JP2019020276A - Spatial multiplexing optical transmission path evaluation device and method - Google Patents
Spatial multiplexing optical transmission path evaluation device and method Download PDFInfo
- Publication number
- JP2019020276A JP2019020276A JP2017139514A JP2017139514A JP2019020276A JP 2019020276 A JP2019020276 A JP 2019020276A JP 2017139514 A JP2017139514 A JP 2017139514A JP 2017139514 A JP2017139514 A JP 2017139514A JP 2019020276 A JP2019020276 A JP 2019020276A
- Authority
- JP
- Japan
- Prior art keywords
- beat signal
- delay
- optical fiber
- ref
- continuous light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Optical Communication System (AREA)
Abstract
Description
本発明は、マルチモード光ファイバ、マルチコア光ファイバ等を用いた空間多重光伝送路の特性評価を行う空間多重光伝送路評価装置及び方法に関する。 The present invention relates to a spatial multiplexing optical transmission line evaluation apparatus and method for evaluating characteristics of a spatial multiplexing optical transmission line using a multimode optical fiber, a multi-core optical fiber or the like.
光ファイバ1本あたりの光伝送容量を拡大する技術として、マルチモード光ファイバやマルチコア光ファイバを用いた空間多重光伝送技術(以下、SDM)がある。SDMでは、モードやコアといった異なる空間チャネルで信号を多重化することにより伝送容量を拡大する。しかしながら、空間チャネル間にモード結合や遅延時間差があると信号品質の劣化や信号復元処理の複雑化につながることが知られている。そのため、空間多重光伝送路を評価する上でモード結合や遅延時間差は重要な指標であり、それらを正確に評価できる測定法が求められている。 As a technique for expanding the optical transmission capacity per optical fiber, there is a spatial multiplexing optical transmission technique (hereinafter, SDM) using a multi-mode optical fiber or a multi-core optical fiber. In SDM, transmission capacity is expanded by multiplexing signals on different spatial channels such as modes and cores. However, it is known that if there is mode coupling or a delay time difference between spatial channels, signal quality is deteriorated and signal restoration processing is complicated. Therefore, mode coupling and delay time difference are important indicators in evaluating a spatially multiplexed optical transmission line, and a measurement method that can accurately evaluate them is required.
空間多重光伝送路評価法として、周波数掃引光干渉法(以下、FMCW法)がある(非特許文献1参照)。図1に、従来提案されているFMCW法の装置構成の一例を示す。この測定装置は、2つのマッハツェンダ干渉計で構成され、1つは被測定伝送路を含む主測定干渉計102、もう1つは光源101の位相雑音のモニタリングに用いられる参照干渉計103である。光源101には周波数掃引手段を有する光源を用い、時間に対して線形に周波数掃引された連続光を出射する。このとき、主測定干渉計102で得られるビート信号IFUT(t)は次式のように記述できる。
As a spatial multiplexing optical transmission line evaluation method, there is a frequency sweep optical interference method (hereinafter, FMCW method) (see Non-Patent Document 1). FIG. 1 shows an example of an apparatus configuration of a conventionally proposed FMCW method. This measuring apparatus includes two Mach-Zehnder interferometers. One is a
ここでam、τmは空間チャネルmの透過光の振幅と遅延時間、τLoはローカル光の遅延時間、γは周波数掃引速度、ν0は試験光の初期周波数、θ(t)は光源の位相雑音、φFUT(t)とφLo(t)はそれぞれ被測定伝送路とローカル光路における振動等の外乱由来の位相雑音である。なお、ここでは光源からの出射光E(t)、空間チャネルmの透過光Em(t)、ローカル光ELo(t)はそれぞれ以下のように表されることとした。 Where a m and τ m are the amplitude and delay time of the transmitted light of the spatial channel m, τ Lo is the delay time of the local light, γ is the frequency sweep speed, ν 0 is the initial frequency of the test light, and θ (t) is the light source The phase noises φ FUT (t) and φ Lo (t) are phase noises derived from disturbances such as vibrations in the transmission path to be measured and the local optical path, respectively. Here, the emitted light E (t) from the light source, the transmitted light E m (t) of the spatial channel m, and the local light E Lo (t) are respectively expressed as follows.
参照干渉計103で得られるビート信号IRef(t’)は次式で記述される。
The beat signal I Ref (t ′) obtained by the
ここでτRefは参照干渉計103に用いられる遅延ファイバの遅延時間である。なお、ここでは参照干渉計103が外乱の影響を受けない環境に設置されており、ファイバ由来の位相雑音は無視できることとした。IRef(t’)を取得する際、t’=t−τLoとなるよう取得開始時刻を調節すると、参照干渉計103のビート信号は次式のようになる。
Here, τ Ref is the delay time of the delay fiber used in the
IRef(t)を用いて、IFUT(t)に含まれる位相雑音を低減する。具体的には、IRef(t)のヒルベルト変換を用いるか、もしくは90度ハイブリッド光回路を用いてIRef(t)を検出することにより、IRef(t)の位相情報を抽出し、任意の位相変化δ間隔に対応する時間間隔ti(iは自然数)に基づいてIFUT(t)をリサンプリングする(非特許文献2)。リサンプリング後に残留する位相雑音Θ(ti)は次式のようになる。 Using I Ref (t), the phase noise included in I FUT (t) is reduced. Specifically, by detecting the I Ref (t) using a used or, or 90-degree hybrid optical circuit a Hilbert transform of I Ref (t), it extracts the phase information of the I Ref (t), optionally I FUT (t) is resampled based on the time interval t i (i is a natural number) corresponding to the phase change δ interval of (Non-patent Document 2). The phase noise Θ (t i ) remaining after resampling is as follows:
ここでtiは次式を満たす時間列である。 Here, t i is a time sequence that satisfies the following equation.
なお、式(7)では空間チャネル間の遅延時間差が小さく、τn≒τm=τFUT(τnは空間チャネルnの遅延時間)と近似できることとした。式(7)より、τRef=τFUT−τLoを満たす遅延ファイバを参照干渉計に用いた場合、Θ(ti)=0となり、光源の位相雑音がキャンセルされる。φFUT(t)及びφLo(t)を無視すると、IFUT(t)におけるビート周波数γ(τm−τLo)が空間チャネルmの遅延時間に対応する。したがって、IFUT(t)をフーリエ変換して得られるビート周波数スペクトル強度波形がいわゆるインパルス応答波形に対応し、空間チャネル間のモード結合や遅延時間差を評価できる。 Note that equation (7), the small delay time difference between the spatial channels, τ n ≒ τ m = τ FUT (τ n is the delay time of the spatial channel n) was able to approximation. From equation (7), when a delay fiber satisfying τ Ref = τ FUT −τ Lo is used for the reference interferometer, Θ (t i ) = 0 and the phase noise of the light source is canceled. If φ FUT (t) and φ Lo (t) are ignored, the beat frequency γ (τ m −τ Lo ) in I FUT (t) corresponds to the delay time of the spatial channel m. Therefore, the beat frequency spectrum intensity waveform obtained by Fourier transforming I FUT (t) corresponds to a so-called impulse response waveform, and mode coupling and delay time difference between spatial channels can be evaluated.
しかしながら、前述したように、参照干渉計103を用いることで光源101の位相雑音の影響を補償することができるが、補償効果を得るためには主測定干渉計102と参照干渉計103とでそれぞれ受光器104、106及びA/D変換器105、107を用意する必要があるため、装置構成上コスト高となる上、これら2つの干渉計102、103の間でデータ取得タイミングの同期をとらなくてはならない。
However, as described above, by using the
本発明はこのような事情を鑑みてなされたものであり、その目的は従来よりも簡易な装置構成で、かつ容易に空間多重光伝送路評価を可能とする装置及び方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an apparatus and a method capable of easily evaluating a spatially multiplexed optical transmission line with a simpler apparatus configuration than conventional ones. .
上記の課題を解決するために、本発明は、空間多重光伝送路評価装置であって、周波数掃引した連続光を出射する光源と、前記連続光を分波してそれぞれ異なる遅延を与える複数の光経路を含み、被測定空間多重光ファイバ伝搬後の連続光と前記複数の光経路伝搬後の連続光とを合波してビート信号を出力する干渉計であって、前記複数の光経路は、前記被測定空間多重光ファイバに対して遅延τLoを与える第1の光経路と、前記第1の光経路に対して遅延τRefを与える第2の光経路とを備える、前記干渉計と、前記ビート信号を検出する光検出手段と、前記ビート信号を用いて前記被測定空間多重光ファイバの空間チャネル間の遅延時間差もしくはモード結合を評価する演算処理手段とを備え、前記演算処理手段は、前記光検出手段で得られたビート信号に対してフィルタリング処理を施すことにより、前記被測定空間多重光ファイバ伝搬後の連続光と前記第1の光経路伝搬後の連続光との干渉で生じる第1のビート信号と、前記第1の光経路伝搬後の連続光と前記第2の光経路伝搬後の連続光との干渉で生じる第2のビート信号を分離抽出し、前記第2のビート信号の前記光源の位相雑音に起因する位相の時間変化X1(t)を用いて遅延NτRef(Nは自然数)の場合の前記光源の位相雑音に起因する位相の時間変化XN(t)を次式から算出し、 In order to solve the above-mentioned problems, the present invention is a spatially multiplexed optical transmission line evaluation apparatus, comprising: a light source that emits continuous light that has been swept in frequency; and a plurality of light sources that demultiplex the continuous light and provide different delays. An interferometer that includes an optical path and outputs a beat signal by combining continuous light after propagation through a measured spatially multiplexed optical fiber and continuous light after propagation through the plurality of optical paths, wherein the plurality of optical paths are The interferometer, comprising: a first optical path for providing a delay τ Lo to the measured spatially multiplexed optical fiber; and a second optical path for providing a delay τ Ref to the first optical path; A light detection means for detecting the beat signal; and an arithmetic processing means for evaluating a delay time difference or mode coupling between the spatial channels of the measured spatial multiplexing optical fiber using the beat signal. Obtained by the light detection means Filtering the beat signal, the first beat signal generated by the interference between the continuous light after propagation through the measured spatially multiplexed optical fiber and the continuous light after propagation through the first optical path, A second beat signal generated by interference between continuous light after propagation through the first optical path and continuous light after propagation through the second optical path is separated and extracted, and phase noise of the light source of the second beat signal is extracted. Using the resulting phase time change X 1 (t), the phase time change X N (t) due to the phase noise of the light source in the case of delay Nτ Ref (N is a natural number) is calculated from the following equation:
前記XN(t)を用いて前記第1のビート信号の位相揺らぎを補正し、前記位相揺らぎ補正後の第1のビート信号をフーリエ変換して、前記被測定空間多重光ファイバにおける空間チャネル間の遅延時間差もしくはモード結合を評価することを特徴とする。 Using the X N (t), the phase fluctuation of the first beat signal is corrected, the first beat signal after the phase fluctuation correction is Fourier-transformed, and the spatial channel between the spatial multiplexed optical fibers to be measured It is characterized in that the delay time difference or the mode coupling of is evaluated.
請求項2に記載の発明は、請求項1に記載の空間多重光伝送路評価装置において、前記第2の光経路が有する遅延τRefは、前記被測定空間多重光ファイバの遅延の平均値をτFUTとしてτRef<|τFUT−τLo|/2を満たし、前記演算処理手段は、前記XN(t)の計算において、Nに3以上かつ|τFUT−τLo|/τRefに最も近い整数を用いることを特徴とする。 According to a second aspect of the present invention, in the spatial multiplexing optical transmission line evaluation apparatus according to the first aspect, the delay τ Ref of the second optical path is an average value of the delay of the measured spatial multiplexing optical fiber. As τ FUT , τ Ref <| τ FUT −τ Lo | / 2 is satisfied, and in the calculation of X N (t), the arithmetic processing means sets N to 3 or more and | τ FUT −τ Lo | / τ Ref It is characterized by using the nearest integer.
請求項3に記載の発明は、請求項1又は2に記載の空間多重光伝送路評価装置において、|τFUT−τLo−NτRef|は、前記連続光のコヒーレンス時間よりも小さいことを特徴とする。
The invention described in
請求項4に記載の発明は、空間多重光伝送路評価方法であって、周波数掃引した連続光を出射するステップと、前記連続光を分波して、被測定空間多重光ファイバと、前記被測定空間多重光ファイバに対して遅延τLoを与える第1の光経路と、前記第1の光経路に対して遅延τRefを与える第2の光経路にそれぞれ入射し、前記被測定空間多重光ファイバ伝搬後の連続光と前記第1および第2の光経路伝搬後の連続光とを合波してビート信号を出力するステップと、前記ビート信号を受光して電気信号に変換するステップと、前記電気信号に対してフィルタリング処理を施すことにより、前記被測定空間多重光ファイバ伝搬後の連続光と前記第1の光経路伝搬後の連続光との干渉で生じる第1のビート信号と、前記第1の光経路伝搬後の連続光と前記第2の光経路伝搬後の連続光との干渉で生じる第2のビート信号を分離抽出するステップと、前記第2のビート信号の前記連続光の光源の位相雑音に起因する位相の時間変化X1(t)を用いて遅延NτRef(Nは自然数)の場合の前記光源の位相雑音に起因する位相の時間変化XN(t)を次式から算出し、
The invention according to
前記XN(t)を用いて前記第1のビート信号の位相揺らぎを補正するステップと、前記位相揺らぎ補正後の第1のビート信号をフーリエ変換して、前記被測定空間多重光ファイバにおける空間チャネル間の遅延時間差もしくはモード結合を評価するステップと、を有することを特徴とする。 The step of correcting the phase fluctuation of the first beat signal using the X N (t), the Fourier transform of the first beat signal after the phase fluctuation correction, and the space in the measured spatial multiplexing optical fiber Evaluating a delay time difference between channels or mode coupling.
請求項5に記載の発明は、請求項4記載の空間多重光伝送路評価方法において、前記第2の光経路が有する遅延τRefは、前記被測定空間多重光ファイバの遅延の平均値をτFUTとしてτRef<|τFUT−τLo|/2を満たし、前記第1のビート信号の位相揺らぎを補正するステップは、前記XN(t)の計算において、Nに3以上かつ|τFUT−τLo|/τRefに最も近い整数を用いることを特徴とする。 According to a fifth aspect of the present invention, in the spatially multiplexed optical transmission line evaluation method according to the fourth aspect, the delay τ Ref of the second optical path is an average value of the delay of the measured spatially multiplexed optical fiber τ. The step of satisfying τ Ref <| τ FUT −τ Lo | / 2 as the FUT and correcting the phase fluctuation of the first beat signal is performed in the calculation of X N (t) with N being 3 or more and | τ FUT An integer closest to −τ Lo | / τ Ref is used.
請求項6に記載の発明は、請求項4又5に記載の空間多重光伝送路評価方法において、|τFUT−τLo−NτRef|は、前記連続光のコヒーレンス時間よりも小さいことを特徴とする。
The invention described in claim 6 is the spatial multiplexing optical transmission line evaluation method according to
請求項7に記載の発明は、請求項4乃至6のいずれかに記載の空間多重光伝送路評価方法において、前記第1の光経路は、前記被測定空間多重光ファイバと同一ケーブル内に収容された光ファイバであることを特徴とする。 According to a seventh aspect of the present invention, in the spatially multiplexed optical transmission line evaluation method according to any one of the fourth to sixth aspects, the first optical path is accommodated in the same cable as the measured spatially multiplexed optical fiber. It is characterized by being an optical fiber.
請求項8に記載の発明は、請求項4乃至6のいずれかに記載の空間多重光伝送路評価方法において、前記第1の光経路は、前記被測定空間多重光ファイバと同一ケーブル内に収容された光ファイバであることを特徴とする。
The invention according to claim 8 is the spatially multiplexed optical path evaluation method according to any one of
本発明を用いることにより、従来よりも少ない受光器及びA/D変換器でFMCW法を実施できるため、低コストで装置を構成することができる。また、1つのA/D変換器で測定を実施できることにより、従来のように複数のA/D変換器間でデータ収録タイミングの同期をとる必要がなくなる。 By using the present invention, the FMCW method can be implemented with fewer light receivers and A / D converters than in the past, so that the apparatus can be configured at low cost. Further, since the measurement can be performed with one A / D converter, it is not necessary to synchronize the data recording timing among a plurality of A / D converters as in the conventional case.
従来のFMCW法では光源直後に光を分岐させ、分岐下部で参照干渉計と主測定干渉計を独立して構成していたのに対し、本発明では参照干渉計を主測定干渉計のローカル光路に設け、上記2つの干渉計の信号を1つの受光器及びA/D変換器で一括取得し、デジタルフィルタリング処理により参照干渉計と主測定干渉計のビート信号を分離することで上記課題を解決する。具体的には、後述する本発明の一実施形態のような、図2に示す構成とすることができる。 In the conventional FMCW method, the light is branched immediately after the light source, and the reference interferometer and the main measurement interferometer are configured independently at the lower part of the branch, whereas in the present invention, the reference interferometer is used as the local optical path of the main measurement interferometer. The above two interferometer signals are collected by one light receiver and A / D converter, and the beat signal of the reference interferometer and main measurement interferometer is separated by digital filtering processing to solve the above problem. To do. Specifically, it can be configured as shown in FIG. 2 as in an embodiment of the present invention described later.
