JP2019029183A - セパレータ付き二次電池用電極、二次電池、それらの製造方法 - Google Patents

セパレータ付き二次電池用電極、二次電池、それらの製造方法 Download PDF

Info

Publication number
JP2019029183A
JP2019029183A JP2017147352A JP2017147352A JP2019029183A JP 2019029183 A JP2019029183 A JP 2019029183A JP 2017147352 A JP2017147352 A JP 2017147352A JP 2017147352 A JP2017147352 A JP 2017147352A JP 2019029183 A JP2019029183 A JP 2019029183A
Authority
JP
Japan
Prior art keywords
electrode
separator
mixture layer
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017147352A
Other languages
English (en)
Inventor
阿部 誠
Makoto Abe
阿部  誠
野家 明彦
Akihiko Noie
明彦 野家
西村 悦子
Etsuko Nishimura
悦子 西村
祐介 加賀
Yusuke Kaga
祐介 加賀
新平 尼崎
Shimpei Amagasaki
新平 尼崎
和明 直江
Kazuaki Naoe
和明 直江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017147352A priority Critical patent/JP2019029183A/ja
Publication of JP2019029183A publication Critical patent/JP2019029183A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】二次電池内の電極へ所望の加圧ができる二次電池を提供する。【解決手段】電極集電体と電極集電体の積層方向および面内方向端部に形成される電極合剤層と、電極合剤層の積層方向および面内方向端部に形成されるセパレータ、を有するセパレータ付き二次電池用電極であって、電極合剤層の面内方向端部に形成されたセパレータには、電極集電体の面内方向中央部に形成された電極集電体、電極合剤層、セパレータの総厚みより、厚みの小さい部分が形成されているセパレータ付き二次電池用電極。【選択図】図1

