JP2018207325A - 無線通信装置およびその制御方法 - Google Patents

無線通信装置およびその制御方法 Download PDF

Info

Publication number
JP2018207325A
JP2018207325A JP2017111360A JP2017111360A JP2018207325A JP 2018207325 A JP2018207325 A JP 2018207325A JP 2017111360 A JP2017111360 A JP 2017111360A JP 2017111360 A JP2017111360 A JP 2017111360A JP 2018207325 A JP2018207325 A JP 2018207325A
Authority
JP
Japan
Prior art keywords
communication
wireless communication
wired communication
wired
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017111360A
Other languages
English (en)
Other versions
JP7140470B2 (ja
Inventor
元 志村
Hajime Shimura
元 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017111360A priority Critical patent/JP7140470B2/ja
Priority to PCT/JP2018/021043 priority patent/WO2018225624A1/ja
Publication of JP2018207325A publication Critical patent/JP2018207325A/ja
Priority to US16/704,351 priority patent/US11539391B2/en
Application granted granted Critical
Publication of JP7140470B2 publication Critical patent/JP7140470B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

【課題】有線通信のデータ通信により発生するノイズが無線通信性能へ及ぼす悪影響を低減する。【解決手段】無線通信装置20は、使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行う第一の通信手段と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う第二の通信手段と、基本周波数が、第一の通信手段による無線通信の使用周波数帯を含む所定の周波数帯域外となるように、第二の通信手段による有線通信で使用する有線通信方式を切り替える切替手段と、を備える。【選択図】 図5

Description

本発明は、無線通信装置およびその制御方法に関する。
近年、様々な電子機器に無線通信機能が搭載されており、このような無線通信機能が搭載された電子機器は年々小型化され、電子機器内では多くの部品や配線が近接して配置されている。それらの部品や配線からはノイズが発生し、無線通信機能に悪影響を及ぼすおそれがある。
特許文献1には、無線通信装置が接続されるデータ通信装置において、メインCPUの動作クロックの逓倍周波数が、無線通信装置が無線通信に使用する周波数帯域に妨害を与えないようにクロック制御を行う点が開示されている。
特開2001−217743号公報
電子機器に無線通信機能を搭載する場合、無線通信機能を実現する無線通信用の電子回路基板を、電子機器のメイン電子回路基板に有線接続し、無線通信用の電子回路基板とメイン電子回路基板との間において無線通信により送受信するデータが伝送される。このとき、無線通信用の電子回路基板とメイン電子回路基板との間では、データ通信によるノイズが発生し得る。このデータ通信によるノイズも、無線通信に悪影響を及ぼすおそれがある。
そこで、本発明は、有線通信のデータ通信により発生するノイズが無線通信性能へ及ぼす悪影響を低減することを目的としている。
上記課題を解決するために、本発明に係る無線通信装置の一態様は、使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行う第一の通信手段と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う第二の通信手段と、前記基本周波数が、前記第一の通信手段による前記無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替える切替手段と、を備える。
本発明によれば、有線通信のデータ通信により発生するノイズが無線通信性能へ及ぼす悪影響を低減することができる。
本実施形態に係る無線通信装置の構成例である。 無線通信装置の構成例を示す図である。 無線通信装置のハードウェア構成図の一例である。 無線通信装置の機能ブロック図の一例である。 USB規格における最大データ転送速度および基本周波数を示す図である。 ノイズの周波数スペクトルのイメージ図である。 有線通信方式の変更処理手順を示すフローチャートである。
以下、添付図面を参照して、本発明を実施するための形態について詳細に説明する。なお、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正または変更されるべきものであり、本発明は以下の実施の形態に限定されるものではない。
(第一の実施形態)
図1は、本実施形態に係る無線通信装置20の構成例である。本実施形態では、電子機器10に、無線通信装置20が搭載されている場合について説明する。ここで、電子機器10は、例えばデジタルカメラとすることができ、無線通信装置20は、無線信号により他の無線通信装置と通信を行う無線通信モジュールとすることができる。
無線通信装置20は、複数の無線通信規格に準拠した複数の無線通信方式に対応した無線通信機能を有する。本実施形態では、無線通信装置20が使用する無線通信規格は、無線LANの通信規格であるIEEE802.11規格シリーズである場合について説明する。ここで、IEEE802.11規格シリーズは、IEEE802.11a規格、IEEE802.11b規格、IEEE802.11g規格、IEEE802.11n規格、IEEE802.11ac規格およびIEEE802.11ax規格を含む。上記の各無線通信方式において、無線通信を行う上で使用する周波数帯(使用周波数帯)は、2.4GHz帯および5GHz帯の少なくとも一方である。
図2に示すように、無線通信装置20は、電子回路基板21と、無線通信を行うための電磁波の送受信を行うアンテナ22と、WiFiチップ23と、コネクタ24と、コネクタ24にその一端が接続された有線通信用のケーブル25と、を備える。ケーブル25は、フレキシブルケーブルであり、ケーブル25の他端は、電子機器10のメイン電子回路基板(不図示)に接続されたコネクタ11に接続されている。つまり、無線通信装置20の電子回路基板21は、電子機器10のメイン電子回路基板と有線により接続されている。この電子回路基板21とメイン電子回路基板との間では、無線通信装置20が無線通信を行うデータ(例えば、映像)が伝送される。このように、無線通信装置20は、無線通信機能と有線通信機能とを有する。
本実施形態では、無線通信装置20は、複数の有線通信規格に準拠した複数の有線通信方式に対応した有線通信機能を有する。例えば、無線通信装置20は、有線通信規格として、USB1.0、USB1.1、USB2.0、USB3.0およびUSB3.1を使用できるものとする。
有線通信においては、データ通信を行う上で、データ通信を起因とするノイズ(データノイズN)が発生し得る。このデータノイズNをアンテナ22が受信すると、無線通信に悪影響を及ぼすおそれがある。無線通信装置20は、上述したように無線通信機能と有線通信機能とを有しており、小型な電子機器10に組み込まれる場合、電子回路基板21自体が非常に小さい場合がある。その場合、電子回路基板21上に設けられた、無線通信を行うためのアンテナ22と、有線通信を行うためのケーブル25、コネクタ24および電子回路基板21上の配線等との距離が近くなる。すると、有線通信のデータノイズNをアンテナ22が受信しやすくなり、無線通信に悪影響を及ぼしやすくなる。
上記の有線通信のデータノイズNは、有線通信のデータ転送速度によって異なる周波数帯に発生する。USB規格においては、USB1.0からUSB3.1のそれぞれにおいてデータ転送速度が異なるため、データノイズNが発生する周波数帯も異なる。そこで、本実施形態では、無線通信装置20が無線通信に使用する無線通信方式(規格)に応じて有線通信方式(規格)を切り替えることで有線通信のデータ転送速度を変更し、データノイズNが無線通信へ与える悪影響を低減するようにする。具体的には、USBのデータ通信に使用する基本周波数が、無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信方式(規格)を切り替えるようにする。
図3は、無線通信装置20のハードウェア構成の一例を示すブロック図である。
電子機器10は、無線通信装置20との通信を制御する通信制御部100を備える。通信制御部100は、例えば上述したメイン電子回路基板に実装することができる。この通信制御部100は、I/F部101と、ホストCPU102と、記憶部103と、を備える。I/F部101は、USBインターフェースである。ここで、USB1.0からUSB3.1は、それぞれ互換性を有するため、I/F部101は、USB1.0からUSB3.1までのいずれのインターフェースとしても動作することができる。I/F部101の動作の切り替えは、ホストCPU102によって行われる。
