JP6751362B2 - Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels - Google Patents

Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels Download PDF

Info

Publication number
JP6751362B2
JP6751362B2 JP2017017107A JP2017017107A JP6751362B2 JP 6751362 B2 JP6751362 B2 JP 6751362B2 JP 2017017107 A JP2017017107 A JP 2017017107A JP 2017017107 A JP2017017107 A JP 2017017107A JP 6751362 B2 JP6751362 B2 JP 6751362B2
Authority
JP
Japan
Prior art keywords
delay time
time difference
propagation delay
spatial channels
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017107A
Other languages
Japanese (ja)
Other versions
JP2018021890A (en
Inventor
槙悟 大野
槙悟 大野
邦弘 戸毛
邦弘 戸毛
飯田 大輔
大輔 飯田
真鍋 哲也
哲也 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JP2018021890A publication Critical patent/JP2018021890A/en
Application granted granted Critical
Publication of JP6751362B2 publication Critical patent/JP6751362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、マルチモード光ファイバ、マルチコア光ファイバ等の空間多重伝送用光ファイバまたは光デバイスにおける空間チャネル間の伝搬遅延時間差を測定する技術に関する。 The present invention relates to a technique for measuring a propagation delay time difference between spatial channels in an optical fiber for spatial multiplexing transmission such as a multimode optical fiber or a multicore optical fiber or an optical device.

光通信における光ファイバ1本あたりの伝送容量を拡大する技術として、マルチモード光ファイバやマルチコア光ファイバを用いた空間多重伝送技術がある。空間多重伝送では、モードやコアといった空間的に異なる伝送チャネルで信号を多重化することにより伝送容量を拡大する。しかしながら、空間チャネル間で信号伝送に係る遅延時間が異なると信号復元に必要な信号処理の負荷が増大するという課題がある。そこで空間多重用光ファイバにおける遅延時間差を低減する研究が盛んに行われており(例えば、非特許文献1を参照。)、それに伴い遅延時間差を高分解能で測定できる技術が求められている。 As a technique for expanding the transmission capacity per optical fiber in optical communication, there is a spatial multiplexing transmission technique using a multimode optical fiber or a multicore optical fiber. In spatial multiplexing transmission, the transmission capacity is expanded by multiplexing signals in spatially different transmission channels such as modes and cores. However, if the delay time related to signal transmission differs between spatial channels, there is a problem that the load of signal processing required for signal restoration increases. Therefore, researches for reducing the delay time difference in the spatial multiplexing optical fiber have been actively conducted (for example, refer to Non-Patent Document 1), and accordingly, a technique capable of measuring the delay time difference with high resolution is required.

空間チャネル間の遅延時間差を測定する技術として、例えば周波数掃引光干渉法(FMCW法)がある(例えば、非特許文献2を参照。)。以下にFMCW法の測定原理を述べる。図1はFMCW法に用いられる装置構成の一例である。なお、ここでは被測定ファイバに2モードシングルコアファイバを用い、被測定ファイバ以外はシングルモードシングルコアファイバを用いた構成とする。 As a technique for measuring a delay time difference between spatial channels, there is, for example, a frequency swept optical interference method (FMCW method) (for example, see Non-Patent Document 2). The measurement principle of the FMCW method will be described below. FIG. 1 is an example of an apparatus configuration used in the FMCW method. Note that, here, a two-mode single-core fiber is used as the measured fiber, and a single-mode single-core fiber is used except for the measured fiber.

光源には周波数掃引手段を有する光源を用い、時間に対して線形に周波数掃引された連続光を出射する。出射光を光分波素子により2分岐し、一方は試験光として被測定ファイバに入射し、もう一方はローカル光として遅延時間τloを与える遅延ファイバに入射する。光源の位相雑音の影響を小さくするために、ここでの遅延ファイバ長は被測定ファイバに対して光路長差が光源のコヒーレンス長よりも十分短くなるよう設定する。被測定ファイバは入射側で軸ずれ接続されており、これにより試験光は被測定ファイバ中を2モードで伝搬する。被測定ファイバ伝搬後の試験光とローカル光を合波素子で合波した後、合波によるビート信号を受光器で電気信号に変換する。このとき、受光器で検出されるビート信号I(t)は次式で記述される。

Figure 0006751362
Figure 0006751362
Figure 0006751362
Figure 0006751362
ここで、
、i、i及びφ、φ、φは振幅及び位相の定数、
φnoise1(t)、φnoise2(t)、φnoise3(t)はそれぞれθ(t)、θ(t)、θ(t)に含まれる位相雑音、
γは周波数掃引速度、
τ及びτはそれぞれモード1とモード2の被測定ファイバ中の伝搬に係る遅延時間
である。 A light source having a frequency sweeping means is used as the light source, and continuous light whose frequency is swept linearly with respect to time is emitted. The emitted light is split into two by an optical demultiplexing element, one of which is incident as a test light on the fiber to be measured, and the other of which is incident as a local light on a delay fiber that gives a delay time τ lo . In order to reduce the influence of the phase noise of the light source, the delay fiber length here is set so that the optical path length difference with respect to the measured fiber is sufficiently shorter than the coherence length of the light source. The fiber to be measured is axially connected on the incident side so that the test light propagates in the fiber to be measured in two modes. After the test light and the local light after propagating through the fiber under measurement are combined by the combining element, the beat signal resulting from the combination is converted into an electric signal by the light receiver. At this time, the beat signal I(t) detected by the light receiver is described by the following equation.
Figure 0006751362
Figure 0006751362
Figure 0006751362
Figure 0006751362
here,
i 1 , i 2 , i 3 and φ 1 , φ 2 , φ 3 are amplitude and phase constants,
φ noise1 (t), φ noise2 (t), and φ noise3 (t) are phase noises included in θ 1 (t), θ 2 (t), and θ 3 (t), respectively.
γ is the frequency sweep speed,
τ 1 and τ 2 are delay times related to propagation in the fiber under measurement of mode 1 and mode 2, respectively.

式(1)〜(4)に示されるように、I(t)は周波数γ(τ−τlo)、γ(τ−τlo)、γ(τ−τ)の3つの周波数成分を持ち、これらの周波数は各モードの遅延時間で決まる。 As shown in the equations (1) to (4), I(t) has three frequencies of frequencies γ(τ 1 −τ lo ), γ(τ 2 −τ lo ), and γ(τ 1 −τ 2 ). There are components, and these frequencies are determined by the delay time of each mode.

I(t)の周波数成分はフーリエ変換により解析される。I(t)のフーリエ変換の結果を図2に示す。図2におけるピーク位置の比較から、θ(t)とθ(t)の周波数差ΔfDMDを求め、モード2とモード1の遅延時間差ΔτDMDは次式により算出される。

Figure 0006751362
The frequency component of I(t) is analyzed by Fourier transform. The result of the Fourier transform of I(t) is shown in FIG. From the comparison of the peak positions in FIG. 2, the frequency difference Δf DMD between θ 2 (t) and θ 1 (t) is obtained, and the delay time difference Δτ DMD between mode 2 and mode 1 is calculated by the following equation.
Figure 0006751362

T. Sakamoto et al.,“Differential mode delay managed transmission line for WDM−MIMO system using multi−step index fiber”, J. Lightw. Technol., Vol. 30, No. 17, pp. 2783−2787, 2012.T. Sakamoto et al. , "Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber", J. Org. Lightw. Technol. , Vol. 30, No. 17, pp. 2783-2787, 2012. T. Ahn et al.,“High−resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer”, Opt. Express, Vol. 13, No. 20, pp. 8256−8262, 2005.T. Ahn et al. , "High-resolution differential mode delay measurement for a multimodal optical fiber using a modified optical frequency replenishment dome reflex. Express, Vol. 13, No. 20, pp. 8256-8262, 2005. J. Lee et al.,“Fourier−domain low−coherence interferometry for differential mode delay analysis of an optical fiber”, Opt. Lett., Vol. 31, No. 16, pp. 2396−2398. 2006.J. Lee et al. , "Fourier-domain low-coherence interferometry for differential mode delay analysis of an optical fiber", Opt. Lett. , Vol. 31, No. 16, pp. 2396-2398. 2006. T. Ahn et al.,“Optical frequency−domain chromatic dispersion measurement method for higher−order modes in an optical fiber”, Opt. Express, Vol. 13, No. 25, pp. 10040−10048, 2005.T. Ahn et al. , "Optical frequency-domain chromatic dispersion dispersion measurement method for higher-order modes in an optical fiber", Opt. Express, Vol. 13, No. 25, pp. 10040-10048, 2005.