Description

本発明は、二次電池用電極、二次電池、それらの製造方法に関する。
二次電池の内部短絡を防止する技術として、特許文献1には、正極2と、正極と対向して配される負極3と、正極及び負極の少なくとも一方の面に形成された固体電解質層4とを備え、正極と負極とは、固体電解質層が形成された側が対向するように積層された状態で長手方向に巻回され、絶縁材料からなる外装フィルムで挟み、該外装フィルムの周辺部を減圧下で熱融着することによって封口されている。そして、正極は負極よりも小となされており、当該負極よりも小さい正極上に形成された固体電解質層は、正極よりも大きくなるように形成されている、が開示されている。
特開2007-180039号公報
一般に、充放電による活物質の膨張収縮を抑制するために、電池を加圧して電池を固縛する。特許文献1の電池では、Liの吸蔵・放出による電池動作を担う電極部の厚さと、電極の外に形成されたゲル電解質層の厚みが同一になっているため、電極部への所望の加圧が難しい。電極部への所望の加圧ができないと、電解液分解によるガスが発生した際に電極間の距離が長くなる。これにより、電極間のイオン伝導パスが遮断されやすくなったり、電極間に電流集中が起こったりして、二次電池の容量が低下または寿命が低下する可能性がある。本発明は、二次電池内の電極へ所望の加圧ができる二次電池を提供することを目的とする。
上記課題を解決するための本発明の特徴は、例えば以下の通りである。
電極集電体と電極集電体の積層方向および面内方向端部に形成される電極合剤層と、電極合剤層の積層方向および面内方向端部に形成されるセパレータ、を有するセパレータ付き二次電池用電極であって、電極合剤層の面内方向端部に形成されたセパレータには、電極集電体の面内方向中央部に形成された電極集電体、電極合剤層、セパレータの総厚みより、厚みの小さい部分が形成されているセパレータ付き二次電池用電極。
本発明により、二次電池内の電極へ所望の加圧ができる二次電池を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
二次電池の断面模式図である。 セパレータ付き二次電池用電極の平面模式図である。
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
本明細書では、二次電池としてリチウムイオン二次電池を例にして説明する。リチウムイオン二次電池とは、非水電解質中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギを貯蔵または利用可能とする電気化学デバイスである。これは、リチウムイオン電池、非水電解質二次電池、非水電解液二次電池の別の名称で呼ばれるが、いずれの電池も本発明の対象である。本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用できる。
本明細書に記載される「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的に記載されている上限値又は下限値に置き換えてもよい。本明細書に記載される数値範囲の上限値又は下限値は、実施例中に示されている値に置き換えてもよい。
図1は、二次電池の断面模式図である。図1は積層型の二次電池であり、二次電池1000は、セパレータ付き正極140およびセパレータ付き負極240を有する。セパレータ付き正極140およびセパレータ付き負極240で構成される電極体400が積層されている。セパレータ付き正極140またはセパレータ付き負極240をセパレータ付き二次電池用電極と称する場合がある。図1において、電極体400の面内方をx軸方向、電極体400の積層方向をy軸方向とする。
セパレータ付き正極140は、正極100およびセパレータ300を有する。セパレータ付き負極240は、負極200およびセパレータ300を有する。正極100は、正極集電体120及び正極合剤層110を有する。
y軸方向において、正極集電体120の両面に正極合剤層110が形成されている。y軸方向において、正極合剤層110の両面にセパレータ300が形成されている。負極200は、負極集電体220及び負極合剤層210を有する。y軸方向において、負極集電体220の両面に負極合剤層210が形成されている。y軸方向において、負極合剤層210の両面にセパレータ300が形成されている。正極100または負極200を電極または二次電池用電極、正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体と称する場合がある。
正極合剤層110は、正極活物質、正極導電剤、正極バインダ、を有する。負極合剤層210は、負極活物質、負極導電剤、負極バインダ、を有する。正極活物質または負極活物質を電極活物質、正極導電剤または負極導電剤を電極導電剤、正極バインダまたは負極バインダを電極バインダと称する場合がある。
図2は、セパレータ付き二次電池用電極の平面模式図である。正極集電体120は正極タブ部130を有する。負極集電体220は負極タブ部230を有する。正極タブ部130または負極タブ部230を電極タブ部と称する場合がある。複数の正極タブ部130同士、複数の負極タブ部230同士が、例えば超音波接合などで接合されることで、二次電池1000内で並列接続が形成される。電極タブが形成されている方向をz軸方向とする。y軸方向における電極タブ部の両面には電極合剤層およびセパレータ300が形成されている。
電極合剤層は、電極集電体の面内方向端部に、電極集電体の面内方向端部を覆うように形成されている。電極合剤層は、電極集電体の面内方向端部に形成されていなくてもよい。電極合剤層が電極集電体の面内方向端部に形成されていることにより、正極100および負極200間の短絡を防止できる。 電極集電体の面内方向端部に電極集電体の面内方向端部を覆うように形成されている電極合剤層は 電極集電体の面内方向四辺にわたって形成されている。