本装置構成では、参照干渉計と主測定干渉計のビート信号が周波数軸上で重複しないよう、参照干渉計に用いられる遅延ファイバはτRef≠τFUT−τLoとする必要がある。しかしながら光源の位相雑音を補償するためにはτRef≒τFUT−τLoに対応するビート信号が必要となるため、以下の信号処理により、τRef≠τFUT−τLoの遅延ファイバで得られる信号からτRef≒τFUT−τLoの信号を算出する。 In this apparatus configuration, the delay fiber used for the reference interferometer needs to satisfy τ Ref ≠ τ FUT −τ Lo so that the beat signals of the reference interferometer and the main measurement interferometer do not overlap on the frequency axis. However, in order to compensate for the phase noise of the light source, a beat signal corresponding to τ Ref ≒ τ FUT- τ Lo is required, so that it can be obtained with a delay fiber of τ Ref ≠ τ FUT- τ Lo by the following signal processing Calculate the signal of τ Ref ≒ τ FUT -τ Lo from the signal.
本発明の装置構成における参照干渉計のビート信号の時間変化X1(t)は次式で記述される。 The time change X 1 (t) of the beat signal of the reference interferometer in the apparatus configuration of the present invention is described by the following equation.
なお、ここでは位相雑音補償に不要なtに依存しない項を無視した。また、参照干渉計の遅延ファイバが外乱の影響を受けない環境に設置されており、遅延ファイバにおける外乱由来の位相雑音は無視できることとした。X1(t)を用いて次式を計算することにより、参照干渉計の遅延がNτRef(Nは自然数)の場合の位相の時間変化XN(t)を次式により算出する。 Here, a term not dependent on t that is unnecessary for phase noise compensation is ignored. In addition, the delay fiber of the reference interferometer is installed in an environment that is not affected by the disturbance, and the phase noise derived from the disturbance in the delay fiber can be ignored. By calculating the following equation using X 1 (t), the time variation X N (t) of the phase when the delay of the reference interferometer is Nτ Ref (N is a natural number) is calculated by the following equation.
tに依存しない項を無視すると、式(10)の計算結果は次式のようになる。 If a term that does not depend on t is ignored, the calculation result of Expression (10) is as follows.
XN(t)を用いて、従来手法と同様に任意の位相変化間隔に対応する時間列tiでIFUT(t)をリサンプリングする。リサンプリングの結果、残留する位相雑音ΘN(ti)は次式のようになる。 Using X N (t), I FUT (t) is resampled with a time sequence t i corresponding to an arbitrary phase change interval, as in the conventional method. As a result of resampling, the remaining phase noise Θ N (t i ) is as follows:
式(12)より、NτRef=τFUT−τLoの場合において光源の位相雑音がキャンセルされる。したがって、参照干渉計にτRef≒(τFUT−τLo)/Nを満たす遅延ファイバを用いることにより、1つの受光器及びA/D変換器でFMCW法を実施することができる。なお、τRefは|τFUT−τLo−NτRef|が光源のコヒーレンス時間に比べて十分小さければ厳密にτRef=(τFUT−τLo)/Nを満たさなくてもよい。 From equation (12), the phase noise of the light source is canceled when Nτ Ref = τ FUT −τ Lo . Therefore, by using a delay fiber satisfying τ Ref ≈ (τ FUT −τ Lo ) / N for the reference interferometer, the FMCW method can be implemented with one light receiver and A / D converter. Note that τ Ref may not strictly satisfy τ Ref = (τ FUT −τ Lo ) / N if | τ FUT −τ Lo −Nτ Ref | is sufficiently smaller than the coherence time of the light source.
さらに、本発明の構成ではローカル光路に加わる外乱由来の位相雑音も参照干渉計でモニタリングできるため、被測定光ファイバとローカル光路が互いに同一の外乱が加わる環境下(同一ケーブル内等)にある場合、外乱由来の位相雑音も補償することができる。被測定光ファイバとローカル光路で加わる外乱が同一である場合、以下の関係が成り立つ。 Furthermore, in the configuration of the present invention, phase noise derived from disturbance added to the local optical path can be monitored by the reference interferometer, so that the measured optical fiber and the local optical path are in an environment where the same disturbance is applied to each other (in the same cable, etc.) Also, phase noise derived from disturbance can be compensated. When the disturbance applied in the measured optical fiber and the local optical path is the same, the following relationship is established.
式(13)より、式(12)は次式のように記述される。 From equation (13), equation (12) is described as:
参照干渉計の遅延ファイバがτRef=(τFUT−τLo)/Nを満たす場合、ΦN(ti)は次式に示すようにゼロになる。 When the delay fiber of the reference interferometer satisfies τ Ref = (τ FUT −τ Lo ) / N, Φ N (t i ) becomes zero as shown in the following equation.
したがって、本発明により光源由来だけでなく伝送路に加わる外乱由来の位相雑音も補償できる。 Therefore, according to the present invention, not only the light source but also the phase noise derived from the disturbance applied to the transmission path can be compensated.
なお、ここではローカル光路のみが被測定ファイバと同じ外乱に加わる環境下にある場合について述べたが、参照干渉計の遅延ファイバもローカル光路と同様に同一環境下にある場合でも外乱由来の位相雑音を補償できる。この場合、X1(t)は次式のように記述できる。 Here, the case where only the local optical path is in the same environment as the fiber to be measured has been described. However, even if the delay fiber of the reference interferometer is also in the same environment as the local optical path, the phase noise derived from the disturbance Can be compensated. In this case, X 1 (t) can be described as:
ここでφRef(t)は参照干渉計の遅延ファイバに加わる外乱による位相雑音である。遅延ファイバに加わる外乱がローカル光路と同一とみなせる場合、以下の関係が成り立つ。 Here, φ Ref (t) is phase noise due to disturbance applied to the delay fiber of the reference interferometer. When the disturbance applied to the delay fiber can be regarded as the same as the local optical path, the following relationship is established.
式(18)を式(17)に代入した結果、X1(t)は式(9)と同じであるため、この場合も外乱由来の位相雑音の補償が可能である。 As a result of substituting equation (18) into equation (17), X 1 (t) is the same as in equation (9), and in this case as well, phase noise derived from disturbance can be compensated.
次に本発明で用いることのできるNの値の条件について以下に述べる。本発明において注意すべき点は、受光して得られる信号には以下3種類のビート信号が含まれ、各ビート信号が周波数軸上で重複しないように設計する必要がある点である。
#1:被測定光ファイバ透過光とローカル光(参照干渉計の遅延ファイバと異なる光路の透過光)のビート信号
#2:被測定光ファイバ透過光と参照干渉計の遅延ファイバ透過光のビート信号
#3:参照干渉計のビート信号
Next, the condition of the value of N that can be used in the present invention will be described below. The point to be noted in the present invention is that a signal obtained by receiving light includes the following three types of beat signals, and it is necessary to design each beat signal so as not to overlap on the frequency axis.
# 1: Beat signal of transmitted light of measured optical fiber and local light (transmitted light of optical path different from delay fiber of reference interferometer) # 2: Beat signal of transmitted light of measured optical fiber and delayed fiber transmitted light of reference interferometer # 3: Reference interferometer beat signal
図3に、本発明で得られるビート信号のスペクトル強度を示す。本発明では#1〜#3の各ビート信号をデジタルフィルタリング処理により分離し、#3のビート信号の位相を用いて#1の信号について位相雑音補償を行う。参照干渉計の遅延ファイバがτRef=(τFUT−τLo)/Nを満たすとすると、#1〜#3のビート周波数はそれぞれ以下のようになる。
#1のビート周波数:γ(τFUT−τLo)
#2のビート周波数:γ(1−1/N)(τFUT−τLo)
#3のビート周波数:γ(τFUT−τLo)/N
したがってこれら3つの周波数が互いに重複しないために、本発明ではNに3以上の整数を用いることが条件となる。
FIG. 3 shows the spectral intensity of the beat signal obtained by the present invention. In the present invention, the beat signals # 1 to # 3 are separated by digital filtering, and phase noise compensation is performed on the
Beat frequency of # 1: γ (τ FUT -τ Lo )
Beat frequency of # 2: γ (1-1 / N) (τ FUT −τ Lo )
Beat frequency of # 3: γ (τ FUT −τ Lo ) / N
Therefore, since these three frequencies do not overlap each other, in the present invention, it is necessary to use an integer of 3 or more for N.
以下、添付の図面を参照して本発明の実施の形態について、詳細に説明する。ここでは一例として、被測定光ファイバにマルチモードシングルコア光ファイバを用いた場合について述べる。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Here, as an example, a case where a multimode single core optical fiber is used as the optical fiber to be measured will be described.
図2に、本発明の一実施形態に係る空間多重光伝送路評価装置の構成を示す。なお、図2において被測定光ファイバ221以外はシングルモードシングルコア光ファイバで構成されることとする。また、被測定光ファイバ221は空間多重光伝送路評価装置に含まれる構成ではなく、測定時に空間多重光伝送路評価装置に設置されるものであり、取り外し可能に光合波器211および光分波器214に接続されている。
FIG. 2 shows the configuration of a spatially multiplexed optical transmission line evaluation apparatus according to an embodiment of the present invention. In FIG. 2, the optical fiber other than the
光源201には周波数掃引手段を有する光源を用い、時間に対して線形に周波数掃引された連続光が出射される。出射された連続光を第1の光分波器211で2分岐し、一方は被測定光ファイバ221に入射する試験光、もう一方はローカル光とする。試験光は軸ずれ接続点を通して被測定光ファイバ221に入射し、被測定光ファイバ221内では複数の伝搬モードが励振される。なお、ここでは軸ずれ接続点の代わりにモード合波器等の他の手段を用いて複数の伝搬モードを励振してもよい。
A light source having a frequency sweep means is used as the
ローカル光は遅延τLoを有する光ファイバ222を伝搬後に第2の光分波器212でさらに2分岐され、一方は遅延τRefを有する光ファイバ223を伝搬する。上記第1及び第2の光分波器211、212で分岐された計3つの伝搬光を第1および第2の光合波器213、214で全て合波し、合波して生じたビート信号を受光器204で電気信号に変換し、A/D変換器205でデジタル信号に変換する。
The local light is further branched into two by the second
尚、本発明の空間多重光伝送路評価装置は、被測定光ファイバ221と同様に、遅延τLoを有する光ファイバ222および遅延τRefを有する光ファイバ223を備えている必要はなく、光分波器211、212および光合波器213、214に外部の光ファイバを遅延τLoを有する光ファイバ222および遅延τRefを有する光ファイバ223として接続する構成としても良い。
Note that the spatial multiplexing optical transmission line evaluation apparatus of the present invention does not need to include the optical fiber 222 having the delay τ Lo and the
次に演算処理装置206において、得られたビート信号を用いて被測定光ファイバ221におけるモード間遅延時間差及びモード結合を評価する。図4に、演算処理装置206で行われる計算処理のフローチャートを示す。
Next, the
先ず、ビート信号をフーリエ変換してビート周波数を解析する(ステップS1)。なお、#1〜#3のビート周波数が既知であればステップS1は必ずしも実施しなくてもよい。 First, the beat signal is Fourier transformed to analyze the beat frequency (step S1). If the beat frequencies of # 1 to # 3 are known, step S1 is not necessarily performed.