位相雑音を無視すると、従来のFMCW法の遅延時間差の測定分解能Δτは次式で記述される。

Figure 0006751362
ここで
ΔfはI(t)のフーリエ変換における周波数分解能、
Tは測定時間、
ΔFは周波数掃引幅
である。 Ignoring the phase noise, the measurement resolution Δτ of the delay time difference of the conventional FMCW method is described by the following equation.
Figure 0006751362
Where Δf is the frequency resolution in the Fourier transform of I(t),
T is the measurement time,
ΔF is a frequency sweep width.

式(6)に示されるように、遅延時間差分解能は試験光の周波数掃引幅を拡大することで向上することができる。しかしながら、実際には光源の性能や使用する素子の帯域制限上、測定で使える周波数掃引幅には限界がある。一般的に周波数掃引幅が広い波長可変半導体レーザが光源に用いられるが、コヒーレンス長が短いことから、位相雑音の影響を小さくし所望の分解能を得るためにローカル光の遅延ファイバ長を被測定ファイバ長に合わせて厳密に設定する必要がある。つまり、FMCWで空間チャネル間の遅延時間差を測定する装置の測定分解能を高めるためには、遅延ファイバの長さの精度を高めなければならないという第1の課題があった。 As shown in Expression (6), the delay time difference resolution can be improved by expanding the frequency sweep width of the test light. However, in practice, there is a limit to the frequency sweep width that can be used for measurement due to the performance of the light source and the band limitation of the element used. Generally, a wavelength tunable semiconductor laser with a wide frequency sweep width is used as a light source, but since the coherence length is short, the delay fiber length of the local light is measured to reduce the effect of phase noise and obtain the desired resolution. It is necessary to set strictly according to the length. In other words, there is the first problem that the accuracy of the length of the delay fiber must be increased in order to increase the measurement resolution of the device that measures the delay time difference between spatial channels with the FMCW.

また、一般に空間チャネル間の遅延時間差は波長依存性を持つ。このため、周波数掃引幅を拡大すると測定される遅延時間差は広がりを持ち、遅延時間差を正確に評価することが困難になることがある。このため、限られた周波数掃引幅で空間チャネル間の遅延時間差を測定することが求められる。つまり、FMCWで空間チャネル間の遅延時間差を測定する装置には、空間チャネル間の遅延時間差の波長依存性を評価するために限られた周波数掃引幅で高い分解能を実現しなければならないという第2の課題があった。 In addition, the delay time difference between spatial channels generally has wavelength dependence. For this reason, when the frequency sweep width is expanded, the measured delay time difference has a spread, and it may be difficult to accurately evaluate the delay time difference. Therefore, it is required to measure the delay time difference between spatial channels with a limited frequency sweep width. That is, in the device for measuring the delay time difference between the spatial channels by the FMCW, it is necessary to realize high resolution with a limited frequency sweep width in order to evaluate the wavelength dependence of the delay time difference between the spatial channels. There was a problem.

なお、FMCW法以外の遅延時間差測定法としては低コヒーレンス干渉法(非特許文献3)、非特許文献1で用いられているインパルス応答がある。しかし、低コヒーレンス干渉法における分解能も光帯域に対して式(6)と同じ関係にあり、インパルス応答も分解能向上のためにはパルス幅を小さくするために光帯域を拡大する必要があるので、上記と同じ課題を有する。 In addition, as a delay time difference measurement method other than the FMCW method, there are a low coherence interferometry method (Non-Patent Document 3) and an impulse response used in Non-Patent Document 1. However, the resolution in the low coherence interferometry has the same relationship with the optical band as in the equation (6), and the impulse response also needs to be expanded in order to reduce the pulse width in order to improve the resolution. It has the same problem as above.

本発明は、上記課題を解決するために、限られた光帯域内で高い分解能を有する空間チャネル間伝搬遅延時間差測定装置及び空間チャネル間伝搬遅延時間差測定方法を提供することを目的とする。 In order to solve the above problems, an object of the present invention is to provide a spatial channel propagation delay time difference measuring apparatus and a spatial channel propagation delay time difference measuring method having high resolution in a limited optical band.

上記目的を達成するために、本発明に係る空間チャネル間伝搬遅延時間差測定装置及び空間チャネル間伝搬遅延時間差測定方法は、空間チャネルごとに光源の光周波数を掃引してローカル光とのビート信号を生成し、そのビート信号の位相差の時間変化率から解析されるビート周波数差を周波数掃引速度で除することで空間チャネル間の伝搬遅延時間差を測定することとした。 In order to achieve the above object, the inter-spatial channel propagation delay time difference measuring device and the inter-spatial channel propagation delay time difference measuring method according to the present invention sweep a light frequency of a light source for each spatial channel to obtain a beat signal with local light. It was decided to measure the propagation delay time difference between spatial channels by dividing the beat frequency difference generated from the beat signal and analyzed from the time change rate of the phase difference of the beat signal by the frequency sweep speed.

具体的には、本発明に係る空間チャネル間伝搬遅延時間差測定装置は、
時間的に周波数を掃引した連続光を出射する光源部と、
前記光源部からの連続光を2分岐する光分波素子と、
前記光分波素子で分岐された連続光の一方をローカル光として遅延を与える遅延光ファイバと、
前記光分波素子で分岐された連続光の他方を試験光として被測定物の特定の空間チャネルに対して選択的に入射する選択的励起部と、
前記被測定物を透過した試験光のうち前記特定の空間チャネルを選択的に分離する選択的分離部と、
前記遅延光ファイバを経由した前記ローカル光と前記選択的分離部で分離された前記特定の空間チャネルの試験光とを合波しビート信号とする光合波素子と、
前記光合波素子から異なる2つの前記特定の空間チャネルの試験光に基づく2つの前記ビート信号を取得し、前記ビート信号間の位相差の時間変化率から前記被測定物における2つの前記特定の空間チャネル間の伝搬遅延時間差を算出する演算処理装置と、
を備える。
Specifically, the inter-spatial channel propagation delay time difference measuring device according to the present invention is
A light source unit that emits continuous light whose frequency is swept temporally,
An optical demultiplexing device that splits continuous light from the light source unit into two;
A delay optical fiber for delaying one of the continuous lights branched by the optical demultiplexing element as local light,
A selective excitation unit that selectively enters the other of the continuous light branched by the optical demultiplexing element as a test light into a specific spatial channel of the DUT,
A selective separation unit for selectively separating the specific spatial channel of the test light transmitted through the DUT,
An optical multiplexing element that multiplexes the local light passing through the delay optical fiber and the test light of the specific spatial channel separated by the selective separation unit into a beat signal,
The two beat signals based on the test lights of the two different specific spatial channels are acquired from the optical multiplexing device, and the two specific spaces in the DUT are obtained from the time change rate of the phase difference between the beat signals. An arithmetic processing device for calculating a propagation delay time difference between channels,
Equipped with.

また、本発明に係る空間チャネル間伝搬遅延時間差測定方法は、
時間的に周波数を掃引した連続光を2分岐し、一方をローカル光として遅延光ファイバで遅延を与え、他方を試験光として被測定物の特定の空間チャネルに対して選択的に入射する光入射手順と、
前記被測定物を透過した試験光のうち前記特定の空間チャネルを選択的に分離し、前記遅延光ファイバを経由した前記ローカル光と合波してビート信号とするビート信号生成手順と、
前記ビート信号生成手順で異なる2つの前記特定の空間チャネルの試験光に基づく2つの前記ビート信号を取得し、前記ビート信号間の位相差の時間変化率から前記被測定物における2つの前記特定の空間チャネル間の伝搬遅延時間差を算出する演算処理手順と、
を行う。
Further, the method for measuring the propagation delay time difference between spatial channels according to the present invention,
Continuous light whose frequency has been swept temporally is split into two, one of which is used as a local light to delay with a delay optical fiber, and the other of which is used as a test light to selectively enter a specific spatial channel of the DUT. Procedure and
A beat signal generation procedure for selectively separating the specific spatial channel from the test light transmitted through the device under test, and combining with the local light via the delay optical fiber to form a beat signal,
The two beat signals based on the test lights of the two specific spatial channels that are different in the beat signal generation procedure are acquired, and the two specific beat signals in the DUT are obtained from the time change rate of the phase difference between the beat signals. An arithmetic processing procedure for calculating a propagation delay time difference between spatial channels,
I do.