電極集電体の面内方向端部に形成された電極合剤層について、電極集電体の面内方向中央部に形成された電極合剤層および電極集電体の総厚みと同じ厚みを有する部分が形成されている。また、電極集電体の面内方向端部に形成された電極合剤層について、電極集電体の面内方向中央部に形成された電極合剤層および電極集電体の総厚みより厚みの小さい部分が形成されている。これにより、電極合剤層の面内方向端部に形成されるセパレータ300について、電極集電体の面内方向中央部に形成された電極合剤層、電極集電体、セパレータ300の総厚みより、厚みの小さい部分を形成できる。電極集電体の面内方向端部に形成された電極合剤層の厚みを全て電極集電体の面内方向中央部に形成された電極合剤層および電極集電体の総厚みと同じにしてもよい。
電極集電体の面内方向端部に形成された電極合剤層の面内方向における長さは、電子・イオンの絶縁性、二次電池1000のエネルギー密度、製造時の製造公差、各構成部材を積層する際の寸法公差等に基づき定められる。具体的には、数十μm〜数cm、より好ましくは数mmとすることが望ましい。
セパレータ300は、電極合剤層の面内方向端部に、電極合剤層の面内方向端部を覆うように形成されている。これにより、電極合剤層の面内方向端部における電子絶縁性を確保できる。
電極合剤層の面内方向端部に形成されたセパレータ300について、電極合剤層の面内方向中央部に形成されたセパレータ300、電極合剤層、および電極集電体の総厚みと同じ厚みを有する部分が形成されている。また、電極合剤層の面内方向端部に形成されたセパレータ300について、電極合剤層の面内方向中央部に形成されたセパレータ300、電極合剤層、および電極集電体体の総厚みより厚みの小さい部分が形成されている。これにより、面内方向におけるセパレータ300の端部に段差が形成されているため、二次電池内の電極へ所望の加圧ができる。
電極合剤層の面内方向端部に形成されたセパレータ300の面内方向における長さは、電子・イオンの絶縁性、二次電池1000のエネルギー密度、製造時の製造公差、各構成部材を積層する際の寸法公差等に基づき定められる。具体的には、数十μm〜数cm、より好ましくは数mmとすることが望ましい。
電極合剤層の面内方向端部に形成されたセパレータ300は積層方向における電極合剤層上に形成されたセパレータ300と別工程で形成しても、同一工程で形成してもよい。電極合剤層の面内方向端部に形成されたセパレータ300と積層方向における電極集電体上に形成されたセパレータ300とを、塗布などにより同一工程で形成することで、二次電池1000の生産性を向上できる。
セパレータ付き二次電池用電極は以下のようにして作製される。まず、電極集電体上に電極合剤層、セパレータ300を順次塗布して積層体を作製する。次に、積層体を所定のサイズに打ち抜く。次に、積層体を面プレスまたは面内方向における積層体の一方面及び他方面を2回ロールプレスして、積層体中の電極合剤層およびセパレータ300を延伸させる。これにより、電極集電体の面内方向端部を覆う電極合剤層および電極合剤層の面内方向端部を覆うセパレータ300が形成される。
図1では、正極100、負極200両方において電極集電体の面内方向端部に電極合剤層およびセパレータ300が形成されているが、いずれか一方の電極における電極集電体の面内方向端部に電極合剤層およびセパレータ300が形成されていてもよい。面内方向における大きさが小さいほうの電極に上記の構造を適用することが望ましい。これにより、面内方向における大きさが小さいほう電極の端部が大きいほうの電極の面内に接触することによる内部短絡を抑制できる。
<電極導電剤>
電極導電剤は、電極合剤層の導電性を向上させる。電極導電剤としては、ケッチェンブラック、アセチレンブラック等が好適に用いられるが、これに限られない。
<電極バインダ>
電極バインダは、電極中の電極活物質や電極導電剤などを結着させる。電極バインダとしては、スチレン−ブタジエンゴム、カルボキシメチルセルロ−ス、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンとヘキサフルオロプロピレンの共重合体(P(VDF-HFP)及びこれらの混合物等が挙げられるが、これに限られない。
<正極活物質>
正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において負極合剤層210中の負極活物質から脱離したリチウムイオンが挿入される。正極活物質の材料として、遷移金属を含むリチウム複合酸化物が好ましく、具体例としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO3、LiMn2O3、LiMnO2、Li4Mn5O12、LiMn2-xMxO2(ただし、M=Co、Ni、Fe、Cr、Zn、Ta、x=0.01〜0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Zn)、Li1-xAxMn2O4(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Ca、x=0.01〜0.1)、LiNi1-xMxO2(ただし、M=Co、Fe、Ga、x=0.01〜0.2)、LiFeO2、Fe2(SO4)3、LiCo1-xMxO2(ただし、M=Ni、Fe、Mn、x=0.01〜0.2)、LiNi1-xMxO2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mg、x=0.01〜0.2)、Fe(MoO4)3、FeF3、LiFePO4、LiMnPO4などが挙げられるが、これに限られない。
<正極集電体120>
正極集電体120として、厚さが10〜100μmのアルミニウム箔、あるいは厚さが10〜100μm、孔径0.1〜10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用できる。材質、形状、製造方法などに制限されることなく、任意の正極集電体120を使用できる。
正極活物質、正極導電剤、正極バインダ、及び有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法等によって正極集電体120へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、正極100を作製できる。塗布から乾燥までを複数回行うことにより、複数の正極合剤層110を正極集電体120に積層化させてもよい。正極合剤層110の厚さは、正極活物質の平均粒径以上とすることが望ましい。正極合剤層110の厚さを正極活物質の平均粒径より小さくすると、隣接する正極活物質間の電子伝導性が悪化する可能性がある。
<負極活物質>
負極活物質は、放電過程においてリチウムイオンが脱離し、充電過程において正極合剤層110中の正極活物質から脱離したリチウムイオンが挿入される。負極活物質の材料として、例えば、炭素系材料(例えば、黒鉛、易黒鉛化炭素材料、非晶質炭素材料)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:Li4Ti5O12)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズ)を用いることができるが、これに限られない。
<負極集電体220>
負極集電体220として、厚さが10〜100μmの銅箔、厚さが10〜100μm、孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられる。銅の他に、ステンレス鋼、チタン、ニッケルなども適用できる。材質、形状、製造方法などに制限されることなく、任意の負極集電体220を使用できる。
<電極>
電極活物質、電極導電剤、電極バインダ及び有機溶媒を混合した電極スラリーを、ドクターブレード法、ディッピング法、スプレー法等の塗工方法によって電極集電体へ付着させることで電極合剤層が作製される。その後、有機溶媒を除去するために電極合剤層を乾燥し、ロールプレスによって電極合剤層を加圧成形することにより電極が作製される。電極スラリーに半固体電解液または半固体電解質を含めてもよい。塗布から乾燥までを複数回行うことにより、複数の電極合剤層を電極集電体に積層させてもよい。電極合剤層の厚さは、電極活物質の平均粒径以上とすることが望ましい。電極合剤層の厚さが小さいと、隣接する電極活物質間の電子伝導性が悪化する可能性がある。電極活物質粉末中に電極合剤層の厚さ以上の平均粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、電極合剤層の厚さ以下の粒子とすることが望ましい。
<セパレータ300>
セパレータ300は、正極100と負極200との間に形成され、二次電池1000がリチウムイオン二次電池の場合リチウムイオンを透過させ、正極100と負極200の短絡を防止する。セパレータ300を構成する材料として、微多孔膜や固体電解質等を利用できる。
微多孔膜として、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータ300に微多孔膜が用いられる場合、複数の電極体400を収納する外装体の空いている1辺や注液孔から二次電池1000に電解液を注入することで、二次電池1000中に電解液が充填される。
電解液は、例えば溶媒及びリチウム塩を有し、正極100と負極200の間でリチウムイオンの伝達させる媒体となる。溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン等を用いることができる。こられの材料を単独または複数組み合わせて使用してもよい。リチウム塩としては、例えば、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド、LiFSI)等を好ましく用いることができる。これらのリチウム塩を単独または複数組み合わせて使用してもよい。
固体電解質として、Li10Ge2PS12、Li2S-P2S5などの硫化物系、Li-La-Zr-Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させた半固体電解質、高分子ゲルを電解質としたゲル電解質等を利用できる。セパレータ300として固体電解質を用いた場合、固体電解質が正極100と負極200の間にリチウムイオンの伝達させる媒体となり、上記の電解液は基本不要となるため、二次電池1000中で電気的な直列接続を構成できる。ただし、二次電池1000中での電気的な短絡を防止できるのであれば、セパレータ300として固体電解質を用いた場合でも二次電池1000中にイオン液体、常温溶融塩、電解液を添加してもよい。
セパレータ300は、シートとして正極100と負極200との間に形成してもよいし、電極合剤層の上に塗布により形成してもよい。電極合剤層の両面にセパレータ300を形成してもよく、正極100と負極200との間にセパレータ300が形成されれば、電極合剤層の片面にセパレータ300が形成されていてもよい。セパレータ300の厚さは二次電池1000のエネルギー密度、電子絶縁性の確保等の観点から数nm〜数mmのサイズとなる。
100 正極
110 正極合剤層
120 正極集電体
130 正極タブ部
140 セパレータ付き正極
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ部
240 セパレータ付き負極
300 セパレータ
400 電極体
1000 二次電池

