WO2016120541A1 - Process for obtaining a low silicon aluminium alloy part - Google Patents

Process for obtaining a low silicon aluminium alloy part Download PDF

Info

Publication number
WO2016120541A1
WO2016120541A1 PCT/FR2016/050069 FR2016050069W WO2016120541A1 WO 2016120541 A1 WO2016120541 A1 WO 2016120541A1 FR 2016050069 W FR2016050069 W FR 2016050069W WO 2016120541 A1 WO2016120541 A1 WO 2016120541A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
shells
level
precipitates
preform
Prior art date
Application number
PCT/FR2016/050069
Other languages
French (fr)
Inventor
Romain Epale
Emile Thomas Di Serio
Original Assignee
Saint Jean Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RS20181215A priority Critical patent/RS57888B1/en
Priority to JP2017540119A priority patent/JP6768677B2/en
Application filed by Saint Jean Industries filed Critical Saint Jean Industries
Priority to KR1020177020845A priority patent/KR20170107458A/en
Priority to DK16703341.4T priority patent/DK3250722T3/en
Priority to ES16703341.4T priority patent/ES2689908T3/en
Priority to MX2017009828A priority patent/MX2017009828A/en
Priority to RU2017126680A priority patent/RU2700218C2/en
Priority to PL16703341T priority patent/PL3250722T3/en
Priority to AU2016211088A priority patent/AU2016211088B2/en
Priority to US15/544,213 priority patent/US20180002788A1/en
Priority to CN201680007900.6A priority patent/CN107208197B/en
Priority to CA2973937A priority patent/CA2973937A1/en
Priority to BR112017016024-2A priority patent/BR112017016024B1/en
Priority to EP16703341.4A priority patent/EP3250722B1/en
Publication of WO2016120541A1 publication Critical patent/WO2016120541A1/en
Priority to HRP20181682TT priority patent/HRP20181682T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the alloys mentioned have been developed for obtaining semi-finished products (billets or ingots for forging or rolling) intended to be transformed during hot or cold operations with high deformation rates (> 50%).
  • the geometries of these semi-finished products are simple (bar, bar or ingot) which makes it possible to solidify these alloys with a minimum of defects by using processes with high solidification rates.
  • These geometries and these processes lead, according to currently controlled techniques, to semi-finished products free from defects among which we can mention: shrinkage, cracks, macro-segregations, macro-precipitation (prevents the formation of too coarse precipitates,> 100 ⁇ ).
  • the magnesium level is between 0, 65 and 1%. This rate makes it possible to optimize the density of Mg 2 Si precipitates in the aluminum matrix. It compensates for the decrease in silicon content while having a minimum of macroscopic Mg 2 Si precipitates that are damaging and must be dissolved or transformed during heat treatment. If the precipitates are too numerous, or too big, the heat treatment will have a weak effect for their dissolution, the critical size of dissolution having been exceeded.
  • the copper content is between 0.20 and 0.40%. This rate allows the formation of Al 2 Cu precipitates in the matrix and the total absence of macroscopic Al 2 Cu precipitates. The absence of these macroscopic precipitates makes it possible to maintain high forging temperatures and thus to minimize forging efforts (which is carried out in a single step). Indeed, the main precipitates formed in the presence of copper are Al 2 Cu and AlMgSiCu respectively melting at 490 ° C and 525 ° C, their presence would prevent forging at higher temperatures without risk of burning of the alloy that would make the parts unusable. This degradation is similar to a destruction of the alloy.
  • a higher copper content also increases the crack sensitivity of the alloy, because there remains a eutectic to be solidified at low temperatures (490 ° C or 525 ° C) for which the mechanical stresses (related to the removal of solidification) exercised on the piece are important.
  • the manganese content is between 0.15 and 0.25%. This rate avoids the formation of AlFeSi precipitates in ⁇ -form (very damaging plate) and makes it possible to form AlFeMnSi precipitates in a form (less damaging Chinese writing). This maximizes the finished part elongation resulting from the Cobapress process. This effect is most often used with larger amounts of manganese and iron, these two elements leading to a hardening of the alloy but also to larger precipitates during solidification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Forging (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

The low silicon aluminium alloy part comprises silicon, magnesium, copper, manganese, titanium and strontium. Said part is obtained by a process according to which: - said alloy is cast in a mould in order to obtain the part, - after casting, the part constituting a still hot preform is removed from the mould, - said preform is cooled and is then subjected to an operation capable of reheating it to a temperature between 470°C and 550°C, - said part is positioned between two shells of a die that complete a cavity having dimensions that are substantially equal, but smaller than that of the mould, - the two shells are pressed strongly against one another in order to exert on the part positioned between said shells a combined pressing and surface kneading effect.

