Non-bubble oxygen supply type bioartificial liver cell culture device
JPH05244930A (en) Photo-cultivation reaction tank and cultivation process