本発明では、従来のFMCWの装置構成に対して空間チャネルを選択的に励起・分離する素子を適用し、チャネルごとにビート信号を測定し、ビート信号間の位相差の時間変化からビート周波数差を求めることにより、従来よりも高分解能で遅延時間差を測定する。モード1のビート信号とモード2のビート信号の位相をそれぞれθ(t)、θ(t)とすると、それらの位相差Δθ(t)は次式のようになる。

Figure 0006751362
In the present invention, an element that selectively excites/separates a spatial channel is applied to the conventional FMCW device configuration, the beat signal is measured for each channel, and the beat frequency difference is determined from the time change of the phase difference between the beat signals. Thus, the delay time difference is measured with higher resolution than before. If the phases of the beat signal of mode 1 and the beat signal of mode 2 are θ 1 (t) and θ 2 (t), respectively, the phase difference Δθ(t) between them is as follows.
Figure 0006751362

Δθ(t)の測定結果の一例を図3に示す。位相雑音を無視するとΔθ(t)は時間に対して傾き2πΔfDMDで線形に変化することから、線形フィッティングによりΔfDMDを解析し、式(5)を用いてΔτDMDを求めることができる。従来のFMCW法はフーリエ変換から周波数解析するため、フーリエ変換の周波数分解能上、測定時間内にΔθ(t)が2π以上生じないような小さなΔfDMDは解析できないのに対し、本発明ではΔθ(t)から直接ΔfDMDを求めるため、Δθ(t)が2π以下であっても解析することができる。 An example of the measurement result of Δθ(t) is shown in FIG. If the phase noise is ignored, Δθ(t) changes linearly with a slope of 2πΔf DMD with respect to time. Therefore, Δf DMD can be analyzed by linear fitting and Δτ DMD can be obtained by using Expression (5). Since the conventional FMCW method analyzes the frequency from the Fourier transform, a small Δf DMD such that Δθ(t) does not occur by 2π or more within the measurement time cannot be analyzed due to the frequency resolution of the Fourier transform, whereas the present invention uses Δθ( Since Δf DMD is directly obtained from t), analysis can be performed even if Δθ(t) is 2π or less.

実際には光源の位相揺らぎや外乱により、図3に示されるようにΔθ(t)には位相雑音が生じるため、本発明における遅延時間差分解能は位相雑音で決まる。位相雑音が標準偏差σの正規分布に従うと仮定すると、σ<2πΔfDMDT(Tは測定時間)であれば解析可能であるため、本発明における遅延時間差分解能Δτは次式で記述される。

Figure 0006751362
σ<2πであることから、式(6)と式(8)の比較より本発明による方法は従来の遅延時間差測定法に比べて高分解能となることがわかる。 Actually, phase fluctuations and disturbances of the light source cause phase noise in Δθ(t) as shown in FIG. 3, so the delay time difference resolution in the present invention is determined by the phase noise. Assuming that the phase noise follows a normal distribution with a standard deviation σ, it can be analyzed if σ<2πΔf DMD T (T is a measurement time). Therefore, the delay time difference resolution Δτ in the present invention is described by the following equation.
Figure 0006751362
Since σ<2π, it can be seen from the comparison between the equations (6) and (8) that the method according to the present invention has a higher resolution than the conventional delay time difference measuring method.

従って、本発明は、限られた光帯域内で高い分解能を有する空間チャネル間伝搬遅延時間差測定装置及び空間チャネル間伝搬遅延時間差測定方法を提供することができる。 Therefore, the present invention can provide a propagation delay time difference measuring apparatus between spatial channels and a propagation delay time difference measuring method between spatial channels having a high resolution in a limited optical band.

本発明に係る空間チャネル間伝搬遅延時間差測定装置の前記演算処理装置は、同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする。また、本発明に係る空間チャネル間伝搬遅延時間差測定方法は、前記演算処理手順で、同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする。 The arithmetic processing unit of the inter-spatial channel propagation delay time difference measuring apparatus according to the present invention is characterized by acquiring the beat signals for the same spatial channel a plurality of times and averaging the phases of the plurality of the beat signals. Further, the method for measuring the propagation delay time difference between spatial channels according to the present invention is characterized in that, in the arithmetic processing procedure, the beat signals for the same spatial channel are acquired a plurality of times, and the phases of the plurality of beat signals are arithmetically averaged. And

本発明では、位相を複数回測定し加算平均することで位相雑音の低減が可能である。すなわち、加算平均により遅延時間分解能を向上できる。N回加算平均した場合、位相雑音の標準偏差はσ/√Nになることから、分解能は√N倍向上する。 In the present invention, the phase noise can be reduced by measuring the phase a plurality of times and averaging them. That is, the delay time resolution can be improved by averaging. When the arithmetic mean is performed N times, the standard deviation of the phase noise is σ/√N, so the resolution is improved by √N times.

本発明に係る空間チャネル間伝搬遅延時間差測定装置の前記演算処理装置の前記演算処理装置は、前記光源部が周波数を掃引し始める周波数掃引開始時刻から前記ビート信号を取得し始めるビート信号取得開始時刻までの時間を違えて同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする。また、本発明に係る空間チャネル間伝搬遅延時間差測定方法は、前記演算処理手順で、前記光入射手順で周波数を掃引し始める周波数掃引開始時刻から前記ビート信号を取得し始めるビート信号取得開始時刻までの時間を違えて同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする。 The arithmetic processing device of the arithmetic processing device of the inter-spatial channel propagation delay time difference measuring device according to the present invention is a beat signal acquisition start time at which the light source unit starts acquiring the beat signal from a frequency sweep start time at which frequency sweep is started. It is characterized in that the beat signals for the same spatial channel are acquired a plurality of times at different times, and the phases of the plurality of beat signals are arithmetically averaged. Further, the method for measuring the propagation delay time difference between spatial channels according to the present invention, in the arithmetic processing procedure, from the frequency sweep start time to start sweeping the frequency in the light incidence procedure to the beat signal acquisition start time to start acquiring the beat signal. The beat signals for the same spatial channel are acquired a plurality of times at different times, and the phases of the plurality of beat signals are arithmetically averaged.

周波数を掃引する連続光の初期周波数を変えてビート信号を生成し、位相を加算平均することでモード結合による位相揺らぎを低減することができる。従って、本発明は、空間チャネル間に結合が生じる場合でも空間チャネル間伝搬遅延時間差を測定することができる。 Phase fluctuations due to mode coupling can be reduced by changing the initial frequency of continuous light that sweeps the frequency to generate a beat signal and averaging the phases. Therefore, the present invention can measure the propagation delay time difference between spatial channels even when coupling occurs between spatial channels.

本発明に係る空間チャネル間伝搬遅延時間差測定装置の前記光源部は、外部変調器として、外部周波数変調器または外部位相変調器を用いることを特徴とする。 The light source unit of the inter-spatial channel propagation delay time difference measuring apparatus according to the present invention is characterized in that an external frequency modulator or an external phase modulator is used as an external modulator.

周波数掃引幅を広げることなく分解能を向上できることは、測定に使用する光源の選択肢を拡大することも意味する。例えばファイバレーザ等の位相雑音の小さいレーザを用い、シングルサイドバンド変調器等の外部変調器による〜10GHz程度の狭帯域の周波数掃引でも十分な分解能を実現できる。 The ability to improve resolution without increasing the frequency sweep width also means expanding the choice of light sources used for measurement. For example, a sufficient resolution can be realized even by using a laser having a small phase noise such as a fiber laser and performing a frequency sweep in a narrow band of about 10 GHz by an external modulator such as a single sideband modulator.

