JP2018522816A - アラビノキシロ−オリゴ糖を含む調製物 - Google Patents

アラビノキシロ−オリゴ糖を含む調製物 Download PDF

Info

Publication number
JP2018522816A
JP2018522816A JP2017556993A JP2017556993A JP2018522816A JP 2018522816 A JP2018522816 A JP 2018522816A JP 2017556993 A JP2017556993 A JP 2017556993A JP 2017556993 A JP2017556993 A JP 2017556993A JP 2018522816 A JP2018522816 A JP 2018522816A
Authority
JP
Japan
Prior art keywords
arabinoxylo
oligosaccharide
bifidobacterium
axos
arabinoxylanase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017556993A
Other languages
English (en)
Inventor
ファルク、ピーター
Original Assignee
ピュア・ファイバー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピュア・ファイバー・リミテッド filed Critical ピュア・ファイバー・リミテッド
Publication of JP2018522816A publication Critical patent/JP2018522816A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/745Bifidobacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H99/00Subject matter not provided for in other groups of this subclass, e.g. flours, kernels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01136Glucuronoarabinoxylan endo-1,4-beta-xylanase (3.2.1.136), i.e. feraxanase or feraxan-endoxylanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)

Abstract

本発明は、分子あたり、骨格のキシロース単位の1つに結合した少なくとも1つのアラビノース単位を含むアラビノキシロ−オリゴ糖組成物に関連し、少なくとも1つのアラビノース単位は、α−L−アラビノフラノシルであり、該組成物は、1〜10の重合度を有するキシロ−オリゴ糖骨格を備える。
【選択図】図1

