JP2018507324A - How to get parts made of low silicon aluminum alloy - Google Patents

How to get parts made of low silicon aluminum alloy Download PDF

Info

Publication number
JP2018507324A
JP2018507324A JP2017540119A JP2017540119A JP2018507324A JP 2018507324 A JP2018507324 A JP 2018507324A JP 2017540119 A JP2017540119 A JP 2017540119A JP 2017540119 A JP2017540119 A JP 2017540119A JP 2018507324 A JP2018507324 A JP 2018507324A
Authority
JP
Japan
Prior art keywords
content
range
preform
alloy
shells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017540119A
Other languages
Japanese (ja)
Other versions
JP6768677B2 (en
Inventor
ロマン・エパル
エミール・トマ・ディ・セリオ
Original Assignee
サン・ジャン・インダストリーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サン・ジャン・インダストリーズ filed Critical サン・ジャン・インダストリーズ
Publication of JP2018507324A publication Critical patent/JP2018507324A/en
Application granted granted Critical
Publication of JP6768677B2 publication Critical patent/JP6768677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

ケイ素、マグネシウム、銅、マンガン、チタン、およびストロンチウムを含む低ケイ素アルミニウム合金で作られた部品に関する。前記部品は、以下を含む方法によって得られる;部品を得るために前記合金を金型内に鋳込む段階と、鋳込み後、依然として高温のプリフォームを構成する部品を離型する段階と、前記プリフォームを冷却した後、前記プリフォームを470℃−550℃の範囲の温度に再加熱するのに適した操作に付す段階と、金型のキャビティの寸法と実質的に等しいがそれよりも小さい寸法のキャビティを画定するダイの2つのシェルの間に前記部品を配置する段階と、前記2つのシェルを共に強く押圧して、前記シェル間に配置された部品に加圧と表面混練の複合作用を及ぼす段階。It relates to parts made of low silicon aluminum alloys including silicon, magnesium, copper, manganese, titanium, and strontium. The part is obtained by a method comprising: casting the alloy into a mold to obtain the part; after casting, releasing the part that still forms the hot preform; Subsequent to cooling the preform, subjecting the preform to an operation suitable for reheating to a temperature in the range of 470 ° C.-550 ° C. and dimensions substantially equal to, but smaller than, the mold cavity dimensions Placing the part between the two shells of the die defining the cavity of the die, and pressing the two shells together strongly to effect the combined action of pressing and surface kneading on the part placed between the shells Stage of effect.

Description

本発明は、特に自動車および航空分野において、さらに一般的にはあらゆる種類の産業において、アルミニウム部品を製造するための、鋳造業または鋳物の技術分野に関する。   The present invention relates to the foundry or foundry technical field for producing aluminum parts, in particular in the automotive and aviation fields, and more generally in all kinds of industries.

「低ケイ素」合金と呼ばれる多くの合金が存在する。そのような合金は、T6熱処理(Rp0.2 300MPa;A% 8%)の後、高い機械特性を有する。それらは、アルミニウム合金の分類において6000(Al−Mg−Si)系としてグループ化されている。最もよく知られているのは、6082,6061、および6151である。多くの組成物もまた、標準化された合金と同様の含有物を有して存在し、その中で、例えば、欧州特許第0987344号に記載のものを挙げることができる。 There are many alloys called “low silicon” alloys. Such alloys have high mechanical properties after T6 heat treatment (Rp 0.2 300 MPa; A% 8%). They are grouped as 6000 (Al-Mg-Si) system in the classification of aluminum alloys. The best known are 6082, 6061, and 6151. Many compositions also exist with the same content as standardized alloys, among which the ones described in EP 0987344 can be mentioned.

上述の合金は、高温または低温の加工中に高い変形率(>50%)で変形するように設計された半完成品(鍛造または圧延用のビレットまたはインゴット)を得るために開発されている。さらに、そのような半完成品の幾何学的形状は単純であり(バー、ロッド、またはインゴット)、したがって、固化速度が大きい方法を用いることによって、欠陥が最小化された状態でそのような合金が固化されることを可能にする。そのような幾何学的形状およびそのような方法は、現在使いこなされている技術を用いることによって、欠陥が除かれた半完成品をもたらす。そのような欠陥は、例えば、収縮孔、クラック、マクロ偏析、およびマクロ析出(析出物の形成は非常に粗く、100μmを超える)である。   The above-described alloys have been developed to obtain semi-finished products (forging or rolling billets or ingots) designed to deform at high deformation rates (> 50%) during high or low temperature processing. In addition, the geometry of such semi-finished products is simple (bars, rods, or ingots), and thus such alloys with minimized defects by using methods with high solidification rates. Allows to be solidified. Such geometries and such methods result in semi-finished products that are free of defects by using currently familiar techniques. Such defects are, for example, shrinkage holes, cracks, macrosegregation, and macroprecipitation (precipitate formation is very coarse, greater than 100 μm).

欧州特許第0987344号European Patent No. 0987344

現在の技術水準に基づき、本発明が解決しようとする課題は、高い安全性および品質の基準を満たし、複雑な形状を有し得る部品を得ることを可能にすることである。   Based on the current state of the art, the problem to be solved by the present invention is to make it possible to obtain parts that meet high safety and quality standards and can have complex shapes.

この課題を解決するために、本発明は、6000タイプの低ケイ素アルミニウム合金で作られた部品の製造方法を提供する。   In order to solve this problem, the present invention provides a method of manufacturing a part made of a 6000 type low silicon aluminum alloy.

マンガンを含まない鋳造微細構造およびβ型の「針状」析出物を示す。A cast microstructure free of manganese and a β-type “needle” precipitate are shown. マンガンによる単構造およびα型の「チャイニーズスクリプト」析出物を示す。Single structure and α-type “Chinese script” precipitates from manganese are shown. AlCuの銅析出物の除去を示す。Fig. 4 shows the removal of Al 2 Cu copper deposits. AlCuの銅析出物の除去を示す。Fig. 4 shows the removal of Al 2 Cu copper deposits. AlCuの銅析出物の除去を示す。Fig. 4 shows the removal of Al 2 Cu copper deposits.

より詳細には、本発明は、0.5%−3%の範囲の含有量のケイ素、0.65%−1%の範囲の含有量のマグネシウム、0.20%−0.40%の範囲の含有量の銅、0.15%−0.25%の範囲の含有量のマンガン、0.10%−0.20%の範囲の含有量のチタン、および0ppm−120ppmの範囲の含有量のストロンチウムを含む低ケイ素アルミニウム合金で作られた部品を得る方法を提供し、前記方法は、
・部品を得るために前記合金を金型内に鋳込む段階と、
・鋳込み後、依然として高温のプリフォームを構成する部品を離型する段階と、
・前記プリフォームを冷却した後、前記プリフォームを470℃−550℃の範囲の温度に再加熱するのに適した操作に付す段階と、
・金型のキャビティの寸法と実質的に等しいがそれよりも小さい寸法のキャビティを画定するダイの2つのシェルの間に前記部品を配置する段階と、
・前記2つのシェルを共に強く押圧して、前記シェル間に配置された部品に加圧と表面混練の複合作用を及ぼす段階と、
を含む。
More particularly, the present invention relates to silicon in the range of 0.5% -3%, magnesium in the range of 0.65% -1%, in the range of 0.20% -0.40%. Content of copper, content of manganese in the range of 0.15% -0.25%, content of titanium in the range of 0.10% -0.20%, and content in the range of 0 ppm-120 ppm A method of obtaining a part made of a low silicon aluminum alloy containing strontium is provided, the method comprising:
Casting the alloy into a mold to obtain a part;
-After casting, the step of releasing the parts constituting the still hot preform,
Subjecting the preform to an operation suitable for reheating the preform to a temperature in the range of 470 ° C.-550 ° C. after cooling the preform;
Placing said part between two shells of a die defining a cavity of a dimension substantially equal to but smaller than the dimension of the mold cavity;
-Pressing both the two shells together strongly to exert a combined action of pressing and surface kneading on the parts arranged between the shells;
including.

また、本発明は、以下を提供する。
・上記の方法を自動車分野または航空分野で実施すること、
・上記の方法で得られた部品を自動車分野で使用すること、
・航空分野における上記の方法における合金の使用。
The present invention also provides the following.
・ Implementing the above method in the automotive or aviation field
・ Use the parts obtained by the above method in the automotive field,
Use of alloys in the above method in the aviation field.

この方法の実施態様では、プリフォームが冷却された後、プリフォームはトンネル炉内に置かれることによって再加熱される。   In this method embodiment, after the preform has cooled, the preform is reheated by being placed in a tunnel furnace.

これらの特徴の結果として、一工程で鋳造操作の後プリフォームを鍛造する際のパラメータは、温度、凝固速度、変形速度、および鍛造温度に関して、従来技術の方法におけるものと同じではない。   As a result of these features, the parameters in forging the preform after the casting operation in one step are not the same as in the prior art method with respect to temperature, solidification rate, deformation rate, and forging temperature.

特許請求の範囲に記載される合金は、これらの制約を満足し、特に、部品が安全義務(サスペンションシステム部品は安全部品である)を満足しなければならない場合、満足のいく品質の部品を得ることを可能にする。   The claimed alloy satisfies these constraints, especially when the parts must meet safety obligations (suspension system parts are safety parts) and get a satisfactory quality part Make it possible.

そのような制約の中で、例示として以下のことを述べることができる。
・バーまたはインゴットとは異なり、プリフォームの幾何学的形状は、設計されているときに、部品の機能領域の概略の輪郭を含んでおり、したがって、液体金属の分離された塊につながるリブまたは部分の変化を含む複雑な幾何学的形状を有することができる。そのような分離された塊は、ケイ素含有量を増加させることによって「許容される」ことができる(等級AS7G03、標準鋳造合金)。その含有量の減少により、固化の間に合金はより影響を受けやすくなり、数および体積においてより多くの収縮孔(空隙率)欠陥をもたらす。
・固化範囲は、対象となる合金の液相線温度から共晶温度までで定義される範囲である。 ストロンチウム改質AS7G03タイプ合金の場合、この範囲は約50℃(611℃−562℃)である。低ケイ素6000型合金の場合、擬共晶線としての巨視的なMgSi(またはケイ素)の析出を伴い、約90℃(655℃−562℃)である。広い固化範囲は、部品をさらに通って延びる半固体領域をもたらし、従来行われていたように、かつAS7G03合金ではほぼ自然に行われていたように、固化端で欠陥を低減するようにすることがより困難になる。
・AS7G03は、固化が生じている間、収縮中に現れるクラックを埋めることができる大量の共晶に起因して、クラック生成に対してほとんど感度を持たない。これは、共晶がほとんどない低ケイ素合金には当てはまらず、その場合クラック生成に対する感受性が高くなり、組成物を適合させ固化温度勾配を制御することが必要である
Under such constraints, the following can be described as an example.
Unlike the bar or ingot, the preform geometry includes a rough outline of the functional area of the part when it is designed and thus leads to a separated mass of liquid metal or It can have a complex geometric shape that includes part changes. Such separated masses can be “acceptable” by increasing the silicon content (grade AS7G03, standard casting alloy). Due to its reduced content, the alloy becomes more susceptible during solidification, resulting in more shrinkage pore (porosity) defects in number and volume.
The solidification range is a range defined from the liquidus temperature to the eutectic temperature of the target alloy. In the case of a strontium modified AS7G03 type alloy, this range is about 50 ° C. (611 ° C.-562 ° C.). In the case of a low silicon 6000 type alloy, it is about 90 ° C. (655 ° C.-562 ° C.) with macroscopic Mg 2 Si (or silicon) precipitation as a pseudoeutectic line. The wide solidification range provides a semi-solid region that extends further through the part, so as to reduce defects at the solidification edge, as was done in the past and almost naturally in the AS7G03 alloy. Becomes more difficult.
AS7G03 has little sensitivity to crack formation due to the large amount of eutectic that can fill the cracks that appear during shrinkage during solidification. This is not the case for low silicon alloys with little eutectic, in which case it becomes more sensitive to crack formation and it is necessary to adapt the composition and control the solidification temperature gradient.

また、鋳造、鍛造、および熱処理のパラメータと完成部品の所望の機械的特性との間のより良い妥協またはトレードオフを得るように化学組成を調整することも必要である。この目的のために、合金の各元素、その含有量、およびその値をもたらす効果が選択され、以下に詳細に与えられる。   It is also necessary to adjust the chemical composition to obtain a better compromise or tradeoff between casting, forging, and heat treatment parameters and the desired mechanical properties of the finished part. For this purpose, each element of the alloy, its content, and the effect leading to its value are selected and given in detail below.

ケイ素含量は0.5%−3%の範囲にある。1%未満のケイ素含有量は、最も高い降伏強さおよび伸びをもたらす。しかしこれは、合金がクラック生成に対して最も敏感であり、鋳造性または流動性が最も低い含有量である。したがって、シリコン含有量を部品の幾何学的形状に応じて適合できることが必要である。複雑な幾何学的形状は、クラック生成に対するこの感度を低減するために、より高い含有量を必要とする。最大含有量である3%は、それを超えると、伸びおよび降伏強度が低くなり過ぎて、このタイプの合金を使用して部品を製造するのに依然として有利であるとはいえない含有量に相当する。   The silicon content is in the range of 0.5% -3%. A silicon content of less than 1% results in the highest yield strength and elongation. However, this is the content in which the alloy is most sensitive to crack formation and has the lowest castability or flowability. It is therefore necessary to be able to adapt the silicon content according to the geometry of the part. Complex geometries require a higher content to reduce this sensitivity to crack generation. The maximum content of 3% corresponds to a content beyond which the elongation and yield strength become too low to be still advantageous for producing parts using this type of alloy. To do.

マグネシウム含有量は、0.65%−1%の範囲にある。この含有量は、アルミニウムマトリックス中のMgSi析出物の密度を最適化することを可能にする。これは、ケイ素含有量の減少を補いながら、同時に、不利であり、熱処理中に溶解または変換されなければならない巨視的なMgSi析出物を最小限に抑える。あまりにも多くの析出物があるか、またはそれらが大きすぎる場合、臨界溶解サイズを超えているので、熱処理はそれらの溶解にわずかな効果しか及ぼさない。 The magnesium content is in the range of 0.65% -1%. This content makes it possible to optimize the density of Mg 2 Si precipitates in the aluminum matrix. This compensates for the decrease in silicon content, while at the same time being disadvantageous and minimizing macroscopic Mg 2 Si precipitates that must be dissolved or transformed during the heat treatment. If there are too many precipitates or they are too large, the heat treatment has only a minor effect on their dissolution because the critical dissolution size is exceeded.

銅含量は、0.20%−0.40%の範囲にある。この含有量は、AlCu析出物がマトリックス中に形成されることを可能にし、巨視的なAlCu析出物が完全に存在しないようにする。そのような巨視的な析出物が存在しないことにより、高い鍛造温度を維持することができ、それによって鍛造力を最小限に抑えることができる(単一ステップで鍛造を行う)。銅の存在下で形成される主な析出物は、それぞれ490℃および525℃で溶融するAlCuおよびAlMgSiCuであり、これらの存在は、高温での鍛造を防止して、合金が燃焼して部品が使用できなくなるであろうリスクをなくす。このような劣化は、合金が破壊されることに例えることができる。より高い銅含有量はまたクラック生成に対する合金の感度を増加させる。なぜなら、部品に及ぼされる機械的応力(固化時の収縮に関連する)が大きい低温(490℃または525℃)では、固化される共晶が残っているためである。 The copper content is in the range of 0.20% -0.40%. This content allows Al 2 Cu precipitates to be formed in the matrix and ensures that macroscopic Al 2 Cu precipitates are completely absent. Due to the absence of such macroscopic precipitates, a high forging temperature can be maintained, thereby minimizing the forging force (forging in a single step). The main precipitates formed in the presence of copper are Al 2 Cu and AlMgSiCu, which melt at 490 ° C. and 525 ° C., respectively, and these presences prevent forging at high temperatures and cause the alloy to burn Eliminate the risk that parts will become unusable. Such deterioration can be compared to the destruction of the alloy. Higher copper content also increases the alloy's sensitivity to crack formation. This is because the eutectic to be solidified remains at a low temperature (490 ° C. or 525 ° C.) where the mechanical stress exerted on the part (related to shrinkage during solidification) is large.

マンガンの含有量は、0.15%から0.25%の範囲にある。この含有量は、AlFeSi析出物がβ型(非常に有害な小板形態)に形成されることを回避し、むしろα型形態のAlFeMnSi析出物が形成されることを可能にする(害の少ないチャイニーズスクリプト形態)。これにより、コバプレス法で得られる最終製品の伸びを最大にすることが可能となる。この効果は、マンガンおよび鉄が合金の高硬化をもたらすだけでなく、固化の間より大きな析出物を生じさせるため、マンガンおよび鉄の量が多い場合に最も頻繁に使用される。そのような大きな析出物は、適切な伸びに対して有害である。しかしながら、本発明の合金は、示されているように、単一ステップで鍛造が行われ、鍛造、圧延または押出において通常生じる大きな変形を伴わない、コバプレス法のために設計されている。そのような大きな変形は、大きな析出物を断片化し、それらを無害にする一方でまた、硬化の効果を維持することを可能にする。本発明の合金では、機械的特性に及ぼす鉄系析出物の影響を、鋳造段階で最小限に抑えるべきである。これは、単一ステップの鍛造が、モルフォロジーを変化するのに十分である程まで部品を変形させないので、それらのモルフォロジーがもはや変更されないためである。最後に、このマンガン含有量は、永久鋳型中で鋳造するときに得られる冷却速度に適合し、この速度に関して、α型のAlFeMnSi析出物の形成を容易にする。   The manganese content is in the range of 0.15% to 0.25%. This content avoids the formation of AlFeSi precipitates in β-type (very harmful platelet form), but rather allows the formation of α-type AlFeMnSi precipitates (less harmful) Chinese script form). This makes it possible to maximize the elongation of the final product obtained by the cover pressing method. This effect is most often used when the amount of manganese and iron is high because manganese and iron not only result in high hardening of the alloy, but also produce larger precipitates during solidification. Such large precipitates are detrimental to proper elongation. However, the alloys of the present invention, as shown, are designed for a cover press process that is forged in a single step and does not involve the large deformations normally encountered in forging, rolling or extrusion. Such large deformation makes it possible to fragment large deposits and make them harmless while also maintaining the effect of curing. In the alloy of the present invention, the influence of iron-based precipitates on the mechanical properties should be minimized during the casting stage. This is because single-step forging does not deform the parts to the extent that they are sufficient to change the morphology, so their morphology is no longer altered. Finally, this manganese content is compatible with the cooling rate obtained when casting in permanent molds, and facilitates the formation of α-type AlFeMnSi precipitates for this rate.

チタン含有量は、0.10%−0.20%の範囲にある。その含有量は、粒子の効果的な生成およびこれらの合金の機械的特性に大きな影響を及ぼす微細な粒子径を得るために必要である。   The titanium content is in the range of 0.10% -0.20%. Its content is necessary to obtain a fine particle size that has a great influence on the effective production of particles and the mechanical properties of these alloys.

ストロンチウムの含有量は、0ppmから120ppmの範囲にある。この含有量は、形成される少量の共晶の繊維状凝固を有するために必要である。これは、主に1.5%を超えるケイ素含有量で起こる。   The content of strontium is in the range of 0 ppm to 120 ppm. This content is necessary to have a small amount of eutectic fibrous solidification formed. This occurs mainly with silicon contents exceeding 1.5%.

この合金の組成は、コバプレス法の間に生じる低レベルの変形にもかかわらず、機械的特性を最大にすることを可能にする固化をもたらすように適合されることが分かる。   It can be seen that the composition of this alloy is adapted to provide solidification that allows the mechanical properties to be maximized despite the low level of deformation that occurs during the cover pressing process.

しかしながら、結晶粒界における粒界収縮孔固化欠陥などの固化欠陥は、鋳造物、すなわち鋳造により得られる部品を弱化する、枝状に分かれ、かつ拡散したモルフォロジーを有している。   However, solidification defects, such as grain boundary shrinkage hole solidification defects at grain boundaries, have a branching and diffused morphology that weakens the casting, ie, the part obtained by casting.

コバプレス鍛造操作により、設計段階で変形速度を制御しながら、このような欠陥を再閉鎖および再結合することが可能になる。温度/変形の組により、欠陥を解消することが可能となる。以下の表は、低ケイ素合金のT6熱処理後の、コバプレス法を用いた鋳造物および部品の機械的特性を示す。極限引張強さRmおよび極限伸びの改善に注目することができる。   The edge press forging operation makes it possible to reclose and recombine such defects while controlling the deformation rate at the design stage. The temperature / deformation pair can eliminate the defect. The table below shows the mechanical properties of castings and parts using the cover press method after T6 heat treatment of low silicon alloys. It can be noted that the ultimate tensile strength Rm and the ultimate elongation are improved.

Figure 2018507324
Figure 2018507324

最後に、この組成は、Al−Mg−Si−Cuタイプの合金の通常の熱処理の複雑さを低減することを可能にする。ケイ素含有量、固化速度、および結晶粒微細化は、熱処理中の溶解を容易にする寸法およびモルフォロジーを有する巨視的なMgSi析出物をもたらす。 Finally, this composition makes it possible to reduce the usual heat treatment complexity of Al-Mg-Si-Cu type alloys. Silicon content, solidification rate, and grain refinement result in macroscopic Mg 2 Si precipitates with dimensions and morphology that facilitate dissolution during heat treatment.

マンガン含有量および銅含有量の重要性を示すために、部品の金属組織を示す添付図面の図を参照する。図1は、マンガンを含まない鋳造微細構造およびβ型の「針状」析出物を示し、図2はマンガンによる単構造およびα型の「チャイニーズスクリプト」析出物を示す。   To illustrate the importance of manganese content and copper content, reference is made to the figures in the accompanying drawings showing the metallographic structure of the part. FIG. 1 shows a cast microstructure without manganese and β-type “needle” precipitates, and FIG. 2 shows a single structure and α-type “Chinese script” precipitates with manganese.

図3、図4、および図5は、AlCu銅析出物の除去を示す。 3, 4 and 5 show the removal of Al 2 Cu copper deposits.

図3および4において、銅含有量は0.40%より大きく、これはAlCu析出物の存在をもたらす。図4は、AlCu析出物に囲まれたAlFeMnSiおよびMgSiの析出物を観察することができる例を示す。 3 and 4, the copper content is greater than 0.40%, which results in the presence of Al 2 Cu precipitates. FIG. 4 shows an example in which deposits of AlFeMnSi and Mg 2 Si surrounded by Al 2 Cu precipitates can be observed.

図5は、AlCu析出物が存在しないことを示す、本発明による0.20%−0.40%の範囲の銅含有量を示す。 Figure 5 shows that the Al 2 Cu precipitates are not present, shows a copper content in the range of 0.20% -0.40% in accordance with the present invention.

Claims (3)

低ケイ素アルミニウム合金で作られた部品を得る方法であって、
前記合金は、
・0.5%−3%の範囲にある含有量のケイ素;
・0.65%−1%の範囲にある含有量のマグネシウム;
・0.20%−0.40%の範囲にある含有量の銅;
・0.15%−0.25%の範囲にある含有量のマンガン;
・0.10%−0.20%の範囲の含有量のチタン;および
・0ppm−120ppmの範囲にある含有量のストロンチウム;
を含み、
前記方法は、
・部品を得るために前記合金を金型内に鋳込む段階と、
・鋳込み後、依然として高温のプリフォームを構成する部品を離型する段階と、
・前記プリフォームを冷却した後、前記プリフォームを470℃−550℃の範囲の温度に再加熱するのに適した操作に付す段階と、
・金型のキャビティの寸法と実質的に等しいがそれよりも小さい寸法のキャビティを画定するダイの2つのシェルの間に前記部品を配置する段階と、
・前記2つのシェルを共に強く押圧して、前記シェル間に配置された部品に加圧と表面混練の複合作用を及ぼす段階と、
を含む、方法。
A method of obtaining a part made of a low silicon aluminum alloy comprising:
The alloy is
A silicon content in the range of 0.5% -3%;
A magnesium content in the range of 0.65% -1%;
A copper content in the range of 0.20% -0.40%;
A manganese content in the range of 0.15% -0.25%;
Titanium with a content in the range of 0.10% -0.20%; and strontium with a content in the range of 0 ppm-120 ppm;
Including
The method
Casting the alloy into a mold to obtain a part;
-After casting, the step of releasing the parts constituting the still hot preform,
Subjecting the preform to an operation suitable for reheating the preform to a temperature in the range of 470 ° C.-550 ° C. after cooling the preform;
Placing said part between two shells of a die defining a cavity of a dimension substantially equal to but smaller than the dimension of the mold cavity;
-Pressing both the two shells together strongly to exert a combined action of pressing and surface kneading on the parts arranged between the shells;
Including a method.
自動車分野における、請求項1に記載の方法によって得られた部品の使用。   Use of a part obtained by the method according to claim 1 in the automotive field. 航空分野における、請求項1に記載の方法における合金の使用。   Use of an alloy in the method according to claim 1 in the aviation field.
JP2017540119A 2015-01-29 2016-01-14 How to get parts made of low silicon aluminum alloy Active JP6768677B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1550700 2015-01-29
FR1550700A FR3032204B1 (en) 2015-01-29 2015-01-29 ALUMINUM LOW SILICON ALLOY PIECE
PCT/FR2016/050069 WO2016120541A1 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part

Publications (2)

Publication Number Publication Date
JP2018507324A true JP2018507324A (en) 2018-03-15
JP6768677B2 JP6768677B2 (en) 2020-10-14

Family

ID=52779906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017540119A Active JP6768677B2 (en) 2015-01-29 2016-01-14 How to get parts made of low silicon aluminum alloy

Country Status (21)

Country Link
US (1) US20180002788A1 (en)
EP (1) EP3250722B1 (en)
JP (1) JP6768677B2 (en)
KR (1) KR20170107458A (en)
CN (1) CN107208197B (en)
AU (1) AU2016211088B2 (en)
BR (1) BR112017016024B1 (en)
CA (1) CA2973937A1 (en)
DK (1) DK3250722T3 (en)
ES (1) ES2689908T3 (en)
FR (1) FR3032204B1 (en)
HR (1) HRP20181682T1 (en)
HU (1) HUE039737T2 (en)
MA (1) MA41422A (en)
MX (1) MX2017009828A (en)
PL (1) PL3250722T3 (en)
PT (1) PT3250722T (en)
RS (1) RS57888B1 (en)
RU (1) RU2700218C2 (en)
TR (1) TR201815694T4 (en)
WO (1) WO2016120541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708628B2 (en) 2021-03-16 2023-07-25 Honda Motor Co., Ltd. Aluminum alloy processing method and aluminum alloy workpiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022142163A (en) * 2021-03-16 2022-09-30 本田技研工業株式会社 Processing method of aluminum alloy, and processed article of aluminum alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272941A (en) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd Aluminum base alloy fed to product forging through casting into product preliminary shape and casting and forging method
JPH10110231A (en) * 1996-10-08 1998-04-28 Nippon Light Metal Co Ltd Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JP2002302728A (en) * 2001-04-09 2002-10-18 Hoei Kogyo Kk Aluminum alloy for casting and forging, aluminum cast and forged article, and production method therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3373281D1 (en) * 1983-03-14 1987-10-08 Serio Thomas Di Method of producing pieces of aluminium or aluminium alloy
US5571347A (en) * 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy
US20020170635A1 (en) * 1998-05-04 2002-11-21 Diserio Emile-Thomas Process for manufacturing aluminum alloys and aluminium castings
DE69921925T2 (en) * 1998-08-25 2005-11-10 Kabushiki Kaisha Kobe Seiko Sho, Kobe High strength aluminum alloy forgings
RU2163939C1 (en) * 1999-08-09 2001-03-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminum-base alloy, method of production of semifinished products and article from this alloy
FR2827306B1 (en) * 2001-07-10 2004-10-22 Pechiney Aluminium HIGH DUCTILITY ALUMINUM ALLOY FOR PRESSURE CASTING
AU2003268697A1 (en) * 2002-10-01 2004-04-23 Asahi Tec Corporation Aluminum alloy for casting-forging, aluminum cast/forged article, and method for manufacture thereof
DE102004022817A1 (en) * 2004-05-08 2005-12-01 Erbslöh Ag Decorative anodizable, easily deformable, mechanically highly loadable aluminum alloy, process for its production and aluminum product made from this alloy
US20080060723A1 (en) * 2006-09-11 2008-03-13 Gm Global Technology Operations, Inc. Aluminum alloy for engine components
WO2009059593A2 (en) * 2007-11-08 2009-05-14 Ksm Castings Gmbh CAST Al/Si ALLOYS
CN101643869B (en) * 2009-09-04 2011-04-06 河池学院 High strength automobile aluminium alloy wheel rim

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272941A (en) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd Aluminum base alloy fed to product forging through casting into product preliminary shape and casting and forging method
JPH10110231A (en) * 1996-10-08 1998-04-28 Nippon Light Metal Co Ltd Aluminum alloy material for casting-forging excellent in wear resistance, castability and forgeability and its production
JP2002302728A (en) * 2001-04-09 2002-10-18 Hoei Kogyo Kk Aluminum alloy for casting and forging, aluminum cast and forged article, and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708628B2 (en) 2021-03-16 2023-07-25 Honda Motor Co., Ltd. Aluminum alloy processing method and aluminum alloy workpiece

Also Published As

Publication number Publication date
WO2016120541A1 (en) 2016-08-04
US20180002788A1 (en) 2018-01-04
PL3250722T3 (en) 2019-03-29
HRP20181682T1 (en) 2018-12-14
BR112017016024A2 (en) 2018-03-20
FR3032204A1 (en) 2016-08-05
RU2700218C2 (en) 2019-09-13
ES2689908T3 (en) 2018-11-16
BR112017016024B1 (en) 2021-10-19
AU2016211088B2 (en) 2020-05-21
HUE039737T2 (en) 2019-01-28
JP6768677B2 (en) 2020-10-14
CN107208197A (en) 2017-09-26
CA2973937A1 (en) 2016-08-04
CN107208197B (en) 2019-11-05
DK3250722T3 (en) 2018-11-05
TR201815694T4 (en) 2018-11-21
MA41422A (en) 2017-12-06
FR3032204B1 (en) 2019-08-09
RS57888B1 (en) 2019-01-31
KR20170107458A (en) 2017-09-25
RU2017126680A3 (en) 2019-05-24
PT3250722T (en) 2018-10-25
AU2016211088A1 (en) 2017-08-17
RU2017126680A (en) 2019-01-28
MX2017009828A (en) 2018-02-09
EP3250722A1 (en) 2017-12-06
EP3250722B1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6499546B2 (en) Ni-based superalloy powder for additive manufacturing
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
US20160355908A1 (en) Aluminum alloy and die casting method
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
Wang et al. Microstructure and mechanical properties of A356 aluminum alloy wheels prepared by thixo-forging combined with a low superheat casting process
CN107405681B (en) Method for manufacturing a turbomachine component, a blank and a final component
KR102589799B1 (en) High-strength aluminum-based alloys and methods for producing articles therefrom
JP6768677B2 (en) How to get parts made of low silicon aluminum alloy
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
Lakshmi et al. Induction reheating of A356. 2 aluminum alloy and thixocasting as automobile component
KR101680046B1 (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
Barbarias et al. Ablation technology applied to A356 alloys compared with conventional casting processes
JP6741208B2 (en) Hypereutectic Al-Si based aluminum alloy, cast member made of the same, and method for producing the aluminum alloy
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
US20020170697A1 (en) Method of manufacturing lightweight high-strength member
JP3798676B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP6975421B2 (en) Aluminum alloy manufacturing method
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
Trifonov et al. Liquid forging processing of automobile wheels
US11504763B2 (en) Aluminum alloy wheel and method for manufacturing the same
Kashani et al. Effects of hot isostatic pressing on the tensile properties of A356 cast alloy
Ye et al. Formation mechanism and criterion of linear segregation in ZL205A alloy
JP2022506542A (en) 2XXX Aluminum Lithium Alloy
CN108239731A (en) The method that solution heat treatment is carried out using pressure
JP2006022385A (en) HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R150 Certificate of patent or registration of utility model

Ref document number: 6768677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250