本発明に係る空間チャネル間伝搬遅延時間差測定装置の前記光源部は、前記連続光の中心波長を変える中心波長変更手段を備えており、
前記演算処理装置は、
前記連続光の異なる中心波長毎に空間チャネル間の伝搬遅延時間差を算出して、前記被測定物における空間チャネル間の伝搬遅延時間差の波長依存性を測定し、前記空間チャネル間の伝搬遅延時間差の波長依存性について波長微分を行い、前記被測定物の長さで除算して空間チャネル間の波長分散差を算出することを特徴とする。
The light source unit of the inter-spatial channel propagation delay time difference measuring apparatus according to the present invention includes a central wavelength changing unit that changes the central wavelength of the continuous light,
The arithmetic processing unit,
Calculating the propagation delay time difference between the spatial channels for each different center wavelength of the continuous light, measuring the wavelength dependence of the propagation delay time difference between the spatial channels in the DUT, of the propagation delay time difference between the spatial channels. It is characterized in that wavelength differentiation is performed with respect to the wavelength dependence, and the wavelength dispersion difference between the spatial channels is calculated by dividing by the length of the DUT.

また、本発明に係る空間チャネル間伝搬遅延時間差測定方法は、
前記光入射手順で、前記連続光の中心波長を変え、
前記演算処理手順で、
前記連続光の異なる中心波長毎に空間チャネル間の伝搬遅延時間差を算出して、前記被測定物における空間チャネル間の伝搬遅延時間差の波長依存性を測定し、
前記空間チャネル間の伝搬遅延時間差の波長依存性について波長微分を行い、前記被測定物の長さで除算して空間チャネル間の波長分散差を算出する
ことを特徴とする。
Further, the method for measuring the propagation delay time difference between spatial channels according to the present invention,
In the light incident procedure, changing the central wavelength of the continuous light,
In the arithmetic processing procedure,
Calculate the propagation delay time difference between the spatial channels for each different center wavelength of the continuous light, to measure the wavelength dependence of the propagation delay time difference between the spatial channels in the DUT,
The wavelength dependence of the propagation delay time difference between the spatial channels is differentiated by wavelength, and the wavelength dispersion difference between the spatial channels is calculated by dividing by the length of the DUT.

上述のように本発明は周波数掃引幅を広げることなく分解能を向上できるので、空間チャネル間伝搬遅延時間差の波長依存性が大きい場合も測定可能である。 As described above, according to the present invention, the resolution can be improved without widening the frequency sweep width, so that measurement can be performed even when the wavelength dependence of the propagation delay time difference between spatial channels is large.

本発明は、限られた光帯域内で高い分解能を有する空間チャネル間伝搬遅延時間差測定装置及び空間チャネル間伝搬遅延時間差測定方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a spatial channel propagation delay time difference measuring device and a spatial channel propagation delay time difference measuring method having high resolution within a limited optical band.

FMCW法に用いられる装置構成の一例を示すブロック図である。It is a block diagram showing an example of the device composition used for the FMCW method. FMCW法におけるビート信号のフーリエ変換結果の概念図である。It is a conceptual diagram of the Fourier transform result of the beat signal in the FMCW method. 本発明において測定される、ビート信号の位相差の測定結果の一例である。It is an example of the measurement result of the phase difference of a beat signal measured in the present invention. 本発明の実施形態における測定の流れを示すフローチャートである。It is a flow chart which shows a flow of measurement in an embodiment of the present invention. 本発明の実施形態で用いられる装置構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a device configuration used in an embodiment of the present invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In this specification and the drawings, constituent elements having the same reference numerals indicate the same elements.

(実施形態1)
ここでは一例として、被測定ファイバに2モードシングルコアファイバを用いて2モード間の遅延時間差を測定する場合について述べる。なお、空間チャネル間の結合は無視できるほど小さいとする。
図5は、本実施形態の空間チャネル間伝搬遅延時間差測定装置301(以下、測定装置301と記載することがある。)を説明する構成図である。測定装置301は、
時間的に周波数を掃引した連続光を出射する光源部11と、
光源部11からの連続光を2分岐する光分波素子12と、
光分波素子12で分岐された連続光の一方をローカル光として遅延を与える遅延光ファイバ13と、
光分波素子12で分岐された連続光の他方を試験光として被測定物の特定の空間チャネルに対して選択的に入射する選択的励起部14と、
前記被測定物を透過した試験光のうち前記特定の空間チャネルを選択的に分離する選択的分離部15と、
遅延光ファイバ13を経由したローカル光と選択的分離部15で分離された前記特定の空間チャネルの試験光とを合波しビート信号とする光合波素子16と、
光合波素子16から異なる2つの前記特定の空間チャネルの試験光に基づく2つの前記ビート信号を取得し、前記ビート信号間の位相差の時間変化率から前記被測定物における2つの前記特定の空間チャネル間の伝搬遅延時間差を算出する演算処理装置17と、
を備える。
演算処理装置17は、ビート信号を電気信号へ変換する受光器21、電気信号をアナログからデジタルへ変換するA/D変換器22、及び演算処理を行う演算処理部からなる。
(Embodiment 1)
Here, as an example, a case will be described in which a two-mode single-core fiber is used as the measured fiber and the delay time difference between the two modes is measured. The coupling between spatial channels is assumed to be negligible.
FIG. 5 is a configuration diagram illustrating a propagation delay time difference measuring apparatus 301 between spatial channels (hereinafter, also referred to as measuring apparatus 301) of the present embodiment. The measuring device 301 is
A light source unit 11 for emitting continuous light whose frequency is swept,
An optical demultiplexing element 12 that splits continuous light from the light source unit 11 into two,
A delay optical fiber 13 for delaying one of the continuous lights branched by the optical demultiplexer 12 as local light,
A selective excitation unit 14 that selectively injects the other of the continuous light split by the optical demultiplexing element 12 as a test light into a specific spatial channel of the DUT;
A selective separation unit 15 that selectively separates the specific spatial channel of the test light transmitted through the object to be measured;
An optical multiplexing element 16 that multiplexes the local light that has passed through the delay optical fiber 13 and the test light of the specific spatial channel that has been separated by the selective separation unit 15 into a beat signal,
The two beat signals based on the test lights of the two different specific spatial channels are acquired from the optical multiplexing element 16, and the two specific spaces in the DUT are obtained from the time change rate of the phase difference between the beat signals. An arithmetic processing unit 17 for calculating a propagation delay time difference between channels;
Equipped with.
The arithmetic processing device 17 includes a light receiver 21 that converts a beat signal into an electric signal, an A/D converter 22 that converts the electric signal from analog to digital, and an arithmetic processing unit that performs arithmetic processing.

ここで、図5の測定装置301が測定している被測定物は光ファイバであり、図5では被測定ファイバ100として記載している。被測定ファイバ100は測定装置301には含まれない。また、被測定ファイバ100における空間チャネルとは伝搬モードである。また、なお、図5において被測定ファイバ100以外は光源部100からの連続光においてシングルモードで伝搬するシングルコアファイバで構成されることとする。 Here, the measured object measured by the measuring device 301 in FIG. 5 is an optical fiber, and is shown as the measured fiber 100 in FIG. The measured fiber 100 is not included in the measuring device 301. The spatial channel in the fiber under test 100 is the propagation mode. In addition, in FIG. 5, except for the fiber 100 to be measured, it is assumed that the continuous light from the light source unit 100 is composed of a single core fiber that propagates in a single mode.

