JP2018205014A - Method and device for measuring dispersion of spatial mode - Google Patents

Method and device for measuring dispersion of spatial mode Download PDF

Info

Publication number
JP2018205014A
JP2018205014A JP2017107670A JP2017107670A JP2018205014A JP 2018205014 A JP2018205014 A JP 2018205014A JP 2017107670 A JP2017107670 A JP 2017107670A JP 2017107670 A JP2017107670 A JP 2017107670A JP 2018205014 A JP2018205014 A JP 2018205014A
Authority
JP
Japan
Prior art keywords
transmission line
amplitude distribution
spatial mode
optical transmission
mode dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017107670A
Other languages
Japanese (ja)
Other versions
JP6751371B2 (en
Inventor
槙悟 大野
Singo Ono
槙悟 大野
飯田 大輔
Daisuke Iida
大輔 飯田
邦弘 戸毛
Kunihiro Komo
邦弘 戸毛
真鍋 哲也
Tetsuya Manabe
哲也 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017107670A priority Critical patent/JP6751371B2/en
Publication of JP2018205014A publication Critical patent/JP2018205014A/en
Application granted granted Critical
Publication of JP6751371B2 publication Critical patent/JP6751371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

To provide a method and a device for measuring a spatial mode that can measure the SMD of a strong-coupling SDM transmission path non-destructively and distributedly.SOLUTION: The spatial mode distribution measuring device according to the present invention acquires an autocorrelation peak distribution for an arbitrary section component extracted from an amplitude distribution waveform related to a propagation delay time of rear Rayleigh scattered light in a strong-coupling SDM transmission path, and uses the fact that the secondary moment of the peak distribution (other than the center peak) is the SMD of the arbitrary section.SELECTED DRAWING: Figure 1

Description

本開示は、マルチモード光ファイバ及びマルチコア光ファイバ等を用いた空間多重光伝送路における伝搬遅延時間広がりの分布を測定する技術に関する。   The present disclosure relates to a technique for measuring a distribution of propagation delay time spread in a spatially multiplexed optical transmission line using a multimode optical fiber, a multicore optical fiber, or the like.

光ファイバ1本あたりの光伝送容量を拡大する技術として、マルチモード光ファイバやマルチコア光ファイバを用いた空間多重伝送技術(以下、SDM)がある。SDMでは、モードやコアといった異なる空間チャネルで信号を多重化することにより伝送容量を拡大する。しかしながら、損失や伝搬遅延時間等の特性が空間チャネル間で異なると受信端での信号処理が複雑化することが知られている。そこで、強結合マルチコア光ファイバ等を用いて伝搬モード間の結合を積極利用することで上記特性の空間チャネル依存性を低減した伝送路が近年提案されている(例えば、非特許文献1を参照。)。   As a technique for expanding the optical transmission capacity per optical fiber, there is a spatial multiplexing transmission technique (hereinafter referred to as SDM) using a multi-mode optical fiber or a multi-core optical fiber. In SDM, transmission capacity is expanded by multiplexing signals on different spatial channels such as modes and cores. However, it is known that signal processing at the receiving end becomes complicated if characteristics such as loss and propagation delay time differ between spatial channels. Therefore, a transmission path in which the dependence of the above characteristics on the spatial channel is reduced by actively utilizing coupling between propagation modes using a strong coupling multicore optical fiber or the like has been recently proposed (for example, see Non-Patent Document 1). ).

そのようなモード結合の強い空間多重伝送路(以下、強結合SDM伝送路)では、光伝搬中のランダムなモード結合により、伝搬遅延時間がガウス分布的な広がりを持つ。この現象は従来のシングルモード光ファイバにおける偏波モード間結合に似たものであり、偏波モード分散(以下、PMD)と同様、強結合SDM伝送路を評価する指標として空間モード分散(以下、SMD)が定義されている。   In such a spatially multiplexed transmission line with strong mode coupling (hereinafter, strongly coupled SDM transmission line), the propagation delay time has a Gaussian distribution due to random mode coupling during light propagation. This phenomenon is similar to the coupling between polarization modes in a conventional single mode optical fiber. Like polarization mode dispersion (hereinafter referred to as PMD), spatial phenomenon (hereinafter referred to as spatial mode dispersion) is used as an index for evaluating a strongly coupled SDM transmission line. SMD) is defined.

モード結合の弱い伝送路では空間チャネル間遅延時間差は伝搬距離に比例して増加するのに対し、強結合SDM伝送路におけるSMDは伝搬距離の平方根に比例することが知られている。このような特性から、強結合SDM伝送路は長距離向け大容量伝送路として期待されている。   It is known that the difference in delay time between spatial channels increases in proportion to the propagation distance in a transmission line with weak mode coupling, whereas SMD in a strong coupling SDM transmission line is proportional to the square root of the propagation distance. Due to such characteristics, the strong coupling SDM transmission line is expected as a large-capacity transmission line for long distances.