Claims (5)

  1. 電極集電体と
    前記電極集電体の積層方向および面内方向端部に形成される電極合剤層と、
    前記電極合剤層の積層方向および面内方向端部に形成されるセパレータ、を有するセパレータ付き二次電池用電極であって、
    前記電極合剤層の面内方向端部に形成された前記セパレータには、前記電極集電体の面内方向中央部に形成された前記電極集電体、前記電極合剤層、前記セパレータの総厚みより、厚みの小さい部分が形成されているセパレータ付き二次電池用電極。
  2. 請求項1に記載のセパレータ付き二次電池用電極であって、
    前記電極集電体の面内方向端部に形成された前記電極合剤層には、前記電極集電体の面内方向中央部に形成された前記電極集電体、前記電極合剤層の総厚みより、厚みの小さい部分が形成されているセパレータ付き二次電池用電極。
  3. 請求項1に記載のセパレータ付き二次電池用電極を有する二次電池。
  4. 請求項3に記載の二次電池であって、
    前記二次電池を構成する正極および負極の内、面内方向における大きさが小さいほうの電極のみ前記セパレータ付き二次電池用電極である二次電池。
  5. 電極集電体と
    前記電極集電体の積層方向および面内方向端部に形成される電極合剤層と、
    前記電極合剤層の積層方向および面内方向端部に形成されるセパレータ、を有するセパレータ付き二次電池用電極の製造方法であって、
    前記電極合剤層に前記セパレータを塗布する工程と、
    前記電極合剤層に塗布された前記セパレータをプレスにより延伸させることで、前記電極合剤層の面内方向端部に形成された前記セパレータに、前記電極集電体の面内方向中央部に形成された前記電極集電体、前記電極合剤層、前記セパレータの総厚みより、厚みの小さい部分を形成する工程と、を含むセパレータ付き二次電池用電極の製造方法。
JP2017147352A 2017-07-31 2017-07-31 セパレータ付き二次電池用電極、二次電池、それらの製造方法 Pending JP2019029183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147352A JP2019029183A (ja) 2017-07-31 2017-07-31 セパレータ付き二次電池用電極、二次電池、それらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147352A JP2019029183A (ja) 2017-07-31 2017-07-31 セパレータ付き二次電池用電極、二次電池、それらの製造方法

Publications (1)

Publication Number Publication Date
JP2019029183A true JP2019029183A (ja) 2019-02-21

Family

ID=65478865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147352A Pending JP2019029183A (ja) 2017-07-31 2017-07-31 セパレータ付き二次電池用電極、二次電池、それらの製造方法

Country Status (1)

Country Link
JP (1) JP2019029183A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018395B2 (en) 2019-05-14 2021-05-25 Lg Chem, Ltd. Electrode assembly and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018395B2 (en) 2019-05-14 2021-05-25 Lg Chem, Ltd. Electrode assembly and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6632256B1 (en) Method for manufacturing a non-aqueous-gel-electrolyte battery
JP6936670B2 (ja) リチウムイオン電池用セパレータ
US20160351949A1 (en) Lithium ion secondary battery
JP2019140054A (ja) 正極及び非水電解液二次電池
JP2015037008A (ja) 非水電解質二次電池用の電極活物質層とその製造方法
US10431846B2 (en) Energy storage device
JP5945401B2 (ja) リチウムイオン二次電池の正極集電体用箔の製造方法
JP6610692B2 (ja) 電極及び蓄電素子
JP2007141482A (ja) 非水電解質捲回型二次電池
JP2018092830A (ja) 二次電池、及び二次電池の製造方法
US20200343560A1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
JP2019164965A (ja) リチウムイオン二次電池
CN115191047A (zh) 集电体、蓄电元件和蓄电模块
JP7003775B2 (ja) リチウムイオン二次電池
WO2015046394A1 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP2019145331A (ja) 非水電解液二次電池
JP2019029183A (ja) セパレータ付き二次電池用電極、二次電池、それらの製造方法
JP6908073B2 (ja) 非水電解液二次電池
JP7243381B2 (ja) 電極及び非水電解液二次電池
JP2007073437A (ja) 二次電池
US20150340690A1 (en) Energy storage device
JP2021132020A (ja) リチウム二次電池用負極及びリチウム二次電池
JP7332034B2 (ja) 電極体、蓄電素子および蓄電モジュール
JP6128228B2 (ja) 負極活物質、それを用いた負極、及びリチウムイオン二次電池
JP7243380B2 (ja) 電極及び非水電解液二次電池