Description

Procédé d'obtention d'une pièce en alliage d'aluminium bas silicium.  Process for obtaining a low silicon aluminum alloy part
L'invention se rattache au secteur technique de la fonderie, pour la fabrication de pièces aluminium, notamment dans le domaine de l'automobile, de l'aéronautique et plus généralement, tous types d'industries. The invention relates to the technical sector of the foundry, for the manufacture of aluminum parts, particularly in the field of automotive, aerospace and more generally, all types of industries.
Il existe de nombreux alliages dit « bas silicium ». Ces alliages présentent de hautes caractéristiques mécaniques après traitement thermique T6 (Rp0,2 300 MPa ; A% 8 %). Ils sont rassemblés dans la série 6000 (Al- Mg-Si) de la classification des alliages d'aluminium. Les plus connus sont les 6082, 6061, 6151. De nombreuses compositions existent également avec des teneurs semblables aux alliages normés, parmi lesquelles on peut citer par exemple le document EP 0 987 344. There are many alloys called "low silicon". These alloys have high mechanical properties after heat treatment T6 (Rp 0, 2300 MPa; A% 8%). They are collected in the 6000 series (Al-Mg-Si) of the classification of aluminum alloys. The most known are the 6082, 6061, 6151. Many compositions also exist with contents similar to the standardized alloys, among which we can cite for example the document EP 0 987 344.
Les alliages cités ont été développés pour l'obtention de produits semi-finis (billettes ou lingots pour forge ou laminage) destinés à être transformés lors d'opérations à chaud ou à froid avec de grands taux de déformation (> 50 %). De plus les géométries de ces produits semi-finis sont simples (barre, barreau ou lingot) ce qui permet de solidifier ces alliages avec un minimum de défauts en utilisant des procédés avec de hautes vitesses de solidification. Ces géométries et ces procédés conduisent selon des techniques aujourd'hui maîtrisées, à des produits semi-finis exempts de défauts parmi lesquels on peut citer : retassures, criques, macro- ségrégations, macro-précipitations (prévient la formation de précipités trop grossiers, >100 μηι). The alloys mentioned have been developed for obtaining semi-finished products (billets or ingots for forging or rolling) intended to be transformed during hot or cold operations with high deformation rates (> 50%). In addition, the geometries of these semi-finished products are simple (bar, bar or ingot) which makes it possible to solidify these alloys with a minimum of defects by using processes with high solidification rates. These geometries and these processes lead, according to currently controlled techniques, to semi-finished products free from defects among which we can mention: shrinkage, cracks, macro-segregations, macro-precipitation (prevents the formation of too coarse precipitates,> 100 μηι).
A partir de cet état de la technique, le problème posé que se propose de résoudre l'invention est de pouvoir réaliser des pièces répondant à des normes de qualité et de sécurité élevées, et susceptibles d'avoir des formes complexes. From this state of the art, the problem posed that the invention proposes to solve is to be able to produce parts responding to standards of quality and safety, and likely to have complex shapes.
Pour résoudre ce problème, l'objet de l'invention porte sur un procédé de fabrication d'une pièce en alliage d'aluminium bas silicium, type 6000. To solve this problem, the object of the invention relates to a method of manufacturing a piece of low silicon aluminum alloy, type 6000.
Plus particulièrement, l'invention concerne un procédé d'obtention d'une pièce en alliage d'aluminium bas silicium, comprenant du silicium à un taux compris entre 0,5 et 3 %, du magnésium à un taux compris entre 0,65 et 1 %, du cuivre à un taux compris entre 0,20 et 0,40 %, du manganèse à un taux compris entre 0,15 et 0,25 %, du titane à un taux compris entre 0,10 et 0,20 %, et du strontium à un taux compris entre 0 et 120 ppm, selon lequel : More particularly, the invention relates to a process for obtaining a low silicon aluminum alloy part, comprising silicon at a level of between 0.5 and 3%, magnesium at a rate of between 0.65 and 1%, copper at a level between 0.20 and 0.40%, manganese at a rate of between 0.15 and 0.25%, titanium at a level between 0.10 and 0.20% , and strontium at a level between 0 and 120 ppm, according to which:
- on coule dans un moule ledit alliage pour obtenir la pièce,  said alloy is cast in a mold to obtain the part,
- après la coulée, on démoule la pièce constituant une préforme encore chaude,  after casting, the part constituting a still hot preform is demolded,
- on refroidit ladite pré forme que l'on soumet ensuite à une opération apte à la réchauffer à une température comprise entre 470 °C et 550 °C. - on positionne ladite pièce entre deux coquilles d'une matrice définissant une empreinte de dimensions sensiblement égales, mais inférieures à celle du moule,  said preform is cooled and then subjected to an operation capable of heating it to a temperature of between 470.degree. C. and 550.degree. said part is positioned between two shells of a matrix defining a footprint of substantially equal dimensions, but smaller than that of the mold,
- on presse fortement les deux coquilles l'une contre l'autre pour exercer sur la pièce disposée entre lesdites coquilles un effet combiné de pressage et de corroyage superficiel.  - The two shells are strongly pressed against each other to exert on the piece disposed between said shells a combined effect of pressing and surface treatment.
La présente invention a également pour objets : The present invention also objects:
- la mise en œuvre du procédé ci-dessus dans le domaine automobile ou dans le domaine aéronautique ; - l'utilisation d'une pièce obtenue par le procédé mentionné ci- dessus, dans le domaine automobile ; et the implementation of the above method in the automotive field or in the aeronautical field; the use of a part obtained by the method mentioned above, in the automotive field; and
- l'utilisation de l'alliage dans le procédé mentionné ci-dessus, dans le domaine aéronautique.  the use of the alloy in the process mentioned above, in the aeronautical field.
Dans une forme de réalisation du procédé, après refroidissement de la préforme, cette dernière est réchauffée en étant disposée dans un four tunnel. II résulte de ces caractéristiques que l'opération de fonderie suivie de la forge en une étape de la préforme ne présentent pas les mêmes paramètres de températures, vitesse de solidification, taux de déformation, température de forge que les procédés de l'état antérieur de la technique. In one embodiment of the method, after cooling the preform, the latter is heated by being placed in a tunnel oven. It follows from these characteristics that the foundry operation followed by the one-step forging of the preform do not have the same temperature parameters, solidification rate, deformation rate, forging temperature as the processes of the prior state of the preform. the technique.
L'alliage revendiqué répond à ces contraintes et permet d'obtenir des pièces avec une qualité satisfaisante, tout particulièrement si celles-ci relèvent d'une obligation de sécurité (pièce de liaison au sol = pièces de sécurité).  The claimed alloy responds to these constraints and makes it possible to obtain parts with a satisfactory quality, especially if they come under a safety obligation (ground connection piece = safety parts).
Parmi ces contraintes, on note, à titre d'exemples : la géométrie de la préforme, contrairement à des barreaux ou des lingots, comprend dès sa conception les ébauches des zones fonctionnelles de la pièce et peut donc avoir une géométrie complexe comprenant des nervures ou des variations de section conduisant à des masses isolées de métal liquide. Ces masses isolées peuvent être « tolérées » en augmentant le taux de silicium (type AS7G03, alliage standard de fonderie). Une diminution de ce taux rend l'alliage plus sensible lors de la solidification et conduit à des défauts de retassure (porosités) plus nombreux et d'un volume plus important. l'intervalle de solidification, qui est défini par la différence entre la température de liquidus et la température eutectique de l'alliage considéré. Pour un alliage, type AS7G03 modifié au strontium, cet intervalle est de 50 °C env. (61 1 °C - 562 °C). Pour un alliage bas silicium type 6000, il est de l'ordre de 90 °C (655 °C - 562 °C) en retenant la précipitation des Mg2Si macroscopiques (ou du silicium) comme pseudo palier eutectique. Un intervalle de solidification grand conduit à une zone pâteuse plus étendue à travers la pièce, de sorte qu'il devient plus difficile de diriger le front de solidification pour réduire les défauts comme cela se fait traditionnellement et presque naturellement avec un alliage AS7G03. Among these constraints, we note, by way of examples: the geometry of the preform, unlike bars or ingots, comprises from its conception the blanks of the functional areas of the part and can therefore have a complex geometry comprising ribs or sectional variations leading to isolated masses of liquid metal. These insulated masses can be "tolerated" by increasing the silicon content (AS7G03 type, standard foundry alloy). A decrease in this rate makes the alloy more sensitive during solidification and leads to more numerous and larger volume shrinkage defects (porosities). the solidification range, which is defined by the difference between the liquidus temperature and the eutectic temperature of the alloy considered. For an alloy, type AS7G03 modified with strontium, this interval is 50 ° C approx. (61 1 ° C - 562 ° C). For a low silicon type 6000 alloy, it is of the order of 90 ° C (655 ° C - 562 ° C) by retaining the precipitation of macroscopic Mg 2 Si (or silicon) as a eutectic pseudo-plateau. A large solidification range leads to a larger pasty area across the workpiece, so that it becomes more difficult to direct the solidification front to reduce defects as is traditionally and almost naturally with an AS7G03 alloy.
TAS7G03 a une sensibilité presque nulle à la crique du fait de la grande quantité d' eutectique qui va pouvoir combler les criques qui apparaissent lors du retrait en solidification. Ce n'est pas le cas d'un alliage bas silicium, qui comporte très peu d' eutectique ce qui entraine une forte sensibilité à la crique et demande d'adapter la composition et de maîtriser les gradients thermiques de solidification. II est également nécessaire d'ajuster la composition chimique pour obtenir le meilleur compromis entre les paramètres de fonderie, de forge, de traitement thermique et les caractéristiques mécaniques voulues sur pièces finies. Dans ce but on détaille ci-après chacun des éléments de l'alliage, leur teneur et les effets ayant conduit à retenir ces valeurs : TAS7G03 has almost no sensitivity to crack because of the large amount of eutectic that will be able to fill the cracks that appear during solidification shrinkage. This is not the case of a low silicon alloy, which has very little eutectic which causes a high sensitivity to the crack and requires to adapt the composition and to control the thermal gradients of solidification. It is also necessary to adjust the chemical composition to obtain the best compromise between the foundry, forging, heat treatment parameters and the desired mechanical characteristics on finished parts. For this purpose we detail below each of the elements of the alloy, their content and the effects that led to retain these values:
Le taux de silicium est compris entre 0,5 et 3 %. Un taux de silicium inférieur à 1%, conduit aux limites élastiques et allongements les plus élevés. Cependant, il s'agit du taux pour lequel l'alliage est le plus sensible à la crique et a la plus faible coulabilité. Il est donc nécessaire de pouvoir adapter le taux de silicium en fonction de la géométrie de la pièce. Des géométries complexes demanderont un taux plus élevé afin de réduire cette sensibilité à la crique. Le taux maximum de 3% correspondant à un taux au- delà duquel l'allongement et la limite élastique deviennent trop faibles pour qu'il soit toujours intéressant de produire avec un alliage de ce type. The silicon content is between 0.5 and 3%. A silicon content of less than 1% leads to the highest elastic limits and elongations. However, this is the rate at which the alloy is most sensitive to crack and has the lowest flowability. It is therefore necessary to be able to adapt the silicon content according to the geometry of the part. Complex geometries will require a higher rate to reduce this crack sensitivity. The maximum rate of 3% corresponds to a rate beyond which the elongation and the elastic limit become too low so that it is always interesting to produce with an alloy of this type.
Le taux de magnésium est compris entre 0, 65 et 1 %. Ce taux permet d'optimiser la densité de précipités Mg2Si dans la matrice aluminium. Il compense la diminution du taux de silicium tout en ayant un minimum de précipités Mg2Si macroscopiques qui sont endommageant et doivent être dissouts ou transformés lors du traitement thermique. Si les précipités sont trop nombreux, ou trop gros, le traitement thermique n'aura qu'un faible effet pour leur dissolution, la taille critique de dissolution ayant été dépassée. The magnesium level is between 0, 65 and 1%. This rate makes it possible to optimize the density of Mg 2 Si precipitates in the aluminum matrix. It compensates for the decrease in silicon content while having a minimum of macroscopic Mg 2 Si precipitates that are damaging and must be dissolved or transformed during heat treatment. If the precipitates are too numerous, or too big, the heat treatment will have a weak effect for their dissolution, the critical size of dissolution having been exceeded.
Le taux de cuivre est compris entre 0,20 et 0,40 %. Ce taux permet la formation de précipités Al2Cu dans la matrice et l'absence totale de précipités Al2Cu macroscopiques. L'absence de ces précipités macroscopiques permet de conserver des températures de forge élevées et ainsi de minimiser les efforts de forge (qui est réalisée en une seule étape). En effet, les principaux précipités formés en présence de cuivre sont Al2Cu et AlMgSiCu fondant respectivement à 490 °C et 525 °C, leur présence empêcherait de forger à des températures plus élevées sans risque de brûlure de l'alliage qui rendrait les pièces inutilisables. Cette dégradation s'apparente à une destruction de l'alliage. Un taux de cuivre plus élevé augmente aussi la sensibilité à la crique de l'alliage, car il reste un eutectique à solidifier à des températures faibles (490 °C ou 525 °C) pour lesquels les contraintes mécaniques (liées au retrait de solidification) exercées sur la pièce sont importantes. Le taux de manganèse est compris entre 0,15 et 0,25 %. Ce taux évite la formation de précipités AlFeSi sous forme β (plaque très endommageante) et permet de former plutôt des précipités AlFeMnSi sous forme a (écriture chinoise moins endommageante). Ceci permet de maximiser l'allongement sur pièce finie résultant du procédé Cobapress. Cet effet est le plus souvent utilisé avec des quantités plus importantes de manganèse et de fer, ces deux éléments conduisant à un fort durcissement de l'alliage mais également à de plus gros précipités lors de la solidification. Ces gros précipités sont pénalisants pour un bon allongement. Cependant, l'alliage selon l'invention est destiné, comme indiqué, au procédé Cobapress, selon lequel on forge en une seule étape, qui ne présente pas les grandes déformations rencontrées en forge, laminage ou extrusion. Ces grandes déformations permettent de fragmenter ces gros précipités et de les rendre beaucoup moins endommageant tout en conservant leur effet durcissant. Dans le cas de l'alliage, selon l'invention, il convient de minimiser dès la coulée l'impact des précipités à base de fer sur les caractéristiques mécaniques. En effet, leur morphologie ne sera plus modifiée, la forge en une étape ne déformant pas suffisamment la pièce pour changer leur morphologie. Enfin, ce taux de manganèse est adapté aux vitesses de refroidissement obtenues lors de la coulée en moule permanent, en regard de ces vitesses, il favorise la formation de précipités AlFeMnSi sous-forme a. Le taux de titane est compris entre 0,10 et 0,20 %. Ce taux est nécessaire pour une germination efficace des grains et une taille de grain fine qui a un effet important sur les caractéristiques mécaniques de ces alliages. Le taux de strontium est compris entre 0 et 120 ppm. Ce taux est nécessaire pour avoir une solidification fibreuse des faibles quantités d' eutectique qui se forment. Ceci se produit majoritairement pour des taux de silicium supérieurs à 1,5 %. The copper content is between 0.20 and 0.40%. This rate allows the formation of Al 2 Cu precipitates in the matrix and the total absence of macroscopic Al 2 Cu precipitates. The absence of these macroscopic precipitates makes it possible to maintain high forging temperatures and thus to minimize forging efforts (which is carried out in a single step). Indeed, the main precipitates formed in the presence of copper are Al 2 Cu and AlMgSiCu respectively melting at 490 ° C and 525 ° C, their presence would prevent forging at higher temperatures without risk of burning of the alloy that would make the parts unusable. This degradation is similar to a destruction of the alloy. A higher copper content also increases the crack sensitivity of the alloy, because there remains a eutectic to be solidified at low temperatures (490 ° C or 525 ° C) for which the mechanical stresses (related to the removal of solidification) exercised on the piece are important. The manganese content is between 0.15 and 0.25%. This rate avoids the formation of AlFeSi precipitates in β-form (very damaging plate) and makes it possible to form AlFeMnSi precipitates in a form (less damaging Chinese writing). This maximizes the finished part elongation resulting from the Cobapress process. This effect is most often used with larger amounts of manganese and iron, these two elements leading to a hardening of the alloy but also to larger precipitates during solidification. These large precipitates are penalizing for a good elongation. However, the alloy according to the invention is intended, as indicated, the Cobapress process, which is forged in a single step, which does not have the large deformations encountered in forging, rolling or extrusion. These large deformations can break these large precipitates and make them much less damaging while maintaining their hardening effect. In the case of the alloy, according to the invention, the impact of the iron-based precipitates on the mechanical characteristics should be minimized as soon as they are poured. Indeed, their morphology will not be changed, the forge in one step does not deform the room enough to change their morphology. Finally, this manganese content is adapted to the cooling rates obtained during casting in a permanent mold, with respect to these speeds, it promotes the formation of AlFeMnSi precipitates in the form a. The titanium content is between 0.10 and 0.20%. This rate is necessary for efficient seed germination and fine grain size which has a significant effect on the mechanical characteristics of these alloys. The strontium level is between 0 and 120 ppm. This rate is necessary to have a fibrous solidification of the small amounts of eutectic that are formed. This occurs mainly for silicon levels higher than 1.5%.
On a vu que la composition de cet alliage est adaptée pour conduire à une solidification qui permettra de maximiser les caractéristiques mécaniques malgré les faibles niveaux de déformation rencontrés lors du procédé Cobapress. It has been seen that the composition of this alloy is adapted to lead to a solidification which will maximize the mechanical characteristics despite the low levels of deformation encountered during the Cobapress process.
Toutefois, des défauts de solidification persistent, défauts de solidification intergranulaire de retassure localisée aux joints de grains avec une morphologie ramifiée et diffuse qui fragilise la pièce de fonderie.  However, defects of solidification persist, defects of intergranular solidification of localized shrinkage at the grain boundaries with a branched and diffuse morphology which weakens the casting.
L'opération de forge Cobapress permet de refermer et de ressouder ces défauts avec une maîtrise en conception du taux de déformation. Le couple température/déformation permet une ressoudure des défauts. Le tableau, ci-dessous, présente les caractéristiques mécaniques sur pièce de fonderie et sur pièces, selon le procédé Cobapress, après traitement thermique T6 de l'alliage bas silicium. On peut noter l'amélioration de limite à rupture Rm et de l'allongement à rupture :  The forging operation Cobapress allows to close and rewrite these defects with a control in design of the rate of deformation. The temperature / deformation couple allows a rectification of the defects. The table below shows the mechanical properties on casting and parts, according to the Cobapress process, after T6 heat treatment of the low silicon alloy. We can note the improvement of rupture limit Rm and elongation at break:
Figure imgf000008_0001
Figure imgf000008_0001
Rp = Limite élastique Rp = Elastic limit
Rm = Résistance mécanique  Rm = Mechanical resistance
A% = Allongement  A% = Lengthening
Enfin, cette composition permet de diminuer la complexité du traitement thermique usuel pour des alliages type Al-Mg-Si-Cu. Le taux de silicium, les vitesses de solidification et l'affinage du grain conduisent à des précipités macroscopiques Mg2Si dont la taille et la morphologie facilite la dissolution lors du traitement thermique. Finally, this composition makes it possible to reduce the complexity of the usual heat treatment for Al-Mg-Si-Cu type alloys. The rate of silicon, solidification rates and grain refinement lead to macroscopic Mg 2 Si precipitates whose size and morphology facilitate dissolution during heat treatment.
On renvoie aux figures des dessins annexés représentant la micrographie d'une pièce, afin de montrer l'importance du taux de manganèse et de cuivre. La figure 1 montre une microstructure de fonderie, sans manganèse, précipités « en aiguilles », type β, tandis que la figure 2 montre la monostructure avec manganèse, précipités « en écriture chinoise », type a. Referring to the figures of the accompanying drawings showing the micrograph of a room, to show the importance of the manganese and copper. FIG. 1 shows a foundry microstructure, without manganese, precipitated "in needles", type β, while FIG. 2 shows the monostructure with manganese, precipitated "in Chinese writing", type a.
Les figures 3, 4 et 5 montrent l'élimination des précipités de cuivre Figures 3, 4 and 5 show the elimination of copper precipitates
Al2Cu. Al 2 Cu.
Aux figures 3 et 4, le taux de cuivre est supérieur à 0,40%, ce qui entraine la présence de précipités Al2Cu., La figure 4 montre un exemple où l'on peut observer les précipitations AlFeMnSi et Mg2Si entourés de précipités Al2Cu. In FIGS. 3 and 4, the copper content is greater than 0.40%, which results in the presence of Al 2 Cu precipitates. FIG. 4 shows an example where the AlFeMnSi and Mg 2 Si precipitations can be observed surrounded. precipitates Al 2 Cu.
La figure 5 montre une teneur en cuivre comprise entre 0,20% et 0,40%, selon l'invention, montrant une absence de précipités Al2Cu., FIG. 5 shows a copper content of between 0.20% and 0.40%, according to the invention, showing an absence of Al 2 Cu precipitates,

Claims

R E V E N D I C A T I O N S R E V E N D I C A T IO N S
-1- Procédé d'obtention d'une pièce en alliage d'aluminium bas silicium, comprenant : -1- Process for obtaining a low silicon aluminum alloy part, comprising:
- du silicium à un taux compris entre 0,5 et 3 %,  silicon at a level of between 0.5 and 3%,
du magnésium à un taux compris entre 0,65 et 1 %,  magnesium at a level of between 0.65 and 1%,
du cuivre à un taux compris entre 0,20 et 0,40 %,  copper at a level between 0.20 and 0.40%,
du manganèse à un taux compris entre 0,15 et 0,25 %,  manganese at a rate of between 0.15 and 0.25%,
du titane à un taux compris entre 0,10 et 0,20 %, et  titanium at a level between 0.10 and 0.20%, and
- du strontium à un taux compris entre 0 et 120 ppm,  strontium at a level of between 0 and 120 ppm,
selon lequel : according to which:
on coule dans un moule ledit alliage pour obtenir la pièce,  casting said alloy to obtain the part,
après la coulée, on démoule la pièce constituant une préforme encore chaude,  after casting, the part constituting a still hot preform is removed from the mold,
- on refroidit ladite pré forme que l'on soumet ensuite à une opération apte à la réchauffer à une température comprise entre 470 °C et 550 °C,  said preform is cooled and then subjected to an operation capable of heating it to a temperature of between 470 ° C. and 550 ° C.,
on positionne ladite pièce entre deux coquilles d'une matrice finissant une empreinte de dimensions sensiblement égales, mais inférieures à celle du moule,  said piece is positioned between two shells of a die finishing an impression of substantially equal dimensions, but smaller than that of the mold,
on presse fortement les deux coquilles l'une contre l'autre pour exercer sur la pièce disposée entre lesdites coquilles un effet combiné de pressage et de corroyage superficiel. -2- Utilisation d'une pièce obtenue par le procédé selon la revendication 1 , dans le domaine de l'automobile.  the two shells are strongly urged against each other to exert on the piece disposed between said shells a combined effect of pressing and surface treatment. Use of a part obtained by the process according to claim 1 in the field of automobiles.
-3- Utilisation de l'alliage dans le procédé selon la revendication 1, dans le domaine de l'aéronautique. -3- Use of the alloy in the process according to claim 1, in the field of aeronautics.
PCT/FR2016/050069 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part WO2016120541A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
AU2016211088A AU2016211088B2 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part
PL16703341T PL3250722T3 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part
KR1020177020845A KR20170107458A (en) 2015-01-29 2016-01-14 Method for obtaining parts made of low-silicon aluminum alloy
JP2017540119A JP6768677B2 (en) 2015-01-29 2016-01-14 How to get parts made of low silicon aluminum alloy
ES16703341.4T ES2689908T3 (en) 2015-01-29 2016-01-14 Method of obtaining a piece of aluminum alloy with low silicon content
MX2017009828A MX2017009828A (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part.
US15/544,213 US20180002788A1 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part
RS20181215A RS57888B1 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part
DK16703341.4T DK3250722T3 (en) 2015-01-29 2016-01-14 Process for preparing a low silicon aluminum alloy component
RU2017126680A RU2700218C2 (en) 2015-01-29 2016-01-14 Method of producing part made of low-silicon aluminum alloy
CN201680007900.6A CN107208197B (en) 2015-01-29 2016-01-14 The method for obtaining the part made of low silicon aluminum
CA2973937A CA2973937A1 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part
BR112017016024-2A BR112017016024B1 (en) 2015-01-29 2016-01-14 METHOD FOR OBTAINING A PIECE MADE OF LOW SILICON ALLOY
EP16703341.4A EP3250722B1 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part
HRP20181682TT HRP20181682T1 (en) 2015-01-29 2018-10-16 Process for obtaining a low silicon aluminium alloy part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550700A FR3032204B1 (en) 2015-01-29 2015-01-29 ALUMINUM LOW SILICON ALLOY PIECE
FR1550700 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016120541A1 true WO2016120541A1 (en) 2016-08-04

Family

ID=52779906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050069 WO2016120541A1 (en) 2015-01-29 2016-01-14 Process for obtaining a low silicon aluminium alloy part

Country Status (21)

Country Link
US (1) US20180002788A1 (en)
EP (1) EP3250722B1 (en)
JP (1) JP6768677B2 (en)
KR (1) KR20170107458A (en)
CN (1) CN107208197B (en)
AU (1) AU2016211088B2 (en)
BR (1) BR112017016024B1 (en)
CA (1) CA2973937A1 (en)
DK (1) DK3250722T3 (en)
ES (1) ES2689908T3 (en)
FR (1) FR3032204B1 (en)
HR (1) HRP20181682T1 (en)
HU (1) HUE039737T2 (en)
MA (1) MA41422A (en)
MX (1) MX2017009828A (en)
PL (1) PL3250722T3 (en)
PT (1) PT3250722T (en)
RS (1) RS57888B1 (en)
RU (1) RU2700218C2 (en)
TR (1) TR201815694T4 (en)
WO (1) WO2016120541A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022142180A (en) * 2021-03-16 2022-09-30 本田技研工業株式会社 Processing method of aluminum alloy, and processed article of aluminum alloy
JP2022142163A (en) * 2021-03-16 2022-09-30 本田技研工業株式会社 Processing method of aluminum alloy, and processed article of aluminum alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987344A1 (en) 1998-08-25 2000-03-22 Kabushiki Kaisha Kobe Seiko Sho High strength aluminium alloy forgings
US20050155676A1 (en) * 2001-07-10 2005-07-21 Francois Cosse High-ductility aluminium alloy part cast under pressure
US20100288401A1 (en) * 2007-11-08 2010-11-18 Ksm Castings Gmbh Aluminum casting alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3373281D1 (en) * 1983-03-14 1987-10-08 Serio Thomas Di Method of producing pieces of aluminium or aluminium alloy
US5571347A (en) * 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy
JPH09272941A (en) * 1996-04-04 1997-10-21 Nissan Motor Co Ltd Aluminum base alloy fed to product forging through casting into product preliminary shape and casting and forging method
JP3346186B2 (en) * 1996-10-08 2002-11-18 日本軽金属株式会社 Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
US20020170635A1 (en) * 1998-05-04 2002-11-21 Diserio Emile-Thomas Process for manufacturing aluminum alloys and aluminium castings
RU2163939C1 (en) * 1999-08-09 2001-03-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminum-base alloy, method of production of semifinished products and article from this alloy
JP2002302728A (en) * 2001-04-09 2002-10-18 Hoei Kogyo Kk Aluminum alloy for casting and forging, aluminum cast and forged article, and production method therefor
EP1566458A4 (en) * 2002-10-01 2006-04-26 Asahi Tec Corp Aluminum alloy for casting-forging, aluminum cast/forged article, and method formanufacture thereof
DE102004022817A1 (en) * 2004-05-08 2005-12-01 Erbslöh Ag Decorative anodizable, easily deformable, mechanically highly loadable aluminum alloy, process for its production and aluminum product made from this alloy
US20080060723A1 (en) * 2006-09-11 2008-03-13 Gm Global Technology Operations, Inc. Aluminum alloy for engine components
CN101643869B (en) * 2009-09-04 2011-04-06 河池学院 High strength automobile aluminium alloy wheel rim

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987344A1 (en) 1998-08-25 2000-03-22 Kabushiki Kaisha Kobe Seiko Sho High strength aluminium alloy forgings
US20050155676A1 (en) * 2001-07-10 2005-07-21 Francois Cosse High-ductility aluminium alloy part cast under pressure
US20100288401A1 (en) * 2007-11-08 2010-11-18 Ksm Castings Gmbh Aluminum casting alloy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANYALEBECHI, P.A.: "EFFECT OF PROCESS ROUTE ON THE STRUCTURE, TENSILE AND FATIGUE PROPERTIES OF ALUMINIUM ALLOY AUTOMOTIVE STEERING KNUCKLES", INTERNATIONAL FOUNDRY RESEARCH, 1 January 2011 (2011-01-01), XP055204046, Retrieved from the Internet <URL:http://www.researchgate.net/profile/Princewill_Anyalebechi/publication/236019996_Effect_of_Process_Route_on_the_Structure_Tensile_Fatigue_Properties_of_Aluminum_Alloy_Steering_Knuckles/links/54a2c5a20cf267bdb9042723.pdf?disableCoverPage=true> [retrieved on 20150722] *
PERRIER, F. ET AL.: "RESPONSE TO THE ARTICLE: EFFECT OF PROCESS ROUTE ON THE STRUCTURE, TENSILE AND FATIGUE PROPERTIES OF ALUMINIUM ALLOY AUTOMOTIVE STEERING KNUCKLES", CASTING PROCESS INTERNATIONAL FOUNDRY RESEARCH, 1 January 2014 (2014-01-01), XP055204047, Retrieved from the Internet <URL:http://www.st-ji.com/images/stories/publications_techniques/2014-international-foundry-research.pdf> [retrieved on 20150722] *

Also Published As

Publication number Publication date
MA41422A (en) 2017-12-06
HUE039737T2 (en) 2019-01-28
FR3032204B1 (en) 2019-08-09
PT3250722T (en) 2018-10-25
US20180002788A1 (en) 2018-01-04
DK3250722T3 (en) 2018-11-05
JP2018507324A (en) 2018-03-15
KR20170107458A (en) 2017-09-25
CN107208197B (en) 2019-11-05
FR3032204A1 (en) 2016-08-05
AU2016211088B2 (en) 2020-05-21
EP3250722B1 (en) 2018-09-12
BR112017016024B1 (en) 2021-10-19
AU2016211088A1 (en) 2017-08-17
TR201815694T4 (en) 2018-11-21
ES2689908T3 (en) 2018-11-16
EP3250722A1 (en) 2017-12-06
RU2017126680A3 (en) 2019-05-24
HRP20181682T1 (en) 2018-12-14
RS57888B1 (en) 2019-01-31
CA2973937A1 (en) 2016-08-04
RU2017126680A (en) 2019-01-28
JP6768677B2 (en) 2020-10-14
MX2017009828A (en) 2018-02-09
CN107208197A (en) 2017-09-26
RU2700218C2 (en) 2019-09-13
BR112017016024A2 (en) 2018-03-20
PL3250722T3 (en) 2019-03-29

Similar Documents

Publication Publication Date Title
US9775647B2 (en) Magnesium alloy
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
EP2516687B1 (en) Casting made from copper containing aluminium alloy with high mechanical strength and hot creep
FR2818288A1 (en) METHOD OF MANUFACTURING AN AL-Si ALLOY SAFETY PART
EP2074237B1 (en) Process for manufacturing hot-forged parts made of a magnesium alloy
JP4328321B2 (en) Piston for internal combustion engine
EP3250722B1 (en) Process for obtaining a low silicon aluminium alloy part
EP2421996B1 (en) Free-machining aa 6xxx aluminum alloy
FR2808536A1 (en) Production of a semi-molten billet of aluminum alloy for use as a transport unit by introducing a work distortion by cold forging
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP2010000514A (en) Method for producing magnesium alloy member
KR20190030296A (en) Methods of treating aluminum alloy
Wang et al. Microstructure evolution and mechanical properties of ZK60 magnesium alloy produced by SSTT and RAP route in semi-solid state
JP5856764B2 (en) Hypereutectic aluminum-silicon alloy rolled sheet molded product and method for producing the same
Trifonov et al. Liquid forging processing of automobile wheels
JP2007308780A (en) Method for controlling structure of magnesium alloy, magnesium alloy with controlled structure, and wheel for vehicle
JP2018070899A (en) Hypereutectic Al-Mn Aluminum Alloy Casting Material and Method for Producing the Same
WO2016156692A1 (en) Sand shell-moulding method for the production of a part for use in the automotive and aeronautics fields
JP2022172630A (en) Semi-solidifying/molding method
JP2001240929A (en) Aluminum wheel and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16703341

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016703341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2973937

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15544213

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177020845

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017126680

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017540119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009828

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017016024

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016211088

Country of ref document: AU

Date of ref document: 20160114

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017016024

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170726