SMDは従来のPMD測定と同様の方法で測定することができ、例えば非特許文献1ではPMD測定の代替試験法として標準化されている固定アナライザ法(例えば、非特許文献2を参照。)を用いてSMDを測定している。その他、同じくPMDの代替試験法である低コヒーレンス干渉法(例えば、非特許文献2を参照。)を用いてもSMD測定が可能である。   SMD can be measured by the same method as conventional PMD measurement. For example, in Non-Patent Document 1, a fixed analyzer method (for example, see Non-Patent Document 2) standardized as an alternative test method for PMD measurement is used. SMD is measured. In addition, SMD measurement is also possible using low-coherence interferometry (see, for example, Non-Patent Document 2), which is also an alternative test method for PMD.

T. Sakamoto et al., “Fiber Twisting− and Bending−Induced Adiabatic/Nonadiabatic Super−Mode Transition in Coupled Multicore Fiber”, J. Lightwave Technol., Vol. 34, no. 4, p. 1228 (2016).T.A. Sakamoto et al. , “Fiber Twisting- and Bending-Induced Adiabatic / Nondiabatic Super-Mode Transition in Coupled Multicore Fiber”, J. et al. Lightwave Technol. , Vol. 34, no. 4, p. 1228 (2016). ITU−T Recommendation G.650.2, “Definitions and test methods for statistical and non−linear related attributes of single−mode fibre and cable” (2015).ITU-T Recommendation G. 650.2, “Definitions and test methods for statistical and non-linear related attributes of single-mode fibers and cables” (2015).

非特許文献1で報告されているように、SMDは光ファイバの曲げやねじれによって敏感に変化することが知られている。そのため、ケーブル構造や敷設状況等により、伝送路中で局所的に変化することが想定される。しかしながら、従来用いられている固定アナライザ法や低コヒーレンス干渉法では伝送路全体のSMDは測定できるが、伝送路途中のSMDを非破壊で分布的に測定することはできないという課題があった。   As reported in Non-Patent Document 1, it is known that SMD changes sensitively by bending or twisting of an optical fiber. Therefore, it is assumed that the local change occurs in the transmission path depending on the cable structure, the laying condition, and the like. However, although the conventional fixed analyzer method and low coherence interference method can measure the SMD of the entire transmission line, there is a problem that the SMD in the middle of the transmission line cannot be measured non-destructively.

そこで、本発明は、前記課題を解決するために、強結合SDM伝送路のSMDを非破壊で分布的に測定できる空間モード分散測定方法及び空間モード分散測定装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a spatial mode dispersion measuring method and a spatial mode dispersion measuring apparatus capable of non-destructively measuring SMD of a strongly coupled SDM transmission line in order to solve the above-described problems.

本発明に係る空間モード分散測定方法及び空間モード分散測定装置は、光反射測定で観測される後方レイリー散乱光振幅分布の任意区間成分の自己相関を計算することで強結合SDM伝送路のSMDを非破壊で分布的に取得可能とした。   The spatial mode dispersion measuring method and the spatial mode dispersion measuring apparatus according to the present invention calculate the SMD of the strongly coupled SDM transmission line by calculating the autocorrelation of an arbitrary interval component of the backward Rayleigh scattered light amplitude distribution observed in the light reflection measurement. Non-destructive and distributed acquisition is possible.

具体的には、本発明に係る空間モード分散測定方法は、
空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定する測定手順と、
前記振幅分布波形の任意区間成分を抽出し、抽出した振幅分布波形の自己相関を計算し、前記自己相関の中心ピークを除く相関ピーク分布の二次モーメントを前記空間多重光伝送路の前記任意区間における空間モード分散とする演算手順と、
を行う。
Specifically, the spatial mode dispersion measurement method according to the present invention is:
A measurement procedure for measuring an amplitude distribution waveform with respect to a propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line;
An arbitrary section component of the amplitude distribution waveform is extracted, an autocorrelation of the extracted amplitude distribution waveform is calculated, and a second moment of the correlation peak distribution excluding the central peak of the autocorrelation is calculated as the arbitrary section of the spatial multiplexing optical transmission line A calculation procedure for spatial mode dispersion in
I do.

また、本発明に係る空間モード分散測定装置は、
空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定する測定手段と、
前記振幅分布波形の任意区間成分を抽出し、抽出した振幅分布波形の自己相関を計算し、前記自己相関の中心ピークを除く相関ピーク分布の二次モーメントを前記空間多重光伝送路の前記任意区間における空間モード分散とする演算手段と、
を備える。
The spatial mode dispersion measuring apparatus according to the present invention is
Measuring means for measuring an amplitude distribution waveform with respect to a propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line;
An arbitrary section component of the amplitude distribution waveform is extracted, an autocorrelation of the extracted amplitude distribution waveform is calculated, and a second moment of the correlation peak distribution excluding the central peak of the autocorrelation is calculated as the arbitrary section of the spatial multiplexing optical transmission line Arithmetic means for spatial mode dispersion in
Is provided.

本発明は、空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定し、当該振幅分布波形から抽出した任意区間成分について自己相関を計算し、自己相関のピーク分布を解析する。本発明は、当該ピーク分布の二次モーメントが当該任意区間のSMDであることを利用している。   The present invention measures an amplitude distribution waveform with respect to the propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line, calculates an autocorrelation for an arbitrary interval component extracted from the amplitude distribution waveform, and analyzes an autocorrelation peak distribution To do. The present invention utilizes the fact that the second moment of the peak distribution is the SMD of the arbitrary section.

従って、本発明は、強結合SDM伝送路のSMDを非破壊で分布的に測定できる空間モード分散測定方法及び空間モード分散測定装置を提供することができる。   Therefore, the present invention can provide a spatial mode dispersion measuring method and a spatial mode dispersion measuring apparatus capable of non-destructively measuring SMD of a strongly coupled SDM transmission line in a non-destructive manner.

任意区間のSMDを測定するためにはSMDに対して十分小さい遅延分解能(psオーダ以下)が求められる。このため、本発明で振幅分布波形を取得する場合、光周波数領域反射計(OFDR:Optical Frequency Domain Reflectometry)を利用することが好ましい。   In order to measure SMD in an arbitrary section, a sufficiently small delay resolution (less than ps order) is required for SMD. For this reason, when acquiring an amplitude distribution waveform by this invention, it is preferable to utilize an optical frequency domain reflectometer (OFDR: Optical Frequency Domain Reflectometry).

すなわち、本発明に係る空間モード分散測定方法の前記測定手順では、
周波数掃引した連続光を分岐し、
分岐した前記連続光の一方を前記空間多重光伝送路に入射し、
前記空間多重光伝送路内で生じた後方レイリー散乱光と分岐した前記連続光の他方とを合波してビート信号を検出し、
前記ビート信号をフーリエ変換して前記振幅分布波形を得る
ことを特徴とする。
That is, in the measurement procedure of the spatial mode dispersion measurement method according to the present invention,
Branch the continuous light swept in frequency,
One of the branched continuous lights is incident on the spatially multiplexed optical transmission line;
Detecting the beat signal by combining the back Rayleigh scattered light generated in the spatially multiplexed optical transmission line and the other of the branched continuous light;
The beat signal is Fourier transformed to obtain the amplitude distribution waveform.

また、本発明に係る空間モード分散測定装置の前記測定手段は、
周波数掃引した連続光を出射する光源と、
前記光源が出射する連続光を分岐する光分岐器と、
前記光分岐器が分岐した前記連続光の一方を前記空間多重光伝送路に入射し、前記空間多重光伝送路内で生じた後方レイリー散乱光と、前記光分岐器が分岐した前記連続光の他方とを合波してビート信号を検出し、前記ビート信号をフーリエ変換して前記振幅分布波形を得る光検波器と、
を有することを特徴とする。
Further, the measuring means of the spatial mode dispersion measuring apparatus according to the present invention comprises:
A light source that emits frequency-swept continuous light;
An optical branching device for branching continuous light emitted from the light source;
One of the continuous lights branched by the optical splitter is incident on the spatially multiplexed optical transmission line, and backward Rayleigh scattered light generated in the spatially multiplexed optical transmission line and the continuous light split by the optical splitter. Detecting a beat signal by combining with the other, an optical detector for Fourier-transforming the beat signal to obtain the amplitude distribution waveform;
It is characterized by having.

本発明は、強結合SDM伝送路のSMDを非破壊で分布的に測定できる空間モード分散測定方法及び空間モード分散測定装置を提供することができる。   The present invention can provide a spatial mode dispersion measuring method and a spatial mode dispersion measuring apparatus capable of non-destructively measuring SMD of a strongly coupled SDM transmission line.

本発明に係る空間モード分散測定方法の測定原理を示す概念図である。It is a conceptual diagram which shows the measurement principle of the spatial mode dispersion | distribution measuring method which concerns on this invention. 本発明に係る空間モード分散測定装置を説明するブロック図である。1 is a block diagram illustrating a spatial mode dispersion measuring apparatus according to the present invention. 本発明に係る空間モード分散測定方法を説明するフローチャートである。It is a flowchart explaining the spatial mode dispersion | distribution measuring method which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

[測定原理]
図1は、本実施形態の空間モード分散測定方法の測定原理を示す概念図である。光反射測定では、光ファイバ中の後方レイリー散乱光の振幅分布を伝搬遅延時間の関数として観測することができる(図1(B))。このとき、遅延分解能に対して十分長いコヒーレンス時間を持つ光を試験光に用いた場合、観測される振幅分布は散乱光の干渉によりランダムなジグザグ波形(以下、散乱シグネチャ)で観測される。光反射測定を強結合SDM伝送路について実施した場合、後方散乱光伝搬中のランダムなモード結合により、散乱地点に対応する遅延時間はガウス分布的に複数の遅延時間を持つ。すなわち、散乱シグネチャの複製が遅延軸上でガウス分布的に存在し、それらの重ね合わせの波形が観測される。
[Measurement principle]
FIG. 1 is a conceptual diagram showing the measurement principle of the spatial mode dispersion measurement method of this embodiment. In the light reflection measurement, the amplitude distribution of the backward Rayleigh scattered light in the optical fiber can be observed as a function of the propagation delay time (FIG. 1B). At this time, when light having a sufficiently long coherence time with respect to the delay resolution is used as the test light, the observed amplitude distribution is observed in a random zigzag waveform (hereinafter, a scattering signature) due to the interference of the scattered light. When the light reflection measurement is performed on the strongly coupled SDM transmission line, the delay time corresponding to the scattering point has a plurality of delay times in a Gaussian distribution due to random mode coupling during propagation of the backscattered light. That is, duplicated scatter signatures exist in a Gaussian distribution on the delay axis, and a waveform of their superposition is observed.

