JP2006022385A - HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD - Google Patents

HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2006022385A
JP2006022385A JP2004202713A JP2004202713A JP2006022385A JP 2006022385 A JP2006022385 A JP 2006022385A JP 2004202713 A JP2004202713 A JP 2004202713A JP 2004202713 A JP2004202713 A JP 2004202713A JP 2006022385 A JP2006022385 A JP 2006022385A
Authority
JP
Japan
Prior art keywords
content
alloy
elongation
casting
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202713A
Other languages
Japanese (ja)
Inventor
Yusuke Toyoda
裕介 豊田
Katsuhiro Shibata
勝弘 柴田
Takahiro Mizukami
貴博 水上
Ryoichi Murakashi
良一 村樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004202713A priority Critical patent/JP2006022385A/en
Publication of JP2006022385A publication Critical patent/JP2006022385A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high toughness Al alloy casting capable of obtaining tensile strength, 0.2% proof stress and elongation at a high level in a well balance. <P>SOLUTION: The high toughness Al alloy casting has a composition containing, by mass, 2 to 4% Si, 0.2 to 0.5% Mg, 0.4 to 0.8% Cu and 0.05 to 0.3% Ni, and the balance Al with inevitable impurities, and has a tensile strength of ≥300 MPa, a 0.2% proof stress of ≥210 MPa and an elongation of ≥10%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高靱性Al合金鋳物及びその製造方法に係り、特に、種々の機械的特性に優れたAl合金鋳物の製造技術に関する。   The present invention relates to a high toughness Al alloy casting and a method for producing the same, and more particularly to a technique for producing an Al alloy casting having various mechanical characteristics.

Al合金鋳物は、車体、サスペンション部材、サブフレーム部材、各種継手部材、及びアルミホイール等のシャーシ構成部品等に使用して好適であり、このような合金については種々の技術が開示されている。   Al alloy castings are suitable for use in chassis components such as vehicle bodies, suspension members, subframe members, various joint members, and aluminum wheels, and various techniques are disclosed for such alloys.

このようなAl合金鋳物としては、伸び、衝撃値、引張強さ、耐力、及び耐食性を向上させることを目的として、質量比で、Si:1.65〜4.0%、Mg:0.2〜0.4%、Fe:0.2%以下であり、残部が実質的にAl及び不可避的不純物の組成からなり、Al基地中の共晶Siの面積率が15%以下、伸びが15%以上、且つ衝撃値が30〜40×10J/m以上である高靱性Al鋳物が提案されている(特許文献1参照)。この高靱性Al鋳物は、Si含有量を低く抑えた組成で、鋳造後、共晶温度近傍の高温に急冷する高温溶体化処理を行い、しかる後に時効処理を適切に施すことで、優れた伸び及び衝撃値を実現することができる。また、このAl鋳物は、同様に、高温溶体化処理を行い、しかる後に長時間時効処理を行うことで、優れた引張強さ、耐力、及び耐食性を実現することができる。このような技術によれば、部品の薄肉化に伴う軽量化を図ることでき、しかも低圧鋳造又は重力鋳造を適用することができるため、生産性を向上することができる。 Such an Al alloy casting has a mass ratio of Si: 1.65 to 4.0% and Mg: 0.2 for the purpose of improving elongation, impact value, tensile strength, yield strength, and corrosion resistance. -0.4%, Fe: 0.2% or less, the balance is substantially composed of Al and inevitable impurities, the area ratio of eutectic Si in the Al base is 15% or less, and the elongation is 15%. As described above, a high toughness Al casting having an impact value of 30 to 40 × 10 4 J / m 2 or more has been proposed (see Patent Document 1). This high toughness Al casting has a composition with a low Si content, and after casting it is subjected to a high temperature solution treatment that is rapidly cooled to a high temperature close to the eutectic temperature, and then an aging treatment is appropriately applied to achieve excellent elongation. And impact values can be realized. In addition, this Al casting can be similarly subjected to a high-temperature solution treatment, and then an aging treatment for a long time, thereby realizing excellent tensile strength, yield strength, and corrosion resistance. According to such a technique, it is possible to reduce the weight accompanying the thinning of the parts, and to apply low-pressure casting or gravity casting, so that productivity can be improved.

また、優れた靱性を実現するとともに、金型への焼き付きの発生を防止することを目的として、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.2%≦Fe≦0.5%、0.1%≦Ti≦0.3%、及び不可避的不純物を含み、残部がAlであり、金属組織におけるα相の粒径dが50μm以下である高靱性Al合金鋳物が提案されている(特許文献2参照)。この技術では、高靱性Al鋳物の組成を上記特許文献1と同等の組成とした上で、Feの含有量を画期的な0.2質量%を超えるものとすることにより、優れた靱性と金型への焼き付き防止とを共に実現することができる。なお、特許文献2に記載の高靱性Al合金鋳物は、上記組成のAl合金溶湯を加圧下で金型のキャビティに充填し、次いで溶湯の凝固が完了するまで冷却速度を5℃/Sに制御して得られるものであり、靱性等の物性は、特許文献1に記載の鋳物と同等であるが、生産性がさらに改善されている。   Further, for the purpose of realizing excellent toughness and preventing the occurrence of seizure on the mold, the mass ratio is 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0 .4% ≦ Cu ≦ 0.8%, 0.2% ≦ Fe ≦ 0.5%, 0.1% ≦ Ti ≦ 0.3%, and unavoidable impurities, the balance being Al, There has been proposed a high toughness Al alloy casting in which the particle size d of the α phase is 50 μm or less (see Patent Document 2). In this technique, the composition of the high toughness Al casting is made the same composition as that of the above-mentioned Patent Document 1, and the excellent toughness is achieved by making the content of Fe more than epoch-making 0.2% by mass. Both prevention of seizing on the mold can be realized. In addition, in the high toughness Al alloy casting described in Patent Document 2, the molten aluminum alloy having the above composition is filled into the mold cavity under pressure, and then the cooling rate is controlled to 5 ° C./S until the solidification of the molten metal is completed. The physical properties such as toughness are equivalent to those of the casting described in Patent Document 1, but the productivity is further improved.

特開平9−272942号公報(要約書)Japanese Laid-Open Patent Publication No. 9-272942 (Abstract) 特願2003−420405号Japanese Patent Application No. 2003-420405

しかしながら、上記特許文献1、2に記載された技術では、得られる鋳物の機械的諸性質のうち、特に伸びや衝撃強度等の靱性について、十分な値が得られていない。例えば、特許文献1の請求項4に記載の鋳物では、引張強さが240MPa以上であり、しかも0.2%耐力が140MPa以上であるが、衝撃値が19×10と低い。よって、近年においては、抗張力、0.2%耐力及び伸びがバランス良く高いレベルで得られるAl合金鋳物の技術開発が要請されていた。 However, the techniques described in Patent Documents 1 and 2 do not provide sufficient values for toughness such as elongation and impact strength among the mechanical properties of the resulting casting. For example, in the casting according to claim 4 of Patent Document 1, the tensile strength is 240 MPa or more and the 0.2% proof stress is 140 MPa or more, but the impact value is as low as 19 × 10 4 . Therefore, in recent years, there has been a demand for technological development of Al alloy castings that can obtain tensile strength, 0.2% proof stress and elongation at a high level with good balance.

本発明は、上記要請に鑑みてなされたものであり、抗張力、0.2%耐力及び伸びがバランス良く高いレベルで得られる高靱性Al合金鋳物及びその製造方法を提供することを目的としている。   This invention is made | formed in view of the said request | requirement, and aims at providing the toughness Al alloy casting and its manufacturing method in which a tensile strength, 0.2% yield strength, and elongation are obtained with a high level with good balance.

本発明者らは、上記のように、抗張力、0.2%耐力及び伸びが、バランス良く高いレベルで得られる、高靱性Al合金鋳物について、鋭意、研究を重ねた。その結果、特許文献1,2に記載されている技術を用いてAl合金鋳物を製造した場合には、優れた鋳造性、中でも溶湯の優れた流動性が得られず、これにより、機械的諸性質がバランス良く実現されないという知見を得た。そこで発明者等は、このような知見の下、Niが溶湯の流動性を向上させることを利用して、上記特許文献2に示すように合金成分中のFe及びTi含有量を限定する代わりに、Ni含有量を限定する試みを行った。その結果、発明者等は、上記課題を解決することができるとの知見を得た。即ち、一般に、アルミニウム合金にNiを含有させると、溶融時の流動性が改善されることが知られている。但し、Niを含有させると、機械的性質のうち、伸びが低下する。このため、Ni含有量には好適な上限値を設ける必要があるが、種々の検討の結果、0.3質量%までであれば、伸びがほとんど低下しないことも判明した。本発明は、このような知見に鑑みてなされたものである。   As described above, the present inventors diligently researched a high toughness Al alloy casting in which tensile strength, 0.2% proof stress and elongation can be obtained at a high level in a balanced manner. As a result, when an Al alloy casting is manufactured using the techniques described in Patent Documents 1 and 2, excellent castability, in particular, excellent fluidity of the molten metal cannot be obtained. The knowledge that the property was not realized with good balance was obtained. Therefore, the inventors have made use of the fact that Ni improves the fluidity of the molten metal under such knowledge, instead of limiting the Fe and Ti contents in the alloy components as shown in Patent Document 2 above. An attempt was made to limit the Ni content. As a result, the inventors have obtained knowledge that the above-mentioned problems can be solved. That is, it is generally known that when Ni is contained in an aluminum alloy, the fluidity at the time of melting is improved. However, when Ni is contained, the elongation is reduced among the mechanical properties. For this reason, it is necessary to provide a suitable upper limit for the Ni content. However, as a result of various studies, it has been found that the elongation is hardly lowered if the content is up to 0.3% by mass. The present invention has been made in view of such knowledge.

即ち、本発明の高靱性Al合金鋳物は、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ni≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が300MPa以上、0.2%耐力が210MPa以上、且つ伸びが10%以上であることを特徴としている。なお、本発明の高靱性Al合金鋳物には、Zr、Ti、Ti−B等のα−Al相微細化剤を含有させることができる。   That is, the high toughness Al alloy casting of the present invention has a mass ratio of 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.8%. 05% ≦ Ni ≦ 0.3% and inevitable impurities are contained, the balance is Al, the tensile strength is 300 MPa or more, the 0.2% proof stress is 210 MPa or more, and the elongation is 10% or more. . The high toughness Al alloy casting of the present invention can contain an α-Al phase refining agent such as Zr, Ti, Ti—B or the like.

また、本発明の高靱性Al合金鋳物の製造方法は、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ni≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が300MPa以上、0.2%耐力が210MPa以上、且つ伸びが10%以上である高靱性Al合金鋳物を製造するにあたり、上記組成の合金を鋳造し、515〜540℃の高温熱処理を施した後、急冷処理を施し、次いで165〜185℃の温度で時効処理を施すことを特徴としている。なお、このような高靱性Al合金鋳物の製造方法においては、鋳造時の凝固速度を5℃/秒以上とすることで、Niの含有量を6質量%までに引き上げ、さらに流動性を向上させ、結果的に、Al合金鋳物の、抗張力、0.2%耐力及び伸びを、バランス良くさらに高いレベルで実現することができる。   Moreover, the manufacturing method of the high toughness Al alloy casting of this invention is 2% <= Si <= 4%, 0.2% <= Mg <= 0.5%, 0.4% <= Cu <= 0.8% by mass ratio. 0.05% ≦ Ni ≦ 0.3%, and inevitable impurities, the balance being Al, the tensile strength is 300 MPa or more, the 0.2% proof stress is 210 MPa or more, and the elongation is 10% or more. In producing an Al alloy casting, an alloy having the above composition is cast, subjected to high-temperature heat treatment at 515 to 540 ° C., then subjected to rapid cooling treatment, and then subjected to aging treatment at a temperature of 165 to 185 ° C. . In such a method for producing a high toughness Al alloy casting, the solidification rate at the time of casting is set to 5 ° C./second or more, whereby the Ni content is increased to 6% by mass, and the fluidity is further improved. As a result, the tensile strength, 0.2% yield strength and elongation of the Al alloy casting can be realized at a higher level in a balanced manner.

本発明の高靱性Al合金鋳物によれば、合金中のNi含有量の適正化を図ることにより、Al合金鋳物の、溶融時の流動性を改善し、優れた抗張力、0.2%耐力及び伸びをバランス良く高いレベルで実現することができる。なお、以下に、本発明の作用効果をより詳細に説明する。   According to the high toughness Al alloy casting of the present invention, by optimizing the Ni content in the alloy, the flowability at the time of melting of the Al alloy casting is improved, and excellent tensile strength, 0.2% proof stress and Elongation can be achieved at a high level with good balance. In addition, below, the effect of this invention is demonstrated in detail.

一般的な高靱性鋳造Al合金において、Si含有量を5質量%未満として高靱性化を図ったものは、Siの潜熱作用に起因する流動性向上の効果が十分に得られないため、溶湯の流動性に乏しい。また、線膨張係数もSi含有量が多いAl合金に比して比較的大きく、さらに鋳造時の熱間収縮率も比較的大きい。このため、Si含有量の低いAl合金では、厚肉部の鋳巣量が多くなり、熱間凝固割れ性も高い。   In general high toughness cast Al alloy, the Si content is less than 5% by mass to achieve high toughness, and the effect of improving fluidity due to the latent heat action of Si cannot be sufficiently obtained. Poor fluidity. Further, the linear expansion coefficient is relatively large as compared with the Al alloy having a large Si content, and the hot shrinkage rate during casting is also relatively large. For this reason, in the Al alloy having a low Si content, the amount of cast holes in the thick wall portion is increased, and the hot solidification cracking property is also high.

このようなSi含有量の低いAl合金の欠点を改善すべく、Al合金に遷移金属元素(例えば、Ni)を含有させた場合には、鋳造時にα−Al相が増加する過程で遷移金属元素と、Alとその他の構成元素とからなる硬質化合物が晶出する。この硬質化合物発生時の潜熱が、鋳造性、中でも流動性に寄与する。また、上記硬質化合物は、半溶融時の粒界に発生するため、高温強度を付与し、熱間割れを防止することができる。   In order to improve the disadvantage of such an Al alloy having a low Si content, when a transition metal element (for example, Ni) is included in the Al alloy, the transition metal element is in the process of increasing the α-Al phase during casting. Then, a hard compound composed of Al and other constituent elements crystallizes. The latent heat when the hard compound is generated contributes to castability, particularly fluidity. Moreover, since the said hard compound generate | occur | produces in the grain boundary at the time of semi-melting, it can provide high temperature strength and can prevent a hot crack.

以上の効果が好適に奏されるNiの含有量は以下のとおりである。即ち、Ni含有量が0.05質量%以上で、流動性及び凝固収縮性が改善される一方、0.3質量%を超えると、靱性の評価基準である伸びが低下する。従って、Ni含有量の限定範囲を、0.05〜0.3質量%とした。また、上記伸びの低下は、硬質化合物の発生が増大することに起因する。しかしながら、鋳造時の凝固速度を上昇させることで、硬質化合物が微細に分散して晶出し、靱性の低下を抑制することができる。なお、この効果を得る場合、凝固速度を5℃/秒以上とすることで、Niの含有量を0.6質量%まで上昇させることができる。なお、ここでいう冷却速度とは、凝固初期の区間における冷却速度であり、凝固全体の区間における平均速度ではない。   The content of Ni in which the above effects are suitably achieved is as follows. That is, when the Ni content is 0.05% by mass or more, the fluidity and the solidification shrinkage are improved, while when it exceeds 0.3% by mass, the elongation, which is an evaluation standard for toughness, is lowered. Therefore, the limited range of the Ni content is set to 0.05 to 0.3% by mass. Moreover, the fall of the said elongation originates in generation | occurrence | production of a hard compound increasing. However, by increasing the solidification rate at the time of casting, the hard compound can be finely dispersed and crystallized, and a decrease in toughness can be suppressed. In addition, when acquiring this effect, content of Ni can be raised to 0.6 mass% by making a solidification rate into 5 degrees C / second or more. In addition, the cooling rate here is a cooling rate in a section in the initial stage of solidification, and is not an average speed in a section of the entire solidification.

以下に、本発明の好適な実施形態を説明する。
本発明の高靱性Al合金鋳物は、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ni≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が300MPa以上、0.2%耐力が210MPa以上、且つ伸びが10%以上である。このような合金中に各元素を含有させた理由、及びその含有量の限定理由は、以下のとおりである。
The preferred embodiments of the present invention will be described below.
The high toughness Al alloy casting of the present invention has a mass ratio of 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.05%. ≦ Ni ≦ 0.3%, and inevitable impurities are contained, the balance is Al, the tensile strength is 300 MPa or more, the 0.2% proof stress is 210 MPa or more, and the elongation is 10% or more. The reason why each element is contained in such an alloy and the reason for limiting the content are as follows.

Siは、溶湯の流動性を良好なものとするとともに、Al合金鋳物の機械的特性を向上させる効果を有する。但し、Si含有量が2質量%未満の場合には、溶湯の流動性が悪化するため、Al合金鋳物において鋳造欠陥が著しく増大する。一方、Si含有量が4質量%を超える場合には、α−Al相の結晶粒界に分布するSi結晶の量が増大するため、Al合金鋳物の靱性が低下する。従って、Siの含有量は、2〜4質量%とした。   Si has the effect of improving the mechanical properties of the Al alloy casting while improving the fluidity of the molten metal. However, when the Si content is less than 2% by mass, the fluidity of the molten metal is deteriorated, so that casting defects are significantly increased in the Al alloy casting. On the other hand, when the Si content exceeds 4% by mass, the amount of Si crystals distributed at the crystal grain boundaries of the α-Al phase increases, so that the toughness of the Al alloy casting decreases. Therefore, the content of Si is set to 2 to 4% by mass.

Mgは、T6処理(所定の高温熱処理、急冷処理、及び時効処理を順次行う処理)によりMgSiを微細に分散析出させてAl合金鋳物の強度を向上させる効果を有する。但し、Mg含有量が0.2質量%未満の場合には、上記効果が不十分である。一方、Mg含有量が0.5質量%を超える場合には、MgSiの析出量が過多となるため、Al合金鋳物の靱性が低下する。従って、Mgの含有量は、0.2〜0.5質量%とした。 Mg has an effect of improving the strength of the Al alloy casting by finely dispersing and precipitating Mg 2 Si by T6 treatment (a treatment in which predetermined high-temperature heat treatment, rapid cooling treatment, and aging treatment are sequentially performed). However, when the Mg content is less than 0.2% by mass, the above effect is insufficient. On the other hand, when the Mg content exceeds 0.5% by mass, the amount of Mg 2 Si precipitated becomes excessive, and the toughness of the Al alloy casting is lowered. Therefore, the content of Mg is set to 0.2 to 0.5% by mass.