Description

発明の分野
本発明は、食品又は飲料成分又は栄養補助食品として有用なアラビノキシロ−オリゴ糖を含む調製物、ならびにそのような調製物の製造方法に関する。さらに本発明は、キシロ−オリゴ糖とアラビノキシロ−オリゴ糖との混合物を含む確立されたプレバイオティクス製剤におけるアラビノキシロ−オリゴ糖の改良された生成にも関連する。
背景技術
キシランヘミセルロースは、セルロースの次に植物界において2番目に豊富な生体高分子である。高等植物における全てのキシランの共通の特徴は、β−(1→4)結合D−キシロピラノシル(Xylp)残基の骨格である。キシロース以外の糖を含むキシランは、ヘテロキシランと呼ばれ、双子葉植物の二次細胞壁に見られるグルクロノキシラン(GX)、又は穀物の一次細胞壁に見られるアラビノキシラン(AX)に分けることができる。穀物中のAX含有量及び組成は、植物源、品種及び組織によって異なる。大部分のAXは、外部ふすま組織(外部及び内部の果皮、種皮、珠心表皮及び関連アリューロン層)に見出されるが、デンプン胚乳にもかなりの量が含まれる。AXは、水抽出性(WE−AX)又は水非抽出性(WU−AX)として分類することができる。水中可溶度は、他の細胞壁成分への共有及び/又は非共有結合によって制限される。容易に溶解するが、AXは表面に弱く結合する。
一般に4つの主要な構成要素、I)無置換のXylp単位(uXyl)、II)Xylp単位(mXyl2)に結合したα−(1→2)結合L−アラビノフラノシル(Araf)、III)Xylp単位(mXyl3)に結合したα−(1→3)結合Araf、及びIV)Xylp単位(dXyl)に結合した二重α−(1→2)及びα−(1→3)結合Arafが、穀物AX中に存在する。さらに、ガラクトース及びグルクロン酸は、外部の穀物組織由来のAXに存在し得る。主にフェルラ酸(FA)であるヒドロキシケイ皮酸誘導体は、少数のAraf置換基上のO−5位置にエステル結合することができ、水中での酸化的ゲル化(ジヒドロジフェルラ酸の架橋)及び抗酸化特性を引き起こす。AXにおけるアラビノースとキシロースのモル比(A/X)は、胃腸管(GIT)における酵素加水分解、溶解性及び発酵特性に関して重要な特性である。
短い糖ポリマーであるオリゴ糖は、熱/化学的又は酵素的方法のいずれかを用いてAX骨格の部分的加水分解によって得ることができる。穀物由来のAXのみを考慮すると、オリゴ糖の2つの主要な群を酵素加水分解から得ることができ、それはキシロ−オリゴ糖(XOS)及びアラビノキシロ−オリゴ糖(AXOS)である。XOSはキシロースオリゴマーであり、それは一般的な分子式C5nH8n+2 O4n+1(式中、nはキシロース単位の数2〜10である)とのβ−(1→4)結合によって結合している。XOSは、X:キシロビオース、X:キシロトリオース、X:キシロテトラオース、X:キシロペンタオース、X:キシロヘキサオース、X:キシロヘプタオース、X:キシロオクタオース、X:キシロエンネアオース、及びX10:キシロデカオースである。一方、AXOSは、キシロース単位の1つに側鎖として結合した少なくとも1つのAraf基を有する骨格としてのXOSを有する。結合するAraf基の数、どの残基へか、及び化学結合のタイプ(1→2)及び/又は(1→3)に応じて、AXOSの多くの異なる組み合わせが可能である。アラビノキシラン−オリゴ糖(A)XOSは、キシロ−オリゴ糖(XOS)及びアラビノキシロ−オリゴ糖(AXOS)の両方の混合物を含み、市販のキシラナーゼによる酵素加水分解の後に得られる。
キシラナーゼは、例えばパルプ及び紙の処理、バイオ燃料の製造、ベーキング及び醸造産業並びに動物飼料の加工に使用される。これら酵素は、キシラン及びキシラン誘導オリゴ糖に見られるβ−(1→4)−キシロシド結合を加水分解することができる。使用されるキシラナーゼに応じて、異なるサイズのXOS及び構造のAXOSを生成することができる。ファミリ10のキシラナーゼは、小さな最終生成物を産生することが知られている。これは、AX由来の主要な加水分解生成物としてのキシロース及びXの産生と一致する。ファミリ10のキシラナーゼによって産生される最小のAXOSは、三糖類(AX)である。ファミリ11のキシラナーゼは、ファミリ10と同様の触媒機構を有するが、活性は一般にオリゴマー基質よりもポリマー基質において高く、それらはファミリ10と比較して不溶性基質に対してより高い活性を有する。ファミリ11のキシラナーゼによる主要な加水分解生成物は、キシロース、X及びXであり、最小のAXOSは四糖類(AXX)である。
XOS及びAXOSには、「GI微生物相の組成及び/又は活性において特異的な変化をもたらし、従って宿主の健康に有益な効果を付与する、選択的に発酵された成分」として定義される、新たなプレバイオティクスとしての商業的関心がある。これらの化合物のプレバイオティクス特性の少なからぬ証拠は、プレバイオティクスの全ての基準を満たすことを実証した生体内及び生体外試験に基づいて現在利用可能である。XOS及びAXOSは、健康を促進する短鎖脂肪酸酢酸、乳酸、プロピオン酸及び酪酸を産生する糞便の微生物によって発酵される。オリゴ糖のサイズに応じて、異なる代謝酸が産生される。XOS及びAXOSのプレバイオティクス効果は、オリゴ糖及びアラビノース置換のサイズに密接に関連し、ビフィズス菌が炭素源として利用されるためには、大部分のビフィズス菌には小さなサイズが必要である。従って、AXOSに結合したAraf基は、細菌を利用する全てのXOSがAXOSを利用できるわけではないため、胃腸管(GIT)における発酵特性に関して重要な特徴である。
ビフィズス菌は、免疫システムの発達を刺激し、ビタミンを産生し、病原体を抑制し、血中のアンモニアとコレステロールを減少させ、抗生物質治療後の健全な腸に回復させる能力のために、有益な細菌の最も重要な群の1つであると考えられている。XOS及び/又はAXOSを使用するビフィズス菌の能力は、菌株依存性であり、菌株はそれらの炭水化物選好度に基づいて分類することができることを意味する。ビフィズス菌は、アラビノース、キシロース、XOS又はAXOSを発酵させる能力に基づいて、5つの異なる群(I〜V)にクラスター化することができる。クラスターIにおいて、菌株はXOS又はAXOSを用いることができない。クラスターIIの菌株は、AXOS上に存在するアラビノース置換基を発酵させることができる。クラスターIIIは、XOS骨格をキシロテトラオースまで発酵させることができるが、AXOSの消費はより制限された菌株を含む。クラスターIV及びVにおいて、菌株はXOS及びAXOSの両方の広範な分解を有する。
AX由来のプレバイオティクスの当業技術の調製は、AX又はAX含有物質のキシラナーゼ加水分解によって得られるXOS及びAXOSの両方の混合物を含む(A)XOS生成物を含む。EP2265127において、プレバイオティクス(A)XOS調製物は、ファミリ10及び/又はファミリ11のキシラナーゼを用いてコムギふすまから調製される。この出願は、Swennenらによる方法(2006)に基づいており、最終調製物は、低いA/X比0.25〜0.26によって示される比較的少ないアラビノース含量を有する、XOSとAXOSとの混合物(Swennenら、2006,図2a)である。これら調製物はキシロースも含み、それはプレバイオティクスとして考慮されてない、及び好ましくは最終生成物において回避される。従って、EP2265127及び現在の科学文献に記載されているAX由来の全てのプレバイオティクス調製物は、十分に確立されたファミリ10及び/又は11のキシラナーゼによる酵素加水分解が常にキシロース、XOS及びAXOSを生成するという事実により、キシロース、XOS及びAXOSの混合物であることは明らかである。従って、現在の技術の限界は、キシロースとXOSとの共形成が全くないか又は非常に少ない純粋なプレバイオティクスAXOS組成物を製造することである。先行技術では、アラビノ−キシロオリゴ糖調製物が見出され得るが、AXOSからより純粋で特異的なプレバイオティクスの調製が必要である。
発明の概要
本発明は、プレバイオティクスAXOSを、キシロース及びXOSを生成することなく、アラビノキシラナーゼを用いてAXからどのように生成するかを記述する。この調製物は、キシロース及びXOSを含まないオリゴ糖を含有するアラビノースの組成において特別である。ビフィズス菌の特定の菌株を特異的に刺激するそれらの能力は、それらをより選択的なプレバイオティクスとして有用にする。1つの実施形態において、本発明は、分子あたり、骨格のキシロース単位の1つに結合した少なくとも1つのアラビノース単位を含むAXOS組成物であって、前記少なくとも1つのアラビノース単位は、α−L−アラビノフラノシルであり、前記組成物は、1〜10の重合度を有するXOS骨格を備える組成物に関連する。別の実施形態において、AXOS組成物は、0.3〜0.6の平均アラビノース置換度を有する。さらに別の実施形態において、AXOS組成物は、0.2〜0.7の平均アラビノース置換度を有する。純粋なAXOSの適用は、ビフィズス菌の特定の群を選択的に刺激することである。このような調製物は、ビフィズス菌を添加し、又は添加することなく、食品又は飲料の成分において、又は栄養補助食品として使用することができる。1つの実施形態において、AXOS組成物は、ビフィドバクテリウムspp(Bifidobacterium spp)の増殖を選択的に刺激するように適合される。別の実施形態において、ビフィドバクテリウムsppは、AXOS又はオリゴ糖上のアラビノース置換基を発酵させるのに適合した菌株に属する。さらに別の実施形態において、ビフィドバクテリウムsppは、ビフィドバクテリウム・アドレスセンティス(Bifidobacterium adolescentis)、ビフィドバクテリウム・ロンガム(Bifidobacterium longum)、ビフィドバクテリウム・カテニュラタム(Bifidobacterium catenulatum)、ビフィドバクテリウム・アニマリス(Bifidobacterium animalis)、ビフィドバクテリウム・シュードロンガム(Bifidobacterium pseudolongum)、ビフィドバクテリウム・ガリカム(Bifidobacterium gallicum)、ビフィドバクテリウム・ラクティス(Bifidobacterium lactis)、ビフィドバクテリウム・インファンティス(Bifidobacterium infantis)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・アングラタム(Bifidobacterium angulatum)又はビフィドバクテリウム・ブレーベ(Bifidobacterium breve)からなる群から選択される。さらに本発明は、XOSとAXOSとの混合物を含む確立されたプレバイオティクス(A)XOS製剤におけるAXOSの改善された生成にも関連する。1つの実施形態において、本発明は、AXOS組成物を含み、ビフィドバクテリウムsppをさらに含むシンバイオティクス調製物である。別の実施形態において、シンバイオティクス調製物は、胃腸内の問題を改善する治療のためである。さらに別の実施形態において、シンバイオティクス調製物は、食品、飼料、飲料又は栄養補助食品からなる群から選択される製品の成分としての使用のためである。さらに別の実施形態において、本発明は、胃腸内の問題を改善する治療に使用するための、AXOS組成物、又はAXOS組成物を含むシンバイオティクス調製物である。
1つの実施形態において、本発明は、AXOS又はAXOS分子に結合したアラビノース置換基を発酵させるのに適したビフィズス菌の群に属している腸内細菌の特定の群のための選択的プレバイオティクスを含む。得られたAXOSの1つの実施形態において、本発明によれば、XOSを通常使用することができる腸内細菌の他の群に対しビフィズス菌の増殖を選択的に刺激することができる。別の実施形態において、II、III、IV及びVからなる群から選択されるクラスター由来の菌株は、AXOSのみを含む調製物を用いて選択的に刺激される。別の、より具体的な実施形態において、ビフィズス菌の菌株は、ビフィドバクテリウム・ロンガム亜種ロンガム DSMZ 20219(Bifidobacterium longum subsp. Longum DSMZ 20219)(クラスター2)、ビフィドバクテリウム・アドレスセンティス DSMZ 20083(Bifidobacterium adolescentis DSMZ 20083)(クラスター3)、ビフィドバクテリウム・ロンガム亜種ロンガム CCUG15137(Bifidobacterium longum subsp. longum CCUG 15137)(クラスター4)、又はビフィドバクテリウム・カテニュラタム DSMZ 16992(Bifidobacterium catenulatum DSMZ 16992)(クラスター5)からなる群から選択される。
本発明は、様々な出発点、従って様々な出発物質が、本発明によるAXOS組成物を製造する方法において使用することができることを含意する。1つの実施形態において、胚乳AXが出発物質として使用される。別の実施形態において、ふすまが出発物質として使用される。様々な種類の穀粉分画又はふすまが考えられ、本発明は出発物質の選択によって制限されていると見なすべきではない。1つの実施形態において、出発物質は、胚乳AX、ふすま、殻又はわらからなる群から選択される。別の、より具体的な実施形態において、ふすま出発物質は、ライムギ、トウモロコシ、アワ、イネ、オオムギ、オートムギ又はコムギのような穀物の群から選択されるが、これらに限定されない。他の可能な出発物質は、これらに限定されないが、キノア(quinoa)、アマランス(amaranth)又はソバのような擬穀粉(pseudocereals)である。好ましくは、出発物質は、上記の植物のいずれか由来の穀粉又はふすまである。1つの実施形態において、出発物質は胚乳AXを含む穀粉である。
従って、本発明の別の側面は、穀粉からAXOS組成物を製造する方法であって、以下の工程を含む。
A. 穀粉からの胚乳アラビノキシラン分画の抽出及び単離;
B. 工程Aにて得られた生成物からのデンプン及びタンパク質の任意の除去;
C. アラビノフラノシダーゼ、好ましくは二重置換のβ−(1→4)結合D−キシロピラノシル単位(dXyl)においてα−(1→3)結合L−アラビノフラノシルを除去できるものを用いる、工程Aの胚乳アラビノキシラン又は工程Bの生成物の任意の処理;
D. 工程A、工程B又は工程Cにて得られた生成物へのアラビノキシラナーゼの添加;及び
E. 工程Dにて得られた物質の乾燥。
1つの実施形態において、工程Cは、弱酸の添加を含む。1つの実施形態において、出発物質が穀粉である場合、A/X比は0.2〜0.7、好ましくは0.28〜0.65、好ましくは0.35〜0.50、好ましくは0.38〜0.45、好ましくは0.4である。1つの実施形態において、本発明は、胚乳AXがアラビノフラノシダーゼで酵素的に処理される工程を含む。1つの実施形態において、アラビノフラノシダーゼは、アラビノキシランアラビノフラノハイドロラーゼの群から選択され、好ましくはアラビノキシランアラビノフラノハイドロラーゼ−D3又はアラビノキシランアラビノフラノハイドロラーゼ−m2,3からなる群から選択される。酵素処理の目的は、AXOSの収率を改善するために、Araf基の分画を除去することである。別の実施形態において、本発明は、ふすまからAXOS組成物を製造する方法であって、以下の工程を含む。
A’. ふすまからのデンプン及びタンパク質の除去;
B’. Aからの固相の回収;
C’. 可溶性相を提供するための、アルカリ性溶液、アルカリ性及び過酸化物溶液を用いる固相の処理、又は熱による固相の処理;
D’. Cのアラビノキシランを含む可溶性相の中和、及びアラビノキシランを含む当該可溶性相の回収;
E’. 0.2〜0.7、好ましくは0.35〜0.5、好ましくは0.38〜0.45、好ましくは0.4のアラビノースとキシロースとのモル比が得られるように、アラビノフラノシダーゼ又は弱酸性溶液を用いる、工程Dの可溶性相を含むアラビノキシランからのアラビノースの除去;
F’. 好ましくは沈殿又は膜分離による、工程Eから得られたアラビノキシランを回収するための分離;
G’. 工程Fからの前記アラビノキシランへのアラビノキシラナーゼの添加;及び
H’. 工程Gにて得られた物質の乾燥。
1つの実施形態において、A/X比は0.2〜0.7、好ましくは0.28〜0.65、好ましくは0.35〜0.5、好ましくは0.38〜0.45、好ましくは0.4である。別の実施形態において、A/X比は0.4である。さらに別の実施形態において、本発明は、AXOS組成物を製造する方法であって、AXOS組成物はアラビノキシラン特異的エンドキシラナーゼを用いて製造される。別の、より具体的な実施形態において、本発明は、AXOS組成物を製造する方法であって、アラビノキシラン特異的エンドキシラナーゼがアラビノキシラナーゼである。
さらに、別の実施形態において、本発明はAXOS組成物を製造する方法であって、工程C’は10〜100%、より好ましくは50〜100%、さらにより好ましくは70〜100%、よりさらにより好ましくは85〜100%、最も好ましくは100%のAXOSの収率に増加させるアラビノフラノシダーゼによる任意の処理を含む。1つの実施形態において、増加した収率は95〜99%である。
ふすまAXからAXOS組成物を調製する場合、追加の工程が可能である。1つの実施形態において、本発明は、AXOS組成物を製造する方法であって、工程A’は、それぞれアミラーゼ及びプロテアーゼを用いるデンプン及びタンパク質の除去を含む方法に関連する。別の実施形態において、本発明は、AXOS組成物を製造する方法であって、工程C’は、抽出の他の手段を用いる任意の、アルカリ及び過酸化物による抽出を含む方法に関連する。熱処理の様々な手段が、工程C’では可能である。1つの実施形態において、工程C’は、水溶性AX含量を増加させるための蒸気処理を含む。別の実施形態において、工程C’は、加圧水処理を含む。さらに別の実施形態において、本発明は、AXOS組成物を製造する方法であって、工程Eは、AXOSの収率を増加させるための任意の処理を含む。1つの実施形態において、工程Eは、アラビノフラノシダーゼによる任意の処理を含む。別の実施形態において、工程Eは、限定されないが、無機酸、好ましくは塩酸、好ましくは硫酸、好ましくはリン酸又は好ましくは硝酸のような弱酸溶液による任意の処理を含む。
本発明の別の側面は、XOS及びAXOSを含有する調製物におけるAXOSの生成を改善するためのアラビノキシラナーゼの使用に関連する。1つの実施形態において、本発明は、(A)XOSにおけるAXOSの生成を改善するためのアラビノキシラナーゼの使用であって、XOS及びAXOSの調製物が、ファミリ10又は11のキシラナーゼを用いて調製される使用に関連する。本発明の1つの側面は、分子あたり、骨格のキシロース単位の1つに結合した少なくとも1つのアラビノース単位を含むアラビノキシロ−オリゴ糖組成物に関し、少なくとも1つのアラビノース単位は、α−L−アラビノフラノシルであり、該組成物は、1〜10の重合度を有するキシロ−オリゴ糖骨格を備え、該組成物は、10%以下の単糖及び/又は10%以下のキシロオリゴ糖を含む。
1つの実施形態において、本発明による組成物は、20%以下、15%以下、10%以下、8%以下、5%以下、4%以下、3%以下、2%以下、1.6%以下、1%以下、0.1%以下、又は0.01%以下の量で存在する単糖類を含んでもよい。1つの実施形態において、本発明による組成物は、0.01〜20%、0.05〜10%、0.01〜5%、0.05〜5%、0.05〜2%、0.01〜0.1%、0.01〜1%、0.05〜1.8%又は0.05〜1.5%の量で存在する単糖類を含んでもよい。
1つの実施形態において、本発明による組成物は、20%以下、15%以下、10%以下、8%以下、5%以下、4%以下、3%以下、2%以下、1.6%以下、1%以下、0.1%以下、又は0.01%以下の量で存在するキシロオリゴ糖を含んでもよい。1つの実施形態において、本発明による組成物は、0.01〜20%、0.05〜10%、0.01〜5%、0.05〜5%、0.05〜2%、0.01〜0.1%、0.01〜1%、0.05〜1.8%又は0.05〜1.5%の量で存在するキシロオリゴ糖を含んでもよい。
1つの実施形態において、単糖類はアラビノースを含んでもよい。1つの実施形態において、単糖類はキシロースを含んでもよい。1つの実施形態において、本明細書中の単糖及び/又はキシロオリゴ糖の量は、調製物の乾燥重量%に基づく。
さらに別の側面は、キシロ−オリゴ糖及びアラビノキシロ−オリゴ糖を含む調製物におけるアラビノキシロ−オリゴ糖の生成を改善するためのアラビノキシラナーゼの使用に関連する。1つの実施形態において、キシロ−オリゴ糖及びアラビノキシロ−オリゴ糖の調製物が、ファミリ11のキシラナーゼを用いて調製される。別において、アラビノキシラナーゼが、グリコシド加水分解酵素ファミリ5に属するキシラナーゼである。別の実施形態において、アラビノキシロ−オリゴ糖は穀物繊維から生成される。別の実施形態において、本発明によるアラビノキシラナーゼの使用は、以下の工程を含む。
A’. 穀類繊維からのデンプン及び任意のタンパク質の除去;
B’. Aからの固相の回収;
C’. 非水溶性のアラビノキシランを加水分解可能なキシラナーゼを用いる、工程Bからの固相の処理;
D’. アラビノキシロ−オリゴ糖の生成を改善するために、工程Cへの高度に置換されたアラビノキシランを加水分解可能なアラビノキシラナーゼの添加;
E’. オリゴ糖を含む工程Dからの可溶性相の回収;
F’. 工程Eからの当該可溶性相の任意の精製;
G’. 工程Fからの可溶性相の濃縮又は乾燥。
別の実施形態において、穀物繊維はライムギ、トウモロコシ、アワ、イネ、オオムギ、オートムギ又はコムギから得られる。
アラビノキシラナーゼによって生成されるAXOSは、異なる保持時間(表1)によって見られるように、得られた異なる生成物によって示されるファミリ10及び11のキシラナーゼによって得られるXOS及びAXOS混合物とは異なる。 下部クロマトグラム:コムギ胚乳AXから生成した主要なAXOS(ピーク1〜13)、及び上部クロマトグラム:キシロース及びXOS骨格を露出させるためにアラビノフラノシダーゼ処理した試料。X:キシロース、X:キシロビオース、X:キシロトリオース、X:キシロテトラオース、X:キシロペンタース、X:キシロヘキサオース、X:キシロヘプタオース、及びX:キシロオクタオース。 下部クロマトグラム:ライムギ胚乳AXから生成した主要なAXOS(ピーク1〜13)、及び上部クロマトグラム:キシロース及びXOS骨格を露出させるためにHCl処理した試料。X:キシロース、X:キシロビオース、X:キシロトリオース、X:キシロテトラオース、X:キシロペンタオース、X:キシロヘキサオース、X:キシロヘプタオース、X:キシロオクタオース、X:キシロエンネアオース、及びX10:キシロデカオース。 アラビノキシラナーゼAXOSの最適収率は、0.35〜0.61の範囲であり、0.43が最も高い収率として示されている。 上部クロマトグラム:より短いオリゴ糖への保持時間のシフトとして示されたように、アラビノキシラナーゼの添加を用いる混合物を含むXOS及びAXOSにおけるAXOSの改善された生成(白い矢印)、及び最初の組成物におけるAXOSピーク(黒い矢印)の消失(下部クロマトグラム)。 消失ピーク1〜6に示されるように、ライムギ胚乳AX由来のアラビノキシラナーゼ誘導AXOSのビフィドバクテリウム・アドレスセンティスの利用。 ラクトバシルス・ブレビス(Lactobacillus brevis)は、残りのピーク1〜6によって示されるような、ライムギ胚乳AX由来のアラビノキシラナーゼ誘導AXOSを利用しない。
発明の詳細な説明
アラビノキシラナーゼは、無置換のキシランを攻撃しないので、AXに対する特異性が独特である。これらの酵素によって生成されたオリゴ糖は、還元末端Xylp単位に結合した少なくとも1つの(1→3)Araf基を含む。この酵素の群は、AX又はAX含有物質由来のプレバイオティクスAXOSの製造において以前は使用されていないか、又は考慮されていなかった。本発明において、アラビノキシラナーゼが、AX含有物質からAXOSを製造するために使用される。アラビノキシラナーゼによって得られるこれらAXOS調製物は、キシロース及びXOSが欠如し、それらAXOS組成物中の独特なプレバイオティクスである。AXからプレバイオティクスを製造するために使用された当業技術のキシラナーゼとの比較は、得られた加水分解生成物の差異を明らかに示している(図1及び表1)。AXOSの生成は、0.2〜0.7、好ましくは0.28〜0.65、好ましくは0.35〜0.5、好ましくは0.38〜0.45、好ましくは0.4のA/X比を選択することによってさらに最適化される。AXOS調製物は、AXOS又はAXOS分子に結合したアラビノース置換基を発酵させるのに適したビフィズス菌群に属する腸内細菌の特定の群のための選択的プレバイオティクスとして特に有用である。
Figure 2018522816
第1の例において、AXOSは、コムギ及びライムギ由来の胚乳(穀粉)AXから生成されるが、これらコムギ及びライムギに限定されない。胚乳AXは、AXOSの収率を改善するために、必要に応じてアラビノフラノシダーゼを用いて酵素的に処理され、Araf基の分画を除去する。胚乳AXから生成された純粋なAXOSは、コムギについては図2に、ライムギについては図3に示されている。このデータは、調製物中にキシロース又はXOSが形成されない(乾燥重量基準において0.1%未満)ということを示す。アラビノフラノシダーゼ又は塩化水素酸を用いて得られたAXOSに結合した全てのAraf基の除去後のみに、キシロース及びXOS骨格が露出される。これは、得られたオリゴ糖の全てがキシロース及びXOSの形成がない、又はほとんどないAXOSであることを確認する。全てのAraf基の除去後のXOS骨格の分析から、AXOSの骨格重合度(DP)がコムギ胚乳AXについては1〜8(図2)、ライムギ胚乳AXについては1〜10(図3)であることが決定される。コムギ及びライムギ胚乳AX由来のAXOSの大部分は、平均骨格が3であった(表2)。
Figure 2018522816
さらに、アラビノキシラナーゼによるAXOSの生成について決定された、AX基質におけるアラビノース含量の影響があった。AXから得られたAXOSの最高収率は、0.43のA/X(図4)を用いて達成され、AXOSの最適な生成が、A/X=0.61〜0.35の範囲内にあり、0.43が最適に最も近いことを示している。このことの重要性は、アラビノキシラナーゼ処理の前又は最中にAX基質から、Araf基を部分的に除去することによるAXOSの最適化生成にある。
この技術の別の適用は、XOSとAXOSの両方を含む混合物中のAXOSの改良された生成において実証されている。ファミリ11のキシラナーゼ由来の(A)XOS混合物へのアラビノキシラナーゼの添加により、新しいAXOSが、ファミリ11のキシラナーゼによって加水分解されていないポリ及びオリゴ糖を分解することにより形成される(図5)。これらXOS及びAXOS混合物は、当業技術のキシラナーゼ処理を用いて得ることができ、アラビノキシラナーゼの添加は、そのような調製物におけるAXOSの生成を改善する方法である。調製物は、XOS及びAXOSを含有するこのような製品のプレバイオティクス特性を改善するために、EP2265127B1に記載されたものと類似する。
第2の例において、コムギふすまは、アラビノキシラナーゼによってAXOSを製造するのに適したAXの異なる分画を製造するための基質として用いられる。当該分画は、最初にデンプン及びタンパク質の除去、続くふすま材料からのAX成分の抽出によって、ふすま材料から単離される。続いて、アラビノキシラナーゼを用いて異なるAXOS組成物を製造するために使用することができる、異なるA/X比(表3)を有する分画を得るために、アラビノフラノシダーゼ又は酸処理してAXをその後酵素的に処理する。
第3の例において、得られたAXOSは、キシロース又はXOSを通常用いることができる腸内細菌の他の群に対しビフィズス菌の増殖を選択的に刺激するために用いることができるということが示されている(図6及び7)。その理由は、得られたAXOSは通常、例えばラクトバシルス・ブレビスによって利用され得るキシロースもXOSも含まないということである。異なるビフィズス菌株の炭水化物選好にも違いもあるということが、AXOSをビフィズス菌の特定の菌株を刺激するために使用することができるということを意味する。クラスターII、III、IV及びVのいずれか由来の菌株は、AXOSのみを含む組成物を用いて選択的に刺激することができた。
クラスターII〜V由来の代表的な菌株は、以下のビフィズス菌の菌株であるが、これらに限定されない:
・ビフィドバクテリウム・ロンガム亜種ロンガム DSMZ 20219 (クラスター2)
・ビフィドバクテリウム・アドレスセンティス DSMZ 20083 (クラスター3)
・ビフィドバクテリウム・ロンガム亜種ロンガム 15137 (クラスター4)
・ビフィドバクテリウム・カテニュラタム DSMZ 16992 (クラスター5)
特にクラスター4及び5に属している菌株は、AXOS全体を効率的に利用することができ、かつ得られたAXOSと組み合わせることが特に興味深い。しかしながら、AXOS上に存在するアラビノース置換基を開裂することができる、又はAXOS全体を利用することができる、全てのビフィズス菌は、刺激することが可能である。