後方散乱光振幅の遅延広がりを標準偏差σのガウシアンと仮定すると、観測される後方散乱光振幅は次式のように記述できる。

Figure 2018205014
τは遅延時間、δτとθはそれぞれm番目のモード結合成分の遅延時間シフトと位相変化、ε(τ)は結合を考慮しない場合の後方散乱光振幅である。 When the delay spread of the backscattered light amplitude assuming Gaussian standard deviation sigma a, backscattered light amplitude observed it can be described as follows.
Figure 2018205014
τ is the delay time, δτ m and θ m are the delay time shift and phase change of the m-th mode coupling component, respectively, and ε (τ) is the backscattered light amplitude when coupling is not considered.

SMDはインパルス応答(光強度)の遅延広がりの標準偏差の2倍で定義されることから、光振幅の遅延広がりσに対して次式の関係がある。

Figure 2018205014
つまり、SMDはΔτを求めることで得られることになる。 Since SMD is defined as twice the standard deviation of the delay spread of the impulse response (light intensity), there is a relationship of the following equation with respect to the delay spread σ a of the optical amplitude.
Figure 2018205014
That is, SMD can be obtained by obtaining Δτ.

式(1)は式(1a)のΔτを用いて次式のように記述できる。

Figure 2018205014
モード結合によって生じる散乱シグネチャの複製は互いに相関を持つことから、遅延広がりは観測される後方散乱光振幅分布の任意区間成分の自己相関により解析できる(図1(C))。自己相関R(τ’)(τ’は相対遅延)は次式で計算される。
Figure 2018205014
Figure 2018205014
ここで*は複素共役を表す。δτとθはそれぞれn番目のモード結合成分の遅延時間シフトと位相変化である。なお、式(3)では散乱シグネチャが光ファイバ中のランダムな屈折率揺らぎに起因する不規則なジグザグ波形であることから、次式の関係が成り立つと仮定した。
Figure 2018205014
Equation (1) can be described as the following equation using Δτ of equation (1a).
Figure 2018205014
Since the copy of the scattering signature caused by mode coupling has a correlation with each other, the delay spread can be analyzed by the autocorrelation of an arbitrary interval component of the observed backscattered light amplitude distribution (FIG. 1C). Autocorrelation R (τ ′) (τ ′ is a relative delay) is calculated by the following equation.
Figure 2018205014
Figure 2018205014
Here, * represents a complex conjugate. δτ n and θ n are the delay time shift and phase change of the nth mode coupling component, respectively. In Equation (3), since the scattering signature is an irregular zigzag waveform caused by random refractive index fluctuations in the optical fiber, it is assumed that the relationship of the following equation holds.
Figure 2018205014

式(3)で計算される自己相関波形の一例を図1(D)に示している。式(3)第一項で記述されるように、後方散乱光振幅波形自身との相関により、τ’=0に強い相関ピークが現れる。一方、式(3)第二項が示すように、互いに異なる遅延時間に存在する散乱シグネチャの複製同士の相関により、τ’≠0の領域においても小さな相関ピークが分布する。   An example of the autocorrelation waveform calculated by Expression (3) is shown in FIG. As described in Equation (3), the first term, a strong correlation peak appears at τ ′ = 0 due to the correlation with the backscattered light amplitude waveform itself. On the other hand, as shown in the second term of Equation (3), small correlation peaks are distributed even in the region of τ ′ ≠ 0 due to the correlation between the duplicates of the scattered signatures existing at different delay times.

τ’≠0における相関ピーク強度は式(3)第二項中のランダムな位相項の足し合わせにより不規則なバラツキを持つが、|τ’|が小さいほど確率的に大きな値をとり、τ’≠0における相関ピーク分布の二次モーメントの平方根がΔτに対応する。したがって、後方散乱光振幅分布波形の任意区間における自己相関ピーク分布を解析することにより、伝送路途中のSMDを非破壊で求めることができる。   The correlation peak intensity at τ ′ ≠ 0 has irregular variations due to the addition of the random phase terms in the second term of Equation (3), but takes a larger value as the | τ ′ | The square root of the second moment of the correlation peak distribution at '≠ 0 corresponds to Δτ. Therefore, by analyzing the autocorrelation peak distribution in an arbitrary section of the backscattered light amplitude distribution waveform, the SMD in the middle of the transmission path can be obtained nondestructively.

[実施形態]
添付の図面を参照して本発明の実施形態を説明する。ここでは一例として、後方散乱光振幅分布測定に光周波数領域反射測定法(OFDR)を用い、被測定ファイバに強結合マルチコア光ファイバを用いて任意のコアについて測定する場合について述べる。
[Embodiment]
Embodiments of the present invention will be described with reference to the accompanying drawings. Here, as an example, a case will be described in which an optical frequency domain reflection measurement method (OFDR) is used for measuring the backscattered light amplitude distribution, and an arbitrary core is measured using a strongly-coupled multicore optical fiber as the fiber to be measured.

図2は、本実施形態の空間モード分散測定装置301を説明する図である。空間モード分散測定装置301は、
空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定する測定手段と、
前記振幅分布波形の任意区間成分を抽出し、抽出した振幅分布波形の自己相関を計算し、前記自己相関の中心ピークを除く相関ピーク分布の二次モーメントを前記空間多重光伝送路の前記任意区間における空間モード分散とする演算手段と、
を備える。
FIG. 2 is a diagram illustrating the spatial mode dispersion measuring apparatus 301 of the present embodiment. The spatial mode dispersion measuring apparatus 301 is
Measuring means for measuring an amplitude distribution waveform with respect to a propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line;
An arbitrary section component of the amplitude distribution waveform is extracted, an autocorrelation of the extracted amplitude distribution waveform is calculated, and a second moment of the correlation peak distribution excluding the central peak of the autocorrelation is calculated as the arbitrary section of the spatial multiplexing optical transmission line Arithmetic means for spatial mode dispersion in
Is provided.

また、空間モード分散測定装置301を用いた空間モード分散測定方法は、
空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定する測定手順と、
前記振幅分布波形の任意区間成分を抽出し、抽出した振幅分布波形の自己相関を計算し、前記自己相関の中心ピークを除く相関ピーク分布の二次モーメントを前記空間多重光伝送路の前記任意区間における空間モード分散とする演算手順と、
を行う。
In addition, the spatial mode dispersion measuring method using the spatial mode dispersion measuring apparatus 301 is:
A measurement procedure for measuring an amplitude distribution waveform with respect to a propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line;
An arbitrary section component of the amplitude distribution waveform is extracted, an autocorrelation of the extracted amplitude distribution waveform is calculated, and a second moment of the correlation peak distribution excluding the central peak of the autocorrelation is calculated as the arbitrary section of the spatial multiplexing optical transmission line A calculation procedure for spatial mode dispersion in
I do.

本実施形態では空間多重光伝送路が被測定ファイバ50である。
そして、OFDRを用いるので、前記測定手段は、
周波数掃引した連続光を出射する光源11と、
光源11が出射する連続光を分岐する光分岐器12と、
光分岐器12が分岐した前記連続光の一方を前記空間多重光伝送路に入射し、前記空間多重光伝送路内で生じた後方レイリー散乱光と、光分岐器12が分岐した前記連続光の他方とを合波してビート信号を検出し、前記ビート信号をフーリエ変換して前記振幅分布波形を得る光検波器と、
を有する。
前記光検波器は、受光器15、A/D変換器16、及び演算処理装置17で構成される。
In this embodiment, the spatially multiplexed optical transmission line is the measured fiber 50.
And since OFDR is used, the measuring means is
A light source 11 that emits continuous light having a frequency sweep;
An optical branching device 12 for branching continuous light emitted from the light source 11;
One of the continuous lights branched by the optical branching device 12 is incident on the spatially multiplexed optical transmission line, and backward Rayleigh scattered light generated in the spatially multiplexed optical transmission line and the continuous light branched by the optical splitter 12 Detecting a beat signal by combining with the other, an optical detector for Fourier-transforming the beat signal to obtain the amplitude distribution waveform;
Have
The optical detector includes a light receiver 15, an A / D converter 16, and an arithmetic processing device 17.

初めに、空間モード分散測定装置301は、被測定ファイバ50の任意のコアについて後方散乱光をコヒーレント検波してビート信号を得る。なお、図2において被測定ファイバ50以外はシングルモードシングルコア光ファイバで構成されることとする。   First, the spatial mode dispersion measuring apparatus 301 obtains a beat signal by coherently detecting backscattered light for an arbitrary core of the measured fiber 50. In FIG. 2, a fiber other than the fiber to be measured 50 is configured by a single mode single core optical fiber.

光源10には周波数掃引手段を有する光源を用い、時間に対して線形に周波数掃引された連続光が出射される。出射された連続光を光分岐器12で2分岐し、一方を被測定ファイバ50に入射する試験光、他方を後方散乱光をコヒーレント検波する際のローカル光に用いる。試験光は被測定ファイバ50の任意のコアに入射され、試験光の一部は被測定ファイバ50中でレイリー散乱される。このとき、入射方向の後方にはレイリー散乱光が複数のコアまたはモードとランダムに結合しながら伝搬する。試験光を入射したコアから出射される後方散乱光を光サーキュレータ13で試験光と分離して光合波器14でローカル光と合波する。後方散乱光とローカル光との合波によるビート信号を受光器15で電気信号に変換し、A/D変換器16でデジタル信号に変換する。   A light source having frequency sweeping means is used as the light source 10, and continuous light that is frequency swept linearly with respect to time is emitted. The emitted continuous light is bifurcated by the optical splitter 12, one is used as test light that enters the fiber to be measured 50, and the other is used as local light when coherently detecting backscattered light. The test light is incident on an arbitrary core of the measured fiber 50, and a part of the test light is Rayleigh scattered in the measured fiber 50. At this time, Rayleigh scattered light propagates behind the incident direction while being randomly coupled to a plurality of cores or modes. The backscattered light emitted from the core on which the test light is incident is separated from the test light by the optical circulator 13 and combined with the local light by the optical multiplexer 14. A beat signal resulting from the combination of the backscattered light and the local light is converted into an electric signal by the light receiver 15 and converted into a digital signal by the A / D converter 16.

次に演算処理装置17において、前記ビート信号を用いて被測定ファイバ50の任意地点におけるSMDを求める。図3は、演算処理装置17が行うSMD解析の演算手順を説明するフローチャートである。   Next, in the arithmetic processing unit 17, the SMD at an arbitrary point of the measured fiber 50 is obtained using the beat signal. FIG. 3 is a flowchart for explaining a calculation procedure of SMD analysis performed by the calculation processing device 17.

まずステップ1として、演算処理装置17はビート信号をフーリエ変換して、伝搬遅延時間に対する後方散乱光振幅分布を得た後、データ保管手段18に保管させる。
次にステップ2として、演算処理装置17はステップ1で得られた振幅分布のうちSMDを測定する地点を中心とする任意の区間成分を切り出す。
次にステップ3として、演算処理装置17は式(3)を用いてステップ2で切り出した振幅分布波形の自己相関を計算する。
次にステップ4として、演算処理装置17はステップ3で得られた自己相関波形においてτ’=0を中心とする相関ピークを取り除く。このとき、取り除く相関ピークの幅はOFDRの遅延分解能よりも大きく、SMDよりも小さい範囲とする。
次にステップ5として、演算処理装置17はステップ4で中心ピークを取り除いた自己相関の絶対値|R’(τ’)|を用いて、次式によりSMDであるΔτを求める。

Figure 2018205014
First, as step 1, the arithmetic processing unit 17 performs Fourier transform on the beat signal to obtain a backscattered light amplitude distribution with respect to the propagation delay time, and then stores it in the data storage unit 18.
Next, as step 2, the arithmetic processing unit 17 cuts out an arbitrary section component centered on the point where SMD is measured from the amplitude distribution obtained in step 1.
Next, in step 3, the arithmetic processing unit 17 calculates the autocorrelation of the amplitude distribution waveform cut out in step 2 using equation (3).
Next, as step 4, the arithmetic processing unit 17 removes a correlation peak centered at τ ′ = 0 in the autocorrelation waveform obtained at step 3. At this time, the width of the correlation peak to be removed is larger than the delay resolution of OFDR and smaller than SMD.
Next, in step 5, the arithmetic processing unit 17 uses the absolute value | R ′ (τ ′) | of the autocorrelation obtained by removing the central peak in step 4 to obtain Δτ as SMD by the following equation.
Figure 2018205014

被測定ファイバ50の別の地点のSMDを求める場合、演算処理装置17はステップ2で後方散乱光振幅分布波形を切り出す区間の中心位置を変えてステップ3〜5を実施する。このとき、ステップ1で保管した後方散乱光振幅分布を再度用いてステップ2以降を実施してもよく、ビート信号の取得及びフーリエ変換を再度行う必要はない。   When obtaining the SMD of another point of the measured fiber 50, the arithmetic processing unit 17 changes the center position of the section in which the backscattered light amplitude distribution waveform is cut out in step 2, and performs steps 3 to 5. At this time, the backscattered light amplitude distribution stored in Step 1 may be used again to perform Step 2 and the subsequent steps, and it is not necessary to perform beat signal acquisition and Fourier transform again.

なお、本実施形態では強結合マルチコア光ファイバの任意のコアについてOFDRを実施しているが、本発明はこれに限定されず、マルチコア光ファイバの複数コアに跨って測定、またはシングルコアマルチモード光ファイバについて測定してもよい。また、測定手段にはSMDに対し十分小さい遅延分解能(psオーダ以下)を有する手段であればOFDR以外の光反射測定法を用いても良い。   In this embodiment, OFDR is performed on an arbitrary core of a strongly coupled multicore optical fiber. However, the present invention is not limited to this, and measurement is performed across multiple cores of a multicore optical fiber, or single core multimode light is used. You may measure on fiber. Further, as a measurement means, a light reflection measurement method other than OFDR may be used as long as it has a sufficiently small delay resolution (ps order or less) with respect to SMD.

[効果]
本発明を用いることにより強結合SDM伝送路中のSMDを非破壊で測定できるため、ファイバ製造後だけでなく、ケーブル収容後や敷設後等、様々な場面でSMD評価を実施することができる。さらに本発明は伝送路片端で測定が完結するため、敷設後の伝送路を評価する場合、局舎から遠隔でSMDをモニタリングできる。特に強結合SDM伝送路では、前述したようにケーブル構造や敷設環境により局所的にSMDが変化することが想定されるため、本発明は伝送路の保守及び運用に向けた観点で従来の測定法に対して大きな優位性がある。
[effect]
By using the present invention, SMD in a strongly coupled SDM transmission line can be measured nondestructively, so that SMD evaluation can be performed not only after fiber production but also after cable installation and after laying. Furthermore, since the present invention completes the measurement at one end of the transmission line, when evaluating the transmission line after laying, the SMD can be monitored remotely from the station building. In particular, in a strong coupling SDM transmission line, it is assumed that the SMD changes locally depending on the cable structure and the installation environment as described above. Therefore, the present invention is a conventional measurement method from the viewpoint of maintenance and operation of the transmission line. Has a great advantage over

11:光源
12:光分岐器
13:光サーキュレータ
14:光合波器
15:受光器
16:A/D変換器
17:演算処理装置
18:データ保管手段
50:被測定ファイバ
301:空間モード分散測定装置
11: Light source 12: Optical splitter 13: Optical circulator 14: Optical multiplexer 15: Light receiver 16: A / D converter 17: Arithmetic processing device 18: Data storage means 50: Fiber to be measured 301: Spatial mode dispersion measuring device

Claims (4)

空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定する測定手順と、
前記振幅分布波形の任意区間成分を抽出し、抽出した振幅分布波形の自己相関を計算し、前記自己相関の中心ピークを除く相関ピーク分布の二次モーメントを前記空間多重光伝送路の前記任意区間における空間モード分散とする演算手順と、
を行う空間モード分散測定方法。
A measurement procedure for measuring an amplitude distribution waveform with respect to a propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line;
An arbitrary section component of the amplitude distribution waveform is extracted, an autocorrelation of the extracted amplitude distribution waveform is calculated, and a second moment of the correlation peak distribution excluding the central peak of the autocorrelation is calculated as the arbitrary section of the spatial multiplexing optical transmission line A calculation procedure for spatial mode dispersion in
Spatial mode dispersion measurement method.
前記測定手順では、
周波数掃引した連続光を分岐し、
分岐した前記連続光の一方を前記空間多重光伝送路に入射し、
前記空間多重光伝送路内で生じた後方レイリー散乱光と分岐した前記連続光の他方とを合波してビート信号を検出し、
前記ビート信号をフーリエ変換して前記振幅分布波形を得る
ことを特徴とする請求項1に記載の空間モード分散測定方法。
In the measurement procedure,
Branch the continuous light swept in frequency,
One of the branched continuous lights is incident on the spatially multiplexed optical transmission line;
Detecting the beat signal by combining the back Rayleigh scattered light generated in the spatially multiplexed optical transmission line and the other of the branched continuous light;
The spatial mode dispersion measuring method according to claim 1, wherein the beat signal is Fourier transformed to obtain the amplitude distribution waveform.
空間多重光伝送路の後方レイリー散乱光の伝搬遅延時間に対する振幅分布波形を測定する測定手段と、
前記振幅分布波形の任意区間成分を抽出し、抽出した振幅分布波形の自己相関を計算し、前記自己相関の中心ピークを除く相関ピーク分布の二次モーメントを前記空間多重光伝送路の前記任意区間における空間モード分散とする演算手段と、
を備える空間モード分散測定装置。
Measuring means for measuring an amplitude distribution waveform with respect to a propagation delay time of backward Rayleigh scattered light in a spatially multiplexed optical transmission line;
An arbitrary section component of the amplitude distribution waveform is extracted, an autocorrelation of the extracted amplitude distribution waveform is calculated, and a second moment of the correlation peak distribution excluding the central peak of the autocorrelation is calculated as the arbitrary section of the spatial multiplexing optical transmission line Arithmetic means for spatial mode dispersion in
A spatial mode dispersion measuring apparatus comprising:
前記測定手段は、
周波数掃引した連続光を出射する光源と、
前記光源が出射する連続光を分岐する光分岐器と、
前記光分岐器が分岐した前記連続光の一方を前記空間多重光伝送路に入射し、前記空間多重光伝送路内で生じた後方レイリー散乱光と、前記光分岐器が分岐した前記連続光の他方とを合波してビート信号を検出し、前記ビート信号をフーリエ変換して前記振幅分布波形を得る光検波器と、
を有することを特徴とする請求項3に記載の空間モード分散測定装置。
The measuring means includes
A light source that emits frequency-swept continuous light;
An optical branching device for branching continuous light emitted from the light source;
One of the continuous lights branched by the optical splitter is incident on the spatially multiplexed optical transmission line, and backward Rayleigh scattered light generated in the spatially multiplexed optical transmission line and the continuous light split by the optical splitter. Detecting a beat signal by combining with the other, an optical detector for Fourier-transforming the beat signal to obtain the amplitude distribution waveform;
The spatial mode dispersion measuring apparatus according to claim 3, wherein
JP2017107670A 2017-05-31 2017-05-31 Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus Active JP6751371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107670A JP6751371B2 (en) 2017-05-31 2017-05-31 Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107670A JP6751371B2 (en) 2017-05-31 2017-05-31 Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus

Publications (2)

Publication Number Publication Date
JP2018205014A true JP2018205014A (en) 2018-12-27
JP6751371B2 JP6751371B2 (en) 2020-09-02

Family

ID=64955577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107670A Active JP6751371B2 (en) 2017-05-31 2017-05-31 Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus

Country Status (1)

Country Link
JP (1) JP6751371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826403A (en) * 2021-01-19 2022-07-29 中国科学院半导体研究所 Multi-path optical time delay system based on multi-core optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258839A1 (en) * 2013-03-19 2016-09-08 Intuitive Surgical Operations Inc. Methods and apparatus for measurement of modal characteristics of multimode fiber using rayleigh scatter
JP2017037013A (en) * 2015-08-11 2017-02-16 日本電信電話株式会社 Mode dispersion coefficient measuring apparatus and mode dispersion coefficient measuring method
JP2017072818A (en) * 2015-10-08 2017-04-13 住友電気工業株式会社 Multicore optical fiber, multicore optical fiber cable, and optical fiber transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258839A1 (en) * 2013-03-19 2016-09-08 Intuitive Surgical Operations Inc. Methods and apparatus for measurement of modal characteristics of multimode fiber using rayleigh scatter
JP2017037013A (en) * 2015-08-11 2017-02-16 日本電信電話株式会社 Mode dispersion coefficient measuring apparatus and mode dispersion coefficient measuring method
JP2017072818A (en) * 2015-10-08 2017-04-13 住友電気工業株式会社 Multicore optical fiber, multicore optical fiber cable, and optical fiber transmission system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
坂本泰志 外4名: "結合型マルチコアファイバにおける空間モード分散係数の測定", 電子情報通信学会大会講演論文集(CD-ROM), JPN6020028360, 2015, pages 13 - 30, ISSN: 0004320560 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826403A (en) * 2021-01-19 2022-07-29 中国科学院半导体研究所 Multi-path optical time delay system based on multi-core optical fiber
CN114826403B (en) * 2021-01-19 2023-06-30 中国科学院半导体研究所 Multi-path optical delay system based on multi-core optical fiber

Also Published As

Publication number Publication date
JP6751371B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6824784B2 (en) Temperature / strain sensing device and temperature / strain sensing method
JP6338153B2 (en) Mode coupling ratio distribution measuring method and mode coupling ratio distribution measuring apparatus
Froggatt et al. Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry
JP2018048917A (en) Optical fiber test device and optical fiber test method
US9778137B2 (en) Methods and apparatus for measurement of modal characteristics of multimode fiber using Rayleigh scatter
US11802809B2 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP2017110953A (en) Inter-propagation-mode group delay difference measurement method and inter-propagation-mode group delay difference measurement system
JP6097712B2 (en) Apparatus and method for measuring propagation constant of optical fiber
US11486791B2 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP4769668B2 (en) Optical reflectometry measuring method and apparatus
JP6683973B2 (en) Mode coupling ratio distribution measuring device and mode coupling ratio distribution measuring method
JP2019105530A (en) Method and apparatus for testing mode delay time difference distribution
JP5852693B2 (en) Optical fiber test apparatus and optical fiber test method
JP6751371B2 (en) Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus
JP6539931B2 (en) Brillouin frequency shift distribution measurement system, Brillouin frequency shift distribution measurement apparatus, Brillouin frequency shift distribution measurement method, and Brillouin frequency shift distribution measurement program
JP5641178B2 (en) Optical reflectometry measuring method and optical reflectometry measuring apparatus
JP6706192B2 (en) Propagation delay time difference measuring method between spatial channels and propagation delay time difference measuring apparatus between spatial channels
Ohno et al. Nondestructive characterization of differential mode delay in few-mode fiber link using Rayleigh backscattering spectral shifts
JP2018189600A (en) Optical pulse test device and optical pulse test method
JP6393563B2 (en) Optical fiber evaluation method and evaluation apparatus
JP2018021890A (en) Device for measuring difference in inter-spatial channel propagation delay time and method for measuring difference in inter-spatial channel propagation delay time
JP7459966B2 (en) Frequency modulation amount measuring device and method
JPWO2020158033A1 (en) Optical pulse test device and optical pulse test method
US11879803B2 (en) Optical fiber evaluation method and optical fiber evaluation apparatus
US20230288287A1 (en) Power coupling coefficient measuring method and power coupling coefficient measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200814

R150 Certificate of patent or registration of utility model

Ref document number: 6751371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150