測定装置301は、
時間的に周波数を掃引した連続光を2分岐し、一方をローカル光として遅延光ファイバで遅延を与え、他方を試験光として被測定物の特定の空間チャネルに対して選択的に入射する光入射手順と、
前記被測定物を透過した試験光のうち前記特定の空間チャネルを選択的に分離し、前記遅延光ファイバを経由した前記ローカル光と合波してビート信号とするビート信号生成手順と、
前記ビート信号生成手順で異なる2つの前記特定の空間チャネルの試験光に基づく2つの前記ビート信号を取得し、前記ビート信号間の位相差の時間変化率から前記被測定物における2つの前記特定の空間チャネル間の伝搬遅延時間差を算出する演算処理手順と、
を行う空間チャネル間伝搬遅延時間差測定方法で空間チャネル間の伝搬遅延時間差を取得する。
The measuring device 301 is
Continuous light whose frequency has been swept temporally is split into two, one of which is used as a local light to delay with a delay optical fiber, and the other of which is used as a test light to selectively enter a specific spatial channel of the DUT. Procedure and
A beat signal generation procedure for selectively separating the specific spatial channel from the test light transmitted through the device under test, and combining with the local light via the delay optical fiber to form a beat signal,
The two beat signals based on the two different test lights of the specific spatial channels are acquired in the beat signal generation procedure, and the two specific signals in the DUT are acquired from the time change rate of the phase difference between the beat signals. An arithmetic processing procedure for calculating a propagation delay time difference between spatial channels,
The propagation delay time difference between spatial channels is acquired by the propagation delay time difference measurement method between spatial channels.

図4は、演算処理装置17が行う演算処理手順を説明するフローチャートである。初めにステップS01として、ビート信号をモード1について測定する。光源部11には周波数掃引手段を有する光源を用い、時間に対して線形に周波数掃引された連続光を出射する。測定装置301では狭い周波数掃引幅でも高い遅延時間分解能が得られるため、光源部11としてファイバレーザ等の位相雑音の小さいレーザを用い、外部変調器により周波数掃引する。なお、ここでの外部変調器は周波数変調器、位相変調器のいずれでもよい。 FIG. 4 is a flowchart illustrating a calculation processing procedure performed by the calculation processing device 17. First, in step S01, the beat signal is measured for mode 1. A light source having a frequency sweeping unit is used as the light source unit 11 and emits continuous light whose frequency is swept linearly with respect to time. Since the measurement apparatus 301 can obtain a high delay time resolution even with a narrow frequency sweep width, a laser having a small phase noise such as a fiber laser is used as the light source unit 11 and the frequency is swept by the external modulator. The external modulator here may be either a frequency modulator or a phase modulator.

周波数掃引した連続光を光分波素子12により2分岐し、一方はローカル光として遅延時間τloを与える遅延ファイバ13に入射し、もう一方は試験光としてモードを選択する選択励起部14を用いて被測定ファイバ100にモード1で入射する。本実施例ではコヒーレンスの高いレーザ(ファイバレーザではコヒーレンス長〜10数km)を光源に用いているため、ここでの遅延ファイバ長は被測定ファイバに対して光路長差がコヒーレンス長以内であれば厳密に設定する必要はない。 The frequency-swept continuous light is split into two by an optical demultiplexing element 12, one of which is incident as a local light on a delay fiber 13 which gives a delay time τ lo, and the other of which is used as a test light using a selective pumping section 14 for selecting a mode. And enters the measured fiber 100 in mode 1. In this embodiment, since a laser with high coherence (coherence length of fiber laser: coherence length to several tens of kilometers) is used as the light source, the delay fiber length here is as long as the optical path length difference with respect to the measured fiber is within the coherence length. It does not need to be set strictly.

被測定ファイバ100伝搬後のモード1の試験光を選択分離部15で取り出し、光合波素子16によってローカル光と合波する。合波によるビート信号I1_0、1(t)は次式で記述される。

Figure 0006751362
ただし、θ1,1(t)は次式で表される。
Figure 0006751362
The test light of mode 1 after propagating through the fiber 100 to be measured is extracted by the selective separation unit 15 and is combined with the local light by the optical combining element 16. The beat signal I 1 — 0, 1 (t) resulting from the multiplexing is described by the following equation.
Figure 0006751362
However, θ 1,1 (t) is expressed by the following equation.
Figure 0006751362

1_0、1(t)は受光器21で電気信号に変換され、A/D変換器22によりデジタル信号に変換される。 I 1 — 0,1 (t) is converted into an electric signal by the light receiver 21, and converted into a digital signal by the A/D converter 22.

ステップS02では、演算処理部23において、I1_0、1(t)の位相をπ/2遅らせた信号I1_π/2、1(t)を、I1_0、1(t)のヒルベルト変換により算出する。I1_π/2、1(t)は次式で記述される。

Figure 0006751362
In step S02, the arithmetic processing unit 23, I 1_0,1 signals I 1_π / 2,1 (t) of the phase of the delayed [pi / 2 in (t), is calculated by the Hilbert transform of I 1_0,1 (t) .. I 1 — π/2, 1 (t) is described by the following equation.
Figure 0006751362

ステップS03では、I1_0、1(t)とI1_π/2、1(t)を用いて、次式によりθ1、1(t)を算出する。

Figure 0006751362
In step S03, I 1 — 0 , 1 (t) and I 1 — π/2, 1 (t) are used to calculate θ 1,1 (t) by the following equation.
Figure 0006751362

ステップS04では、上記のステップS01〜S03をN回行い、N個のθ1、j(t)(j=1〜N)を次式により加算平均し、θ(t)を得る。

Figure 0006751362
ここで<φnoise1、j(t)>及び<φ1、j>はそれぞれφnoise1、j(t)とφ1、jの加算平均を表す。
なお、ステップ4の加算平均は位相雑音を低減し遅延時間差分解能を向上させるために行うものであり、所望の分解能に対して位相雑音が小さい場合、N=1として加算平均を省略し、θ(t)=θ1、1(t)としてもよい。 In step S04, the above steps S01 to S03 are performed N times, and N θ 1,j (t) (j=1 to N) are arithmetically averaged by the following equation to obtain θ 1 (t).
Figure 0006751362
Here, <φ noise1, j (t)> and <φ 1, j > represent the arithmetic mean of φ noise1, j (t) and φ 1, j , respectively.
Note that averaging of step 4 is to carry out in order to improve the time difference resolution delay to reduce phase noise, if the phase noise is small, averaging the N = 1 is omitted for the desired resolution, theta 1 (T)=θ 1,1 (t).

ステップS01〜S04をモード2についても行い、モード2のビート信号の位相θ(t)を算出する。 The steps S01 to S04 are also performed for the mode 2 to calculate the phase θ 2 (t) of the beat signal of the mode 2.

ステップS05では、モード2のビート信号とモード1のビート信号の位相差Δθ(t)を算出する。算出されるΔθ(t)は次式のようになる。

Figure 0006751362
ここで、ΔfDMDは次式で表される。
Figure 0006751362
式(14)で得られたΔθ(t)に線形フィッティングを行い、傾きからΔfDMDを求める。 In step S05, the phase difference Δθ(t) between the mode 2 beat signal and the mode 1 beat signal is calculated. The calculated Δθ(t) is given by the following equation.
Figure 0006751362
Here, Δf DMD is expressed by the following equation.
Figure 0006751362
Linear fitting is performed on Δθ(t) obtained by the equation (14), and Δf DMD is obtained from the slope.

最後にステップS06において、ΔτDMD=ΔfDMD/γによりモード1とモード2の遅延時間差ΔτDMDを算出する。このとき、φnoise2、j(t)−φnoise1、k(t)(j≠k)が標準偏差σの正規分布に従うと仮定すると、次式の分解能Δτで遅延時間差が測定される。

Figure 0006751362
σ<2πであるから、式(6)と式(16)の比較より、本実施形態の空間チャネル間伝搬遅延時間差測定方法は非特許文献2の方法に比べて高分解能で遅延時間差を測定できる。 Finally, in step S06, the delay time difference Δτ DMD between mode 1 and mode 2 is calculated by Δτ DMD =Δf DMD /γ. At this time, assuming that φ noise2,j (t)−φ noise1,k (t) (j≠k) follows a normal distribution with standard deviation σ, the delay time difference is measured with the resolution Δτ of the following equation.
Figure 0006751362
Since σ<2π, a comparison between equations (6) and (16) shows that the method for measuring the propagation delay time difference between spatial channels of the present embodiment can measure the delay time difference with higher resolution than the method of Non-Patent Document 2. ..