例1:アラビノキシラナーゼAXOSの調製
材料及び方法
クロストリジウム・サーモセラム(Clostridium thermocellum)(CtXyl5A)由来のアラビノキシラナーゼを、Nzytech(リスボン、ポルトガル)から購入した。ロードサーマス・マリナス(Rhodothermus marinus)(RmXyn10A)由来のファミリ10のキシラナーゼを、Falckら(2013)に記載されたように調製した。ペントパンモノbg(Pentopan mono bg)、市販のファミリ11のキシラナーゼを、ノボザイム(Novozymes)(バウスベア、デンマーク)から得た。セロビブリオ・ジャポニカス(Cellvibrio japonicus)由来の高純度組換えα−L−アラビノフラノシダーゼ(E-ABFCJ)を、メガザイム(Megazyme)(ウィックロー、アイルランド)から購入した。コムギ(P-WAXYM、P-EDWAX30、P-ADWAX26、P-ADWAX22)及びライムギ(P-RAXY)からアルカリによって抽出された胚乳AXを、メガザイムから購入した。AX基質を50mLのMQ水中に製造指示により10g/L溶解し、pHを8MのHClを用いて7に調整した。ファミリ5由来のアラビノキシラナーゼと、ファミリ10及び11由来のキシラナーゼとを、質量比1:1000の酵素対基質比で添加した。アラビノキシラナーゼ反応において、2mMのCaClを、酵素を安定化させるために用いた。全ての反応を、サーモブロック(thermoblock)又は水浴のいずれかを用いて、50℃で24時間行った。酵素を、95℃で30分間試料をインキュベートすることにより不活性化した。
アラビノキシラナーゼと、ファミリ10及び11のキシラナーゼとの比較(図1)を、0.43のA/Xに等しい30%アラビノース含量によるコムギ胚乳AX(P-EDWAX30)を用いて行なった。AXを、バクテロイデス・オバタス(Bacteroides ovatus)由来のアラビノフラノシダーゼを用いて処理し、二重置換Xylp単位(dXyl)における全てのα−(1→3)結合Arafを除去した。アラビノキシラナーゼ試料におけるキシロース及びXOSのAXOS骨格のキャラクタリゼーション(図2)を、それぞれ(1→2)又は(1→3)単一置換されたXylp単位、mXyl2及びmXyl3からArafを除去するアラビノフラノシダーゼ(E−ABFCJ)を用いて、0.5U/(mg AXOS)で行なった。反応を、50℃で24時間、20mMのリン酸ナトリウム緩衝液を用いてpH5.8で行なった。この処理により、AXOSからArafが完全に除去された(図2)。ライムギ胚乳AXを、アラビノキシラナーゼ反応を48時間行なったことを除いて、コムギと同様に処理した。得られたAXOSから全ての一置換及び二置換Araf基を除去するために、弱酸処理を用いた。pHを、希釈したHCl溶液を用いて2.8に設定し、試料(5mL)を90℃で24時間インキュベートし、その結果AXOSから全てのAraf基をほぼ完全に除去した(図3)。
アラビノース含量と、アラビノキシラナーゼ生成AXOSの収率との関係を、異なるアラビノース含有量を有するコムギ胚乳を用いて決定した。アラビノース含量はそれぞれ38%、30%、26%及び22%、又はそれぞれA/X0.61、0.43、0.35及び0.28に基づくP-WAXYM、P-EDWAX30、P-ADWAX26及びP-ADWAX22である(図4)。反応を、2mLの反応容量及び0.2g/Lの基質濃度の基質濃縮物を用いてガラスバイアル中で行なった。アラビノキシラナーゼを、ペントパン(pentopan)生成(A)XOSを処理するために使用し、キシラナーゼ反応について前述したものと同じ反応条件を用いて、XOS及びAXOS混合物(図5)中により多い及びより短いAXOSを生成した。
AXOSとXOSのキャラクタリゼーション
得られたAXOS分画及びXOS骨格の分析を、同じ材料のCarboPac PA200カラム(250mm×3mm,5.5μm)及びガードカラム(50mm×3mm)と、0〜120mMの酢酸ナトリウム(シグマ(Sigma))の直線勾配(0〜30分)及び0.5mL/分における100mMのNaOHの移動相とを用い、(ICS−5000)を用いるパルス電気化学的検出と結合した高性能アニオン交換クロマトグラフィー(HPAEC−PAD)により行った。使用した単糖及びキシロオリゴ糖標準は以下の通りであった:アラビノース及びキシロース(シグマ)、キシロビオース、キシロトリオース、キシロテトラオース、キシロペンタオース及びキシロヘキサオース(メガザイム)。全ての試料を0.22μmフィルタで濾過し、分析前に0.2g/Lの最終濃度に希釈した。
例2:ふすま由来の異なるA/X比を有するAX基質の調製
材料及び方法
市販のコムギふすま(ラントマンネンミルマルモ(Lantmaennen Mill Malmoe(当該aeはaのウムラウト表記であり、当該oeはoのウムラウト表記である。))、スウェーデン)を、A/Xとして定義された異なるアラビノース含量を有するAXの調製物のための出発物質として使用した。2.5LのDI水中のコムギふすま250gの懸濁液(1:9w/v)を、8MのHClでpH6.0に調整し、90℃で90分間熱安定性α−アミラーゼ0.12U/g(サーマミル(Thermamyl)、シグマアルドリッチ(SIGMA−ALDRICH))を処理し、デンプンを加水分解した。続いて、ふすまを熱い水道水ですすぎ、クリアな透過物が得られるまで可溶物を除去した。水中の新しい懸濁液(1:9w/v)を、50℃で4時間、プロテアーゼ0.035U/g(ニュートラルス 0.8L(Neutralse 0.8L)、シグマアルドリッチ)を用いてインキュベートすることによって、タンパク質を除去して調製した。その後、ふすまを熱い水道水、次いでDI水ですすぎ、続いて真空乾燥した。脱デンプン及び脱タンパクされたコムギふすまを、2%過酸化水素を含有する過酸化水素のpH11.5の希アルカリ溶液(NaOH)を用いて60℃で4時間、200rpmで撹拌して抽出し、可溶性AXを得た。消泡剤トリトンX-100(TRITON X-100)を添加し、発泡を減少させた。抽出後、固体を濾過により除去し、溶液を6000gで20分間遠心分離した(シグマ)。上澄みを8MのHClで中和し、セイヨウワサビペルオキシダーゼを添加し、残留している過酸化水素を除去した。抽出物を6000gで20分間、再び遠心分離した。上澄みを分離し、50mLを8MのHClでpH6に調整し、37℃で24時間試料をインキュベートすることにより、ビフィドバクテリウム・アドレスセンティス(メガザイム、E-AFAM2)由来の5Uのアラビノフラノシダーゼで処理した。上澄みは、200rpmの磁性プレート攪拌機上で、90℃、pH2.5で弱HCl酸によって脱分岐した酸でもあった。試料(50mL)を取り出し、3.4、5.1、6.8及び8.6時間後に1MのNaOHで中和した。全ての分画を3500 Da Mwカットオフを用いる透析バッグ(SpectrumLab,USA)により脱塩した。透析を5LのDI水で2度実施し、続いて全ての試料を凍結乾燥した。
単離した調製物のキャラクタリゼーション
AX分画の単糖組成物を、110℃で60分間、2MのTFAを用いて試料を加水分解した後、HPAEC−PADにより分析した。試料中の総アラビノキシラン含量を、遊離アラビノースを除いた後に0.88倍(%アラビノース+%キシロース)して計算した。
得られた単糖類の分析を、同じ材料のCarboPac PA20カラム(250mm×3mm,5.5μm)及びガードカラム(50mm×3mm)、並びに0.15mM/分における100mMの塩基のポストカラム添加を用いる0.5mL/分における0.75mMのNaOHの移動相を用いるHPAEC−PADにより行った。単糖類(シグマ)は以下の通りであった。:アラビノース、ガラクトース、グルコース及びキシロース。結果として得られたA/X分画を表3に示す。
Figure 2018522816
例3:アラビノキシラナーゼAXOSによる腸内細菌の選択的増殖
材料及び方法
ライムギ胚乳AXから得られたAXOSの発酵性を試験するために使用した細菌株は、ビフィドバクテリウム・アドレスセンティス(B.アドレセンティス)(B.adolescentis)ATCC 15703及びラクトバシルス・ブレビス(L.ブレビス)(L. brevis)DSMZ 1269であった。B.アドレセンティス、L.ブレビスを、炭素源として5g/Lのグルコースを用いて、2度全て予備培養した。B.アドレセンティスを、37℃及びpH6.8でビフィドバクテリウム培地に接種した。当該培地は、それぞれリットル当たり12.5gのカゼインペプトン(casein peptone)、トリプシン消化物、6.25gの酵母抽出物、6.25gの肉抽出物、6.25gのバクトソイトン(bacto soytone)、2.5gのKPO、0.25gのMgSO・7HO、0.0625gのMnSO・HO、6.25gのNaCl、及び1.25mLのツイン80(Tween 80)を含んだ。この溶液へ、それぞれリットル当たり0.25gのCaCl・HO、0.5gのMgSO・7H2O、1gのKHPO、1gのKHPO、10gのNaHCO、及び2gのNaClを含有する50mLの塩溶液とともに、5mLのレザズリン(resazurin)溶液(25mg/100mL)を添加した。その後、培地を煮沸し、続いてNガス下で冷却した。システインを0.625g/Lの濃度へ添加し、NaOHを用いてpH6.8に調整した。L.ブレビスを37℃の嫌気性条件下、pH6.5でMRS培養液中で嫌気的に増殖した。培養試験のための全ての培地、培養液並びに寒天を121℃で15分間オートクレーブ処理した。嫌気性増殖に使用した全ての培養培地を、窒素ガスを用いる嫌気性試験管の酸素の置換により脱気した。続いて、全ての試験管を金属キャップで閉じ、121℃で15分間オートクレーブ処理した。各炭素源グルコース及びAXOSを、0.45μmフィルタを通して濾過滅菌し、最終濃度5g/L及び総量5mLで培地に添加した。発酵試験を、2%vol./vol.の接種材料を用いる第2の予備培養から開始し、試料を24及び48時間後に採取した。光学濃度及びpHを0、24及び48時間後に測定し、一方オリゴ糖の消費を、オリゴ糖分析について記載した同様の条件によるHPAEC−PADを用いて48時間後に分析した。B.アドレセンティスは、ライムギ胚乳AXから生成されたアラビノキシラナーゼAXOSで増殖でき、一方L.ブレビスは、調製物がキシロース又はXOS分子を含まないという事実のために増殖できなかった(各図6及び7)。
Figure 2018522816
参考文献
Figure 2018522816

Claims (23)

  1. 分子あたり、骨格のキシロース単位の1つに結合した少なくとも1つのアラビノース単位を含むアラビノキシロ−オリゴ糖組成物であって、前記少なくとも1つのアラビノース単位は、α−L−アラビノフラノシルであり、前記組成物は、1〜10の重合度を有するキシロ−オリゴ糖骨格を備え、該組成物は、10%以下の単糖及び/又は10%以下のキシロオリゴ糖を含む、アラビノキシロ−オリゴ糖組成物。
  2. 前記アラビノキシロ−オリゴ糖組成物は、0.2〜0.7、好ましくは0.3〜0.6、好ましくは0.35〜0.50、好ましくは0.4の平均アラビノース置換度を有する請求項1に記載のアラビノキシロ−オリゴ糖組成物。
  3. 前記アラビノキシロ−オリゴ糖組成物は、ビフィドバクテリウムspp(Bifidobacterium spp)の増殖を選択的に刺激するように適合される請求項1又は2に記載のアラビノキシロ−オリゴ糖組成物。
  4. 前記ビフィドバクテリウムsppは、アラビノキシロ−オリゴ糖又はオリゴ糖上のアラビノース置換基を発酵させるのに適合した菌株に属する請求項3に記載のアラビノキシロ−オリゴ糖組成物。
  5. 前記ビフィドバクテリウムsppは、ビフィドバクテリウム・アドレスセンティスBifidobacterium adolescentis)、ビフィドバクテリウム・ロンガム(Bifidobacterium longum)、ビフィドバクテリウム・カテニュラタム(Bifidobacterium catenulatum)、ビフィドバクテリウム・アニマリス(Bifidobacterium animalis)、ビフィドバクテリウム・シュードロンガム(Bifidobacterium pseudolongum)、ビフィドバクテリウム・ガリカム(Bifidobacterium gallicum)、ビフィドバクテリウム・ラクティス(Bifidobacterium lactis)、ビフィドバクテリウム・インファンティス(Bifidobacterium infantis)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・アングラタム(Bifidobacterium angulatum)又はビフィドバクテリウム・ブレーベ(Bifidobacterium breve)からなる群から選択される請求項3又は4に記載のアラビノキシロ−オリゴ糖組成物。
  6. 前述の請求項のうちのいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を含み、ビフィドバクテリウムsppをさらに含むシンバイオティクス調製物。
  7. 胃腸内の問題を改善する治療のための、請求項6に記載のシンバイオティクス調製物。
  8. 食品、飼料、飲料又は栄養補助食品からなる群から選択される製品の成分としての使用のための、請求項6又は7に記載のシンバイオティクス調製物。
  9. 胃腸内の問題を改善する治療に使用するための、請求項1〜5に記載のアラビノキシロ−オリゴ糖組成物、又は請求項6〜8に記載のアラビノキシロ−オリゴ糖組成物を含むシンバイオティクス調製物。
  10. 穀粉からアラビノキシロ−オリゴ糖組成物を製造する方法であって、以下の工程を含む。
    A. 穀粉からの胚乳アラビノキシラン分画の抽出及び単離;
    B. 工程Aにて得られた生成物からのデンプン及びタンパク質の任意の除去;
    C. アラビノフラノシダーゼ、好ましくは二重置換のβ−(1→4)結合D−キシロピラノシル単位(dXyl)においてα−(1→3)結合L−アラビノフラノシルを除去できるものを用いる、工程Aの胚乳アラビノキシラン又は工程Bの生成物の任意の処理;
    D. 工程A、工程B又は工程Cにて得られた生成物へのアラビノキシラナーゼの添加;及び
    E. 工程Dにて得られた物質の乾燥。
  11. ふすまからアラビノキシロ−オリゴ糖組成物を製造する方法であって、以下の工程を含む。
    A’. ふすまからのデンプン及びタンパク質の除去;
    B’. Aからの固相の回収;
    C’. 可溶性相を提供するための、アルカリ性溶液、アルカリ性及び過酸化物溶液を用いる固相の処理、又は熱による固相の処理;
    D’. Cのアラビノキシランを含む可溶性相の中和、及びアラビノキシランを含む当該可溶性相の回収;
    E’. 0.2〜0.7、好ましくは0.35〜0.5、好ましくは0.38〜0.45、好ましくは0.4のアラビノースとキシロースとのモル比が得られるように、アラビノフラノシダーゼ又は弱酸性溶液を用いる、工程Dの可溶性相を含むアラビノキシランからのアラビノースの除去;
    F’. 好ましくは沈殿又は膜分離による、工程Eから得られたアラビノキシランを回収するための分離;
    G’. 工程Fからの前記アラビノキシランへのアラビノキシラナーゼの添加;及び
    H’. 工程Gにて得られた物質の乾燥。
  12. 前記アラビノキシロ−オリゴ糖組成物はアラビノキシラン特異的エンドキシラナーゼを用いて製造される、請求項10〜11のいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を製造する方法。
  13. 前記アラビノキシラン特異的エンドキシラナーゼがアラビノキシラナーゼである、請求項10〜12のいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を製造する方法。
  14. 前記工程C’は、アラビノキシロ−オリゴ糖の収率を増加させるためのアラビノフラノシダーゼを用いる任意の処理を含む、請求項10〜13のいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を製造する方法。
  15. 前記工程A’は、それぞれアミラーゼ及びプロテアーゼを用いるデンプン及びタンパク質の除去を含む、請求項11〜14のいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を製造する方法。
  16. 前記工程C’は、水溶性アラビノキシラン含量を増加させるための任意の蒸気処理を用いるアルカリ及び過酸化物による抽出を含む、請求項11〜15のいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を製造する方法。
  17. 前記工程E’は、アラビノキシロ−オリゴ糖の収率を増加させるためのアラビノフラノシダーゼ又は弱酸による任意の処理を含む、請求項11〜16のいずれか1項に記載のアラビノキシロ−オリゴ糖組成物を製造する方法。
  18. キシロ−オリゴ糖及びアラビノキシロ−オリゴ糖を含有する調整物におけるアラビノキシロ−オリゴ糖の生成を改善するためのアラビノキシラナーゼの使用。
  19. キシロ−オリゴ糖及びアラビノキシロ−オリゴ糖の調製物が、ファミリ11のキシラナーゼを用いて調製される、請求項18に記載のアラビノキシラナーゼの使用。
  20. 前記アラビノキシラナーゼが、グリコシド加水分解酵素ファミリ5に属するキシラナーゼである、請求項18に記載のアラビノキシラナーゼの使用。
  21. 前記アラビノキシロ−オリゴ糖は穀物繊維から生成される、請求項18〜20のいずれか1項に記載のアラビノキシラナーゼの使用。
  22. 請求項18〜21のいずれか1項に記載のアラビノキシラナーゼの使用であって、以下の工程を含む。
    A’. 穀類繊維からのデンプン及び任意のタンパク質の除去;
    B’. Aからの固相の回収;
    C’. 非水溶性のアラビノキシランを加水分解可能なキシラナーゼを用いる、工程Bからの前記固相の処理;
    D’. アラビノキシロ−オリゴ糖の生成を改善するために、工程Cへの高度に置換されたアラビノキシランを加水分解可能なアラビノキシラナーゼの添加;
    E’. オリゴ糖を含む工程Dからの可溶性相の回収;
    F’. 工程Eからの当該可溶性相の任意の精製;
    G’. 工程Fからの可溶性相の濃縮又は乾燥。
  23. 穀物繊維はライムギ、トウモロコシ、アワ、イネ、オオムギ、オートムギ又はコムギから得られる請求項18〜22のいずれか1項に記載のアラビノキシラナーゼの使用。
JP2017556993A 2015-04-30 2016-04-29 アラビノキシロ−オリゴ糖を含む調製物 Pending JP2018522816A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1550542-3 2015-04-30
SE1550542 2015-04-30
PCT/SE2016/050377 WO2016175702A1 (en) 2015-04-30 2016-04-29 Preparation comprising arabinoxylo-oligosaccharides

Publications (1)

Publication Number Publication Date
JP2018522816A true JP2018522816A (ja) 2018-08-16

Family

ID=57199328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556993A Pending JP2018522816A (ja) 2015-04-30 2016-04-29 アラビノキシロ−オリゴ糖を含む調製物

Country Status (15)

Country Link
US (2) US20180134741A1 (ja)
EP (1) EP3300502B1 (ja)
JP (1) JP2018522816A (ja)
KR (1) KR20180026665A (ja)
CN (1) CN107849082A (ja)
AU (1) AU2016254804A1 (ja)
BR (1) BR112017022878A2 (ja)
CA (1) CA2983939A1 (ja)
EA (1) EA201792216A1 (ja)
ES (1) ES2824578T3 (ja)
HU (1) HUE051052T2 (ja)
MX (1) MX2017013756A (ja)
PL (1) PL3300502T3 (ja)
WO (1) WO2016175702A1 (ja)
ZA (1) ZA201708081B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414952B2 (en) * 2016-05-09 2019-09-17 The United States Of America, As Represented By The Secretary Of Agriculture Bio-fiber gum hydrolysates and processes of producing
US20210244777A1 (en) * 2017-12-08 2021-08-12 Morinaga Milk Industry Co., Ltd. Novel bifidobacterium bacteria and composition including novel bifidobacterium bacteria
JP7273725B2 (ja) * 2017-12-08 2023-05-15 森永乳業株式会社 新規ビフィドバクテリウム属細菌及び当該細菌を含む組成物
EP3530743A1 (en) 2018-02-21 2019-08-28 Cambridge Glycoscience Ltd Method of production
WO2019216815A1 (en) * 2018-05-09 2019-11-14 Carbiotix Ab Method for measuring and improving gut health
CN113163828B (zh) 2018-08-15 2024-04-26 剑桥糖质科学有限公司 新型组合物、其用途及其形成方法
CN110938664B (zh) * 2018-09-21 2022-06-10 南京农业大学 一种延长面包和馒头货架期的阿拉伯木聚糖生产技术
WO2021032647A1 (en) 2019-08-16 2021-02-25 Cambridge Glycoscience Ltd Methods of treating biomass to produce oligosaccharides and related compositions
JP2023506464A (ja) 2019-12-12 2023-02-16 ケンブリッジ グリコサイエンス エルティーディー 低糖の多相食料品
CN111574640B (zh) * 2020-06-18 2021-04-30 华中农业大学 一种阿拉伯木聚糖的制备方法及产品
IT202000015268A1 (it) * 2020-06-25 2021-12-25 Heallo S R L Idrolizzato di fibra vegetale e suoi usi nell’alimentazione umana ed animale

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0414655D0 (en) * 2004-06-30 2004-08-04 Leuven K U Res & Dev Prebiotic
US9480262B2 (en) * 2007-01-16 2016-11-01 Puratos N.V. Bread with increased arabinoxylo-oligosaccharide content
GB0718974D0 (en) * 2007-09-28 2007-11-07 Univ Leuven Kath oligosaccharides derived from arabinoxylan for prevention of gastrointestinal infection
GB0805360D0 (en) * 2008-03-25 2008-04-30 Univ Leuven Kath Arabinoxylan oligosaccharide preparation
GB2464769A (en) * 2008-10-31 2010-05-05 Univ Leuven Kath Nutriment containing an arabinoxylo-oligosaccharide and a water soluble arabinoxylan
GB0902018D0 (en) * 2009-02-09 2009-03-11 Fugeia Method for making pentoses and pentose-based oligosaccharides from cereals
EP2925334A1 (en) * 2012-11-29 2015-10-07 Nestec S.A. Synbiotic composition and use thereof

Also Published As

Publication number Publication date
US20180134741A1 (en) 2018-05-17
AU2016254804A1 (en) 2017-12-14
EP3300502B1 (en) 2020-07-22
US20200308212A1 (en) 2020-10-01
KR20180026665A (ko) 2018-03-13
BR112017022878A2 (pt) 2018-07-17
CN107849082A (zh) 2018-03-27
CA2983939A1 (en) 2016-11-03
EP3300502A1 (en) 2018-04-04
HUE051052T2 (hu) 2021-03-01
EP3300502A4 (en) 2019-02-20
ZA201708081B (en) 2019-04-24
EA201792216A1 (ru) 2018-05-31
ES2824578T3 (es) 2021-05-12
MX2017013756A (es) 2018-06-27
WO2016175702A1 (en) 2016-11-03
PL3300502T3 (pl) 2020-12-28

Similar Documents

Publication Publication Date Title
US20200308212A1 (en) Preparation comprising arabinoxylo-oligosaccharides
Mano et al. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry
Vera et al. Conventional and non-conventional applications of β-galactosidases
Vera et al. Synthesis and purification of galacto-oligosaccharides: state of the art
US8034586B2 (en) Method for making soluble arabinoxylans as co-product of fermentation of whole-grain cereals
Marim et al. Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects
JP2016214255A (ja) マルトトリオシル転移酵素の新規用途
Rashid et al. Xylanolytic Bacillus species for xylooligosaccharides production: A critical review
Narisetty et al. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective
US11406120B2 (en) Low molecular weight arabinoxylans with branched oligosaccharides
Panesar et al. Prebiotics
CA1300023C (en) Lactobacillus bifidus proliferation promoting composition
WO2022069084A1 (en) Feed or food ingredient derived from fibre-rich biomass of soy hulls
Yan et al. Advances in xylooligosaccharides from grain byproducts: extraction and prebiotic effects
Kanyer et al. Is beer a source of prebiotics?
Nurhayati et al. Effect of chitosan oligosaccharides on the growth of bifidobacterium species
Liu et al. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose II
WO2019009130A1 (ja) ガラクトオリゴ糖の製造方法
Saarinen et al. Treatment of bran containing bread by baking enzymes; effect on the growth of probiotic bacteria on soluble dietary fiber extract in vitro
US10760066B2 (en) Method for killing microorganism
TWI418634B (zh) 耐鹼性芽孢桿菌製造可控制組成之木寡糖的方法
Deiahaye et al. Breakdown of amylomaize starch granules in gnotobiotic rats associated with four bacterial strains isolated from conventional rat microflora
Arunrao Yadav et al. Enrichment of prebiotics in foods using green chemistry approach
Jung et al. Production and application of galacto-oligosaccharides from lactose by a recombinant β-galactosidase of Bifidobacterium infantis overproduced by Pichia pastoris
Panesar et al. Prebiotics: Current status and perspectives

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190228