次に、ビート信号に対してデジタルフィルタリング処理を行い、#1と#3のビート信号を抽出する(ステップS2)。 Next, digital filtering processing is performed on the beat signal, and the beat signals # 1 and # 3 are extracted (step S2).
次に、ステップS2で抽出した#3のビート信号IRef(t)を用いて参照干渉計203から出力される遅延がτRefの場合のビート信号の位相の時間変化X1(t)を次式により求める(ステップS3)。
Next, the time change X 1 (t) of the phase of the beat signal when the delay output from the
ここでH{IRef(t)}はIRef(t)のヒルベルト変換である。 Here, H {I Ref (t)} is a Hilbert transform of I Ref (t).
次に、ステップS3で求めたX1(t)を用い、式(10)を計算して遅延がNτRefの場合のビート信号の位相の時間変化XN(t)を求める(ステップS4)。 Next, using X 1 (t) obtained in step S3, equation (10) is calculated to obtain the time change X N (t) of the phase of the beat signal when the delay is Nτ Ref (step S4).
次に、一定間隔の位相変化に対応する時間列tiを求める(ステップS5)。時間列tiはXN(ti)=iδ(δは位相間隔)を満たす時間列とする。 Next, determine the time sequence t i corresponding to a phase change of the predetermined interval (step S5). The time sequence t i is a time sequence satisfying X N (t i ) = iδ (δ is a phase interval).
次に、ステップS5で求めた時間列tiに基づいてステップS2で抽出した#1のビート信号をリサンプリングする(ステップS6)。 Then, the # 1 beat signal extracted in step S2 is resampled based on the time sequence t i obtained in step S5 (step S6).
最後に、ステップS6でリサンプリングした#1のビート信号をフーリエ変換し、スペクトル強度波形を得る(ステップS7)。得られるスペクトル強度波形がいわゆるインパルス応答波形に対応し、空間チャネル間のモード結合や遅延時間差を評価できる。 Finally, the # 1 beat signal resampled in step S6 is Fourier transformed to obtain a spectrum intensity waveform (step S7). The obtained spectral intensity waveform corresponds to a so-called impulse response waveform, and mode coupling and delay time difference between spatial channels can be evaluated.
なお、本実施例ではマルチモードシングルコア光ファイバを評価しているが、本発明はこれに限定されず、シングルモードマルチコア光ファイバもしくはマルチモードマルチコア光ファイバについて実施してもよく、複数の空間チャネルを励振する手段としてマルチコア光ファイバに対応するファンイン・ファンアウトデバイス等を用いてもよい。 In this embodiment, a multimode single-core optical fiber is evaluated. However, the present invention is not limited to this, and the present invention is not limited to this, and may be implemented on a single-mode multicore optical fiber or a multimode multicore optical fiber. A fan-in / fan-out device or the like corresponding to a multi-core optical fiber may be used as means for exciting the light.
本発明を用いることにより、従来よりも少ない受光器及びA/D変換器でFMCW法を実施できるため、低コストで装置を構成することができる。また、1つのA/D変換器で測定を実施できることにより、従来のように複数のA/D変換器間でデータ収録タイミングの同期をとる必要がなくなる。特に敷設後の伝送路評価等の場面では、従来法では離れた2地点間で連携して測定を実施する必要があり測定タイミングの同期が困難であるが、本発明により受光側の一地点のみでデータ収録が可能となる。 By using the present invention, the FMCW method can be implemented with fewer light receivers and A / D converters than in the past, so that the apparatus can be configured at low cost. Further, since the measurement can be performed with one A / D converter, it is not necessary to synchronize the data recording timing among a plurality of A / D converters as in the conventional case. Especially in the situation of transmission line evaluation after laying, it is necessary to carry out measurement between two distant points in the conventional method and it is difficult to synchronize the measurement timing. However, according to the present invention, only one point on the light receiving side is required. It becomes possible to record data.
さらに、被測定光ファイバと同一ケーブルに収容されたファイバをローカル光路に用いる場合、2つの光路でケーブルを共有することで装置構成が単純化するだけでなく、外乱由来の位相雑音も低減できるため、本発明は光伝送路の保守運用の観点で従来法に対して大きな優位性を持つ。 Furthermore, when a fiber accommodated in the same cable as the optical fiber to be measured is used for the local optical path, not only the device configuration is simplified by sharing the cable between the two optical paths, but also phase noise derived from disturbance can be reduced. The present invention has a great advantage over the conventional method in terms of maintenance and operation of the optical transmission line.
101、201 周波数掃引光源
102、202 主測定干渉計
103、203 参照干渉計
104、106、204 受光器
105、107、205 A/D変換器
108 データ収録タイミング同期手段
109、206 演算処理装置
211、212 光分波器
213、214 光合波器
221 被測定光ファイバ
222 遅延τLoを有する光ファイバ
223 遅延τRefを有する光ファイバ
101, 201 Frequency swept
Claims (8)
前記連続光を分波してそれぞれ異なる遅延を与える複数の光経路を含み、被測定空間多重光ファイバ伝搬後の連続光と前記複数の光経路伝搬後の連続光とを合波してビート信号を出力する干渉計であって、前記複数の光経路は、前記被測定空間多重光ファイバに対して遅延τLoを与える第1の光経路と、前記第1の光経路に対して遅延τRefを与える第2の光経路とを備える、前記干渉計と、
前記ビート信号を検出する光検出手段と、
前記ビート信号を用いて前記被測定空間多重光ファイバの空間チャネル間の遅延時間差もしくはモード結合を評価する演算処理手段とを備え、
前記演算処理手段は、前記光検出手段で得られたビート信号に対してフィルタリング処理を施すことにより、前記被測定空間多重光ファイバ伝搬後の連続光と前記第1の光経路伝搬後の連続光との干渉で生じる第1のビート信号と、前記第1の光経路伝搬後の連続光と前記第2の光経路伝搬後の連続光との干渉で生じる第2のビート信号を分離抽出し、前記第2のビート信号の前記光源の位相雑音に起因する位相の時間変化X1(t)を用いて遅延NτRef(Nは自然数)の場合の前記光源の位相雑音に起因する位相の時間変化XN(t)を次式から算出し、
Including a plurality of optical paths that demultiplex the continuous light to give different delays, and combine the continuous light after propagation through the measured spatially multiplexed optical fiber and the continuous light after propagation through the plurality of optical paths to generate a beat signal The plurality of optical paths include a first optical path that gives a delay τ Lo to the measured spatially multiplexed optical fiber, and a delay τ Ref for the first optical path. The interferometer comprising: a second optical path providing:
Light detection means for detecting the beat signal;
Computation processing means for evaluating a delay time difference or mode coupling between spatial channels of the measured spatial multiplexing optical fiber using the beat signal,
The arithmetic processing means performs a filtering process on the beat signal obtained by the light detection means, so that continuous light after propagation through the measured spatially multiplexed optical fiber and continuous light after propagation through the first optical path Separating and extracting the first beat signal generated by interference with the second beat signal generated by interference between the continuous light after propagation through the first optical path and the continuous light after propagation through the second optical path; Phase variation due to phase noise of the light source in the case of delay Nτ Ref (N is a natural number) using phase variation X 1 (t) due to phase noise of the light source of the second beat signal X N (t) is calculated from the following equation:
前記演算処理手段は、前記XN(t)の計算において、Nに3以上かつ|τFUT−τLo|/τRefに最も近い整数を用いることを特徴とする請求項1に記載の空間多重光伝送路評価装置。 The delay τ Ref of the second optical path satisfies τ Ref <| τ FUT −τ Lo | / 2, where τ FUT is the average value of the delay of the measured spatial multiplexing optical fiber,
2. The spatial multiplexing according to claim 1, wherein the arithmetic processing unit uses an integer equal to or greater than 3 and closest to | τ FUT −τ Lo | / τ Ref in the calculation of X N (t). Optical transmission line evaluation device.
前記連続光を分波して、被測定空間多重光ファイバと、前記被測定空間多重光ファイバに対して遅延τLoを与える第1の光経路と、前記第1の光経路に対して遅延τRefを与える第2の光経路にそれぞれ入射し、前記被測定空間多重光ファイバ伝搬後の連続光と前記第1および第2の光経路伝搬後の連続光とを合波してビート信号を出力するステップと、
前記ビート信号を受光して電気信号に変換するステップと、
前記電気信号に対してフィルタリング処理を施すことにより、前記被測定空間多重光ファイバ伝搬後の連続光と前記第1の光経路伝搬後の連続光との干渉で生じる第1のビート信号と、前記第1の光経路伝搬後の連続光と前記第2の光経路伝搬後の連続光との干渉で生じる第2のビート信号を分離抽出するステップと、
前記第2のビート信号の前記連続光の光源の位相雑音に起因する位相の時間変化X1(t)を用いて遅延NτRef(Nは自然数)の場合の前記光源の位相雑音に起因する位相の時間変化XN(t)を次式から算出し、
前記位相揺らぎ補正後の第1のビート信号をフーリエ変換して、前記被測定空間多重光ファイバにおける空間チャネル間の遅延時間差もしくはモード結合を評価するステップと、
を有することを特徴とする空間多重光伝送路評価方法。 Emitting a frequency-swept continuous light;
The continuous light is demultiplexed, a measured spatially multiplexed optical fiber, a first optical path that gives a delay τ Lo to the measured spatially multiplexed optical fiber, and a delay τ to the first optical path Each incident light enters a second optical path that gives a Ref, and combines the continuous light after propagation through the measured spatially multiplexed optical fiber and the continuous light after propagation through the first and second optical paths, and outputs a beat signal. And steps to
Receiving the beat signal and converting it into an electrical signal;
By applying a filtering process to the electrical signal, a first beat signal generated by interference between continuous light after propagation through the measured spatially multiplexed optical fiber and continuous light after propagation through the first optical path, and Separating and extracting a second beat signal generated by interference between continuous light after propagation through the first optical path and continuous light after propagation through the second optical path;
Phase due to the phase noise of the light source in the case of a delay Nτ Ref (N is a natural number) using the time variation X 1 (t) of the phase due to the phase noise of the light source of the continuous light of the second beat signal. time change X N (t) is the calculated from the following equation,
Fourier transforming the first beat signal after the phase fluctuation correction, and evaluating a delay time difference or mode coupling between spatial channels in the measured spatial multiplexing optical fiber;
A spatially multiplexed optical transmission line evaluation method characterized by comprising:
前記第1のビート信号の位相揺らぎを補正するステップは、前記XN(t)の計算において、Nに3以上かつ|τFUT−τLo|/τRefに最も近い整数を用いることを特徴とする請求項4記載の空間多重光伝送路評価方法。 The delay τ Ref of the second optical path satisfies τ Ref <| τ FUT −τ Lo | / 2, where τ FUT is the average value of the delay of the measured spatial multiplexing optical fiber,
The step of correcting the phase fluctuation of the first beat signal is characterized in that an integer closest to | τ FUT −τ Lo | / τ Ref is used for N in the calculation of X N (t). The method of evaluating a spatially multiplexed optical transmission line according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017139514A JP6806641B2 (en) | 2017-07-18 | 2017-07-18 | Spatial multiplex optical transmission line evaluation device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017139514A JP6806641B2 (en) | 2017-07-18 | 2017-07-18 | Spatial multiplex optical transmission line evaluation device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019020276A true JP2019020276A (en) | 2019-02-07 |
JP6806641B2 JP6806641B2 (en) | 2021-01-06 |
Family
ID=65355323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017139514A Active JP6806641B2 (en) | 2017-07-18 | 2017-07-18 | Spatial multiplex optical transmission line evaluation device and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6806641B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023047449A1 (en) * | 2021-09-21 | 2023-03-30 | 日本電信電話株式会社 | Optical fiber sensing device and method |
WO2023082774A1 (en) * | 2021-11-11 | 2023-05-19 | 华为技术有限公司 | Shared-routing detection method and apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952059A (en) * | 1986-06-06 | 1990-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Reentrant fiber raman gyroscope |
JP2003172604A (en) * | 2001-12-06 | 2003-06-20 | Agilent Technol Inc | Phase noise compensation in interferometer system |
WO2008105322A1 (en) * | 2007-02-28 | 2008-09-04 | Nippon Telegraph And Telephone Corporation | Optical refractometry measuring method and device |
JP2016053525A (en) * | 2014-09-03 | 2016-04-14 | 日本電信電話株式会社 | Method and device for measuring temperature and distortion distribution |
JP2016145786A (en) * | 2015-02-09 | 2016-08-12 | 日本電信電話株式会社 | Measuring apparatus and measuring method for impulse response of optical device |
JP2016161512A (en) * | 2015-03-04 | 2016-09-05 | 日本電信電話株式会社 | Optical fiber vibration measuring method and system |
JP2016194491A (en) * | 2015-04-01 | 2016-11-17 | 日本電信電話株式会社 | Optical device impulse response measurement device and measurement method |
-
2017
- 2017-07-18 JP JP2017139514A patent/JP6806641B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952059A (en) * | 1986-06-06 | 1990-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Reentrant fiber raman gyroscope |
JP2003172604A (en) * | 2001-12-06 | 2003-06-20 | Agilent Technol Inc | Phase noise compensation in interferometer system |
WO2008105322A1 (en) * | 2007-02-28 | 2008-09-04 | Nippon Telegraph And Telephone Corporation | Optical refractometry measuring method and device |
JP2016053525A (en) * | 2014-09-03 | 2016-04-14 | 日本電信電話株式会社 | Method and device for measuring temperature and distortion distribution |
JP2016145786A (en) * | 2015-02-09 | 2016-08-12 | 日本電信電話株式会社 | Measuring apparatus and measuring method for impulse response of optical device |
JP2016161512A (en) * | 2015-03-04 | 2016-09-05 | 日本電信電話株式会社 | Optical fiber vibration measuring method and system |
JP2016194491A (en) * | 2015-04-01 | 2016-11-17 | 日本電信電話株式会社 | Optical device impulse response measurement device and measurement method |
Non-Patent Citations (2)
Title |
---|
伊藤 文彦 ほか: "2つの独立パルスレーザを用いた線形サンプリング測定における位相雑音補正法", 電子情報通信学会技術研究報告, vol. 115, no. 306, JPN6020028992, November 2015 (2015-11-01), pages 61 - 66, ISSN: 0004321727 * |
荒川 拓也 ほか: "位相雑音補正線形サンプリング法による4コア光ファイバの高ダイナミックレンジインパルス応答測定", 電子情報通信学会技術研究報告, vol. 114, no. 24, JPN6020028991, May 2017 (2017-05-01), pages 71 - 75, ISSN: 0004321726 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023047449A1 (en) * | 2021-09-21 | 2023-03-30 | 日本電信電話株式会社 | Optical fiber sensing device and method |
WO2023082774A1 (en) * | 2021-11-11 | 2023-05-19 | 华为技术有限公司 | Shared-routing detection method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP6806641B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6277147B2 (en) | Optical fiber vibration measurement method and system | |
US10859408B2 (en) | Optical fiber sensor and optical fiber sensor system | |
EP2339316B1 (en) | Optical reflectometry and optical reflectometer | |
US11467060B2 (en) | Optical pulse reflectometer and optical pulse reflectometry | |
US11802809B2 (en) | Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method | |
JP6796043B2 (en) | Light reflection measuring device and its method | |
JP2004101472A (en) | Distortion temperature measurement system using optical fiber | |
JP4586033B2 (en) | Optical heterodyne interferometer and optical path length difference measuring method thereof | |
JP6806641B2 (en) | Spatial multiplex optical transmission line evaluation device and method | |
JP5849056B2 (en) | Optical pulse test apparatus and optical pulse test method | |
US10193621B2 (en) | Location measurement apparatus, light modulation converter, and light variation location measurement method | |
JP6748027B2 (en) | Optical pulse test apparatus and optical pulse test method | |
JP6751362B2 (en) | Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels | |
JP2017203626A (en) | Optical pulse testing device and optical pulse testing method | |
JP2017072495A (en) | Test light multi/demultiplexer and light beam path testing system | |
JP5202485B2 (en) | Optical line reflection distribution measuring method and apparatus, and optical line equipment monitoring system | |
JP4916347B2 (en) | Optical heterodyne OFDR device | |
CN117480364A (en) | Vibration measuring device and vibration measuring method | |
JP6741253B2 (en) | Method for analyzing group delay between multimode optical fibers | |
JP4694959B2 (en) | Optical line test method and test system | |
CN114485903B (en) | System and method for measuring long-distance distributed optical fiber high-frequency vibration | |
WO2023047449A1 (en) | Optical fiber sensing device and method | |
JP5522063B2 (en) | Telemetry system | |
JP2018205014A (en) | Method and device for measuring dispersion of spatial mode | |
WO2024024094A1 (en) | Inter-mode group delay difference measuring device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190903 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6806641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |