JP2018502603A - 新規組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途 - Google Patents

新規組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途 Download PDF

Info

Publication number
JP2018502603A
JP2018502603A JP2017554632A JP2017554632A JP2018502603A JP 2018502603 A JP2018502603 A JP 2018502603A JP 2017554632 A JP2017554632 A JP 2017554632A JP 2017554632 A JP2017554632 A JP 2017554632A JP 2018502603 A JP2018502603 A JP 2018502603A
Authority
JP
Japan
Prior art keywords
tnf
monoclonal antibody
chimeric monoclonal
recombinant anti
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017554632A
Other languages
English (en)
Other versions
JP6514789B2 (ja
Inventor
銭▲衛▼珠
Original Assignee
シャンハイ バイオマブズ ファーマシューティカルズ カンパニー リミテッド
シャンハイ バイオマブズ ファーマシューティカルズ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャンハイ バイオマブズ ファーマシューティカルズ カンパニー リミテッド, シャンハイ バイオマブズ ファーマシューティカルズ カンパニー リミテッド filed Critical シャンハイ バイオマブズ ファーマシューティカルズ カンパニー リミテッド
Publication of JP2018502603A publication Critical patent/JP2018502603A/ja
Application granted granted Critical
Publication of JP6514789B2 publication Critical patent/JP6514789B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dermatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Endocrinology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Pain & Pain Management (AREA)
  • Toxicology (AREA)

Abstract

組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途を提供する。ハムスターに最適化したコドンに基づいてCMAB008抗体の軽鎖と重鎖を設計・合成し、真核発現ベクターを構築し、GS遺伝子がノックアウトされたCHO−CR−GS-/-宿主細胞にトランスフェクトし、且つ無血清培養技術で培養し、分離精製し、低免疫原性のCMAB008抗体を得る。