Cuは、Alへの高い固溶限に基づいてAl合金鋳物の金属組織を固溶強化し、また、T6処理による分散析出により上記金属組織を分散強化する効果を有する。但し、Cu含有量が0.4質量%未満の場合には、Al合金鋳物における強度向上効果が十分でない。一方、Cu含有量が0.8質量%を超える場合には、Al合金鋳物の耐応力腐食割れ性が低下するのみならず、耐食性も悪化する。従って、Cu含有量は、0.4〜0.8質量%とした。   Cu has the effect of solid-solution strengthening the metal structure of the Al alloy casting based on the high solid solubility limit in Al, and also has the effect of dispersion strengthening the metal structure by dispersion precipitation by T6 treatment. However, when the Cu content is less than 0.4 mass%, the strength improvement effect in the Al alloy casting is not sufficient. On the other hand, when the Cu content exceeds 0.8% by mass, not only the stress corrosion cracking resistance of the Al alloy casting is lowered but also the corrosion resistance is deteriorated. Therefore, the Cu content is set to 0.4 to 0.8 mass%.

Niについては、上述したとおりであり、溶湯の流動性向上に寄与する元素である。但し、Ni含有量が0.05質量%未満の場合には、溶湯の流動性向上に関する効果が十分でなく、また凝固収縮性についても優れた結果が得られない。一方、Ni含有量が0.3質量%を超える場合には、靱性の評価基準である伸びが低下する。従って、Ni含有量は、0.05〜0.3質量%とした。   Ni is as described above, and is an element that contributes to improving the fluidity of the molten metal. However, when the Ni content is less than 0.05% by mass, the effect of improving the fluidity of the molten metal is not sufficient, and excellent results on the solidification shrinkage cannot be obtained. On the other hand, when the Ni content exceeds 0.3% by mass, the elongation, which is the evaluation standard for toughness, is lowered. Therefore, the Ni content is set to 0.05 to 0.3% by mass.

次に、本発明の高靱性Al合金鋳物の製造方法についての、各限定理由を詳細に説明する。
即ち、上記高靱性Al合金鋳物を製造する場合には、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ni≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が300MPa以上、0.2%耐力が210MPa以上、且つ伸びが10%以上である高靱性Al合金鋳物を製造するにあたり、上記組成の合金を鋳造し、515〜540℃の高温熱処理を施した後、急冷処理を施し、次いで165〜185℃の温度で時効処理を施す。
Next, each limitation reason is demonstrated in detail about the manufacturing method of the high toughness Al alloy casting of this invention.
That is, when manufacturing the above-mentioned high toughness Al alloy casting, the mass ratio is 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%. 0.05% ≦ Ni ≦ 0.3%, and inevitable impurities, the balance being Al, the tensile strength is 300 MPa or more, the 0.2% proof stress is 210 MPa or more, and the elongation is 10% or more. In producing an Al alloy casting, an alloy having the above composition is cast, subjected to high-temperature heat treatment at 515 to 540 ° C., then subjected to quenching treatment, and then subjected to aging treatment at a temperature of 165 to 185 ° C.

各合金元素の含有理由、及びその含有量限定理由は、上記したとおりである。鋳造法としては、例えば、金型重力鋳造法や一般的なダイカスト法を適用することができ、鋳造温度は715〜735℃、金型温度は金型重力鋳造法では120〜350℃、ダイカスト法では90〜250℃が好ましい。   The reason for containing each alloy element and the reason for limiting its content are as described above. As the casting method, for example, a die gravity casting method or a general die casting method can be applied, the casting temperature is 715 to 735 ° C., the die temperature is 120 to 350 ° C. in the die gravity casting method, and the die casting method. Then, 90-250 degreeC is preferable.

また、上記高温熱処理(溶体化処理)温度が515℃未満では、例えば、Zrが含有されている場合に強化相と核サイト原子との均質化が十分進まない一方、540℃を超える場合には、部分的なバーニングが発生し、粒界強度が著しく低下するので好ましくない。従って、熱処理温度は515〜540℃とした。なお、この高温熱処理時間は、製品の寸法によるが、概して4〜6時間で十分な均質化が実現される。   In addition, when the temperature of the high-temperature heat treatment (solution treatment) is less than 515 ° C., for example, when Zr is contained, homogenization between the strengthening phase and the nucleus site atoms does not proceed sufficiently, whereas , Partial burning occurs, and the grain boundary strength is remarkably lowered. Therefore, the heat treatment temperature was set to 515 to 540 ° C. In addition, although this high temperature heat processing time is based on the dimension of a product, sufficient homogenization is generally implement | achieved in 4 to 6 hours.

さらに、時効処理温度が165℃未満では、強化相の析出が十分に得られないばかりでなく、処理時間が増大するため、不経済的である一方、185℃を超える場合には、析出時の強化相が成長し過ぎて、靱性を低下させるため好ましくない。従って、時効処理温度は165〜185℃とした。なお、時効処理時間は、概して6〜8時間が好ましい。   Furthermore, if the aging treatment temperature is less than 165 ° C., not only the precipitation of the strengthening phase is not sufficiently obtained, but also the treatment time increases, which is uneconomical. This is not preferable because the strengthening phase grows too much and lowers the toughness. Therefore, the aging treatment temperature was set to 165 to 185 ° C. In general, the aging treatment time is preferably 6 to 8 hours.

以下、本発明を実施例により、さらに詳細に説明する。
〔各成分元素の影響〕
ベース材料として、Al−3Si−0.6Cu−0.25Mgを用意し、各種含有元素を用いて表1に示す各組成の合金に調整した。次いで、得られた合金に、表1に示す種類の鋳造を行い、さらにT6処理(525℃で4時間の高温熱処理、急冷処理(70℃)、及び175℃で6時間の時効処理)を施して、比較例1〜12及び発明例1〜13のAl合金鋳物をそれぞれ得た。なお、鋳造の種類に関し、層流充填DC(200ton)の場合は、型温を90〜250℃とし、初速度を0.15m/secとし、射出速度を0.3m/secとし、注湯温度を730℃とし、鋳造圧力を90MPaとした。また、舟形(GDC)の場合は、型温を120〜350℃とし、注湯温度を730℃とした。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Effect of each component element]
Al-3Si-0.6Cu-0.25Mg was prepared as a base material, and adjusted to alloys having the respective compositions shown in Table 1 using various contained elements. The resulting alloy was then cast as shown in Table 1 and further subjected to T6 treatment (high temperature heat treatment at 525 ° C. for 4 hours, rapid cooling treatment (70 ° C.), and aging treatment at 175 ° C. for 6 hours). Thus, Al alloy castings of Comparative Examples 1 to 12 and Invention Examples 1 to 13 were obtained. Regarding the type of casting, in the case of laminar flow DC (200 ton), the mold temperature is 90 to 250 ° C., the initial speed is 0.15 m / sec, the injection speed is 0.3 m / sec, and the pouring temperature. Was 730 ° C., and the casting pressure was 90 MPa. In the case of boat shape (GDC), the mold temperature was 120 to 350 ° C, and the pouring temperature was 730 ° C.

これらの比較例1〜12及び発明例1〜13のAl合金鋳物についての、抗張力、0.2%耐力及び伸び、並びにMIT式流動長の測定結果を表1に併記するとともに、抗張力、0.2%耐力及び伸びの測定結果を図1〜8に示す。   The measurement results of tensile strength, 0.2% proof stress and elongation, and MIT flow length for the Al alloy castings of Comparative Examples 1 to 12 and Invention Examples 1 to 13 are also shown in Table 1, and the tensile strength, 0. The measurement results of 2% proof stress and elongation are shown in FIGS.

Figure 2006022385
Figure 2006022385

以下、表1に実証目的別に示した各系列ごとに、本発明の範囲が好適であることを確認する。
(系列1、系列5:Ni含有量の影響)
表1及び図1,2によれば、Ni含有量が本発明の範囲内である発明例1〜3については、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られている。これに対し、Ni含有量が本発明の範囲から逸脱している比較例1〜4については、Ni含有量が少ない場合には、抗張力及び0.2%耐力が十分ではなく、Ni含有量が過多の場合には、伸びが十分ではない。従って、Ni含有量の好適範囲が0.05〜0.3質量%であることが実証された。なお、Ni含有量の増加に伴いMIT式流動長が増大することから、流動性はNi含有量に比例するが、本発明の範囲内のNi含有量であれば、流動性に問題はない。また、Ni含有量が本発明の範囲内であれば、鋳造の種類のいかんにかかわらず、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られることも実証された。
Hereinafter, it is confirmed that the scope of the present invention is suitable for each series shown in Table 1 for each demonstration purpose.
(Series 1, Series 5: Influence of Ni content)
According to Table 1 and FIGS. 1 and 2, for Invention Examples 1 to 3 in which the Ni content is within the scope of the present invention, the tensile strength, 0.2% proof stress and elongation are all obtained at a high level in a balanced manner. Yes. On the other hand, for Comparative Examples 1 to 4 in which the Ni content deviates from the scope of the present invention, when the Ni content is small, the tensile strength and 0.2% proof stress are not sufficient, and the Ni content is When it is excessive, the elongation is not sufficient. Therefore, it was demonstrated that the preferable range of Ni content is 0.05 to 0.3% by mass. Since the MIT flow length increases as the Ni content increases, the fluidity is proportional to the Ni content. However, if the Ni content is within the scope of the present invention, there is no problem with the fluidity. It was also demonstrated that if the Ni content is within the range of the present invention, all of the tensile strength, 0.2% proof stress and elongation can be obtained at a high level in a balanced manner regardless of the type of casting.

(系列2:Si含有量の影響)
表1及び図3,4によれば、Si含有量が本発明の範囲内である発明例4〜6については、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られている。これに対し、Si含有量が本発明の範囲から逸脱している比較例5,6については、Si含有量が少ない場合には、抗張力及び0.2%耐力が十分ではなく、Si含有量が過多の場合には、伸びが十分ではない。従って、Si含有量の好適範囲が2〜4質量%であることが実証された。
(Series 2: Influence of Si content)
According to Table 1 and FIGS. 3 and 4, for Invention Examples 4 to 6 in which the Si content is within the scope of the present invention, the tensile strength, 0.2% proof stress and elongation are all obtained at a high level in a balanced manner. Yes. On the other hand, for Comparative Examples 5 and 6 in which the Si content departs from the scope of the present invention, when the Si content is small, the tensile strength and the 0.2% proof stress are not sufficient, and the Si content is low. When it is excessive, the elongation is not sufficient. Therefore, it was demonstrated that the preferable range of the Si content is 2 to 4% by mass.

(系列3:Mg含有量の影響)
表1及び図5,6によれば、Mg含有量が本発明の範囲内である発明例7〜10については、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られている。これに対し、Mg含有量が本発明の範囲から逸脱している比較例7,8については、Mg含有量が少ない場合には、抗張力及び0.2%耐力が十分ではなく、Mg含有量が過多の場合には、伸びが十分ではない。従って、Mg含有量の好適範囲が0.2〜0.5質量%であることが実証された。
(Series 3: Effect of Mg content)
According to Table 1 and FIGS. 5 and 6, all of the tensile strength, 0.2% proof stress and elongation are obtained at a high level with good balance for the inventive examples 7 to 10 whose Mg content is within the scope of the present invention. Yes. On the other hand, for Comparative Examples 7 and 8 in which the Mg content deviates from the scope of the present invention, when the Mg content is small, the tensile strength and the 0.2% yield strength are not sufficient, and the Mg content is When it is excessive, the elongation is not sufficient. Therefore, it was demonstrated that the preferable range of the Mg content is 0.2 to 0.5% by mass.

(系列4:Cu含有量の影響)
表1及び図7,8によれば、Cu含有量が本発明の範囲内である発明例11,12については、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られている。これに対し、Cu含有量が本発明の範囲から逸脱している比較例9,10については、Cu含有量が少ない場合には、抗張力及び0.2%耐力が十分ではなく、Cu含有量が過多の場合には、伸びが十分ではない。従って、Cu含有量の好適範囲が0.4〜0.8質量%であることが実証された。
(Series 4: Influence of Cu content)
According to Table 1 and FIGS. 7 and 8, for Invention Examples 11 and 12 whose Cu content is within the scope of the present invention, all of the tensile strength, 0.2% proof stress and elongation are obtained at a high level in a balanced manner. Yes. On the other hand, for Comparative Examples 9 and 10 in which the Cu content deviates from the scope of the present invention, when the Cu content is small, the tensile strength and the 0.2% yield strength are not sufficient, and the Cu content is When it is excessive, the elongation is not sufficient. Therefore, it was demonstrated that the preferable range of the Cu content is 0.4 to 0.8% by mass.

以上説明したように、本発明の高靱性Al合金鋳物では、特に、合金中のNi含有量の適正化を図ることにより、Al合金鋳物の、溶融時の流動性を改善し、優れた抗張力、0.2%耐力及び伸びをバランス良く高いレベルで実現することができる。従って、本発明は、今後益々高度な機械的諸性質がバランス良く要求されることが予想される、車体、サスペンション部材等に適用することができる点で、有用である。   As described above, in the high toughness Al alloy casting of the present invention, in particular, by optimizing the Ni content in the alloy, the flowability of the Al alloy casting is improved, and excellent tensile strength, 0.2% proof stress and elongation can be realized at a high level with good balance. Therefore, the present invention is useful in that it can be applied to a vehicle body, a suspension member, and the like, which are expected to require more advanced mechanical properties in a balanced manner in the future.

表1に示す系列1,5の各Al合金について、抗張力及び0.2%耐力の測定結果を示すグラフである。5 is a graph showing measurement results of tensile strength and 0.2% proof stress for each of Al alloys of series 1 and 5 shown in Table 1. 表1に示す系列1,5の各Al合金について、伸びの測定結果を示すグラフである。5 is a graph showing the measurement results of elongation for each of the series 1 and 5 Al alloys shown in Table 1. 表1に示す系列2の各Al合金について、抗張力及び0.2%耐力の測定結果を示すグラフである。It is a graph which shows the measurement result of a tensile strength and 0.2% yield strength about each Al alloy of the series 2 shown in Table 1. FIG. 表1に示す系列2の各Al合金について、伸びの測定結果を示すグラフである。4 is a graph showing the measurement results of elongation for each Al alloy of series 2 shown in Table 1. 表1に示す系列3の各Al合金について、抗張力及び0.2%耐力の測定結果を示すグラフである。It is a graph which shows the measurement result of a tensile strength and 0.2% yield strength about each Al alloy of the series 3 shown in Table 1. FIG. 表1に示す系列3の各Al合金について、伸びの測定結果を示すグラフである。5 is a graph showing the measurement results of elongation for each Al alloy of Series 3 shown in Table 1. 表1に示す系列4の各Al合金について、抗張力及び0.2%耐力の測定結果を示すグラフである。It is a graph which shows the measurement result of tensile strength and 0.2% yield strength about each Al alloy of the series 4 shown in Table 1. FIG. 表1に示す系列4の各Al合金について、伸びの測定結果を示すグラフである。5 is a graph showing the measurement results of elongation for each Al alloy of series 4 shown in Table 1.

Claims (2)

質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ni≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が300MPa以上、0.2%耐力が210MPa以上、且つ伸びが10%以上であることを特徴とする高靱性Al合金鋳物。   In mass ratio, 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.05% ≦ Ni ≦ 0.3%, and inevitable A high-toughness Al alloy casting characterized by including a general impurity, the balance being Al, a tensile strength of 300 MPa or more, a 0.2% proof stress of 210 MPa or more, and an elongation of 10% or more. 質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.05%≦Ni≦0.3%、及び不可避的不純物を含み、残部がAlであり、抗張力が300MPa以上、0.2%耐力が210MPa以上、且つ伸びが10%以上である高靱性Al合金鋳物を製造するにあたり、前記組成の合金を鋳造し、515〜540℃の高温熱処理を施した後、急冷処理を施し、次いで165〜185℃の温度で時効処理を施すことを特徴とする高靱性Al合金鋳物の製造方法。   In mass ratio, 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.05% ≦ Ni ≦ 0.3%, and inevitable In producing a high-toughness Al alloy casting containing a general impurity, the balance being Al, a tensile strength of 300 MPa or more, a 0.2% proof stress of 210 MPa or more, and an elongation of 10% or more, an alloy having the above composition is cast. , A high temperature heat treatment at 515 to 540 ° C., followed by a rapid cooling treatment and then an aging treatment at a temperature of 165 to 185 ° C.
JP2004202713A 2004-07-09 2004-07-09 HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD Pending JP2006022385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202713A JP2006022385A (en) 2004-07-09 2004-07-09 HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202713A JP2006022385A (en) 2004-07-09 2004-07-09 HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
JP2006022385A true JP2006022385A (en) 2006-01-26

Family

ID=35795872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202713A Pending JP2006022385A (en) 2004-07-09 2004-07-09 HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD

Country Status (1)

Country Link
JP (1) JP2006022385A (en)

Similar Documents

Publication Publication Date Title
JP5879181B2 (en) Aluminum alloy with excellent high temperature characteristics
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP5758402B2 (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
US20120087826A1 (en) High strength aluminum casting alloy
CN110129637A (en) Pack alloy and preparation method thereof and communication product structural member
US20210180159A1 (en) Aluminum alloy for die casting and method of manufacturing cast aluminum alloy using the same
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
EP3342890B1 (en) Aluminium casting alloy
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP4796563B2 (en) Aluminum casting alloy for heat treatment and manufacturing method of aluminum alloy casting having excellent rigidity
JP3676723B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH09296245A (en) Aluminum alloy for casting
JP7438134B2 (en) Al-Mg-Si-Mn-Fe casting alloy
JP2022093988A (en) Aluminum alloy forging and method for producing the same
JP2021070871A (en) Aluminum alloy forging and production method thereof
EP3381586B1 (en) Method for low pressure permanent mold without a coating
JP2006022385A (en) HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD
JP2021143373A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP4238180B2 (en) High toughness Al alloy casting and method for producing the same
JP4121266B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP4238181B2 (en) High toughness Al alloy casting