演算処理装置17は、同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする。演算処理装置17は、複数のビート信号それぞれについて位相を算出するため、加算平均による位相雑音低減が有効になる。例えば式(1)に示される従来のFMCW法のビート信号を加算平均した場合、位相雑音及び位相定数項は測定の度に異なるため、加算すると0に収束してしまう。また、図2に示されるフーリエ変換後の波形を加算平均した場合も、遅延時間差分解能はフーリエ変換の周波数分解能で決まるため、式(6)よりも分解能が向上することはない。測定装置301は位相の加算平均により分解能を向上できる点で非特許文献2の方法と大きく異なる。 The arithmetic processing unit 17 is characterized by acquiring the beat signals for the same spatial channel a plurality of times and averaging the phases of the plurality of the beat signals. Since the arithmetic processing unit 17 calculates the phase for each of the plurality of beat signals, the phase noise reduction by the averaging is effective. For example, when the beat signal of the conventional FMCW method represented by the equation (1) is added and averaged, the phase noise and the phase constant term are different at each measurement, and therefore the addition converges to 0. Also, when the waveforms after the Fourier transform shown in FIG. 2 are added and averaged, the delay time difference resolution is determined by the frequency resolution of the Fourier transform, and therefore the resolution is not improved as compared with the equation (6). The measuring apparatus 301 is significantly different from the method of Non-Patent Document 2 in that the resolution can be improved by averaging the phases.

(実施形態2)
本実施形態は空間チャネル間に結合が生じる場合について行う。本実施形態の空間チャネル間伝搬遅延時間差測定装置の構成は図5の測定装置301と同じである。本実施形態は、図4に示されるフローチャートにおいてステップS01からS03を試験光の周波数掃引開始時刻からビート信号測定開始時刻までの時間を変えてN回行い、測定開始時刻の異なるN個のビート信号の位相をステップS04において加算平均する点が、実施形態1と異なる。なお、ここでは被測定ファイバを2モードシングルコアファイバとし、試験光の入射端及び被測定ファイバ中の1カ所でモード結合が生じた場合について述べる。
(Embodiment 2)
The present embodiment will be performed in the case where coupling occurs between spatial channels. The configuration of the inter-spatial-channel propagation delay time difference measuring apparatus of this embodiment is the same as that of the measuring apparatus 301 of FIG. In the present embodiment, steps S01 to S03 in the flowchart shown in FIG. 4 are performed N times while changing the time from the frequency sweep start time of the test light to the beat signal measurement start time, and N beat signals having different measurement start times are performed. This is different from the first embodiment in that the phase of is added and averaged in step S04. In addition, here, the case where the fiber to be measured is a two-mode single-core fiber and mode coupling occurs at the incident end of the test light and at one position in the fiber to be measured will be described.

モード間に結合が生じる場合、モード1のビート信号の位相θ1,1(t)は次式で記述される。

Figure 0006751362
Figure 0006751362
ここで
φx1は位相定数、
は結合が生じた距離地点、
Lは被測定ファイバ長、
αは結合の強さを示す定数でありα<<1である。
式(17)において第4項がモード結合による影響を表し、時間に対して線形でない変化を与える。
ステップS01〜S03において、j=1では式(17)に示されるθ1,1(t)を測定する。 When coupling occurs between modes, the phase θ 1,1 (t) of the beat signal of mode 1 is described by the following equation.
Figure 0006751362
Figure 0006751362
Where φ x1 is the phase constant,
z x is the distance point where the bond occurs,
L is the measured fiber length,
α is a constant indicating the strength of the bond and α<<1.
In Equation (17), the fourth term represents the effect of mode coupling, and gives a non-linear change with time.
In steps S01 to S03, when j=1, θ 1,1 (t) shown in equation (17) is measured.

j>1では、ステップS01において試験光の周波数掃引開始時からビート信号測定開始までの時間を変えてビート信号を測定する。測定される位相θ1,j(t)は次式で記述される。

Figure 0006751362
ここでTはN回測定のトータルの時間シフトである。 When j>1, the beat signal is measured by changing the time from the start of the frequency sweep of the test light to the start of the beat signal measurement in step S01. The measured phase θ 1,j (t) is described by the following equation.
Figure 0006751362
Here, T is the total time shift of N measurements.

ステップS04では、上記のステップS01〜S03をN回行い、N個のθ1、j(t)(j=1〜N)を次式により加算平均し、θ(t)を得る。

Figure 0006751362
In step S04, the above steps S01 to S03 are performed N times, and N θ 1,j (t) (j=1 to N) are arithmetically averaged by the following equation to obtain θ 1 (t).
Figure 0006751362

ステップS01〜S04をモード2についても行い、モード2のビート信号の位相θ(t)を算出する。θ(t)は次式で記述される。

Figure 0006751362
Figure 0006751362
The steps S01 to S04 are also performed for the mode 2 to calculate the phase θ 2 (t) of the beat signal of the mode 2. θ 2 (t) is described by the following equation.
Figure 0006751362
Figure 0006751362

以降ステップS05以降は実施形態1と同様、モード1の位相とモード2の位相差Δθ(t)=θ(t)−θ(t)を計算し、Δθ(t)の時間変化率から伝搬遅延時間差を求める。 After step S05, the phase difference Δθ(t)=θ 2 (t)−θ 1 (t) between the phase of mode 1 and the phase of mode 2 is calculated as in the first embodiment, and is calculated from the time change rate of Δθ(t). Calculate the propagation delay time difference.

本実施形態で行われる位相の加算平均でモード結合の影響を低減できることは、式(20)または(21)においてN=2の場合で考えると明らかである。式(20)においてN=2とすると、モード結合の影響を表す第4項は次式のようになる。

Figure 0006751362
T=(2n−1)/2γ(τ−τx1)(nは1以上の整数)のとき式(23)はゼロとなり、モード結合による位相揺らぎが打ち消される。一方、T=n/γ(τ−τx1)のときに平均化の効果が最も小さいが、その場合位相揺らぎは平均化前と同じであり、本実施形態の処理で揺らぎ幅が増加することはない。また、式(20)または(21)より、T/N=n/γ(τ−τx1)の場合も平均後の位相揺らぎは平均化前と等しくなる。したがって、本実施形態ではT≠n/γ(τ−τxi)かつT/N≠n/γ(τ−τxi)(i=1,2)であることを条件として、モード結合による位相揺らぎを低減することができる。 The fact that the effect of mode coupling can be reduced by the averaging of phases performed in the present embodiment is apparent when considered in the case of N=2 in Expression (20) or (21). If N=2 in the equation (20), the fourth term representing the influence of mode coupling is as follows.
Figure 0006751362
When T=(2n−1)/2γ(τ 1 −τ x1 ) (n is an integer of 1 or more), the equation (23) becomes zero, and the phase fluctuation due to mode coupling is canceled. On the other hand, when T=n/γ(τ 1 −τ x1 ), the effect of averaging is the smallest, but in that case the phase fluctuation is the same as before averaging, and the fluctuation width increases by the processing of this embodiment. There is no such thing. Further, according to the equation (20) or (21), also in the case of T/N=n/γ(τ 1 −τ x1 ), the phase fluctuation after averaging becomes equal to that before averaging. Therefore, in the present embodiment, mode coupling is performed under the condition that T≠n/γ(τ i −τ xi ) and T/N≠n/γ(τ i −τ xi ) (i=1, 2). Phase fluctuation can be reduced.

なお、上記実施形態では測定開始時刻を変えて複数のビート信号を測定しているが、測定開始時刻を変えることは試験光の周波数掃引の初期周波数を変えることと同義である。したがって本発明は上記形態に限定されず、初期周波数を変えて複数のビート信号を測定し、それらの位相を加算平均してもよい。 In the above embodiment, a plurality of beat signals are measured by changing the measurement start time, but changing the measurement start time is synonymous with changing the initial frequency of the frequency sweep of the test light. Therefore, the present invention is not limited to the above-mentioned form, and a plurality of beat signals may be measured with different initial frequencies and their phases may be averaged.

(実施形態3)
本実施形態の空間チャネル間伝搬遅延時間差測定装置の構成は図5の測定装置301と同じである。本実施形態の場合、
光源部11が、
前記連続光の中心波長を変える中心波長変更手段を備えており、
演算処理装置17が、
前記連続光の異なる中心波長毎に空間チャネル間の伝搬遅延時間差を算出して、前記被測定物における空間チャネル間の伝搬遅延時間差の波長依存性を測定し、
前記空間チャネル間の伝搬遅延時間差の波長依存性について波長微分を行い、前記被測定物の長さで除算して空間チャネル間の波長分散差を算出することを特徴とする。
(Embodiment 3)
The configuration of the inter-spatial-channel propagation delay time difference measuring apparatus of this embodiment is the same as that of the measuring apparatus 301 of FIG. In the case of this embodiment,
The light source unit 11
The center wavelength changing means for changing the center wavelength of the continuous light is provided,
The processor 17
Calculate the propagation delay time difference between the spatial channels for each different center wavelength of the continuous light, to measure the wavelength dependence of the propagation delay time difference between the spatial channels in the DUT,
The wavelength dependence of the propagation delay time difference between the spatial channels is differentiated by wavelength, and the wavelength dispersion difference between the spatial channels is calculated by dividing by the length of the DUT.

本実施形態の空間チャネル間伝搬遅延時間差測定装置は、空間チャネル間の波長分散差を測定できる。本実施形態の空間チャネル間伝搬遅延時間差測定装置は、実施形態1または2の測定を試験光の中心波長を変えて複数回行い、遅延時間差の波長依存性ΔτDMD(λ)を測定する。モード1とモード2の波長分散差D(λ)は次式により算出する。

Figure 0006751362
ここでLは被測定ファイバの長さである。 The inter-spatial-channel propagation delay time difference measuring device of this embodiment can measure the chromatic dispersion difference between the spatial channels. The inter-spatial-channel propagation delay time difference measuring apparatus of this embodiment performs the measurement of Embodiment 1 or 2 a plurality of times by changing the central wavelength of the test light, and measures the wavelength dependence Δτ DMD (λ) of the delay time difference. The chromatic dispersion difference D(λ) between mode 1 and mode 2 is calculated by the following equation.
Figure 0006751362
Here, L is the length of the fiber to be measured.

(他の実施形態)
なお、実施形態1と2ではローカル光の光路にシングルモードシングルコアの遅延ファイバを用いたが、本発明はそれに限定されず空間多重光ファイバの異なるチャネル間で透過光を合波させてビート信号を観測しても良い。その場合、ビート信号の位相は時間変化率2πΔfDMDで変化するため、上記の実施例と同様に位相の時間変化率から遅延時間差を測定可能である。
(Other embodiments)
In the first and second embodiments, the single-mode single-core delay fiber is used in the optical path of the local light, but the present invention is not limited thereto, and the transmitted light is multiplexed between different channels of the spatial multiplexing optical fiber to obtain the beat signal. May be observed. In that case, since the phase of the beat signal changes at the time change rate of 2πΔf DMD , it is possible to measure the delay time difference from the time change rate of the phase as in the above embodiment.

また、測定する空間チャネル数が2より多い場合でも、対応する空間チャネル選択励起部と空間チャネル選択分離部を用いて個々の空間チャネルの透過光とローカル光のビート信号を観測し、それらの位相差を算出することにより、各チャネル間の遅延時間差を測定できる。 Even when the number of spatial channels to be measured is more than 2, the beat signals of the transmitted light and the local light of the individual spatial channels are observed using the corresponding spatial channel selective pumping section and spatial channel selective demultiplexing section, and their positions are measured. By calculating the phase difference, the delay time difference between each channel can be measured.

上記実施形態では測定対象を光ファイバとして説明したが、被測定ファイバを光フィルタ等の光デバイスに変更しても、同様に光デバイスの空間チャネル間遅延時間差及び波長分散差を測定可能である。 Although the measurement target is an optical fiber in the above embodiment, the delay time difference between spatial channels and the chromatic dispersion difference of the optical device can be similarly measured even if the measured fiber is changed to an optical device such as an optical filter.

(効果)
本実施形態の空間チャネル間伝搬遅延時間差測定装置を用いることにより、空間多重用光ファイバだけでなく、モード合分波器等の光デバイスレベルの小さな遅延時間差も測定できる。また、本実施形態の空間チャネル間伝搬遅延時間差測定装置は狭い光帯域であっても遅延時間差を高分解能で評価できるため、試験光の中心波長を変えて複数回測定することにより、遅延時間差の波長依存性も評価できる。遅延時間差の波長依存性を知ることができれば、空間チャネル間の波長分散差の解析が可能になるため(非特許文献4)、本発明は波長分散差評価方法としても実施できる。
(effect)
By using the inter-spatial-channel propagation delay time difference measuring apparatus of this embodiment, not only the spatial multiplexing optical fiber but also a small delay time difference at the level of an optical device such as a mode multiplexer/demultiplexer can be measured. Further, the inter-spatial-channel propagation delay time difference measuring apparatus of the present embodiment can evaluate the delay time difference with high resolution even in a narrow optical band, so that the delay time difference can be measured by changing the central wavelength of the test light a plurality of times. The wavelength dependence can also be evaluated. If the wavelength dependence of the delay time difference can be known, the chromatic dispersion difference between the spatial channels can be analyzed (Non-Patent Document 4), and the present invention can also be implemented as a chromatic dispersion difference evaluation method.

11:光源部
12:光分波素子
13:遅延ファイバ
14:選択励起部
15:選択分離部
16:光合波素子
17:演算処理装置
21:受光器
22:A/D変換器
23:演算処理部
100:被測定ファイバ
301:空間チャネル間伝搬遅延時間差測定装置
11: Light source unit 12: Optical demultiplexing device 13: Delay fiber 14: Selective pumping unit 15: Selective demultiplexing unit 16: Optical multiplexing device 17: Arithmetic processing device 21: Light receiver 22: A/D converter 23: Arithmetic processing unit 100: Fiber under measurement 301: Propagation delay time difference measuring device between spatial channels

Claims (9)

時間的に周波数を掃引した連続光を出射する光源部と、
前記光源部からの連続光を2分岐する光分波素子と、
前記光分波素子で分岐された連続光の一方をローカル光として遅延を与える遅延光ファイバと、
前記光分波素子で分岐された連続光の他方を試験光として被測定物の特定の空間チャネルに対して選択的に入射する選択的励起部と、
前記被測定物を透過した試験光のうち前記特定の空間チャネルを選択的に分離する選択的分離部と、
前記遅延光ファイバを経由した前記ローカル光と前記選択的分離部で分離された前記特定の空間チャネルの試験光とを合波しビート信号とする光合波素子と、
前記光合波素子から異なる2つの前記特定の空間チャネルの試験光に基づく2つの前記ビート信号を取得し、前記ビート信号間の位相差の時間変化率から前記被測定物における2つの前記特定の空間チャネル間の伝搬遅延時間差を算出する演算処理装置と、
を備える空間チャネル間伝搬遅延時間差測定装置。
A light source unit that emits continuous light whose frequency is swept temporally,
An optical demultiplexing device that splits continuous light from the light source unit into two;
A delay optical fiber for delaying one of the continuous lights branched by the optical demultiplexing element as local light,
A selective excitation unit that selectively enters the other of the continuous light branched by the optical demultiplexing element as a test light into a specific spatial channel of the DUT,
A selective separation unit for selectively separating the specific spatial channel of the test light transmitted through the DUT,
An optical multiplexing element that multiplexes the local light passing through the delay optical fiber and the test light of the specific spatial channel separated by the selective separation unit into a beat signal,
The two beat signals based on the test lights of the two different specific spatial channels are acquired from the optical multiplexing element, and the two specific spaces in the DUT are obtained from the time change rate of the phase difference between the beat signals. An arithmetic processing device for calculating a propagation delay time difference between channels,
An apparatus for measuring a propagation delay time difference between spatial channels comprising:
前記演算処理装置は、
同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする請求項1に記載の空間チャネル間伝搬遅延時間差測定装置。
The arithmetic processing unit,
The propagation delay time difference measuring apparatus according to claim 1, wherein the beat signals for the same spatial channel are acquired a plurality of times, and the phases of the plurality of beat signals are added and averaged.
前記演算処理装置は、
前記光源部が周波数を掃引し始める周波数掃引開始時刻から前記ビート信号を取得し始めるビート信号取得開始時刻までの時間を違えて同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均することを特徴とする請求項1に記載の空間チャネル間伝搬遅延時間差測定装置。
The arithmetic processing unit,
The light source unit acquires the beat signal for the same spatial channel a plurality of times by changing the time from the frequency sweep start time when the frequency sweep starts to start the beat signal acquisition start time when the beat signal starts to be acquired, and the plurality of beats are acquired. 2. The propagation delay time difference measuring apparatus between spatial channels according to claim 1, wherein the phases of the signals are added and averaged.
前記光源部は、
外部変調器として、外部周波数変調器または外部位相変調器を用いることを特徴とする請求項1から3に記載の空間チャネル間伝搬遅延時間差測定装置。
The light source unit,
An external frequency modulator or an external phase modulator is used as the external modulator, and the inter-spatial channel propagation delay time difference measuring device according to claim 1 to 3, wherein:
前記光源部は、
前記連続光の中心波長を変える中心波長変更手段を備えており、
前記演算処理装置は、
前記連続光の異なる中心波長毎に空間チャネル間の伝搬遅延時間差を算出して、前記被測定物における空間チャネル間の伝搬遅延時間差の波長依存性を測定し、
前記空間チャネル間の伝搬遅延時間差の波長依存性について波長微分を行い、前記被測定物の長さで除算して空間チャネル間の波長分散差を算出することを特徴とする請求項1から4のいずれかに記載の空間チャネル間伝搬遅延時間差測定装置。
The light source unit,
The center wavelength changing means for changing the center wavelength of the continuous light is provided,
The arithmetic processing unit,
Calculate the propagation delay time difference between the spatial channels for each different center wavelength of the continuous light, to measure the wavelength dependence of the propagation delay time difference between the spatial channels in the DUT,
5. The wavelength difference of the wavelength dependence of the propagation delay time difference between the spatial channels is calculated, and the wavelength dispersion difference between the spatial channels is calculated by dividing by the length of the DUT. A propagation delay time difference measuring apparatus between spatial channels according to any one of the above.
時間的に周波数を掃引した連続光を2分岐し、一方をローカル光として遅延光ファイバで遅延を与え、他方を試験光として被測定物の特定の空間チャネルに対して選択的に入射する光入射手順と、
前記被測定物を透過した試験光のうち前記特定の空間チャネルを選択的に分離し、前記遅延光ファイバを経由した前記ローカル光と合波してビート信号とするビート信号生成手順と、
前記ビート信号生成手順で異なる2つの前記特定の空間チャネルの試験光に基づく2つの前記ビート信号を取得し、前記ビート信号間の位相差の時間変化率から前記被測定物における2つの前記特定の空間チャネル間の伝搬遅延時間差を算出する演算処理手順と、
を行う空間チャネル間伝搬遅延時間差測定方法。
Continuous light whose frequency has been swept temporally is split into two, one of which is used as a local light to delay with a delay optical fiber, and the other of which is used as a test light to selectively enter a specific spatial channel of the DUT. Procedure and
A beat signal generation procedure for selectively separating the specific spatial channel from the test light transmitted through the device under test, and combining with the local light via the delay optical fiber to form a beat signal,
The two beat signals based on the test lights of the two specific spatial channels that are different in the beat signal generation procedure are acquired, and the two specific beat signals in the DUT are obtained from the time change rate of the phase difference between the beat signals. An arithmetic processing procedure for calculating a propagation delay time difference between spatial channels,
Propagation delay time difference measurement method between spatial channels.
前記演算処理手順で、同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均する
ことを特徴とする請求項6に記載の空間チャネル間伝搬遅延時間差測定方法。
The propagation delay time difference measuring method between spatial channels according to claim 6, wherein the beat signals for the same spatial channel are acquired a plurality of times in the arithmetic processing procedure, and the phases of the plurality of beat signals are arithmetically averaged. ..
前記演算処理手順で、
前記光入射手順で周波数を掃引し始める周波数掃引開始時刻から前記ビート信号を取得し始めるビート信号取得開始時刻までの時間を違えて同一の空間チャネルに対する前記ビート信号を複数回取得し、複数の前記ビート信号の位相を加算平均する
ことを特徴とする請求項6に記載の空間チャネル間伝搬遅延時間差測定方法。
In the arithmetic processing procedure,
Obtaining the beat signal for the same spatial channel a plurality of times by changing the time from the frequency sweep start time to start sweeping the frequency in the light incident procedure to the beat signal acquisition start time to start obtaining the beat signal, 7. The propagation delay time difference measuring method between spatial channels according to claim 6, wherein the phases of the beat signals are added and averaged.
前記光入射手順で、前記連続光の中心波長を変え、
前記演算処理手順で、
前記連続光の異なる中心波長毎に空間チャネル間の伝搬遅延時間差を算出して、前記被測定物における空間チャネル間の伝搬遅延時間差の波長依存性を測定し、
前記空間チャネル間の伝搬遅延時間差の波長依存性について波長微分を行い、前記被測定物の長さで除算して空間チャネル間の波長分散差を算出する
ことを特徴とする請求項6から8に記載の空間チャネル間伝搬遅延時間差測定方法。
In the light incident procedure, changing the central wavelength of the continuous light,
In the arithmetic processing procedure,
Calculate the propagation delay time difference between the spatial channels for each different center wavelength of the continuous light, to measure the wavelength dependence of the propagation delay time difference between the spatial channels in the DUT,
The wavelength dependence of the propagation delay time difference between the spatial channels is differentiated by wavelength, and the wavelength dispersion difference between the spatial channels is calculated by dividing by the length of the DUT. A method for measuring a propagation delay time difference between spatial channels as described.
JP2017017107A 2016-07-22 2017-02-01 Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels Active JP6751362B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016143952 2016-07-22
JP2016143952 2016-07-22

Publications (2)

Publication Number Publication Date
JP2018021890A JP2018021890A (en) 2018-02-08
JP6751362B2 true JP6751362B2 (en) 2020-09-02

Family

ID=61164525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017107A Active JP6751362B2 (en) 2016-07-22 2017-02-01 Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels

Country Status (1)

Country Link
JP (1) JP6751362B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL234530B1 (en) * 2018-03-21 2020-03-31 Politechnika Gdanska Method for wireless transmission of the application information via radar system, preferably using the FMCW radars and the FMCW radar
WO2023042313A1 (en) * 2021-09-15 2023-03-23 日本電信電話株式会社 Device and method for measuring delaying time difference between propagation modes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132332B2 (en) * 2013-02-06 2017-05-24 国立大学法人東北大学 Mode coupling measuring device for multimode optical fiber

Also Published As

Publication number Publication date
JP2018021890A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6277147B2 (en) Optical fiber vibration measurement method and system
US9983095B2 (en) Optical fiber characteristic measuring device
JP2017026503A (en) Vibration distribution measurement method and vibration distribution measurement device
JP2018048917A (en) Optical fiber test device and optical fiber test method
US11802809B2 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP6308184B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP6751362B2 (en) Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
JP6308183B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP2017110953A (en) Inter-propagation-mode group delay difference measurement method and inter-propagation-mode group delay difference measurement system
JP5852693B2 (en) Optical fiber test apparatus and optical fiber test method
JP6806641B2 (en) Spatial multiplex optical transmission line evaluation device and method
JP2018189600A (en) Optical pulse test device and optical pulse test method
JP2020051941A (en) Optical fiber strain and temperature measuring device, and optical fiber strain and temperature measuring method
JP3905780B2 (en) Brillouin spectral distribution measuring method and apparatus
JP6751371B2 (en) Spatial mode dispersion measuring method and spatial mode dispersion measuring apparatus
US11300455B2 (en) Optical spectral line width calculation method, device, and program
KR101527601B1 (en) optical-phase imaging system and method thereof
JP2019035724A (en) Optical fiber strain measurement device and optical fiber strain measurement method
KR101796443B1 (en) Optical-phase imaging system
JP5264659B2 (en) Optical line characteristic measuring method and apparatus
WO2022259436A1 (en) Signal processing device, vibration detection system, and signal processing method
JP6751378B2 (en) Optical time domain reflectometry method and optical time domain reflectometry apparatus
JP2024075049A (en) Optical fiber characteristic measuring device and optical fiber characteristic measuring method
JP6259753B2 (en) Light reflection measuring device and light reflection measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200814

R150 Certificate of patent or registration of utility model

Ref document number: 6751362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150