Description

本発明はバイオテクノロジー分野に属し、更に具体的には、本発明は新規組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途を開示する。
関節リウマチ(Rheumatoid Arthritis、RA)は慢性・対称性多発性関節炎を主な臨床症状とする自己免疫疾患であり、病状は遷延を繰り返す。その臨床的発現は四肢関節の赤み、腫れ、痛みであり、患者の生活の質に深刻な影響を与え、治療が遅れると、普通は2年間以内で関節強直奇形を引き起こし、最後は身体障害を引き起こす。関節滑膜炎症はその主な病的変化であり、四肢関節は最も侵されやすい部位である。その慢性炎症は関節および関節周囲組織に限らず、心、肺、血管などの臓器と組織にも発症する。
関節リウマチは世界的な疾患であり、米国ではこの病気の発症率が1%に近く、年齢に従って発症率も高くなり、35歳以下の成人の発症率は約0.3%であるが、65歳以上の者の発症率は10%を超える。中国ではその発症率がやや低く、約0.3%程度であるが、我が国の基礎人口を考えると、発症する総患者数は依然としてかなり高い(約4百万人が発症する)。
関節リウマチは一般的かつ破壊性の極めて高い慢性関節炎症であり、完治することができず、長期予後が劣ることから、個人・社会の経済・生活コストを大いに増加させる。治療されないままだと、80%の患者は徐々に運動能力を喪失し、寿命が平均で3〜18年短縮し、ひとりの患者の毎年の治療費用は、米国では5919ドルになり、イギリスでは2600ポンドになる。現在、臨床において用いられている抗リウマチ薬は、効果があらわれるのが遅く、治療効果が限定的で、副作用が比較的多く、且つ長期予後が劣る。
関節リウマチの治療は、一般的に以下のように分けられる。
薬物治療:
関節リウマチの従来の一般的な治療薬物としては、非ステロイド性抗炎症薬(NSAIDs)、病状を緩和する抗リウマチ薬(DMARDs)、糖質コルチコイド(GCS)などがある。
非ステロイド性抗炎症薬は、関節リウマチの治療において最も一般的な薬物であり、効果があらわれるのがが速く、且つ関節リウマチの関節における腫れおよび全身的症状を明らかに緩和できることを特徴とし、ジクロフェナクのような従来のNSAIDsおよびメロキシカム、ナブメトンのようなCOX−2阻害剤を含む。このタイプの薬物の欠点は、症状を緩和することしかできず、組織・滑膜病理変化の進行を明らかに抑制する作用がないということにある。使用時、副作用の増加を避けるように、2種類の経口投与剤型のNSAIDsを同時に投与しないように注意しなければならない。この種類の薬物は比較的に強い胃腸管副作用を発生させやすい。次世代のCOX−2阻害剤の長期使用により、心血管イベントが発生する確率は増加する。
病状を緩和する抗リウマチ薬は、関節リウマチを完全に緩和できる薬物であり、効果があらわれるのが遅く、作用が長持ちし、関節リウマチによる滑膜破壊を阻止または緩和できることを特徴とする。一般的には、症状が軽い場合、1種類のDMARDを選択して使用することができるが、比較的に重篤な患者の場合、DMARDsの併用投与によって病状を制御し、完全に緩和した後に、減量して或いは1種のDMARDに変えて、治療を続けることが考慮されなければならない。この種類の薬としては、主にメトトレキサート、サラゾスルファピリジン、ペニシラミン、オーラノフィン、アザチオプリン、ヒドロキシクロロキン、レフルノミドなどがある。
関節リウマチ治療において、糖質コルチコイド類薬物は、本格的な治療によっても依然として緩和できない難治性関節リウマチを適応症として、症状を一時的に緩和するための一時的な治療および関節腔内投与とされる。ホルモン類薬物の長期投与による副作用(高血圧、骨粗鬆症、感染など)は更に厄介である。この種類の薬物としては、主にプレドニゾン、酢酸プレドニゾンなどがある。長期で小投与量のホルモンを服用することによる関節リウマチ療法の得失はまだ結論がでておらず、根拠に基づく医療による適確な証拠がなければ、提唱するのは好ましくない。
薬物を用いる内科的治療は、早期投与、病理変化を緩和する抗リウマチ薬(DMARDs)の適正な使用、および個別化治療計画の原則に従う。各種の治療計画および治療ガイドラインは、早期に診断して早期に治療することを強調しながら、治療強度を強化し、なるべく早く病状の進行を制御するように、診断の直後にDMARDsの併用投与を行おうと提案する。しかしながら、実際の治療中において、一部の患者の関節破壊は依然としてさらに進行する場合があるため、従来の薬物による治療効果はあまり望ましくない。
生物学的製剤:
TNF−αおよびインターロイキン−1(Interleukin−1、IL−1)は、関節リウマチの発症メカニズム中の最も重要サイトカインであり、近年では、TNF−αやIL−1などを標的とする生物学的製剤は、より多くの選択肢をRA患者に提供した。この種類の薬物は直接に免疫系内の特定の炎症メディエータを対象とし、これによって炎症の進行を急速に制御することに関与し、痛みや硬直などの症状を著しく緩和できる上に、関節損傷をさらに防止することもできる。海外で既に市販されているこの種類の薬物としては、米国Centocor社によって開発・生産されるインフリキシマブ(Infliximab、商品名「Remicade(商標)」)、腫瘍壊死因子受容体−抗体融合タンパク質(エタネルセプト(Etanercept)、商品名「Enbrel(商標)」、米国Amgen社)、および組換え抗TNF−α完全ヒト型モノクローナル抗体(アダリムマブ(Adalimumab)、商品名「Humira(商標)」、米国Abbott社)がある。中国国内で市販されているものとしても、注射用組換えII型腫瘍壊死因子受容体−抗体融合タンパク質(商品名「益賽普(登録商標)」、中信国健;商品名「強克」、上海賽金)、西安ヤンセンによって輸入される注射用インフリキシマブモノクローナル抗体(商品名:「類克(登録商標)」)がある。上記の3種類のTNF−α阻害剤は、リウマチ因子と抗環状シトルリン化ペプチド抗体(CCP)の力価を著しく低下することができ、統計によると、この3種類の薬物によるRA治療の総有効率は50〜70%である。
上記薬物を除き、HLA−DR4ポリペプチド、IDEC−131、CIIコラーゲンポリペプチド、HLA−DRb1ワクチンなど、異なった研究段階にある多種の生物学的薬物もあり、それらは全てRAを治療する有効薬物として有望視されている。
免疫除去療法:
本格的な内科的治療によっても顕著な効果がなく、血清に高力価の自己抗体がある難治性関節リウマチ患者に対しては、免疫吸着やリンパ球除去などの免疫除去療法を採用することができるが、該方法はDMARDsとの併用によって初めて病状を長期に緩和できる。該方法は血漿交換、免疫吸着やリンパ球除去などを含む。
外科的手術治療:
手術治療としては、滑膜切除術、関節癒合術、骨切り術および人工関節置換術があり、通常は人工関節置換術と滑膜切除術が常用である。しかし、関節置換術は末期の奇形で且つ正常機能を失った関節に適用する。人工関節の寿命は15〜20年であることから、一般的には年齢が50歳超の患者にしか適用されず、常用の場所は膝、股関節および肩部関節である。手術治療は疾患を完治できず、関節の機能の改善および患者のセルフケア能力の向上しかできない。
他の治療方法:
他の治療方法としては、一般的な治療方法、植物薬による治療、末梢血幹細胞移植、遺伝子治療などの方法がある。
一般的な治療とは、原因療法以外の療法、例えば心理療法、運動療法(回復期)、関節制動、床上安静、理学療法と食事療法などを指す。関節リウマチの予後には重大な影響がある。
植物薬中のシャクヤクの総グルコシドおよびタイワンクロヅルなどの植物製剤は既に関節リウマチの治療に用いられている。
幹細胞移植法は重症・難治性のRAに用いられる。遺伝子治療は、スタートが比較的に遅いが、ヒトゲノムプロジェクトの完成につれて、該方法もRAの治療において特に有用になる。
従来の研究によって、TNF−αが関節リウマチの発症過程において重要な役割を担うことは見出された。TNF−αは重要な炎症性サイトカインであり、正常な免疫機能および炎症プロセスを惹起するカスケード反応に重要な役割を担う。関節リウマチ患者の関節滑液には、TNF−αおよび他の炎症因子が大量に発現される。TNF−αは肝心な炎症因子として、炎症プロセスのカスケード反応におけるその役割および関節リウマチにおけるその可能なメカニズムは、(1)IL−1、IL−6、IL−8、TGF、GM−CSFなどの他の炎症性因子の合成を誘導すること;(2)プロスタグランジンE2やロイコトリエンB4などの炎症メディエータの生成を刺激すること;(3)E−セレクチン、血管細胞接着分子および細胞内接着分子のアップレギュレーションにより、白血球を活性化し且つ白血球の炎症部位への浸透を補助すること;(4)好中性顆粒球と線維芽細胞を刺激してコラーゲナーゼとマトリックスメタロプロテアーゼを生成させること;を含む。また、TNF−αは細胞アポトーシスを誘導すること、および急性期反応を発生させることができる。従って、TNF−αの生成と作用を阻害することで、他のサイトカイン(例えばIL−1)を阻害することに比べて、関節リウマチの進行をより全面的・効果的に抑制できる。
TNF−α阻害剤は関節リウマチ治療の新時代を切り開いた。TNF−α阻害剤、特に抗TNF−αモノクローナル抗体は、効果があらわれるのが速く、治療効果が確実であり、現在で関節リウマチを治療するための最も有効な治療手段である。しかし、最初に調製して得られたものはマウス由来抗TNF−αモノクローナル抗体であり、TNF−αの中和による関節リウマチの治療に用いられた。しかし、研究によって、マウス由来モノクローナル抗体は治療薬物として多くの欠陥が存在し、マウス由来モノクローナル抗体は人体に適用されると、強烈な免疫原性を有し、生体内で速く除去され、半減期が短く、それにより臨床での治療効果が限定的で、副作用が大きいことが見出された。ヒト化モノクローナル抗体技術は、マウス由来抗TNF−αモノクローナル抗体の欠陥を一部克服した。ただし、ヒト・マウスキメラ抗TNF−αモノクローナル抗体(インフリキシマブ(Infliximab)、RemicadeR)は、遺伝子工学の上流の構築技術で調製したものであり、その可変領域は依然としてマウス由来抗TNF−αモノクローナル抗体から取られたものであって、腫瘍壊死因子の可溶性断片および膜貫通領域との結合の特異性および親和性(Ka=1010-1)を残したと共に、その定常領域はヒトIgG1の定常領域に置換されたもので、インビボ半減期は大きく延長した。
インフリキシマブは可溶な膜貫通型TNF−αと高親和性に結合することにより、TNF−αの生物学的活性を中和し、TNF−αとその受容体の結合を遮断する。それと共に、インフリキシマブは抗体依存性細胞傷害作用および補体依存性細胞傷害作用により、さらにTNF−α発現細胞を殺す。しかし、インフリキシマブはTNF−αと同一の受容体を共用するサイトカインであるTNFβ(リンホトキシンともいう)の作用を中和しない。
Remicade(登録商標)はヒトTNF−αをターゲットとするヒト・マウスキメラモノクローナル抗体であり、マウス由来の可変領域とヒト由来の定常領域(IgG1)を含み、ヒトTNF−αと特異的に結合し(親和定数1010-1)、分子量が149KDaであり、静脈内注入用の無菌で白色の凍結乾燥粉末注射剤として、1瓶につき100ミリグラムのインフリキシマブ、500ミリグラムのショ糖、0.5ミリグラムのポリソルベート80、2.2ミリグラムのリン酸二水素ナトリウムおよび6.1ミリグラムのリン酸水素二ナトリウムを含有し、防腐剤を含有しない。使用前に、10ミリリットルのUSP無菌注射用水で溶解し、pHを7.2とし、再び生理食塩水で希釈した後、静脈内点滴する。Remicadeは1998年8月24日に米国FDAによって初めて市販を許可され、中等度・重度の活動性クローン病および瘻孔クローン病の治療に用いられた。その後、また欧州連合で市販を認可れ、且つ関節リウマチ(RA)、強直性脊椎炎(AS)、乾癬性関節炎、斑状乾癬、潰瘍性大腸炎および6歳以上の児童の潰瘍性大腸炎を含む新しい適応症について次々と認可された。該抗体は遺伝子組換え技術および哺乳動物細胞連続灌流培養技術によって生産される組換えタンパク質である。
グリコシル化修飾は細胞発現系およびサブクローンの選択に高度に依存し、細胞培養過程における多くの要素(例えば培地の成分、培養条件)はいずれもグリコシル化に影響し、ひいては治療用タンパク質の生物学的活性、治療効果、免疫原性および薬物動態に影響する(Efren Pacis, Marcella Yu, Jennifer Autsen, et al. Effects of Cell Culture Conditions on Antibody N - linked Glycosylation - What Affects High Mannose 5 Glycoform. Biotechnology and Bio engineering, 2011; 108 (10):2348-2358; Patrick Hossler, Sarwat F Khattak, Zheng Jian. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology, 2009; 19 (9), 936-949; Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog, 2005; 21 (6):1644-1652)。
現在で市販されている治療用モノクローナル抗体のうち、ほとんどはDNA組換え技術によって実現されるものであり、ほとんどはインビトロ細胞培養技術によるものである(Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther, 1999; 21 (2):309-18; Mariel Donzeau, Achim Knappik. Recombinant Monoclonal Antibodies. Methods in Molecular Biology, 2007; 378:15-31)。哺乳動物細胞の構造、機能および遺伝子発現調節の複雑性により、哺乳動物細胞中における外来遺伝子の発現は原核生物中における発現と大きく異なることから、哺乳動物細胞中における外来遺伝子の高効率発現に必要な要素も、原核生物細胞中における発現に必要なものと異なっている。哺乳動物細胞中における外来遺伝子の発現は、遺伝子の転写、mRNAの翻訳および翻訳後修飾などの過程を含み、翻訳後修飾は、主にタンパク質のグリコシル化、リン酸化、オリゴマーの形成およびタンパク質分子内または分子間のジスルフィド結合の形成を含み、タンパク質の機能にとって非常に重要であり、生物学的機能を有するタンパク質(例えば膜タンパク質、抗体、および特異的触媒機能を有する酵素)の発現は、哺乳動物細胞中で行わなければならない場合もある。CHO細胞およびマウス骨髄腫細胞(NS0、SP2/0)における発現系は、現在治療に用いられている抗体およびFc融合タンパク質の至適基準である工学的哺乳動物細胞になっている(Alain Beck, Elsa Wagner-Rousset, Marie-Claire Bussat. Trends in Glycosylation, Glycoanalysis and Glycoengineering of Therapeutic Antibodies and Fc - Fusion Proteins. Current Pharmaceutical Biotechnology, 2008; 9 (6):482-501)。ポリペプチド鎖の完全性は異なる発現系および培養条件の下においては変化しないように見えるが、グリコシル化タイプの重大な変更は無視できない。
過敏性反応が発生したほとんどの患者の血清には、α−Galに特異的な薬物特異的IgE抗体が存在する。 更なる研究によって、マウス骨髄腫細胞(SP2/0を含む)は余分のα−1,3−ガラクトシルトランスフェラーゼを含有し、主にα配座のUDP−Galから末端ガラクトシル残基へのガラクトシル残基の転移を仲介し、ひいてはα−Galを生成させることは見出された。α−Galは好ましくない非ヒト型二糖であり、一部のmAb、特にマウス由来の細胞株において発現されるmAbの多糖に存在している(Galili U. The alpha-gal epitope (Gal alpha 1-3 Gal beta 1-4GlcNAc-R) in xenotransplantation. Biochimie, 2001; 83 (7):557-563;Dor FJ, Alt A, Cooper DK. Gal alpha 1,3 Gal expression on porcine pancreatic islets, testis, spleen, and thymus. Xenotransplantation, 2004; 11 (1):101-106; Magnusson S, Mansson JE, Strokan V, et al. Release of pig leukocytes during pig kidney perfusion and characterization of pig lymphocyte carbohydrate xenoantigens.)。一部の患者の生体内には高レベルの抗α−Gal IgE抗体が存在しており、多糖中にα−Gal単位が含有されるmAbを用いて治療すると、重篤な過敏性反応が発生してしまう。また、マウス由来の細胞系(SP2/0を含む)におけるグリコシル化は、ヒトIgGにおけるグリコシル化との相違点として、α−Galエピトープを生成するタンパク質生物合成メカニズムを有するが(Larsen RD, Rajan VP, Ruff MM, et al. Isolation of a cDNA encoding a murine UDP galactose: beta-D-galactosyl- 1,4-N-acetyl-D-glucosaminide alpha-1,3-galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci USA 86, 1989; 86 (21):8227-8231;Sheeley DM, Merrill BM, Taylor LC. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem, 1997; 247 (1):102-110)、その一方で、マウス由来の細胞系(SP2/0を含む)はN−アセチルノイラミン酸(NANA)ではなく、N−グリコリルノイラミン酸(NGNA)を生成する。NGNAとNANAの違いは、NGNAが余分の酸素原子を1つ有することにあり、且つ糖タンパク質中にNGNA残基を含有すると、人体内におけるその免疫原性に密接に関わっていると考えられる(T. Shantha Raju. Glycosylation Variations with Expression Systems and Their Impact on Biological Activity of Therapeutic Immunoglobulins; BioProcess International APRIL 2003: 44-53).。一部の市販されている治療用糖タンパク質はNGNA残基を含有するので、患者の生体内で重篤な副作用を引き起こす。
Remicadeは1998年に米国で市販されてから、常に生物抗体類薬物の旗頭であり、販売額40億ドル超の"スーパー大ヒット"レベルの薬物である。2013年、全世界で最も売れる薬物のうち、Remicadeは第三位であり、販売額が80億ドルを超えた。Remicadeに用いられる宿主細胞は、マウス骨髄腫細胞系であって、レトロウイルス粒子が分泌されると知られているSP2/0細胞である。該製品の市販が早かったので、開発者のCentocor社はまだ無血清培養技術を築いておらず、該薬品の生産過程においてウシ血清の添加が必要な培地を使用した。Remicadeは十数年間の使用において良好な治療効果と耐性を示し、全世界で該抗体が適用された患者は合計で100万人を超えたが、従来のDMARDsよりも重篤な副作用が見られなかった。しかし、SP2/0細胞におけるレトロウイルスの明確な存在、および生産過程におけるウシ血清の使用により、該製品にはウイルスによる汚染のリスクが常に存在している。また、SP2/0宿主細胞では、抗体の翻訳後修飾過程において、主に(NGNA、Gal−α1,3−Gal)および高比率の高マンノース修飾などを含む多種の非ヒト型グリコシル化修飾が発生し、使用中で免疫原性をもたらす恐れがある。
発明の内容
本発明は上記課題を解決し、ウイルスによる汚染のリスクを低下させ、免疫原性を低減させるために、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法を提供して、新規組換え抗TNF−αキメラモノクローナル抗体CMAB008を獲得した。該抗体は市販されている同類の薬物に似ている生物活性を有し、且つ本発明の製品CMAB008は、高マンノース型の割合が低く、Gal−α1,3−Galの末端ガラクトース結合形態が見られず、NGNAの末端シアル酸修飾が見られず、使用過程において免疫原性を低減させることができ;本発明において、ウイルスによる汚染のリスクを低下させるように、動物由来成分フリーの無血清培地で培養する。
本発明によれば、
1.下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列を有する軽鎖と、配列番号2に示されるヌクレオチド配列を有する重鎖とを含有させる;
b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する。
2.ハムスターに最適化したコドンに基づいて、新規組換え抗TNF−αキメラモノクローナル抗体の軽鎖と重鎖を設計・合成することを特徴とする、前記新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
3.新規組換え抗TNF−αキメラモノクローナル抗体の核酸分子と、前記核酸分子の配列に作動可能に連結される発現調節配列とを含むベクターであって、pDR1、pcDNA3.1(+)、pcDNA3.1/ZEO(+)、pDHFRの中の1つであってもよいベクター。
4.pcDNA3.1(+)またはpcDNA3.1/ZEO(+)である前記ベクター。
5.前記宿主細胞は真核哺乳動物細胞であるチャイニーズハムスター卵巣細胞CHO−CR−GS-/-であることを特徴とする、前記新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
6.動物由来成分なしの動物由来成分フリーの無血清培養方式により宿主細胞を培養することを特徴とする、前記新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
7.前記新規組換え抗TNF−αキメラモノクローナル抗体と、薬学的に許容される担体とを含む組成物。
8.前記新規組換え抗TNF−αキメラモノクローナル抗体の、関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための薬物の製造における使用。
9.前記組成物の、関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための薬物の製造における使用。
10.関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための他の薬物と併用投与することをさらに含む、前記のいずれかの使用。
11.下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列によってコードされる軽鎖と、配列番号3に示されるヌクレオチド配列によってコードされる重鎖とを含有させる;
b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する;
ただし、細胞培養のpHは:6.5〜7.0で、最も好ましくはpH6.7である;細胞培養の温度は:34℃〜37℃で、最も好ましくは35℃である;細胞培養の浸透圧は:295mOsm/kg〜360mOsm/kgで、最も好ましい浸透圧は345mOsm/kgである。
12.水と、配列番号2に示されるアミノ酸の軽鎖および配列番号4に示されるアミノ酸の重鎖を含有し、Gal−α1,3−Galの末端ガラクトース結合形態およびNGNAの末端シアル酸修飾を有しない組換え抗TNF−αキメラモノクローナル抗体とを含む組成物。
13.前記組成物の、関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための薬物の製造における使用。
14.関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための他の薬物、例えば非ステロイド性抗炎症薬、病状を緩和する抗リウマチ薬、糖質コルチコイドなどと併用投与することをさらに含む、前記使用。
15.前記の併用投与する薬物はメトトレキサートである、前記使用。
が開示される。
本発明はCHO細胞を抗体の発現細胞とし、CHO細胞におけるグリコシル化のメカニズムはヒトのIgGのグリコシル化メカニズムと非常に似ている。早期の研究によると、CHO細胞にはα−Galエピトープ含有糖蛋白質を合成する生物合成メカニズムが欠けていると考えられていた(Sheeley DM, Merrill BM, Taylor LC. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem, 1997; 247 (1):102-110 . Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol, 1996;14 (8):975-981. Spellman MW, Leonard CK, Basa LJ, et al. Carbohydrate structures of recombinant soluble human CD4 expressed in Chinese hamster ovary cells. Biochemistry, 1991; 30 (9):2395-2406. Kagawa Y, et al. Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J Biol Chem, 1988; 263 (33):17508-17515)。最近の研究により、CHO細胞にはα−1,3−ガラクトシルトランスフェラーゼ遺伝子が存在するが、この遺伝子はクローンのスクリーニング過程において無発現または低発現の状態にあることが報告された(Carlos J Bosques, Brian E Collins, James W Meador III. Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins. Nature Biotechnology, 2010; 28 (11):1153-1156)。よって、CHO細胞で発現される抗体は通常、α−Galのグリコシルを含有しない。本発明はハムスターに最適化したコドンに基づいて、CMAB008抗体の軽鎖と重鎖を設計・合成し、真核細胞高効率発現ベクターに連結し、軽鎖と重鎖の真核発現ベクターを得る。本発明はCRISPR/Cas技術によりCHO−K1のGS遺伝子をノックアウトし、得られる細胞系をCHO−CR−GS-/-と名づけて、内因性GSの発現をなくし、高発現細胞クローンのスクリーニングにとってより有利になる。CMAB008遺伝子を含有する発現ベクターをCHO−CR−GS-/-にトランスフェクトし、高発現クローンをスクリーニングする。
本発明はCHO−CR−GS-/-に対する汎用基本培地を開発し、培地のタイプは化学成分限定的(Chemical Defined、CD)培地、即ち細胞成長の需要に応じて一定の比率でアミノ酸、ビタミン、無機塩、グルコースと微量元素などを組み合わせてなる基本培地である。基本培地はスクリーニングで得られる工学的細胞の成長の需要を基本的に満たすことができるが、工学的細胞の目的抗体の生成量をさらに高めるために、基本培地に対して、ホルモンや遺伝子工学組換え増殖因子の添加、アミノ酸の量の調整を含む最適化調整を行った。比較と最適化を繰り返したことにより、一つの好ましい実施例において、CMAB008抗体工学的細胞の大規模培養に適切な動物由来成分フリーの無血清培地(CHOM−B08)と補足培地(CHOM−S08)が決定され、工学的細胞は最適化した培地中で、発現量が30pg/cell.dayを超え、流加(Fed−batch)培養法を利用して、2週間の培養周期で採取した培養物上清中において、目的抗体の生成量は3g/L以上になった。該方法で生成するCMAB008抗体のグリコシル化修飾は、比較的少ない高マンノース型を含有し、Gal−α1,3−Galの末端ガラクトース結合形態およびNGNAの末端シアル酸修飾などの非ヒト型グリコシル化修飾を有しない。インビトロとインビボの実験により、CMAB008は、生物学的活性がRemicadeと顕著には相違しないが、安全性と免疫原性が顕著に低減したことは検証された。
CMAB008抗体の分離精製の結果。 CHO−CR−GS-/-工学的細胞の電子顕微鏡像であり、ウイルス粒子はない。 SP2/0細胞の電子顕微鏡像であり、ここで矢印で示すのはウイルス粒子である。 CMAB008オリゴ糖の2−AB標識後の蛍光スペクトル(糖型構造は一段質量分析の質量数で同定する)。 Remicadeオリゴ糖の2−AB標識後の蛍光スペクトル(糖型構造は一段質量分析の質量数で同定する)検出から分かるように、赤い円で標記されるように、Remicadeは多種の糖型を含有すると共に、高レベルのヘテロ糖型および免疫原性のある糖型を含有し、最後の赤い円の糖型はNGNAおよびGal−α−Gal含有糖型である。 CMAB008とRemicadeの生物活性の比較結果図。 CMAB008とRemicadeのELISA検出結果図。 Remicade群生存曲線図 Remicadeを500μg/匹で注射してから72時間後でrh−TNF−および18mgのD(+)−ガラクトサミンを腹腔内注射する;1群:20g/匹;2群:10g/匹;3群:5g/匹;4群:2.5g/匹;5群:1.25g/匹;6群:賦形剤対照。 CMAB008群生存曲線図 Remicadeを500g/匹で注射してから72時間後でrh−TNF−および18mgのD(+)−ガラクトサミンを腹腔内注射する;1群:20g/匹;2群:10g/匹;3群:5g/匹;4群:2.5g/匹;5群:1.25g/匹;6群:賦形剤対照。具体的な実施形態
実施例1、CMAB008ベクターの構築
用いられるチャイニーズハムスター卵巣細胞発現系で、より高効率の発現が得られるように、ハムスターに最適化したコドンを選択して真核生物高効率発現ベクターを構築した。ハムスター最適化コドンは表1に示す。
シグナルペプチド:チャイニーズハムスターB細胞抗原受容体複合体関連タンパク質β鎖由来のシグナルペプチドを選択した。アミノ酸配列:MATMVPSSVPCHWLLFLLLLFSGSS、ヌクレオチド配列:ATG GCC ACC ATG GTG CCC TCT TCT GTG CCC TGC CAC TGG CTG CTG TTC CTG CTG CTG CTG TTC TCT GGC TCT TCT。該シグナルペプチドは抗体の分泌発現をよりうまく実現できる。
ハムスターに最適化したコドンに基づいて設計・合成したCMAB008軽鎖配列は、配列番号1のヌクレオチド配列と配列番号2のアミノ酸配列を有し、CMAB008重鎖配列は、配列番号3のヌクレオチド配列と配列番号4のアミノ酸配列を有する。上記軽鎖と重鎖を真核細胞高効率発現ベクターに連結し、軽鎖と重鎖の真核発現ベクターを得た。
実施例2、宿主細胞の選択と改変
生物製薬分野において、宿主細胞の選択には、以下のいくつかの重要な方面に注目する必要がある:グリコシル化および他の翻訳後修飾のタイプは免疫原性をもたらすことを避けられること;宿主細胞はバイオリアクターでの大規模培養に適し、且つ動物由来成分フリーの化学成分限定的(chemically defined and animal component free、ACDF)培地中で高密度まで成長できること;ウイルス安全性;ACDF中で行われるクローニングおよびストレススクリーニングに適すること。
既にFDA、EMAの承認をもらった治療用モノクローナル抗体の多くは、宿主細胞としてCHO細胞を選択したが、他の一部は例えばNS0やSP2/0−Ag14のようなマウス骨髄腫細胞系を選択した。FDAの報告によると(]Erik K R,Jun T P,Kurt A B.Division of Monoclonal Antibodies.This article is a U.S.Govern ment work and is in the public domain of the USA,2011,5(4):213-219)、マウス骨髄腫細胞系(NS0とSP2/0)において発現する抗体の糖型には4〜6%のa(1−3)ガラクトースが含有されるのに対し、人体の血液循環系にはa(1−3)ガラクトースに対する抗体が1%あることから、該糖鎖構造を持つ抗体は免疫過敏性反応を引き起こしやすい。(alili U, Anaraki F,Thall A, et al.One percent of human circulating B lymphoc ytes are capable of producing the natural anti-gal antibody. Blood,1993,82(8): 2485-2493.)。従来の研究により、EGFRキメラ抗体セツキシマブによる治療中に起きる過敏性反応が、抗αガラクトースのIgEによって仲介されるものであることは検証された(Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med, 2008; 358 (11):1109-1117)。一方、マウス由来の細胞系(NS0とSP2/0)はN−アセチルノイラミン酸(NANA)ではなく、N−グリコリルノイラミン酸(NGNA)を生成する。NGNAとNANAの区別は、NGNAが余分の酸素原子を1つ有することにあり、且つ糖タンパク質中にNGNA残基を含有すると、人体内におけるその免疫原性に密接に関与すると考えられる。一部の市販されている治療用糖タンパク質はNGNA残基を含有するので、患者の生体内で重篤な副作用を引き起こす(O'Neil BH, Allen R, Spigel DR, et al. High incidence of cetuximab-related infusion reactions in Tennessee and NorthCarolina; association with atopic history. J Clin Oncol, 2007; 25 (24):3644-3648)。上記のCHO細胞とマウス骨髄腫細胞系(NS0とSP2/0)はグリコシル化修飾の点で相違するからこそ、CHO細胞をCMAB008の発現宿主として選択した。
産業上で最も一般的に使用されるのCHO細胞はCHO−K1、CHO−DXB11およびCHO−DG44である。CHO−K1は初代CHOに似ているが、DXB11とDG44はランダム突然変異を経ってDHFR遺伝子が欠失しているため、代謝欠陥標識によって遺伝子増幅をすることができる。CHO−K1はGSスクリーニングシステムを利用するが、GSはCHO−K1中に内因性発現があるので、スクリーニングの効率は低下する。本発明はCHO−K1を適切に改変した。われわれはCRISPR/Cas技術によりCHO−K1のGS遺伝子をノックアウトし、得られる細胞系をCHO−CR−GS-/-と名づけて、内因性GSの発現をなくすことで、高発現細胞クローンのスクリーニングにとってより有益なものになった。
実施例3、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする
リポソーム法でCHO−CR−GS-/-をコトランスフェクトし、GSスクリーニングシステムでストレススクリーニングし、抗TNF−αキメラ抗体を高効率で発現する安定な細胞クローンを得た。複数回のトランスフェクションおよびスクリーニングにより、発現量が30pg/cell.dayを超える細胞クローンを得た。
実施例4、動物由来成分フリーの無血清培地への適応および培地の最適化
われわれはCHO−CR−GS-/-細胞株に対する汎用基本培地に基づき、CMAB008を高効率で発現させるための特殊培地を開発した。基本培地のタイプは動物由来成分フリーの化学成分限定的(chemically defined and animal component free、ACDF)培地、即ち細胞成長の需要に応じて一定の比率でアミノ酸、ビタミン、無機塩、グルコースと微量元素などを組み合わせてなる基本培地である。基本培地はスクリーニングで得られる工学的細胞の成長の需要を基本的に満たすことができるが、抗体のグリコシル化修飾のタイプと度合いを制御すると共に、工学的細胞の目的抗体の生成量をさらに高めるために、基本培地に対して、ホルモンや遺伝子工学組換え増殖因子の添加、アミノ酸の仕込み比率の調整を含む最適化調整を行ったところ、最終に抗TNF−αモノクローナル抗体工学的細胞の動物由来成分フリーの無血清大規模培養に適切な特殊培地(CHOM−B08)および特殊補足培地(CHOM−S08)の配合を得た。CMAB008工学的細胞株の大規模培養条件について、培養pH、温度および浸透圧などの面で調査したところ、最終に500L発酵体積で高発現発酵条件を以下のように決定した:培養pHは:6.5〜7.0で、最も好ましくはpH6.7である;培養温度は:34℃〜37℃で、最も好ましくは35℃である;浸透圧は:295mOsm/kg〜360mOsm/kgで、最も好ましい浸透圧は345mOsm/kgである。
CMAB008を発現するCHO工学的細胞株は最適化した特殊培地中で、発現量が30pg/cell.dayを超え、流加(Fed−batch)培養法を利用して、2週間の培養周期で収穫する培養上清中で、目的抗体の生成量は3g/L以上になった。
実施例5、CMAB008抗体の分離精製
スクリーニングされた高発現クローンを動物由来成分フリーの無血清培地で増幅培養し、上澄を収集し、9000rpm×20min、4℃で遠心し、沈殿した細胞と破片を捨てた;Millipore社の50KD限外濾過カセットで限外濾過濃縮を行った後、さらに9000rpm×30min、4℃で遠心し、細胞破片を除去した;0.45μm濾過膜で濾過し、rProtein A(組換えタンパク質A)アフィニティークロマトグラフィーで予備精製を行った;同所洗浄緩衝液は6M GuClで、カラム用結合緩衝液は20mM PB+150mM NaCl pH7.0であった;カラム体積の3〜5倍量で平衡化した後、カラム体積の3〜5倍量の溶出緩衝液20mM Citric Acid(クエン酸緩衝液) pH3.0で溶出し、高純度の目的タンパク質CMAB008を収集して獲得し、そのアフィニティークロマトグラフィースペクトルおよびSDS−PAGE結果は図1に示す。
獲得した目的タンパク質に対して、Hitrap G25(GE Healthcare)で脱塩、緩衝液交換を行い、カラム溶出緩衝液をPBS(20mMPB+150mMNaCl pH7.0)とし、in situ洗浄液を0.5M NaOHとした。以上の精製ステップは全て氷上で行い、精製で得られたCMAB008を50KD限外濾過遠心チューブ(Merck Millipore)で濃縮し、最終に紫外線吸収法により280nm OD値を測定して定量し、CMAB008の紫外線に対するOD280吸収係数は1.35であることから、測定したOD値を1.35で割ることで、その濃度が得られた(mg/ml)。
実験例1、工学的細胞の透過型電子顕微鏡像
結果から分かるように、該製品の製造に用いられるCHO−CR−GS-/-工学的細胞にはレトロウイルス粒子が見られなかった(図2)が、対照コントロールであるSP2/0細胞にはレトロウイルス粒子が明らかに見られた(図3)。これは、SP2/0細胞で発現されるRemicadeがウイルスによって汚染されるリスクは、CHOで発現されるCMAB008よりも高いことを表す。
実験例2、CMAB008抗体のグリコシル化解析
CHOで発現されるCMAB008とSP2/0で発現されるRemicadeのグリコシル化修飾後のグリコシル化のタイプ、部位、度合いの相違を比較するために、HPLC/MS方法によりそれらのグリコシル化修飾状態を検出した。具体的な方法は以下の通りであった: pH:8.0、濃度50mMのNH4HCO3で抗体サンプルを溶解させ、且つ分注した組換えグリコシダーゼと混合し、100ulの反応系を設計し、37℃で24時間インキュベートした。
2−AB蛍光標識オリゴ糖の調製:
検出カラムとしてACQUITY UPLC BEH 300 Amide 1.7m 2.1×100mmを採用し、蛍光検出器で検出し、LC−MS質量分析で糖型を確認し、結果は図4、図5に示す。図5において、赤い円で標記されるのは、ヘテロ糖型および免疫原性のある糖型であり、最後の赤い円の糖型はNGNAおよびGal−α−Gal含有糖型である。
検出結果から分かるように、高マンノース型について、CMAB008における高マンノース型の割合が低かった;CMAB008にはGal−α1,3−Galの末端ガラクトース結合形態が見られなかった;CMAB008にはNGNAの末端シアル酸修飾が見られなかった。
CMAB008産物の糖型数量および糖型構造はCHO細胞産物の表現に一致し、Remicadeと大いに異なった。Remicadeには、多くのヘテロ糖型およびNGNA含有糖型が含有された。その相対比は5%を超え、フコシル化のヘテロ糖型の割合は2%に近かったと共に,NGNAおよびGal−α−Gal修飾を有する糖型は1%を超えた。これらの非ヒト型糖型には免疫原性をもたらすリスクがある。(Biotechnology and Genetic Engineering Reviews - Vol. 28, 147-176 (2012))。
Rmicadeは高レベルのヘテロ糖型および免疫原性のある糖型を含有するが、CMAB008はこれらの糖型を含有しないことから、それが良好な細胞半減期および低い免疫原性を有すると推測され(臨床試験から分かるように、CMAB008の局所輸液反応は、報告されたRemicadeの輸液反応よりも遥かに小さかった、具体的には実験例7を参照する)、この点は選択される細胞の起源並びに最適化された培養条件および培地のいずれにも密接に関わっている。
実験例3、親和力解析
CHOで発現されるCMAB008とSP2/0で発現されるRemicadeの結合活性の相違を比較するために、バイオレイヤー干渉技術(BLI)により、Octet生体分子間相互作用ワークステーション(ForteBio 米国)でCMAB008とRemicadeの親和定数を測定して比較した。TNF−αはR&D Systems社より購入し(カタログ番号:210−T/CF)、タンパク質センサーはサンプル希釈液(0.02%Tween 20、150mM NaCl、1mg/mL BSA、10mMリン酸塩緩衝液、0.05%アジ化ナトリウム)中で少なくとも5分間水和した。全てのサンプルは緩衝液で希釈した:RemicadeおよびCMAB008モノクローナル抗体は10μgに希釈した。TNF−αはサンプル希釈液で所要の濃度に希釈した。
実験は以下の通りに設定した:サンプル希釈液で5分間(ベースラインとし)、RemicadeまたはCMAB008モノクローナル抗体溶液で60分間(ローディングし)、サンプル希釈液で10分間(洗浄し)、サンプル希釈液で10分間(洗浄し)、サンプル希釈液で15分間(ベースラインとし)、TNF−α溶液で40分間(結合し)、並びにサンプル希釈液で60分間緩衝した(分離した)。結果をfortebio解析プログラムで解析・計算して得られたCMAB008の親和定数は2.03E−10であるが、Remicadeの親和定数は2.33E−10であり、両者には有意な差がなかった。具体的な測定結果は下表2、表3に示す。
実験例4、L929細胞の生物活性解析
CHOにおいて発現されるCMAB008とSP2/0において発現されるRemicadeのTNF−αに対する中和活性の相違を比較するために、TNF−αによるL929殺傷実験により、異なるTNF−α抗体のTNF−αに対する中和作用を測定した。具体的な方法は以下の通りであった:
(1)対数増殖期のL929細胞を取り、トリプシンで消化し、カウントし、1回の検出につき(1枚の96ウェルプレートにつき)約2×106個の細胞を取り、遠心して上澄を捨て、培養液Bを加えて細胞密度を1.5×105/mlに調整し、0.1ml/ウェルで96ウェルプレートに入れ、一晩(18〜24h)培養した。96ウェルプレートの外周のウェルを使わないように注意するが、これらのウェルには無菌水を入れる(マルチウェルプレートのエッジ効果を防止するため)。
(2)翌日、12mLの培養液Cで0.48mlのダクチノマイシンD母液を最終濃度が20μg/mlになるまで希釈し、その2mlを対照用として取り(培養液D)、残りの10mlに2.45μlのrh TNF−α母液を濃度が4.9ng/mlになるまで加えた(培養液E)。
(3)Remicade(登録商標)を取り、培養液Eで段階的に1000ng/mlに希釈した。
(4)CMAB008を培養液Eで段階的に1000ng/mlに希釈した。
(5)10個の1.5ml無菌遠心チューブ中でそれぞれ培養液Eで標準品またはサンプルの希釈液を連続で段階希釈した(即ち、希釈後、全てのチューブには同じ濃度のTNF−αとダクチノマイシンDが含有されるが、TNFモノクローナル抗体の濃度が異なった)。(計算時、次のステップで同体積の培養液を含むウェルに入れられるので、実際の希釈度は今の希釈度の2倍になることを注意すべきである)。
(6)前のステップの全ての遠心チューブ内の希釈液を十分に均一に混合し、10,000rpmで30秒遠心し、液体をチューブ底部に集中させた。
(7)培養液Eと培養液Dをそれぞれ陰性対照と陽性対照とした(培養液Dが入れたウェルでは、細胞がTNFによって殺傷されない;培養液Eが入れたウェルでは、細胞が最大限で殺傷される)。
(8)L929細胞を接種した96ウェルプレート中に、希釈されたサンプル又は輸入対照品を0.1ml/ウェルで入れ、或いは陰性、陽性対照用培養液を入れた。1つの点につき2個の重複ウェルを設けた。5%CO2、37℃のインキュベーターに置いて培養した。
(9)96ウェルプレートをインキュベーターで14〜16h連続にインキュベートし、新しく調製した20:1で混合されたMTS/PMS溶液をウェルに入れ(20μl/ウェル)、さらにインキュベーターで1〜4時間連続にインキュベートし、マイクロプレートリーダーでそのA490〜A630値を測定した。
(10)ロジスティック回帰:横座標は標準品濃度で、縦座標は吸光度値の平均数(A490〜A630)である。
回帰方程式:Y = (A-B)/[1+(X/C)D] + B
該方程式により、Cの数値は半数効果濃度(ED50)である。
相対中和活性 (%)=標準品ED50(ng/mL)/試験サンプルED50(ng/mL)*100%
三回のインビトロ中和実験の結果は表4に示す:
そのうち、1回目のインビトロ中和実験の結果は表5に示す:
その回帰曲線の結果は図6に示す。
結論:インビトロ中和実験の結果から分かるように、Remicade(登録商標)とCMAB008の両者は、TNF−αとダクチノマイシンDのL929細胞に対する殺傷を中和する半数効果濃度がそれぞれ17.32ng/mlと16.57ng/mlであり、統計学的な差はない。
実験例5、競合ELISA検出による生物活性解析
競合法によりCMAB008の相対的な親和力を測定し、文献で報告されているRemicadeの親和定数および親和定数の計算方法に基づき、CMAB008の親和定数を算出し、且つRemicadeと比較した。具体的な実験方法は以下の通りであった。
(1)PBSでTNF−αを0.1μg/mlに希釈し、100μl/ウェルでELISAプレートに入れた。
(2)37℃で2時間コーティングした。
(3)ウェル中の液を捨て、PBSTで3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた。
(4)PBSでウシ血清アルブミンを3%に希釈し、満水になるまでELISAプレートに入れた。
(5)37℃で2時間ブロッキングした。
(6)ウェル中の液を捨て、PBSTで3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた。
(7)PBSでHRP標記CMAB008を0.34μg/mlに希釈し、PBSでRemicadeを10μg/mlに希釈し、さらに両者を同体積で均一に混合した。
(8)PBSでHRP標記CMAB008を0.34μg/mlに希釈し、PBSでCMAB008を10μg/mlに希釈し、さらに両者を同体積で均一に混合した。
(9)PBSでHRP標記CMAB008を0.17μg/mlに希釈し、且つ該溶液を用いて、上記2ステップにおけるRemicadeおよびCMAB008液を2倍の倍率で段階希釈した。
(10)段階希釈したRemicadeおよびCMAB008を100μl/ウェルでELISAプレートに入れた。さらに、0.17μg/mlのHRP標記CMAB008を最強呈色反応対照とし、PBSを最弱呈色反応対照とした。
(11)37℃で1時間インキュベートした。
(12)ウェル中の液を捨て、PBSTで3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた。
(13)TMB呈色基質AとBを同体積で混合し、100μl/ウェルでELISAプレートに入れた。
(14)室温で10分間遮光下で反応させた。
(15)1ウェルにつき濃度0.5Mの硫酸を50μl加えて反応を終了させた。
(16)630nmを基準波長として、マイクロプレートリーダーでOD450nmを測定した。
実験結果は表6にまとめた。
そのうち、1回目の実験結果の生データは表7に示す:
計算により、該試験において、Remicadeの回帰方程式は、
Y = (0.61842 - 0.07665) / [1+(X/0.14889)1.38126] + 0.07665
CMAB008の回帰方程式は、
Y = (0.59358 - 0.07187) / [1+(X/0.1439)1.34198] + 0.07187
である。
文献の報告(Ravinder N Maini and Marc Feldmann. How does infliximab work in rheumatoid arthritis? Arthritis Res 2002, 4(Suppl 2):S22-S28.)によると、Remicadeの親和定数(Ka)は1010-1である。文献(Berzofsky JA and Berkower IJ. 1984. Fundamental Immunology. In Paul WE ed. Raven New York, pp. 595-644)で報告された計算方法により、Remicadeを基準品として、試験したCMAB008抗体の親和定数を算出した、式は:
[X]-[R] = (1/KX)-(1/KR)
である。
ただし、[X]は試験サンプルの競合阻害曲線のEC50濃度で、[R]は同条件下における基準品のEC50濃度で;KXは試験サンプルの親和定数で、KRは既知の基準品の親和定数である。
本試験において、試験サンプルのEC50濃度平均値は0.146μg/mlで、基準品RemicadeのEC50濃度平均値は0.139μg/mlであり、両者の差は0.007μg/mlになり、該モノクローナル抗体の分子量を150kDaとして計算すると、0.047nMに該当した;したがって、上記試験から分かるように、試験サンプルCMAB008の親和定数(Ka)は約0.68×1010-1であり、両者の抗原に対する親和力はほとんど同様である。
実験例6.CMAB008およびRemicadeの生体内でTNF−αを中和する作用の研究
CMAB008およびRemicadeの生体内でヒトTNF−αを中和する作用を比較するために、昆明マウスの体内に両者の抗体をそれぞれ注射し、それらのrh−TNF−αの毒性に対する阻害作用を検出した。
実験材料:
昆明マウス(メスとオスはそれぞれ半分)、4〜6週齢、20±2g/匹。第二軍医大学動物センターより購入された。
rhTNF−αは、大腸菌により発現・精製された天然型組換えヒトTNF−αであった。R&D Systems社より購入された(カタログ番号:210−T/CF)。
CMAB008:上海張江生物技術株式会社より提供された試験サンプルで、100mg/本であった。ロット番号20040601。10ml無菌注射用水で溶解し、濃度を10mg/mlとした。4℃で保管した。
Remicade(陽性対照薬):100mg/本。ロット番号101514。10ml無菌注射用水で溶解させ、濃度を10mg/mlとした。4℃で保管した。
陰性対照:5%ショ糖、0.05mg/mlTween 80を含有する10mmol/lリン酸塩緩衝液であり、pH7.2で、濾過して除菌した後、2〜8℃で保管した。CMAB008およびRemicadeの賦形剤成分はいずれもそれと同様であった。
D(+)−ガラクトサミン:Sigmaの製品。
方法と結果:
rh−TNF−αの毒性投与量の測定
種の違いのため、ヒトTNF−αのマウスに対する毒性投与量はマウス由来のTNF−αよりも遥かに高く、報告によると、ヒトTNF−αのマウスに対するLD50は約4〜8mg/kgであり、凡そ1匹のマウスにつき80〜160μg注射することに該当する[1-4]。1987年、ドイツの学者Lehmannらはマウスの処理にD(+)−ガラクトサミンを使用することで、ヒトTNF−αのマウスに対する毒性作用を1,000倍程度高めることができ、LD50は僅か0.1〜1.0μg/匹であることを初めて報告した[5]。そのため、D(+)−ガラクトサミンをTNF−αの増感剤に用いて構築したマウス毒性モデルは既に研究界で広く使用されている。
昆明マウスを120匹取り(18〜22g)、無作為に6群に分け(1群につき10匹のメスと10のオスが含まれる)、それぞれ0、0.125、0.25、0.5、1.0、2.0μg/匹の異なる投与量でrhTNF−αを腹腔内注射し、薬物はいずれもPBSに溶解して、体積はいずれも0.1mlとし、D(+)−ガラクトサミンも同時に18mg/匹で腹腔内注射した。14日間観察し、動物の一般状態(摂食、活動、精神、毛色などを含む)および生存状態を記録した。
実験結果は表8に示す:
SPSSソフトウェアによる計算で統計解析したところ、昆明マウスはrh−TNF−αおよび18mgのD(+)−ガラクトサミンを腹腔内注射された後、rh−TNF−αのLD50は0.46[0.30〜0.60]μg/匹に、LD90は0.99[0.77〜1.83]μg/匹になった。
臨床使用投与量のCMAB008およびRemicadeの生体内でのrh−TNF−αに対する中和作用の測定
Remicadeの臨床使用量は3mg/kgであり、体表面積相当量で計算すると、マウスへの投与量は27mg/kgであるはずなので、平均体重が約20gのマウスの場合、1匹の投与量は約500μgになる(予測投与量の5倍に該当する)。該投与量のCMAB008の中和能を初歩的に調査する必要がある。
1群につき4匹で、メスとオスをそれぞれ半分にして、16匹の昆明マウスを無作為に4群に分け、4群についてそれぞれ、各マウスに500μgのCMAB008またはRemicadeを静脈内注射し、72時間後、各動物に18mgのD−ガラクトサミンを腹腔内注射すると同時に、5μgまたは10μgのrhTNF−αを腹腔内注射した。
結果:TNF−αの注射から2日間後、10μgのrhTNF−αを注射した動物では、CMAB008群では2匹が生存し、Remicade群では1匹が生存した。一方で5μgのrhTNF−αを注射した動物としては、CMAB008群では4匹が生存し、Remicade群では3匹が生存した。これにより、500μgのCMAB008またはRemicadeは5.0μg程度のrh−TNF−αによる急性毒性作用を完全に中和できるが、10μgのrh−TNF−αによる急性毒性作用は一部しか中和できないとおおよそ推定される。RemicadeおよびCMAB008を予め適用した後のrh−TNF−αの毒性投与量を測定した。
予備実験の結果に基づき、下記試験を設計した:240匹の昆明マウスを無作為に2群に分け、各群をさらに1つのグループにつき20匹で、メスとオスをそれぞれ半分にして、6つのグループに分けた、各グループはそれぞれ以下のようであった:
Remicade群
A.500μg/匹でRemicadeを静脈内注射し、72時間後、0.1mlのPBSを腹腔内注射した。
B.500μg/匹でRemicadeを静脈内注射し、72時間後、20μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
C.500μg/匹でRemicadeを静脈内注射し、72時間後、10μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
D.500μg/匹でRemicadeを静脈内注射し、72時間後、5μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
E.500μg/匹でRemicadeを静脈内注射し、72時間後、2.5μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
F.500μg/匹でRemicadeを静脈内注射し、72時間後、1.25μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
CMAB008群
A.500μg/匹でCMAB008を静脈内注射し、72時間後、0.1mlのPBSを腹腔内注射した。
B.500μg/匹でCMAB008を静脈内注射し、72時間後、20μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
C.500μg/匹でCMAB008を静脈内注射し、72時間後、10μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
D.500μg/匹でCMAB008を静脈内注射し、72時間後、5μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
E.500μg/匹でCMAB008を静脈内注射し、72時間後、2.5μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
F.500μg/匹でCMAB008を静脈内注射し、72時間後、1.25μg/匹で(0.1ml、PBS溶解)rh−TNF−αを腹腔内注射すると同時に、18mgのD−ガラクトサミンを腹腔内注射した。
観察指標:rhTNF−α注射後、正常条件下で動物を飼養し、72h以内で動物の生存状況を観察した。
Remicade群の実験結果は表9に示す:
Remicadeを500μg/匹で静脈内注射してから72時間後にrh−TNF−αおよび18mgのD(+)−ガラクトサミンを腹腔内注射した昆明マウスの統計解析によると、rh−TNF−αのLD50は8.56[3.85〜11.30]μg/匹であった。生存曲線の結果は図8に示す。
CMAB008群の実験結果は表10に示す:
CMAB008を500μg/匹で静脈内注射してから72時間後にrh−TNF−αおよび18mgのD(+)−ガラクトサミンを腹腔内注射した昆明マウスの統計解析によると、、rh−TNF−αのLD50は8.71[5.59〜11.42]μg/匹であった。生存曲線の結果は図9に示す。
以上の結果で実証されたように、RemicadeまたはCMAB008を500μg/匹で静脈内注射すると、昆明マウスに対するrh−TNF−αの半数致死量は、0.46μg/匹からそれぞれ8.56μg/匹(18.6倍)と8.71μg/匹(18.9倍)に向上した。両者には統計学的な差がない。
実験例7、臨床安全性の評価
第I相単回投与の研究方法:組入れ・除外基準に合致する健康な被験者27名を1群につき9名で、無作為に3群に分けた。低投与量群の被験者には、注射用CMAB008を1mg/kgで単回静脈内点滴し;中投与量群の被験者には、注射用CMAB008を3mg/kgで単回静脈内点滴し;高投与量群の被験者には、注射用CMAB008を10mg/kgで単回静脈内点滴した。輸液時間は2時間とした。静脈内点滴前および静脈内点滴終了後の1、28および56日目に、一般血液検査、一般尿検査、生化学的血液検査、生命兆候検査、心電図、胸部X線写真および一般症状観察を行い、常に有害事象を密接に観察・記録した。1、3、10mg/kgの第I相単回投与において、選択された27名は、研究室における各指標はほとんど正常であり、副作用率が高いほうから順番に目眩、筋肉痛、発熱、腹痛などであるが、いずれの反応も軽微であり、注射関連反応は明らかではなかった。
27例の患者群のうち、7例に有害事象が現れ、有害事象発生率は25.9%であり、結果は表11に示す。
第I相反復投与の研究方法:関節リウマチ患者を9名選択し、第II相臨床試験で定められる治療投与量(3mg/kg)を採用し、0、2、6、10、14週目に静脈内点滴し、輸液時間を2時間とし、毎回の投与前および最終の投与後の、2、12週目に臨床観察した。試験の間、何らの重篤な有害事象も発生せず、注射部位で反応(赤み、腫れ、斑状出血または皮膚発疹)は発生せず、1例においては吐き気・嘔吐が表れたが、20分間で緩和し、副作用率は11.1%であった。CMAB008の連続反復静脈内点滴後に発生した有害事象の結果を表12に示す。
第II/第III相臨床研究方法: プラシーボを対照として、MTXを基本治療として、層別・ブロック別無作為化、二重盲検シングルダミー、多施設共同、並行群間試験デザインの優越性試験であった。試験群と対照群の症例数は3:1:1の比率で構成され、即ち、2つの試験群はそれぞれ330例と110例にし、対照群は110例にした。試験群Aは0、2、6、14週目にそれぞれ、1回につき3mg/Kgで、静脈内注射により1回投与し、治療コースは18週間にした。試験群Cは0、2、6週目にそれぞれ、1回につき3mg/Kgで、静脈内注射により1回投与し、14週目にプラシーボを投与し、治療コースは18週間にした。対照群Bは0、2、6、14週目にそれぞれ静脈内注射により1回投与するが、いずれもプラシーボを投与し、治療1クールは18週間にした。各群の副作用の発生状況は表13に示す。
試験中において、薬物関連副作用の発生率は、試験A群が34.85%(115/330)で、対照B群が22.73%(25/110)で、試験C群が34.55%(38/110)であり、3群間の差は統計学的に有意なものではなかった(P=0.0543);発生率が最も高い副作用は輸液反応であり:試験A群が9.70%(32/330)で、対照B群が1.82%(2/110)で、試験C群が7.27%(8/110)であり、3群間の差は統計学的に有意なものであった(P=0.0263)。輸液反応は輸液中および輸液終了後の2時間内で発生し、症状は、皮膚発疹、蕁麻疹、掻痒、しびれ、目腫れ、唇腫れ、顔面浮腫、咳嗽、胸内苦悶、息切れ、気管トーヌス、頭痛、目眩、嘔吐、低血圧などの1種または多種の症状、及び/又は発熱・寒気などの非特異的な症状を含んでいた。ほとんどの輸液反応は軽度〜中等度で、5/42例(11.91%)のみが重度であり、6/42例(14.29%)は輸液反応によって輸液治療を中止し、12/42例(28.57%)は輸液反応によって試験をやめ、輸液反応が発生した全ての被験者は、治療処置があろうとなかろうと、輸液反応は全て緩和した。
発生率が5%を超えた副作用は順に、上気道感染症、試験A群が8.48%(28/330)で、対照B群が10.91%(12/110)で、試験C群が9.09%(10/110)であった;白血球減少症、試験A群が7.58%(25/330)で、対照B群が3.64%(4/110)で、試験C群が7.27%(8/110)であった;肝機能障害、試験A群が7.27%(24/330)で、対照B群が4.55%(5/110)で、試験C群が9.09%(10/110)であった;3群間の差はいずれも統計学的に有意なものではなかった。
発生率が1%超5%未満の副作用は順に、泌尿器系(尿路感染症)、皮膚および付属物(皮膚発疹、蕁麻疹、真菌性皮膚炎)、身体防御(発熱、ウイルス感染、蜂窩織炎、リンパ節結核、結核病、耳下腺炎、歯肉炎)、全身性(だるさ、腫れ)、胃腸管系(無食欲症、嘔吐)、中枢および末梢神経系(目眩)であった。嘔吐、目眩についての3群間の差は統計学的に有意なものであった以外、他の副作用について、3群間の差はいずれも統計学的に有意なものではなかった。嘔吐(2例)や目眩(3例)は個別の症例であり、且つ単一の症状だけで疾患を明確に診断できないことから、該統計学的な差は偶発的な要因のものであり、臨床的には意味のないものである。
発生率が1%未満の副作用は順に、赤血球(貧血)、末梢血管(斑状出血)、心拍数および心調律(動悸)、心血管(高血圧)、眼部および視力(結膜炎)、筋肉骨格系(大腿骨頭壊死症)、その他(月経不順)であり、3群間の差はいずれも統計学的に有意なものではなかった。
ほとんどの副作用は軽度〜中等度で、投与を停止する必要がなく、ただ症状に対して治療するだけで、病状が緩和した。重度の副作用は合計で7/178例(3.93%)であったが、治療処置により全て緩和された:5例は輸液反応(4例は投与を停止して試験をやめた)、1例は目眩(投与を停止して試験をやめた)、1例は尿路感染症(試験をやめずに投与を続けた)。
Remicadeを中国で登録するための多施設共同試験において、その有害事象発生率は65.5%(侯勇ら インフリキシマブによる関節リウマチ治療の無作為・二重盲検・並行・多施設共同臨床試験、《中華リウマチ学雑誌》 2006年11期)であった。 CMAB008の副作用率はRemicadeよりも遥かに低かった。
3群間の発生率の比較にはCMH検定が採用され、CMH検定が採用されると、統計量はCMHカイ二乗値である。
実験例8、免疫原性の測定
(1)単回投与:
研究方法:選択基準・除外基準に合致する健全健康な被験者27名を1群につき9名で、無作為に3群に分けた。低投与量群の被験者には、注射用CMAB008を1mg/kgで単回静脈内点滴し;中投与量群の被験者には、注射用CMAB008を3mg/kgで単回静脈内点滴し;高投与量群の被験者には、注射用CMAB008を10mg/kgで単回静脈内点滴した。輸液時間は2時間とした。
被験者がCMAB008を受けた後の血清における抗CMAB008抗体(ADA)の生成状況を検出するために、投与前、投与後の14、28、56日目に血清サンプルを採集した;
血清ADA検出実験は以下の通りであった:
実験ステップ:
1)リン酸塩緩衝液(PBS)でCMAB008抗体を0.5μg/mlに希釈し、100μl/ウェルでELISAプレート(NUNC)に入れた;
2)37℃インキュベーターに2時間置き、若しくは4℃で一晩置いた;
3)ウェル中の液を捨て、吸水紙の上で叩いて乾燥させ、0.1%Tween 20含有PBSでプレートを3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた;
4)3%ウシ血清アルブミン(上海生工生物工学株式会社)(PBSで希釈)を満水になるまで(約350μl/ウェルで)ELISAプレートに入れ、37℃インキュベーターに2時間置き、若しくは4℃で一晩置いた;
5)ウェル中の液を捨て、吸水紙の上で叩いて乾燥させ、0.1%Tween 20含有PBSでプレートを3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた;
6)PBSでウサギ抗CMAB008ポリクローナル抗体(本研究室の自作品、CMAB008でウサギを免疫し、抗血清を取り、CMAB008アフィニティークロマトグラフィーで精製して得た溶出ピーク)を10μg/mlに希釈し、希釈された陽性対照、陰性対照(健康なボランティアの混合血清、10倍希釈)、空白対照(PBS)および試験サンプル(10倍希釈)を100μl/ウェルでELISAプレートに入れ、重複ウェルを設け、37℃インキュベーターに2時間置いた;
7)ウェル中の液を捨て、吸水紙の上で叩いて乾燥させ、0.1%Tween 20含有PBSでプレートを3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた;
8)HRP標識CMAB008(本研究室の自作品、Pierce社のHRP標識キットでCMAB008を標識し、且つゲルパーミエーションクロマトグラフィーで精製して得られたもの)を1:500で希釈し(PBS)、100μl/ウェルでELISAプレートに入れ、置于37℃インキュベーターに45分間置いた;
9)ウェル中の液を捨て、吸水紙の上で叩いて乾燥させ、0.1%Tween 20含有PBSでプレートを3回洗浄し、毎回で吸水紙の上で叩いて乾燥させた;呈色基質AとB(晶美生物工学株式会社)を同体積で均一に混合し、100μl/ウェルでELISAプレートに入れ、室温で5〜20分間遮光下で反応させた(呈色状況に応じて呈色時間を決定した);
10)終了液を50μl/でELISAプレートに入れ、速やかに均一に混合した;マイクロプレートリーダーでOD450nmを読み取り、630nmを基準波長とした。
結果の判断:
1回につき、プレートあたりに2つの空白対照、2つの陰性対照、3つの陽性対照を設ける必要がある。
空白対照のO.D.値は≦0.10となる必要がある。
空白対照のO.D.値を引いた後、0≦2つの陰性対照のO.D値≦0.15となるべ必要がある。
空白対照のO.D.値を引いた後、3つの陽性対照のうち、少なくとも2つのO.D値が、0.6≦O.D値≦2.0になる必要がある。
2つ以上の陽性対照のO.D.値の差は30%以上になってはならず、そうならない場合には、検出し直す必要がある。
陽性対照のO.D.平均値と陰性対照のO.D.平均値の差が0.50未満になってはならない。
C.O.=2.1×(陰性対照O.D.−空白対照O.D.)
(サンプルO.D.−空白対照O.D.)/C.O.≧1であれば、陽性と判別した。
1mg/kg投与量群の9名の被験者のうち、2名(7#、8#)の血清中ADAの検出結果は陽性であり、具体的な結果は表14に示す:
ADA検出結果が陽性であったサンプルについて、さらにそれにおける中和抗体を検出した。具体的な方法およびスクリーニング基準は以下の通りであった:
方法:
1)対数増殖期のL929細胞を取り、培地を加えて細胞密度を1.5×105/mlに調整し、0.1ml/ウェルで96ウェルプレートに入れ、一晩(18〜24h)培養した。
2)翌日、培養液でダクチノマイシンDを最終濃度が20μg/mLになるまで希釈し、TNF−αを濃度が20ng/mLになるまで加え、200ng/mlのCMAB008抗体を加えた(希釈液、一部を空白対照として取った)。
3)希釈液で陰性対照血清(健康なボランティアの混合血清)を100倍希釈し、陰性対照サンプルとした。
4)希釈液で陽性対照サンプルを1μg/mlに希釈した。
5)希釈液で受試血清を100倍希釈した。
6)上記の試験サンプル、陰性、陽性および空白対照サンプルを0.1mL/ウェルで96ウェルプレートに入れ、重複ウェルを設け、一晩(18〜24h)培養した。
(7)エンドポイントの測定:96ウェルプレートをインキュベーターで14〜16h連続にインキュベートした後、新しくに調製した20:1で混合されたMTS/PMS溶液を20μl/ウェルで加え、インキュベーターで1〜4時間連続にインキュベートし(96ウェルプレートに蓋をすることなく)、マイクロプレートリーダーでそのA490〜A630値を測定した。
結果の判断:
1回につき、プレートあたりに2つの空白対照、2つの陰性対照、3つの陽性対照を設ける必要がある。
空白対照のO.D.値は≧0.80である必要がある。
2つの陰性対照のO.D.値は≧0.80である必要がある。
3つの陽性対照のうち、少なくとも2つのO.D値は≦0.40とある必要がある。
2つ以上の陽性対照のO.D.値の差は30%以上になってはならず、そうでないなら、検出し直す必要がある。
陽性対照のO.D.平均値と陰性対照のO.D.平均値の差は0.40未満になってはならない。
C.O.=0.5×陰性対照O.D.
サンプルO.D./C.O.<1であれば、陽性と判別した。
7#、8#の被験者の血清中における中和抗体の検出結果はいずれも陰性であり、具体的な結果は表15に示し、#7、#8の被験者の血清中におけるCMAB008の血中薬物濃度を解析したところ、他の被験者の血清中における薬物濃度との有意な差は見られなかった。
3mg/kg投与量群および10mg/kg投与量群の被験者の血清中における抗CMAB008抗体の検出結果はいずれも陰性であった。結果は下記表16、表17に示す。
(2)反復投与:
研究方法:関節リウマチ患者を9名選択し、第II相臨床試験で定められる治療投与量(3mg/
kg)を採用し、0、2、6、10、14週目に静脈内点滴し、輸液時間を2時間とし、毎回の投与前および最終投与後の2、12週目に臨床観察した。被験者がCMAB008抗体を反復投与された後の血清における抗CMAB008抗体(ADA)の生成状況を検出するために、毎回の点滴前および最終の点滴の終了後の1、2、4、6、8、12週目に採血し、血清における抗CMAB008抗体(ADA)の検出を行った。ADA検出および中和抗体検出の具体的な実験ステップおよびスクリーニング基準は単回投与試験と同様であった。
結果から分かるように、1名の被験者Jのみが、3、4、5回目の点滴前および5回目の点滴後の1週目、2週目、4週目に、血清中における抗CMAB008抗体の検出結果が陽性であった。具体的な結果は表18に示す;更なる検出により、いずれも非中和抗体であることが判った。結果は表19に示す。
該被験者Jの血清中におけるCMAB008の血中薬物濃度を解析したところ、他の被験者の血清中における薬物濃度との間において有意な差は見られなかった。
(3)第III相臨床研究:
研究方法:無作為・二重盲検・並行・多施設共同試験。患者は組入れられる前に、少なくとも3ヶ月のMTX治療を受け、且つMTX投与量が7.5〜20mg/週に保持されたが、病状はうまく抑えられなかった。被験者は0、2、6、14週目に、それぞれ3mg/kgのインフリキシマブまたはプラシーボの静脈内点滴を受けると同時に、毎週で同様の所定投与量でMTXを飲んだ。それぞれ試験の0、2、6、14、18週目に被験者の様子を追跡調査し、治療効果および副作用を評価した。
免疫原性分析を行った有効被験者は合計で339名であった(被験者は試験薬物群の者であるべきで、投与前の血清サンプルおよび少なくとも一つの投与後の血清サンプルを収集すべきであり、即ち、投与前の血清サンプル(T1)を収集しなければならず、投与後の血清サンプルT2とT3のうちの少なくとも一つを収集すべきである)。ADA検出の具体的な実験ステップおよびスクリーニング基準は単回投与試験と同様であった。測定により、合計8名の被験者は投与後においてCMAB008抗体に対する抗体を生成した。結果は表20に示す。抗体生成率は2.36%であったが、Remicadeの抗体生成率は16%であった(J Turon etal. Su2013 Clinical Outcome of Pediatric IBD Patients After Measurement of Infliximab Drug and Anti-Drug Antibody Levels . Gastroenterology. 144:5, May 2013, S-531)。ADA陽性被験者血清にはいずれも中和ADAが存在した。結果は表21に示す。
無効被験者は上表に入れず、NDは該サンプルが欠けたことを表す
血清における中和抗体の検出(L929細胞によるTNF−α毒性阻害試験):
具体的な実験ステップおよびスクリーニング基準は単回投与と同様であった。
実験結果は下表に示したように、ADA陽性被験者血清にはいずれも中和抗体が存在した。
表20、表21に示すように、有効被験者は合計で339名であった(被験者は試験薬物群の者でなければならず、投与前の血清サンプルおよび少なくとも一つの投与後における血清サンプルを採取しなければならず、即ち、T1を収集しなければならず、T2とT3のうちの少なくとも一つを採取しなければならないる)。測定により、合計8名の被験者はCMAB008の注入後にCMAB008抗体に対する抗体を生成し、抗体生成率は2.36%であった。一方、Remicadeの抗体生成率は16%であった(J Turon etal. Su2013 Clinical Outcome of Pediatric IBD Patients After Measurement of Infliximab Drug and Anti-Drug Antibody Levels . Gastroenterology. 144:5, May 2013, S-531)。CMAB008のADA生成率はRemicadeよりも顕著に低かった。
CMAB008抗体の分離精製の結果。 CHO−CR−GS-/-工学的細胞の電子顕微鏡像であり、ウイルス粒子はない。 SP2/0細胞の電子顕微鏡像であり、ここで矢印で示すのはウイルス粒子である。 CMAB008オリゴ糖の2−AB標識後の蛍光スペクトル(糖型構造は一段質量分析の質量数で同定する)。 Remicadeオリゴ糖の2−AB標識後の蛍光スペクトル(糖型構造は一段質量分析の質量数で同定する)検出から分かるように、赤い円で標記されるように、Remicadeは多種の糖型を含有すると共に、高レベルのヘテロ糖型および免疫原性のある糖型を含有し、最後の赤い円の糖型はNGNAおよびGal−α−Gal含有糖型である。 CMAB008とRemicadeの生物活性の比較結果図。 CMAB008とRemicadeのELISA検出結果図。 Remicade群生存曲線図 Remicadeを500μg/匹で注射してから72時間後でrh−TNFα−および18mgのD(+)−ガラクトサミンを腹腔内注射する;1群:20μg/匹;2群:10μg/匹;3群:5μg/匹;4群:2.5μg/匹;5群:1.25μg/匹;6群:賦形剤対照。 CMAB008群生存曲線図 Remicadeを500g/匹で注射してから72時間後でrh−TNFα−および18mgのD(+)−ガラクトサミンを腹腔内注射する;1群:20μg/匹;2群:10μg/匹;3群:5μg/匹;4群:2.5μg/匹;5群:1.25μg/匹;6群:賦形剤対照。

Claims (24)

  1. 下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
    a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列によってコードされる軽鎖と、配列番号3に示されるヌクレオチド配列によってコードされる重鎖とを含有させる;
    b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
    c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する。
  2. ハムスターに最適化したコドンに基づいて、新規組換え抗TNF−αキメラモノクローナル抗体の軽鎖と重鎖を設計および合成することを特徴とする、請求項1に記載の新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
  3. 請求項1に記載の核酸分子と、前記核酸分子の配列に作動可能に連結される発現調節配列とを含むベクターであって、pDR1、pcDNA3.1(+)、pcDNA3.1/ZEO(+)、pDHFRの中の1つであってもよいベクター。
  4. pcDNA3.1(+)またはpcDNA3.1/ZEO(+)である請求項3に記載のベクター。
  5. 前記宿主細胞は真核哺乳動物細胞CHO−CR−GS-/-であることを特徴とする、請求項1に記載の新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
  6. 無血清培養方式により宿主細胞を培養することを特徴とする、請求項1に記載の新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
  7. 請求項1に記載の新規組換え抗TNF−αキメラモノクローナル抗体と、薬学的に許容される担体とを含む組成物。
  8. 請求項1に記載の新規組換え抗TNF−αキメラモノクローナル抗体の、関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための薬物の製造における使用。
  9. 請求項8に記載の組成物の、関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための薬物の製造における使用。
  10. 関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための他の薬物と併用投与することをさらに含む、請求項8と9のいずれかに記載の使用。
  11. 下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
    a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列によってコードされる軽鎖と、配列番号3に示されるヌクレオチド配列によってコードされる重鎖とを含有させる;
    b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
    c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する;
    ただし、細胞培養のpHは:6.5〜7.0で、最も好ましくはpH6.7である。
  12. 下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
    a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列によってコードされる軽鎖と、配列番号3に示されるヌクレオチド配列によってコードされる重鎖とを含有させる;
    b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
    c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する;
    ただし、細胞培養の温度は:34℃〜37℃で、最も好ましくは35℃である。
  13. 下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
    a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列によってコードされる軽鎖と、配列番号3に示されるヌクレオチド配列によってコードされる重鎖とを含有させる;
    b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
    c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する;
    ただし、細胞培養の浸透圧は:295mOsm/kg〜360mOsm/kgで、最も好ましい浸透圧は345mOsm/kgである。
  14. 下記工程を備えることを特徴とする、新規組換え抗TNF−αキメラモノクローナル抗体の製造方法。
    a)新規組換え抗TNF−αキメラモノクローナル抗体に、配列番号1に示されるヌクレオチド配列によってコードされる軽鎖と、配列番号3に示されるヌクレオチド配列によってコードされる重鎖とを含有させる;
    b)工程a)で得られるヌクレオチド断片を用いて組換えプラスミドを構築し、宿主細胞にトランスフェクトし、高発現クローンをスクリーニングする;
    c)培養条件を最適化し、大規模培養し、新規組換え抗TNF−αキメラモノクローナル抗体を得、分離精製する;
    ただし、細胞培養のpHは:6.5〜7.0で、最も好ましくはpH6.7である;細胞培養の温度は:34℃〜37℃で、最も好ましくは35℃である;細胞培養の浸透圧は:295mOsm/kg〜360mOsm/kgで、最も好ましい浸透圧は345mOsm/kgである。
  15. 水と、配列番号2に示されるアミノ酸の軽鎖および配列番号4に示されるアミノ酸の重鎖を含有し、Gal−α1,3−Galの末端ガラクトース結合形態を有しない組換え抗TNF−αキメラモノクローナル抗体とを含む組成物。
  16. 水と、配列番号2に示されるアミノ酸の軽鎖および配列番号4に示されるアミノ酸の重鎖を含有し、NGNAの末端シアル酸修飾を有しない組換え抗TNF−αキメラモノクローナル抗体とを含む組成物。
  17. 水と、配列番号2に示されるアミノ酸の軽鎖および配列番号4に示されるアミノ酸の重鎖を含有し、Gal−α1,3−Galの末端ガラクトース結合形態およびNGNAの末端シアル酸修飾を有しない組換え抗TNF−αキメラモノクローナル抗体とを含む組成物。
  18. 請求項15〜17のいずれかに記載の組成物の、関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための薬物の製造における使用。
  19. 請求項15〜17のいずれかに記載の組成物の、関節リウマチを治療するための薬物の製造における使用。
  20. 請求項15〜17のいずれかに記載の組成物の、強直性脊椎炎を治療するための薬物の製造における使用。
  21. 請求項15〜17のいずれかに記載の組成物の、乾癬性関節炎を治療するための薬物の製造における使用。
  22. 請求項15〜17のいずれかに記載の組成物の、斑状乾癬を治療するための薬物の製造における使用。
  23. 関節リウマチ、強直性脊椎炎、乾癬性関節炎、斑状乾癬などを治療するための他の薬物、例えば非ステロイド性抗炎症薬、病状を緩和する抗リウマチ薬、糖質コルチコイドなどと併用投与することをさらに含む、請求項18〜22のいずれかに記載の使用。
  24. 前記併用投与する薬物はメトトレキサートである、請求項23に記載の使用。
JP2017554632A 2015-01-07 2016-01-04 新規組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途 Expired - Fee Related JP6514789B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510004710.6 2015-01-07
CN201510004710.6A CN105820246A (zh) 2015-01-07 2015-01-07 一种新型重组抗TNFα嵌合单克隆抗体制备方法及用途
PCT/CN2016/070025 WO2016110227A1 (zh) 2015-01-07 2016-01-04 一种新型重组抗TNF-α嵌合单克隆抗体制备方法及用途

Publications (2)

Publication Number Publication Date
JP2018502603A true JP2018502603A (ja) 2018-02-01
JP6514789B2 JP6514789B2 (ja) 2019-05-15

Family

ID=56355523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017554632A Expired - Fee Related JP6514789B2 (ja) 2015-01-07 2016-01-04 新規組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途

Country Status (7)

Country Link
US (1) US11014981B2 (ja)
EP (1) EP3246338B1 (ja)
JP (1) JP6514789B2 (ja)
CN (1) CN105820246A (ja)
AU (1) AU2016206156B2 (ja)
CA (1) CA2973265C (ja)
WO (1) WO2016110227A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186858B1 (en) 2016-03-15 2021-11-30 Fresenius Kabi Deutschland Gmbh Methods for increasing biosimilarity
US11254964B1 (en) * 2016-03-15 2022-02-22 Fresenius Kabi Deutschland Gmbh Cell culture methods for increased cell viability
CN107236710B (zh) * 2017-03-27 2021-03-26 天津科技大学 稳定表达抗TNF-α单克隆抗体细胞表达体系
CN108164601A (zh) * 2017-11-17 2018-06-15 安徽未名生物医药有限公司 一种重组抗TNF-α全人源单克隆抗体的制备方法
CN111909267B (zh) * 2019-05-07 2022-03-25 北京天成新脉生物技术有限公司 低免疫原性抗TNF-α人源化单克隆抗体TCX063及其应用
WO2021164717A1 (zh) * 2020-02-20 2021-08-26 百奥泰生物制药股份有限公司 抗TNF-α的抗体制剂及其制备方法和用途
CN116903738A (zh) * 2022-08-02 2023-10-20 北京绿竹生物技术股份有限公司 一种低甘露糖型抗人肿瘤坏死因子-α单抗及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018903A1 (en) * 2001-11-12 2006-01-26 Koen Hellendoorn TNF alpha-binding polypeptide compositions and methods
JP2013510574A (ja) * 2009-11-11 2013-03-28 モメンタ ファーマシューティカルズ インコーポレイテッド チャイニーズハムスターからのグリコシルトランスフェラーゼおよび関連方法
JP2013532954A (ja) * 2010-04-07 2013-08-22 アドバンスツェーオーエル ゲーエムベーハー 融合タンパク質
WO2014058389A1 (en) * 2012-10-12 2014-04-17 Agency For Science, Technology And Research Optimised heavy chain and light chain signal peptides for the production of recombinant antibody therapeutics
WO2014134657A1 (en) * 2013-03-08 2014-09-12 Sunyette Pty Ltd A cell expression system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI327597B (en) * 2001-08-01 2010-07-21 Centocor Inc Anti-tnf antibodies, compositions, methods and uses
WO2008033517A2 (en) * 2006-09-13 2008-03-20 Abbott Laboratories Cell culture improvements
BR112014016614B1 (pt) * 2012-01-11 2022-02-01 Sigma-Aldrich Co. Llc Métodos para produzir uma célula deficiente em manosil (alfa-1,3-)-glicoproteína beta-1,2- nacetilglucosa-miniltransferase i (mgat1) e produzir uma proteína recombinante apresentando um ou mais resíduos de manose terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018903A1 (en) * 2001-11-12 2006-01-26 Koen Hellendoorn TNF alpha-binding polypeptide compositions and methods
JP2013510574A (ja) * 2009-11-11 2013-03-28 モメンタ ファーマシューティカルズ インコーポレイテッド チャイニーズハムスターからのグリコシルトランスフェラーゼおよび関連方法
JP2013532954A (ja) * 2010-04-07 2013-08-22 アドバンスツェーオーエル ゲーエムベーハー 融合タンパク質
WO2014058389A1 (en) * 2012-10-12 2014-04-17 Agency For Science, Technology And Research Optimised heavy chain and light chain signal peptides for the production of recombinant antibody therapeutics
WO2014134657A1 (en) * 2013-03-08 2014-09-12 Sunyette Pty Ltd A cell expression system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANCHUN FAN ET AL.: "Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter", JOURNAL OF BIOTECHNOLOGY, vol. Vol.168, JPN6018022450, 29 August 2013 (2013-08-29), pages 652 - 658, XP028789036, DOI: doi:10.1016/j.jbiotec.2013.08.021 *
LIANCHUN FAN ET AL.: "Improving the Efficiency of CHO Cell Line Generation Using Glutamine Synthetase Gene Knockout Cells", BOTECHNOLOGY AND BIOENGINEERING, vol. 109, no. 4, JPN6018022452, April 2012 (2012-04-01), pages 1007 - 1015, XP055213290, DOI: doi:10.1002/bit.24365 *

Also Published As

Publication number Publication date
CN105820246A (zh) 2016-08-03
US11014981B2 (en) 2021-05-25
CA2973265A1 (en) 2016-07-14
EP3246338B1 (en) 2023-11-22
US20200123244A1 (en) 2020-04-23
EP3246338A1 (en) 2017-11-22
EP3246338A4 (en) 2018-06-13
JP6514789B2 (ja) 2019-05-15
WO2016110227A1 (zh) 2016-07-14
AU2016206156A1 (en) 2017-08-03
AU2016206156B2 (en) 2019-01-17
CA2973265C (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6514789B2 (ja) 新規組換え抗TNF−αキメラモノクローナル抗体の製造方法及び用途
US20210093718A1 (en) Neutralizing anti-tl1a monoclonal antibodies
EP2964674B1 (en) Anti-tnf-anti-il-17 bispecific antibodies
SA04240497A (ar) طرق لمعالجة اضطرابات حيث تكون فعالية عامل النخر الورمي ألفا ضارة وذلك بإعطاء جرعات علاجية منخفضة
TWI634126B (zh) 抗-N3pGlu 類澱粉β肽抗體及其用途
KR20120100914A (ko) 에프라투주맙을 이용한 자가면역 및 염증 질환의 치료
EA015009B1 (ru) АНТИГЕНСВЯЗЫВАЮЩИЕ МОЛЕКУЛЫ, ОБЛАДАЮЩИЕ ПОВЫШЕННОЙ АФФИННОСТЬЮ К СВЯЗЫВАНИЮ С Fc-РЕЦЕПТОРОМ И ЭФФЕКТОРНОЙ ФУНКЦИЕЙ
US9394362B2 (en) IL-21 antibodies and methods of making or using the antibodies
US20160207991A1 (en) Therapeutic Antibody
EP3919512A1 (en) HUMANIZED ANTI-Abeta MONOCLONAL ANTIBODY AND APPLICATION THEREOF
JP2021515554A (ja) 治療用抗sPLA2−GIB抗体とその使用
WO2020156220A1 (zh) 人源化抗Aβ单克隆抗体及其应用
EP4155322A1 (en) Anti-trka antibody or antigen-binding fragment thereof, preparation method therefor, and application thereof
JP2022521850A (ja) 断片化が低減した抗アルファベータtcr結合ポリペプチド
EP3925975A1 (en) HUMANIZED ANTI-Abeta MONOCLONAL ANTIBODY AND USE THEREOF
WO2016144773A1 (en) Arabinosylated glycoproteins
EP3426677B1 (en) Use of pneumolysin peptides as antagonists against toll-like receptor 4 and methods of treating toll-like receptor 4 related diseases
TW202021983A (zh) 用於嗜伊紅性氣喘之抗il-33療法
EP4375298A1 (en) Pharmaceutical composition of anti-angptl3 antibody or antigen binding fragment thereof and its application
WO1999024069A1 (fr) Medicaments preventifs et therapeutiques pour des affections pulmonaires diffuses
RU2820628C2 (ru) Белки, связывающие глюкагоновые рецепторы, и способы их применения

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6514789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees