JP2018514086A - デバイス固有の熱緩和 - Google Patents

デバイス固有の熱緩和 Download PDF

Info

Publication number
JP2018514086A
JP2018514086A JP2017554596A JP2017554596A JP2018514086A JP 2018514086 A JP2018514086 A JP 2018514086A JP 2017554596 A JP2017554596 A JP 2017554596A JP 2017554596 A JP2017554596 A JP 2017554596A JP 2018514086 A JP2018514086 A JP 2018514086A
Authority
JP
Japan
Prior art keywords
temperature
thermal
frequency
relaxation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017554596A
Other languages
English (en)
Inventor
サチン・ディリープ・ダスヌルカール
クリシュナ・レディー・ダセティ
プラサド・ラジーヴァロチャナム・バードリ
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2018514086A publication Critical patent/JP2018514086A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Sources (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

本開示に含まれる実施形態は、デバイス固有の熱緩和のための方法および装置を提供する。デバイスの熱挙動および電力挙動が特性付けられる。熱しきい値が、次いで、デバイスに対して決定される。デバイスごとの熱データおよび熱勾配係数が決定され、相互参照マトリックスの中に記憶される。温度および周波数に対して相関係数が決定される。これらの相関係数は、デバイス緩和温度を決定する。デバイス緩和温度を永続的に記憶するために、ヒューズがデバイス上で溶断されて、デバイス緩和温度がデバイス上のヒューズテーブルの中に記憶されてよい。本装置は、電子デバイスと、電子デバイス内のメモリと、電子デバイス内のヒューズのセットとを含む。デバイスはまた、静的または動的な周波数が高いかどうかを決定するための手段と、デバイスによって使用される電圧および周波数をその決定に基づいて緩和するための手段とを含む。

Description

関連出願の相互参照
本出願は、その内容全体が参照により本明細書に組み込まれる、2015年4月24日に米国特許商標庁に出願された米国非仮特許出願第14/696,182号の優先権および利益を主張する。
本開示は、一般に、集積回路のための熱緩和方法に関し、より詳細には、性能を最適化させながら過電流、大電力、および非制御熱挙動を回避するためのデバイス固有の熱緩和に関する。
デスクトップコンピュータ、ラップトップ、タブレット、モバイルフォン、スマートフォン、および他のパーソナルデバイスを含む、ほとんどの電子デバイスにおいて、集積回路(IC)が使用される。これらのデバイス用のアプリケーションの範囲が増大し続け、かつてなく多くのアプリケーションを利用可能にして使用も増大する。集積回路は、それらを組み込むデバイスの一体部分になっている。集積回路はまた、複数のコアが多種多様な処理ツールを提供して著しく複雑になっている。典型的な例は、多くのスマートフォンの中に見出されるシステムオンチップ(SoC)である。多くの電子デバイスは、多種多様なアプリケーションによって統制されるタスクを実行するために、複数の複雑な集積回路またはプロセッサを使用する。
プロセッサの使用の増加は、しばしば、チップ内の回路の動作によって発生する熱をもたらす。この熱は増大することがあり、不十分なデバイス性能、データの損失、または障害を招くことがある。デバイス内の障害は、重度に利用されたある特定のコアに限定されることがあり、または複数のコアが影響を受けてもっと広範囲にわたることがある。
障害が発生しないときでも、性能が劣化することがある。スマートフォンにおいて、SoCは、高温限度近くにある温度を許容する問題を有することがある。周波数が高周波数と低周波数との間で揺れ動くことがあると、限度近くのSoC性能は悪化することがある。各集積回路は特有であり、高温によってどのくらい厳しく影響を受けるのか、またどのくらい急速にクールダウンするのかは一様でない。テストが、ICの高温挙動を決定するために使用されてよく、性能限界を設定するために使用されてもよい。
製造を続けるために多くのデバイスが電子デバイス製造業者に供給される必要がある場合があるので、ICをテストすることは、しばしば、大きなロットで実行される。そのようなケースでは、テストは、ロット全体に対するICデバイス仕様を決定する。各ICは特有であってよいが、ロットサイズが大きすぎることがあると、動作特性を個別に決定および規定することは実現不可能である。実際には、このことは、ロットの中のテストされた最悪のデバイスの挙動がデバイス集団全体に対する熱ベンチマークを決定することを意味する。
最悪に機能するデバイスをベンチマークとして使用することは、時間を節約することがあるが、結果としてICの性能を過小評価することになる場合があり、最適でない性能をもたらすことがある。当技術分野において、過電流、大電力、または非制御熱挙動を回避するためのデバイス固有の熱緩和を提供する必要がある。
本開示に含まれる実施形態は、デバイス固有の熱緩和のための方法を提供する。SoCなどのデバイスの熱挙動が特性付けられ、電力挙動も同様である。熱しきい値が、次いで、熱挙動および電力挙動に基づいて、デバイスに対して決定される。熱データならびにデバイスごとの熱勾配係数が、相互参照マトリックスの中に記憶される。温度に対して、また周波数に対しても、相関係数が決定される。これらの相関係数は、特定のデバイスに対するデバイス緩和温度を決定する際に使用される。デバイス緩和温度を永続的に記憶するために、ヒューズがデバイス上で溶断されて、デバイス緩和温度がデバイス上のヒューズテーブルまたはEEPROMの中に記憶されてよい。個々のデバイスは、次いで、ソフトウェア制御によって、デバイス緩和温度に従って動作させられてよい。
さらなる実施形態は、デバイス固有の熱緩和のための装置を提供する。本装置は、電子デバイスと、電子デバイス内のメモリと、電子デバイス内のヒューズのセットとを備える。ヒューズのうちの少なくとも1つが、デバイス緩和温度を永続的に記憶するために溶解されてよい。
またさらなる実施形態は、デバイス固有の熱緩和のための装置を提供する。本装置は、デバイスの熱挙動を特性付けるための手段と、デバイスの電力挙動を特性付けるための手段と、デバイスにとっての熱しきい値許容度を決定するための手段とを含む。デバイスはまた、静的電力または動的電力が大きいかどうかを決定するための手段と、デバイスによって使用される電圧および周波数をその決定に基づいて緩和するための手段とを含む。
本明細書で説明する実施形態による、複数のアクティブコアに対する急速熱勾配を示す図である。 本明細書で説明する実施形態による、温度、電圧感度、および周波数感度を緩和する方法の概要を提供する図である。 本明細書で説明する実施形態による、各デバイスにおける電力挙動および温度挙動を符号化する方法のフローチャートである。 本明細書で説明する実施形態による、各デバイスにおける周波数挙動および温度挙動を符号化する方法のフローチャートである。 本明細書で説明する実施形態による、各デバイスにおける熱勾配情報を符号化する方法のフローチャートである。 本明細書で説明する実施形態による、デバイス固有の熱緩和の方法のフローチャートである。
添付の図面に関して以下に記載する詳細な説明は、本発明の例示的な実施形態の説明として意図されており、本発明を実践することができる唯一の実施形態を表すことは意図されていない。本説明全体にわたって使用される「例示的」という用語は、「例、事例、または例示として働くこと」を意味し、必ずしも、他の例示的な実施形態よりも好ましいまたは有利であると解釈されるべきでない。詳細な説明は、本発明の例示的な実施形態の完全な理解を与えるための具体的な詳細を含む。本発明の例示的な実施形態がこれらの具体的な詳細なしに実践されてよいことが、当業者には明らかであろう。いくつかの事例では、本明細書で提示される例示的な実施形態の新規性が曖昧になることを回避するために、よく知られている構造およびデバイスがブロック図の形態で示される。
本出願で使用するとき、「構成要素」、「モジュール」、「システム」などの用語は、ハードウェアであれ、ファームウェアであれ、ハードウェアとソフトウェアの組合せであれ、ソフトウェアであれ、または実行中のソフトウェアであれ、コンピュータ関連のエンティティを指すことが意図される。たとえば、構成要素は、限定はしないが、プロセッサ上で動作するプロセス、集積回路、プロセッサ、オブジェクト、実行可能ファイル、実行スレッド、プログラム、および/またはコンピュータであってよい。例として、コンピューティングデバイス上で動作するアプリケーションとコンピューティングデバイスの両方が構成要素であってよい。1つまたは複数の構成要素は、プロセスおよび/または実行スレッド内に存在することができ、構成要素は、1つのコンピュータ上で局在化されてよく、かつ/または2つ以上のコンピュータの間で分散されてもよい。加えて、これらの構成要素は、様々なデータ構造をその上に記憶した様々なコンピュータ可読媒体から実行することができる。構成要素は、1つまたは複数のデータパケット(たとえば、ローカルシステムの中の、分散システムの中の、かつ/または他のシステムを有するインターネットなどのネットワークを越えた、他の構成要素と信号による他のシステムと相互作用する1つの構成要素からのデータ)を有する信号などに従って、ローカルプロセスおよび/またはリモートプロセスによって通信してよい。
その上、本明細書で説明する様々な態様または特徴は、標準プログラミング技法および/またはエンジニアリング技法を使用して、方法、装置、または製造品として実施されてよい。本明細書で使用する「製造品」という用語は、任意のコンピュータ可読デバイス、搬送波、または媒体からアクセス可能なコンピュータプログラムを包含することが意図される。たとえば、コンピュータ可読媒体は、限定はしないが、磁気記憶デバイス(たとえば、ハードディスク、フロッピーディスク、磁気ストライプ...)、光ディスク(たとえば、コンパクトディスク(CD)、デジタル多用途ディスク(DVD)...)、スマートカード、およびフラッシュメモリデバイス(たとえば、カード、スティック、キードライブ...)、ならびに読取り専用メモリ、プログラマブル読取り専用メモリ、および電気的消去可能プログラマブル読取り専用メモリなどの集積回路を含むことができる。
様々な態様は、いくつかのデバイス、構成要素、モジュールなどを含んでよいシステムに関して提示される。様々なシステムが、追加のデバイス、構成要素、モジュールなどを含んでよく、かつ/または図に関連して説明するデバイス、構成要素、モジュールなどのすべてを含まなくてもよいことを理解および了解されたい。これらの手法の組合せも使用されてよい。
本発明の他の態様ならびに様々な態様の特徴および利点は、保証説明、添付の図面、および添付の特許請求の範囲の説明を通じて当業者に明らかになろう。
ICおよびSoCは、熱ベンチマーキングと呼ばれることもある熱のテストを受けながら評価される。熱ベンチマーキングは、デバイスの挙動を立証し、デバイスの動作パラメータを決定する。マルチコアドライストーン(Dhrystone)テストなどのテストが、熱ベンチマーキングのために使用されてよい。デバイスがスマートフォン、タブレット、および他の電子デバイスなどの最終製品の中に組み込まれるとき、温度限度および設計制約を決定するためにこれらの値が使用される。
動作中、電子デバイスが使用されるときに熱が発生する。この熱は、電子デバイスのIC内またはSoC内のアクティブコアにおいて発生する。アクティブコアによって発生する熱は、コアを含むチップダイの温度を上昇させる。ダイ温度が高まるとき、温度勾配はコアによって放散される電力に比例するものと予期される。
既存の緩和アルゴリズムおよび温度は汎用的である。グループの中の最悪のデバイスの性能が、デバイスのグループにとっての性能限界を決定する。その結果、熱の安定性を達成するために性能が犠牲にされることがある。ワーストケースのデバイスは、デバイスの全体的な集団よりも急速な熱勾配を有することがある。これらのワーストケースのデバイスに対して、安定性を確実にするために、より厳しい緩和温度が必要とされる。そのような要件は最低に機能するデバイスの使用を可能にするが、デバイス集団のうちの残りは制裁が加えられ、その時にうまく機能していないことがある。本明細書で説明する実施形態は、それを必要とするデバイスだけに緩和を提供し、デバイス集団に全体として制裁を加えることを回避する。
熱制御は、周波数または電圧のペアのいずれかを使用して実行されてよい。より大きな動的電力を伴う部分は、周波数降下によってより影響を及ぼされ、より大きな静的電力を伴うデバイスは、電圧降下によってより影響を及ぼされる。周波数または電圧のいずれかが、本明細書で説明する実施形態を使用する部分によって積極的に管理されてよい。
図1は、システムレベルテストが実行されるときのSoCデバイス上の温度センサの挙動を示す。図1が示すように、コア活動状態に起因する急激な温度上昇がある。この急激な上昇は、ダイ温度限度の著しいオーバーシュートをもたらすことがある。この急激で著しいダイ温度オーバーシュートは、過剰な場合、急速熱勾配(FTG:Fast Thermal Gradient)と呼ばれ、潜在的なシステムまたはデバイスの障害または破壊を引き起こすことがある。
システムレベルテストは、上昇する温度に対するダイ許容度をテストするためのソフトウェアを使用してよい。熱許容度が低いダイは、周波数において減速することがあり、低い周波数と高い周波数との間で揺れ動きまたは振動することがある。テスト中、デバイス挙動が観測される間、温度は80度と90度との間に固定されてよい。各ICは特有であり、それぞれが高温において異なる時間期間にわたって動作し、それぞれが異なる速度でクールダウンする。加えて、いくつかのデバイスは静的電力が大きいことがありクールダウンしない。ほとんどのシステムレベルテストの場合、最悪に機能するデバイスが熱ベンチマークを決定する。熱ベンチマークは、ワーストケースのデバイスが機能し得るほど十分に厳密でなくてはならない。テスト方法が、最悪に機能するデバイスを識別しそれらの個々の温度プロファイルを管理できれば、全体的なデバイス性能が改善されることになる。
本明細書で説明する実施形態は、アプリケーションプロセッサおよびグラフィックスプロセッサ、モデム、ならびに性能を最大にし、電力を最小限に抑えるSoCなどのデバイスの、最適化された電圧テーブルを提供する。より詳細には、本明細書で説明する実施形態は、個々のデバイスの中にプログラムされる、部分ごとの熱緩和設定点を提供する。これらの設定点は、デバイスにとっての緩和温度を決定するために読み取られるヒューズテーブルの中で設定される。その結果、スマートフォン、タブレット、またはPCの性能を劣化させる過電流および過剰温度の事象が回避される。加えて、部分ごとにカスタマイズされた緩和スケジュールが、リスクを最小限に抑えながら性能を最大にする。平均よりも上のデバイスは、漸進的な緩和を必要とする限定されたサンプルの挙動によってペナルティを科せられない。
図2は、温度、電圧感度、および周波数感度を緩和する方法の概要を提供する。方法200は、ステップ202において熱および電力の特性付けがデバイスごとに実行されることを提供する。この特性付けは、テストフォームファクタにおいて行われる。ステップ204において、商用形態における対応する挙動が同時に決定される。これらの値は、テストされる部分またはデバイスごとに熱しきい値許容度を決定するために使用される。これらの値は、次いで、ステップ208においてマトリックスの中に配置される。ステップ206において、拡大性(extensive)熱勾配情報ならびに温度と電圧との間の相関および温度から周波数への相関が、場合によっては、クラウドの中に、またはデバイスにおけるEEPROMもしくはヒューズの中に、またはデバイスソフトウェアの中に、別個にプロセスから記憶される。ステップ210において、デバイスごとの緩和温度の推奨が、各デバイスにおけるヒューズの中に記憶される。この値は、本方法が実行されるとき、ソフトウェアによってリードバック(read back)されてよい。ステップ214において、緩和温度、電圧感度、周波数感度、およびサンプリングレートに対するテーブルが決定される。これらのテーブルは、デバイスの内部のヒューズおよびデバイスフォームファクタに基づいて実行される。
図3は、各デバイス内の電力挙動および温度挙動を符号化するための方法を示す。方法300は、各デバイスが電力挙動および温度挙動に対してテストされるステップ302とともに開始する。その決定の一部として、ステップ304において電力値が決定される。ステップ306において、この値がデバイス内で符号化される。このステップが、ロットの中のデバイスごとに実行される。ステップ308において、電力値を永続的に記憶するためにデバイスの中でヒューズが溶断される。次に、ステップ310において、デバイスごとに温度値が決定される。この値は、ステップ312において各デバイスの中で符号化される。ステップ314において、温度値を永続的に記憶するために各デバイスの中でヒューズが溶断される。
各デバイスの中でヒューズを溶断することによって、電力挙動および温度挙動に対する値が符号化される。符号化された値は、そのデバイスに固有である。個々の緩和温度は、デバイスごとに熱勾配速度をカスタマイズするために記憶および使用されてよい。記憶されたテーブルは、過電流および他の電力問題が回避されるように個々の緩和温度を定義する。
図4は、各デバイス内の周波数挙動および温度挙動を符号化するための方法のフローチャートである。方法400は、静的および動的な周波数電力比が各デバイス内で符号化されるステップ402とともに開始する。ステップ404において、電圧および周波数に対する静的電力および動的電力が各デバイスの中で符号化される。ステップ406において、動作電圧が測定される。この測定は、ソフトウェアテーブルを利用してプロセッサによって実行されてよい。決定ブロック408において、動作電圧、動作周波数、および動作温度において測定された電力が、大きな動的な値または大きな静的な値を有するかどうかが決定される。その値が大きな動的な値である場合、ステップ410において、当該のデバイスに対して周波数緩和が選択される。測定された動作電力が大きな静的な値を有する場合、積極的な周波数/電圧緩和が必要とされる。この積極的な緩和は、大きな静的な値を表示するデバイスに限定され、その値は、デバイスのロット全体を特性付けるとは限らない。
図5は、デバイスごとにそのデバイス内で熱勾配を符号化するためのフローチャートである。上記で説明したような溶断されたヒューズを使用して、各デバイスの中で熱勾配が符号化される。方法500は、各デバイスが熱的にテストされるステップ502とともに開始する。次に、ステップ504において、デバイスごとに熱勾配速度が決定される。ステップ506において、溶断されたヒューズを使用して、各デバイスの中で熱勾配速度が符号化される。過剰温度問題を回避するように緩和測定を開始するために、デバイスごとに漸進的な温度を決定するためにルックアップテーブルが使用されてよい。
図6は、過電流、大電力、および非制御熱挙動を回避するためのデバイス固有の熱緩和を提供する方法のフローチャートである。方法600は、ステップ602において、熱挙動および電力挙動に対して各デバイスが特性付けられるときに開始する。次に、ステップ604において、上で決定された特性付けに基づいて、デバイスごとの熱しきい値が決定される。熱しきい値情報は、次いで、ステップ606において、熱しきい値許容度相互参照マトリックスの中にロードまたは記憶される。ステップ608において、上の情報に基づいてデバイスごとの熱勾配パラメータが決定される。温度と電圧との間の相関が、次いで、ステップ610において決定される。同様に、ステップ612において温度と周波数との間の相関が決定される。ステップ614において、これらの相関係数も相互参照マトリックスの中に記憶される。相関情報に基づいて、ステップ616においてデバイス緩和温度が決定される。このデバイス緩和温度は、次いで、ステップ618において、デバイス上のヒューズの中に、またヒューズテーブルの中に記憶されてよい。ASIC SoC制御論理は、次いで、熱緩和が必要とされるとき、マトリックスの中の相関データセットを使用して、電圧/温度条件に敏感なそれらのSoCデバイスに対して最大電圧を制限し、周波数/温度条件に敏感なそれらのSoCデバイスに対して最大周波数を制限する。追加として、場合によっては、ステップ620において、相関データセットが使用されて、デバイスを最大温度未満に保つための周波数/温度曲線に基づいて、いくつかのSoCデバイス上のスイッチング周波数を決定する。
ヒューズ情報が、自動テスト機器(ATE:automatic test equipment)ヒューズドテーブル(fused table)として記憶されてよい。このテーブルは、ATEを使用してテストされたデバイスごとのヒューズ情報を含む。追加の実施形態は、サンプリングレートを変化させることを提供し、これにより、危険なデバイスに対してもっと高い速度におけるポーリングが可能になる。ヒューズマトリックスの各ラインは、異なるフォームファクタを有してよい。ルックアップテーブルまたはスケーリングテーブルが設けられてよく、ソフトウェアを使用してアクセス可能であってよい。ソフトウェアは、温度、電圧、および周波数に対する詳細なデバイスしきい値テーブルを含んでよく、そうしたテーブルがソフトウェアの中にプログラムされてよい。実行されたとき、ヒューズリードバック情報およびフォームファクタに基づくしきい値テーブルが、デバイスごとのカスタマイズを可能にする。部分ごとの性能最適化を行うアルゴリズムを使用して性能が最適化されてよい。
情報および信号が様々な異なる技術および技法のいずれかを使用して表されてよいことを、当業者は理解するであろう。たとえば、上記の説明全体にわたって言及されることがあるデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光学粒子、またはそれらの任意の組合せによって表されてよい。
本明細書で開示する例示的な実施形態に関して説明する様々な例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、または両方の組合せとして実装されてよいことを、当業者はさらに了解するであろう。ハードウェアとソフトウェアとのこの互換性を明確に示すために、様々な例示的な構成要素ブロック、モジュール、回路、およびステップが、概してそれらの機能に関して上記で説明されている。そのような機能がハードウェアとして実装されるのか、それともソフトウェアとして実装されるのかは、特定の適用例および全体的なシステムに課される設計制約で決まる。当業者は、説明する機能を特定の適用例ごとに様々な方法で実施してよいが、そのような実装決定は、本発明の例示的な実施形態の範囲からの逸脱を引き起こすものとして解釈されるべきでない。
本明細書で開示する例示的な実施形態に関して説明する様々な例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス、個別ゲートもしくはトランジスタ論理、個別ハードウェア構成要素、または本明細書で説明する機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行されてよい。汎用プロセッサはマイクロプロセッサであってよいが、代替として、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであってもよい。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと連携した1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成として実装されてよい。
1つまたは複数の例示的な実施形態では、説明する機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装されてよい。ソフトウェアで実装される場合、機能は、1つまたは複数の命令またはコードとして、コンピュータ可読媒体上に記憶されてよく、またはコンピュータ可読媒体を介して送信されてもよい。コンピュータ可読媒体は、コンピュータ記憶媒体と、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であってよい。限定でなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROMもしくは他の光ディスクストレージ、または他の磁気記憶デバイス、あるいは命令またはデータ構造の形態で所望のプログラムコードを搬送または記憶するために使用され得るとともにコンピュータによってアクセスされ得る任意の他の媒体を備えることができる。また、いかなる接続も、コンピュータ可読媒体と適切に呼ばれる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバまたは他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)、およびブルーレイディスク(disc)を含み、ディスク(disk)は通常、データを磁気的に再生し、ディスク(disc)は、レーザーを用いてデータを光学的に再生する。上記の組合せも、コンピュータ可読媒体の範囲内に含められるべきである。
開示した例示的な実施形態の上記の説明は、いかなる当業者も本発明を作成または使用できるようにするために提供される。これらの例示的な実施形態に対する様々な修正が当業者には容易に明らかになり、本明細書で定義する一般原理は、本発明の趣旨または範囲を逸脱することなく他の実施形態に適用されてよい。したがって、本発明は、本明細書で示す例示的な実施形態に限定されることは意図されず、本明細書で開示する原理および新規の特徴と一致する最も広い範囲が与えられるべきである。
200 方法
300 方法
400 方法
500 方法
600 方法

Claims (20)

  1. デバイス固有の熱緩和の方法であって、
    デバイスの熱挙動を特性付けるステップと、
    前記デバイスの電力挙動を特性付けるステップと、
    前記デバイスにとっての熱しきい値許容度を決定するステップと
    を備える、方法。
  2. 前記熱しきい値データを相互参照マトリックスの中に記憶するステップ
    をさらに備える、請求項1に記載の方法。
  3. デバイスごとに熱勾配係数を決定するステップと、
    前記デバイスにとっての相関係数を温度および周波数に基づいて決定するステップと、
    前記温度と電圧との相関係数を相互参照マトリックスの中に記憶するステップと、
    前記温度と周波数との相関係数を前記相互参照マトリックスの中に記憶するステップと、
    デバイス緩和温度を前記相関係数に基づいて決定するステップと
    をさらに備える、請求項1に記載の方法。
  4. 前記デバイス緩和温度を前記デバイス上のヒューズテーブルの中に記憶するステップと、
    前記デバイス緩和温度を永続的に記憶するために前記デバイス上のヒューズを溶断するステップと
    をさらに備える、請求項3に記載の方法。
  5. 前記デバイスを前記デバイス緩和温度に基づいて動作させるステップ
    をさらに備える、請求項4に記載の方法。
  6. デバイス緩和電力係数もまた、前記デバイスの中に永続的に記憶される、請求項4に記載の方法。
  7. 電圧および周波数の関数としての動的周波数電力比が前記デバイス内で符号化される、請求項4に記載の方法。
  8. 電圧および周波数の関数としての静的電力比の値が前記デバイス内で符号化される、請求項4に記載の方法。
  9. 前記動的成分が大きいかどうかを決定するステップと、
    正味電力の前記動的成分が大きい場合、前記デバイスによって使用される周波数を緩和するステップと
    をさらに備える、請求項7に記載の方法。
  10. 前記静的電力成分が大きいかどうかを決定するステップと、
    正味電力の前記静的成分が大きい場合、前記デバイスによって使用される周波数および電圧を緩和するステップと
    をさらに備える、請求項8に記載の方法。
  11. デバイス固有の熱緩和のための装置であって、
    電子デバイスと、
    前記電子デバイス内のメモリと、
    前記電子デバイス内のヒューズのセットと
    を備える、装置。
  12. 前記ヒューズのセットの前記ヒューズのうちの少なくとも1つが、デバイス緩和温度を永続的に記憶するために溶解される、請求項11に記載の装置。
  13. デバイス固有の熱緩和のための装置であって、
    デバイスの熱挙動を特性付けるための手段と、
    前記デバイスの電力挙動を特性付けるための手段と、
    前記デバイスにとっての熱しきい値許容度を決定するための手段と
    を備える、装置。
  14. 前記熱しきい値データを相互参照マトリックスの中に記憶するための手段
    をさらに備える、請求項13に記載の装置。
  15. デバイスごとに熱勾配係数を決定するための手段と、
    前記デバイスにとっての相関係数を温度および周波数に基づいて決定するための手段と、
    前記温度と電圧との相関係数を相互参照マトリックスの中に記憶するための手段と、
    前記温度と周波数との相関係数を前記相互参照マトリックスの中に記憶するための手段と、
    デバイス緩和温度を前記相関係数に基づいて決定するための手段と
    をさらに備える、請求項13に記載の装置。
  16. デバイス緩和温度を前記デバイス上のヒューズテーブルの中に記憶するための手段と、
    前記デバイス緩和温度を永続的に記憶するために前記デバイス上のヒューズを溶断するための手段と
    をさらに備える、請求項15に記載の装置。
  17. 正味電力の動的成分を前記デバイス内で符号化するための手段
    をさらに備える、請求項16に記載の装置。
  18. 正味電力の動的成分を前記デバイス内で符号化するための手段
    をさらに備える、請求項16に記載の装置。
  19. 正味電力の前記動的成分が大きいかどうかを決定するための手段と、
    正味電力の前記動的成分が大きい場合、前記デバイスによって使用される周波数を緩和するための手段と
    をさらに備える、請求項17に記載の装置。
  20. 正味電力の前記静的成分が大きいかどうかを決定するための手段と、
    正味電力の前記静的成分が大きい場合、前記デバイスによって使用される周波数および電圧を緩和するための手段と
    をさらに備える、請求項18に記載の装置。
JP2017554596A 2015-04-24 2016-03-22 デバイス固有の熱緩和 Pending JP2018514086A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/696,182 2015-04-24
US14/696,182 US10215800B2 (en) 2015-04-24 2015-04-24 Device specific thermal mitigation
PCT/US2016/023627 WO2016171831A1 (en) 2015-04-24 2016-03-22 Device specific thermal mitigation

Publications (1)

Publication Number Publication Date
JP2018514086A true JP2018514086A (ja) 2018-05-31

Family

ID=55752714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017554596A Pending JP2018514086A (ja) 2015-04-24 2016-03-22 デバイス固有の熱緩和

Country Status (6)

Country Link
US (1) US10215800B2 (ja)
EP (1) EP3286618A1 (ja)
JP (1) JP2018514086A (ja)
KR (1) KR20170139545A (ja)
CN (1) CN108064362A (ja)
WO (1) WO2016171831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235076A1 (ja) * 2018-06-06 2019-12-12 日立オートモティブシステムズ株式会社 電子制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965927B2 (en) * 2019-05-31 2024-04-23 Apple Inc. Systems and methods of testing adverse device conditions
CN110954743B (zh) * 2019-12-18 2020-09-25 山东山大电力技术股份有限公司 一种分布式录波装置及小电流接地选线方法
CN114088212A (zh) * 2021-11-29 2022-02-25 浙江天铂云科光电股份有限公司 基于温度视觉的诊断方法及诊断装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7036030B1 (en) 2002-02-07 2006-04-25 Advanced Micro Devices, Inc. Computer system and method of using temperature measurement readings to detect user activity and to adjust processor performance
US6996491B2 (en) 2002-02-19 2006-02-07 Sun Microsystems, Inc. Method and system for monitoring and profiling an integrated circuit die temperature
US7062933B2 (en) 2004-03-24 2006-06-20 Intel Corporation Separate thermal and electrical throttling limits in processors
US20070005996A1 (en) * 2005-06-30 2007-01-04 Nalawadi Rajeev K Collecting thermal, acoustic or power data about a computing platform and deriving characterization data for use by a driver
CN101241392B (zh) * 2007-03-01 2012-07-04 威盛电子股份有限公司 根据工作温度的变化来动态改变功耗的微处理器及方法
US7886172B2 (en) * 2007-08-27 2011-02-08 International Business Machines Corporation Method of virtualization and OS-level thermal management and multithreaded processor with virtualization and OS-level thermal management
US8306772B2 (en) * 2008-10-13 2012-11-06 Apple Inc. Method for estimating temperature at a critical point
US8788866B2 (en) 2011-04-25 2014-07-22 Qualcomm Incorporated Method and system for reducing thermal load by monitoring and controlling current flow in a portable computing device
US9207730B2 (en) 2011-06-02 2015-12-08 Apple Inc. Multi-level thermal management in an electronic device
US9442773B2 (en) * 2011-11-21 2016-09-13 Qualcomm Incorporated Thermally driven workload scheduling in a heterogeneous multi-processor system on a chip
US8874949B2 (en) * 2011-12-22 2014-10-28 Intel Corporation Method, apparatus, and system for energy efficiency and energy conservation including enhanced temperature based voltage control
CN102609062A (zh) * 2012-02-10 2012-07-25 杭州再灵电子科技有限公司 平板电脑的温度控制方法
CN103376859B (zh) * 2012-04-26 2016-12-14 华为技术有限公司 芯片性能的控制方法及装置
US9459879B2 (en) * 2012-06-08 2016-10-04 Qualcomm Incorporated Systems and methods for thermal mitigation with multiple processors
US8972759B2 (en) * 2012-06-29 2015-03-03 Qualcomm Incorporated Adaptive thermal management in a portable computing device including monitoring a temperature signal and holding a performance level during a penalty period
US9037882B2 (en) * 2013-02-27 2015-05-19 Qualcomm Incorporated System and method for thermal management in a portable computing device using thermal resistance values to predict optimum power levels
US8988139B2 (en) * 2013-05-28 2015-03-24 International Business Machines Corporation Self-selected variable power integrated circuit
US20140358318A1 (en) * 2013-06-04 2014-12-04 Mediatek Inc. Thermal control method and thermal control module applicable in a portable electronic device
US9720467B2 (en) 2013-08-09 2017-08-01 Qualcomm Incorporated Thermal mitigation adaptation for a mobile electronic device
US20150220097A1 (en) * 2014-02-04 2015-08-06 Qualcomm Incorporated System and method for just-in-time learning-based predictive thermal mitigation in a portable computing device
US9436628B2 (en) * 2014-05-30 2016-09-06 Apple Inc. Thermal mitigation using selective I/O throttling
CN104238600B (zh) * 2014-09-28 2017-02-08 广州创维平面显示科技有限公司 温度控制方法和装置
US9946327B2 (en) * 2015-02-19 2018-04-17 Qualcomm Incorporated Thermal mitigation with power duty cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235076A1 (ja) * 2018-06-06 2019-12-12 日立オートモティブシステムズ株式会社 電子制御装置
JPWO2019235076A1 (ja) * 2018-06-06 2021-03-18 日立Astemo株式会社 電子制御装置
JP7037648B2 (ja) 2018-06-06 2022-03-16 日立Astemo株式会社 電子制御装置

Also Published As

Publication number Publication date
CN108064362A (zh) 2018-05-22
WO2016171831A1 (en) 2016-10-27
KR20170139545A (ko) 2017-12-19
US20160313391A1 (en) 2016-10-27
US10215800B2 (en) 2019-02-26
EP3286618A1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
TWI813615B (zh) 積體電路工作負荷、溫度及/或次臨界洩漏感測器
JP2018514086A (ja) デバイス固有の熱緩和
JP6005895B1 (ja) ワット当たりの最適パフォーマンスのためのインテリジェントマルチコア制御
US9760071B2 (en) Profile based fan control for an unmanageable component in a computing system
US20120159198A1 (en) Processor power limit management
US20180025289A1 (en) Performance Provisioning Using Machine Learning Based Automated Workload Classification
US8543960B1 (en) Power and timing optimization for an integrated circuit by voltage modification across various ranges of temperatures
US11500435B2 (en) Information handling system having regional cooling
US10863653B2 (en) Thermal testing system and method of thermal testing
US20120266123A1 (en) Coherent analysis of asymmetric aging and statistical process variation in electronic circuits
CN112651210B (zh) 芯片老化性能建模方法、装置、设备及存储介质
US20230341460A1 (en) Integrated circuit workload, temperature, and/or sub-threshold leakage sensor
Lichtensteiger et al. Using selective voltage binning to maximize yield
JP5843358B2 (ja) 半導体集積回路のテストパターン生成方法、プログラム、およびコンピュータ読み取り可能な記録媒体
US9489482B1 (en) Reliability-optimized selective voltage binning
US20170212165A1 (en) Resistance measurement-dependent integrated circuit chip reliability estimation
US9164142B2 (en) Testing electronic components on electronic assemblies with large thermal mass
US11500436B2 (en) System and method for predictive fan speed control and management
WO2022011586A1 (en) Equalizer settings for a re-driver
US9865486B2 (en) Timing/power risk optimized selective voltage binning using non-linear voltage slope
US9653330B1 (en) Threshold voltage (VT)-type transistor sensitive and/or fan-out sensitive selective voltage binning
US20180113031A1 (en) Method and device for monitoring temperature of an electronic element
US20230289233A1 (en) Default operating modes
US20150061754A1 (en) Corner-Case Emulation Tool for Thermal Power Testing
WO2023084529A1 (en) Integrated circuit degradation estimation and time-of-failure prediction using workload and margin sensing