ホストCPU102は、電子機器10における動作を統括的に制御する。記憶部103は、ホストCPU102が処理を実行するために必要な制御プログラム等を記憶する。記憶部103は、例えば、ROM、RAM、HDD、フラッシュメモリまたは着脱可能なSDカードなどの記憶媒体により構成することができる。ホストCPU102は、記憶部103に記憶された制御プログラムを実行することで各種の機能動作を実現する。なお、本実施形態において、電子機器10はデジタルカメラであるため、図2に示すハードウェア構成の他に、撮像部や表示部等を有する。
無線通信装置20は、I/F部201と、制御部202と、記憶部203と、無線部204と、アンテナ制御部205と、を備える。I/F部201は、USBインターフェースである。I/F部201は、図2に示すケーブル25を介して、通信制御部100のI/F部101に接続されている。このI/F部201は、I/F部101と同様に、USB1.0からUSB3.1までのインターフェースとして動作することができる。I/F部201の動作の切り替えは、制御部202によって行われる。
制御部202は、無線通信装置20における動作を統括的に制御する。制御部202は、CPUにより構成することができる。記憶部203は、制御部202が処理を実行するために必要な制御プログラム等を記憶する。無線部204は、IEEE802.11規格シリーズに準拠した無線通信を行う。無線部204は、WiFiチップ23により構成することができる。アンテナ制御部205は、2.4GHz帯および/または5GHz帯で通信可能な上述したアンテナ22の出力制御を行う。
図4は、無線通信装置20のソフトウェア機能ブロックの一例である。この図4に示す各部の機能は、制御部202または無線部203が有するCPUがプログラムを実行することで実現することができる。
なお、本実施形態においては、以下に示す各機能ブロックは、ソフトウェアプログラムとして機能が実現されるものとして説明するが、本機能ブロックに含まれる一部または全部をハードウェアにより実現してもよい。ハードウェアにより実現する場合、例えば、所定のコンパイラを用いることで、各ステップを実現するためのプログラムからFPGA上に自動的に専用回路を生成すればよい。FPGAとは、Field Programmable Gate Arrayの略である。また、FPGAと同様にしてGate Array回路を形成し、ハードウェアとして実現するようにしてもよい。また、ASIC(Application Specific Integrated Circuit)により実現するようにしてもよい。なお、図4に示した機能ブロック図は一例であり、複数の機能モジュールが1つの機能モジュールを構成するようにしてもよいし、いずれかの機能モジュールが複数の機能を行うモジュールに分かれてもよい。
無線通信装置20は、無線送受信部211と、通信方式選択部212と、通信方式切替部213と、データ送受信部214と、を備える。
無線送受信部211は、IEEE802.11規格シリーズに準拠した無線通信方式により、外部の無線通信装置との間で無線信号を送受信する。通信方式選択部212は、無線送受信部211による無線通信に使用される無線通信方式に応じて、後述するデータ送受信部214による有線通信に使用される有線通信方式を選択する。具体的には、通信方式選択部212は、無線通信の使用周波数帯に、有線通信の基本周波数が重ならない、あるいは近接しない有線通信方式を選択する。有線通信方式の選択方法については後述する。
通信方式切替部213は、データ送受信部214による有線通信に使用される有線通信方式を、通信方式選択部212において選択された有線通信方式に切り替える。データ送受信部214は、USB規格に準拠した有線通信方式によりデータ通信を行う。
以下、有線通信方式の選択方法について説明する。
まず、USB規格におけるデータ転送速度および基本周波数について説明する。図5は、USB規格における最大データ転送速度および基本周波数の関係を示す図である。ここで、基本周波数は、データ通信に使用する周波数帯において、およそエネルギーが最大となる周波数である。この基本周波数が、無線通信の使用周波数帯に重なると、データ通信により発生するデータノイズNがアンテナ22から混入し、無線通信に悪影響を与えることになる。
図5に示すように、USB規格では、データ転送速度が高速な規格が策定されており、基本周波数が、無線LANにおいて使用される2.4GHz帯あるいは5GHz帯に重なる、あるいは近接する規格が存在する。USB3.0は、データ転送に使用する基本周波数が2.5GHzであり、データノイズNの周波数帯が無線LANにおいて使用される2.4GHz帯に近接する。また、USB3.1は、データ転送に使用する基本周波数が5GHzであり、データノイズNの周波数帯が無線LANにおいて使用される5GHz帯に重なる。基本周波数において発生するデータノイズNは、高調波において発生するデータノイズNとは異なり、ノイズとしてのレベルが大きいため、無線通信に与える影響も大きい。
そこで、図4の通信方式選択部212は、上述したように、無線通信の使用周波数帯に、有線通信の基本周波数が重ならない、あるいは近接しない有線通信方式を選択する。つまり、通信方式選択部212は、無線LANにおいて2.4GHz帯が使用される場合には、有線通信の基本周波数が当該使用周波数帯に最も近いUSB3.0以外の有線通信規格に準拠した有線通信方式を選択する。また、通信方式選択部212は、無線LANにおいて5GHz帯が使用される場合には、有線通信の基本周波数が当該使用周波数帯に一致するUSB3.1以外の有線通信規格に準拠した有線通信方式を選択する。
このように、通信方式選択部212は、有線通信の基本周波数が、無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信方式を選択する。ここで、無線LANにおいて2.4GHz帯が使用される場合には、上記所定の周波数帯域は、2.4GHz以上2.5GHz以下の周波数帯域、より好ましくは2GHz以上3GHz以下の周波数帯域に設定する。また、無線LANにおいて5GHz帯が使用される場合には、上記所定の周波数帯域は、5GHz以上6GHz以下の周波数帯域、より好ましくは4GHz以上7GHz以下の周波数帯域に設定する。なお、有線通信の基本周波数が無線通信の使用周波数帯から十分離れた周波数となることが望ましいため、上記所定の周波数帯域は、必ずしも上述の2GHz以上3GHz以下や4GHz以上7GHz以下に限定されるものではない。
また、本実施形態では、通信方式選択部212は、基本周波数が、無線通信の使用周波数帯を含む上記の所定の周波数帯域外となる有線通信方式のうち、データ転送速度が最大となる有線通信方式を選択する。具体的には、通信方式選択部212は、無線LANにおいて2.4GHz帯が使用される場合には、USB3.0以外の有線通信規格でデータ転送速度が最大であるUSB3.1に準拠した有線通信方式を選択する。
なお、無線通信装置20が、有線通信規格として、USB1.0、USB1.1、USB2.0、USB3.0を使用でき、USB3.1が使用できない場合には、USB3.0以外の有線通信規格でデータ転送速度が最大であるUSB2.0に準拠した有線通信方式を選択する。また、第二の実施形態で後述するが、データノイズは広帯域であるため、データ通信に使用する周波数帯において、エネルギーがおよそ最大となる周波数である基本周波数が、無線通信の使用周波数帯に重ならない場合であっても、無線通信の使用周波数帯にノイズ成分が存在してしまう場合がある。よって、無線LANにおいて2.4GHz帯が使用される場合には、基本周波数がGHz帯であるUSB3.1に準拠した有線通信方式を選択するのではなく、基本周波数がMHz帯であって、データ転送速度が最大となるUSB2.0を選択してもよい。
また、通信方式選択部212は、無線LANにおいて5GHz帯が使用される場合には、USB3.1以外の有線通信規格でデータ転送速度が最大であるUSB3.0に準拠した有線通信方式を選択する。なお、無線通信装置20が、有線通信規格として、USB1.0、USB1.1、USB2.0、USB3.0を使用でき、USB3.1が使用できない場合においても、USB3.0に準拠した有線通信方式を選択する。また、第二の実施形態で後述するが、データノイズは広帯域であるため、データ通信に使用する周波数帯において、エネルギーがおよそ最大となる周波数である基本周波数が、無線通信の使用周波数帯に重ならない場合であっても、無線通信の使用周波数帯にノイズ成分が存在してしまう場合がある。よって、無線LANにおいて5GHz帯が使用される場合には、基本周波数がGHz帯であるUSB3.0に準拠した有線通信方式を選択するのではなく、基本周波数がMHz帯であって、データ転送速度が最大となるUSB2.0を選択してもよい。
以上説明したように、本実施形態における無線通信装置20は、複数の無線通信方式に対応した無線通信機能と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信機能とを有する。そして、無線通信装置20は、基本周波数が、無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信で使用する有線通信方式を切り替える。このように、無線通信の使用周波数帯近傍に、有線通信の基本周波数が存在しないようにすることで、有線通信を用いたデータ通信により発生するノイズが無線通信に悪影響を与えることを抑制することができる。したがって、無線通信装置20の通信能力の低下を抑制し、通信スループットの低下を抑制することができる。
ところで、有線通信方式(規格)としてSDIO(Secure Digital Input / Output)のようなパラレル通信の通信方式を使用した場合、SDIOクロック線を伝搬するクロック信号の周波数を無線通信の使用周波数帯に応じて変更することで、無線通信への影響を低減することが可能である。しかしながら、USBのようなシリアル通信の通信方式を使用する場合、USBにはクロック線はなく、またデータ転送速度を任意に変更することもできない。
これに対して、本実施形態では、本実施形態における無線通信装置20は、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信機能を有し、無線通信の使用周波数帯に応じて有線通信方式を切り替える。したがって、クロック線を持たず、データ転送速度を任意に変更できない有線通信方式を採用した場合であっても、データ通信により発生するノイズが無線通信に悪影響を与えることを抑制し、無線通信性能の劣化を低減することができる。
また、無線通信装置20は、有線通信方式の切り替えに際し、基本周波数が上記所定の周波数帯域外で、且つ複数の有線通信方式のうちデータ転送速度が最大である有線通信方式を選択し、切り替える。したがって、データ通信により発生するノイズが無線通信に悪影響を与えることを抑制しつつ、無線通信の高速性を活かすことができる。
さらに、無線通信装置20は、有線通信規格としてUSB規格を採用する。USB規格は、データ転送速度が異なる規格を複数有しており、かつそれらは互換性を有する。USB1.1からUSB3.1までは上位互換であるため、USB規格に準拠した有線通信方式を採用すれば、ハードウェアを変えることなくデータ転送速度を切り替えることが可能となる。つまり、無線通信の使用周波数帯に応じて、有線通信のデータ転送速度を切り替えて使用したい場合に、複数の有線通信用のハードウェアを電子回路基板21に実装する必要がない。そのため、その分のコストカットや基板面積の縮小が図れる。
(第二の実施形態)
次に、本発明の第二の実施形態について説明する。
上述した第一の実施形態では、無線通信の使用周波数帯近傍に有線通信の基本周波数が存在しないような有線通信方式を選択し、有線通信方式を切り替える場合について説明した。この第二の実施形態では、さらに、無線通信の環境の変化により信号電力が変化した場合に、それに対応して適切に有線通信方式を変更する場合について説明する。
図6(A)は、ノイズ源がクロックである場合のノイズの周波数スペクトルのイメージ図、図6(B)は、ノイズ源がデータ通信である場合のノイズの周波数スペクトルのイメージ図である。クロックは、一般的に一定の周期でON、OFFを繰り返すため、ノイズ源がクロックである場合、図6(A)に示すように、クロックノイズは狭帯域で現れる。そのため、クロックノイズが無線通信に悪影響を与えている場合には、クロック周波数を僅かに変更するだけで、狭帯域なクロックノイズを、無線通信の使用周波数帯域外に容易にシフトすることが可能であり、無線通信への悪影響を大幅に減らすことができる。
一方で、データ通信は、一般的にON、OFFの周期が一定ではないため、ノイズ源がデータ通信である場合、図6(B)に示すように、データノイズは広帯域で現れる。そのため、データ通信に使用する周波数帯において、エネルギーがおよそ最大となる周波数である基本周波数が、無線通信の使用周波数帯に重ならない場合であっても、無線通信の使用周波数帯にノイズ成分が存在してしまう場合がある。つまり、状況によっては、無線通信の性能が大きく劣化してしまう場合がある。
無線通信の通信速度は、一般的に信号対雑音比(SNR:Signal-to-Noise Ratio)によって決まる。SNRが大きければ、安定して無線通信を行うことができるため、通信速度は速くなる。一方、SNRが小さければ、通信速度は遅くなる。これは、無線通信装置20がデータを受信するときにSNRが小さいと、信号がノイズによって乱れ、復調が困難になるためである。ここで、SNRのSである信号電力は、例えば無線通信装置20とその通信相手である無線通信装置(以下、「対向機器」という。)との間の距離や、信号となる電磁波が伝搬する周囲環境等によって決まる。つまり、無線通信における信号電力は一定ではなく、無線通信装置20の移動や周囲環境の変化により、常に変化し得る。
そこで、本実施形態では、無線通信の環境の変化により信号電力が変化した場合には、その変化に対応して適切に有線通信の規格を変更するようにする。具体的には、本実施形態では、無線通信のSNRを所定の周期で取得し、取得されたSNRに応じて、有線通信方式を現在使用している有線通信方式から変更するようにする。
図7は、本実施形態における無線通信装置20が実行する有線通信方式の変更処理手順を示すフローチャートである。以降、アルファベットSはフローチャートにおけるステップを意味するものとする。図7に示す処理は、制御部202または無線部203を構成するCPUが、必要なプログラムを読み出して実行することにより実現される。ただし、図4に示す各機能モジュールのうち少なくとも一部が専用のハードウェアとして動作することで図7の処理が実現されるようにしてもよい。この場合、専用のハードウェアは、上記CPUの制御に基づいて動作する。
まずS1において、無線送受信部211は、電子機器10のユーザの指示等により、無線通信方式を決定する。これにより、無線通信方式の使用周波数帯が決定される。ここで、無線送受信部211は、電子機器10がステーションとして機能する場合、電子機器10のユーザが接続しようとする対向機器が使用している無線LAN規格によって無線通信方式を決定する。一方、無線送受信部211は、電子機器10がアクセスポイントとして機能する場合、ユーザが使用する無線LAN規格によって無線通信方式を決定する。
次にS2では、通信方式選択部212は、S1において決定された無線通信方式の使用周波数帯に、基本周波数が重ならない、あるいは近接しない有線通信方式のうち、最もデータ転送速度が速い有線通信方式を選択する。このS2における有線通信方式の選択方法は、上述した第一の実施形態と同様である。そして、通信方式切替部213は、通信方式選択部212において選択された有線通信方式に切り替える。
S3では、無線送受信部211は、無線通信を行っている際のSNRを測定する。例えば、無線送受信部211は、WiFiチップ23内の処理で測定されたSNRを取得してもよい。
S4では、通信方式選択部212は、現在使用している有線通信方式が、S3において測定されたSNRに適した有線通信方式であるか否かを判定する。例えば、通信方式選択部212は、S3において測定されたSNRが第1の閾値以下、もしくは第1の閾値よりも大きい第2の閾値以上であるか否かを判定する。そして、SNRが第1の閾値よりも大きく第2の閾値未満である場合、SNRに適した有線通信方式と判定してS5に移行し、SNRが第1の閾値以下もしくは第2の閾値以上である場合、SNRに適した有線通信方式ではないと判定してS6に移行する。
上述したように、SNRが大きければ無線通信における通信速度が速くなり、逆にSNRが小さければ無線通信における通信速度は遅くなる。そこで、本実施形態では、第1の閾値よりも大きく第2の閾値未満である範囲をSNRの適正範囲として設定し、SNRが適正範囲外である場合、現在使用している有線通信方式がSNRに適した有線通信方式ではないと判定する。
なお、通信方式選択部212は、各有線通信方式について、SNRとそれに適した有線通信方式との関係を予めテーブルとして保持しておき、そのテーブルを参照してSNRに適した有線通信方式であるか否かを判定してもよい。
また、無線通信方式によって、SNRとそれに適した有線通信方式の関係は異なるため、各無線通信方式における、SNRとそれに適した有線通信方式との関係を予めテーブルとして保持しておき、そのテーブルを参照してSNRに適した有線通信方式であるか否かを判定してもよい。
S5では、無線送受信部211は、タイマーにより、S3におけるSNRの測定からの経過時間を計測し、一定期間経過後にS3に戻る。上述したように、無線通信の通信環境は一定ではなく、無線通信装置の移動や、周囲環境の変化により常に変化する。そのため、無線送受信部211は、所定の周期でSNRの測定を行うようにする。
S6では、通信方式選択部212は、S3において測定されたSNRに適した有線通信方式を選択し、通信方式切替部213は、選択された有線通信方式に切り替える。上述したように、SNRが大きければ無線通信の通信速度は速くなり、SNRが小さければ無線通信の通信速度は遅くなる。そこで、通信方式選択部212は、SNRが第1の閾値以下である場合には、SNRを適正範囲内まで上げ、無線通信の通信速度を上げるために、データノイズの電力を下げるような有線通信方式を選択する。一方、通信方式選択部212は、SNRが第2の閾値以上である場合には、SNRが十分に大きく、データノイズの電力を上げても安定した無線通信が可能であるため、データノイズの電力を上げるような有線通信方式を選択する。
本実施形態のように、有線通信規格がUSB規格である場合、データ転送速度が高いほど、データ通信の基本周波数はGHz帯に近づく。本実施形態において、無線通信の使用周波数帯はGHz帯であるため、無線通信の使用周波数帯域内のデータノイズの電力を下げるためには、有線通信のデータ転送速度を下げればよい。これにより、有線通信に使用する基本周波数を無線通信の使用周波数帯から離すことができ、データノイズの電力を下げる方向に制御することができる。このように、ノイズ電力のうち、データ通信によって発生するデータノイズの電力に関しては、有線通信方式を変更することで容易に制御可能である。
そこで、通信方式選択部212は、SNRが第2の閾値以上であり、ノイズ電力がより大きくなっても高速な無線通信が可能である場合には、使用する有線通信方式を、より高速な有線通信方式に変更する。例えば、通信方式選択部212は、使用する有線通信方式を、一段階高速な有線通信方式に変更する。これにより、無線通信の高速性を活かすことができる。ただし、現在使用している有線通信方式が最速のデータ転送速度の規格である場合には、有線通信方式の変更は行わない。
一方、通信方式選択部212は、SNRが第1の閾値以下であり、無線通信の通信速度が適正速度ではない場合には、使用する有線通信方式を、より低速な有線通信方式に変更する。例えば、通信方式選択部212は、使用する有線通信方式を、一段階低速な有線通信方式に変更する。これにより、無線通信の使用周波数帯におけるデータノイズのノイズ電力を低減することができ、無線通信の高速化が図れる。
S6において有線通信方式を変更した後は、S5に移行し、一定期間経過後に再度S3に戻る。なお、S6において、通信方式選択部212は、上述したテーブルを参照し、SNRに適した有線通信方式を選択するようにしてもよい。
以上説明したように、本実施形態における無線通信装置20は、無線通信における信号対雑音比(SNR)を取得し、取得されたSNRに基づいて、有線通信で使用する有線通信方式を、現在使用している有線通信方式から変更する。その際、無線通信装置20は、取得されたSNRが第1の閾値以下である場合には、有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が低い有線通信方式に変更する。また、無線通信装置20は、取得されたSNRが第1の閾値よりも大きい第2の閾値以上である場合には、有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が高い有線通信方式に変更する。
これにより、無線通信の通信環境が変動する中においても、適切に有線通信方式を選択し、データノイズのレベルを調整することができるので、高速な無線通信を行うことが可能になる。
上述した第一の実施形態における有線通信方式の選択方法では、無線通信については高速な無線通信が行われ、有線通信については低速な有線通信が行われる、というケースが生じ得る。この場合、電子機器10の通信システムとしては、有線通信のデータ転送速度が遅いことに律速して無線通信の通信速度が低下する場合も生じる。これに対して、本実施形態では、無線通信の通信環境によっては、より高速な有線通信方式を選択することが可能となるため、無線通信の通信速度の高速化を図ることができ、無線通信の使用周波数帯の占有率を下げることができる。さらに、無線通信に必要な電力も少なくすることが可能となる。
また、無線通信の通信環境は一定ではないため、無線通信装置20は、所定の周期でSNRを取得し、現在使用している有線通信方式がSNRに適した有線通信方式であるか否かを判定し、必要に応じて有線通信方式を変更する。このように、定期的にSNRを取得することで、無線通信の通信環境の変化に対応して、有線通信方式を適切に変更することができる。
(第三の実施形態)
次に、本発明の第三の実施形態について説明する。
上述した第一の実施形態および第二の実施形態では、無線通信の使用周波数帯に応じて、使用する有線通信方式を切り替える場合について説明した。この第三の実施形態では、電子機器(無線通信装置)が電子データの送信側であるか受信側であるかによって、使用する有線通信方式を切り替える場合について説明する。ここで、上記電子データは、コンピュータ内にあるか、コンピュータに取り込める形になっているデータであり、例えば、画像データや動画データ等を含む。
無線通信装置20がデータを受信する際にSNRが小さいと、信号がノイズによって乱れ、復調が困難になる。一方、無線通信装置20がデータを送信する際には、無線通信装置20が検知するノイズ電力の大小は無線通信に大きな影響は及ぼさない。そこで、本実施形態では、電子機器10がデータを対向機器に送信する場合と、対向機器から受信する場合とにおいて、それぞれ適切に有線通信の規格を選択することで、高速な無線通信を行う方法について説明する。
まず、電子機器10(無線通信装置20)が電子データの受信側である場合について説明する。無線通信装置20がデータの受信側である場合、無線通信の使用周波数帯域内における、有線通信から発生するデータノイズのノイズ電力が大きい場合、無線通信に大きな影響を与える。よって、電子機器10が電子データの受信側である場合には、上述した第一の実施形態や第二の実施形態において述べた方法を用いて有線通信方式を選択する。これにより、データノイズによる無線通信への悪影響を低減し、高速な無線通信が可能となる。
次に、電子機器10(無線通信装置20)が電子データ送信側である場合について説明する。無線通信装置20がデータの送信側である場合、無線通信の使用周波数帯域内における、有線通信から発生するデータノイズのノイズ電力が大きくても、無線通信に大きな影響は与えない。よって、電子機器10が電子データの送信側である場合には、最も高速な有線通信方式を選択することができる。この場合、第一の実施形態や第二の実施形態のように、有線通信方式の基本周波数を考慮する必要はない。これにより、通信システムとして高速に対向機器に対して電子データを送信することが可能となる。
なお、電子機器10は、電子データを対向機器から受信した際、対向機器に対してACKパケットのような少量のデータを送信する必要がある。よって、電子機器10が電子データの受信側である場合であっても、ACKパケットのような少量のデータを送信する際には、最速の有線通信方式を選択するようにしてもよい。
また、電子機器10は、電子データを対向機器に対して送信した後、対向機器からACKパケットのような少量のデータを受信する。しかしながら、これは少量のデータであるため、有線通信のデータノイズに起因してSNRが小さくなり、ACKパケットの通信速度が低くなっても影響は小さい。そのため、ACKパケットのような少量のデータを受信する際に、データノイズによる無線通信への影響を考慮して有線通信方式を切り替える必要はない。
ただし、電子機器10がACKパケットをほぼ受信できないような状態になると、電子機器10は、対向機器に対する電子データの再送を繰り返してしまう。したがって、そのような場合には、ACKパケットを受信する際に、第一の実施形態や第二の実施形態で述べた方法を用いて有線通信方式を選択してもよい。あるいは、上述した電子機器10(無線通信装置20)が電子データの受信側の場合に使用する有線通信方式よりも高速で、かつ最速の有線通信方式よりも低速の有線通信方式を選択してもよい。
以上説明したように、本実施形態における無線通信装置20は、無線通信の受信側であるか送信側であるかを判定し、その判定結果に応じて有線通信方式の選択方法を変更する。これにより、有線通信方式を適切に選択することができ、無線通信を高速に行うことが可能となる。無線通信装置20が電子データの送信側であるか受信側であるかを判定する方法としては、例えば、電子機器10のユーザが対向機器と通信を行う際に使用する、アプリケーションプログラム上で判定する方法を用いることができる。
(変形例)
上記各実施形態においては、電子機器10がデジタルカメラである場合について説明したが、電子機器10はデジタルカメラに限定されるものではない。例えば、電子機器10は、携帯電話、スマートフォン、タブレット端末、パーソナルコンピュータ(PC)、プリンタ、ビデオカメラ、スマートウォッチ、PDA等であってもよい。
また、上記各実施形態においては、無線通信機能と有線通信機能とを有する無線通信装置20の電子回路基板において、有線通信方式を選択する場合について説明した。しかしながら、電子機器10のメイン電子回路基板において有線通信方式の選択が行われてもよい。つまり、無線通信機能と有線通信機能とを有する無線通信装置と有線通信を行う他の通信装置が、無線通信装置が無線通信に使用する無線通信方式に応じて有線通信方式を選択してもよい。
また、無線通信装置20は、電子機器10に組み込まれている必要はなく、電子機器10とは別の装置であってもよい。この場合にも、無線通信装置20が無線通信を行うためのアンテナが、電子機器10と無線通信装置20とを接続するケーブルやコネクタ等と近い場合には、有線通信のデータノイズが無線通信に悪影響を与えるおそれがある。そのため、上記のような通信システムにも本発明を適用することで、有線通信のデータノイズが無線通信に悪影響を与えることを抑制することができる。
さらに、上記各実施形態においては、無線通信装置20が使用する無線通信規格が、無線LANの通信規格であるIEEE802.11規格シリーズであり、無線通信装置20が使用する有線通信規格がUSB規格である場合について説明した。しかしながら、無線通信装置20が使用する無線通信規格および有線通信規格は、上記に限定されるものではない。例えば、有線通信規格として、PCI Express規格を使用してもよい。PCI Express規格は、Gen1、Gen2、Gen3およびGen4といった複数の規格を含む。例えば、無線通信の使用周波数帯が2.4GHz帯である場合、PCI Express2.0(Gen2)以外の有線通信方式を選択し、使用するようにしてもよい。また、無線通信規格として、例えばIEEE802.11adのような60GHz帯を使用する無線通信規格、IoTやM2Mで使用される920MHz帯を使用する無線通信規格、LTEで使用される800、1500、1800、2100MHz帯を使用する無線通信規格であってもよい。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記録媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
10…電子機器、20…無線通信装置、21…電子回路基板、22…アンテナ、23…WiFiチップ、24…コネクタ、25…ケーブル、211…無線送受信部、212…通信方式選択部、213…通信方式切替部、214…データ送受信部

Claims (17)

  1. 使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行う第一の通信手段と、
    データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う第二の通信手段と、
    前記基本周波数が、前記第一の通信手段による前記無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替える切替手段と、を備えることを特徴とする無線通信装置。
  2. 前記切替手段は、
    前記基本周波数が前記所定の周波数帯域外である有線通信方式のうち、前記データ転送速度が最大である有線通信方式に切り替えることを特徴とする請求項1に記載の無線通信装置。
  3. 前記第一の通信手段による前記無線通信における信号対雑音比を取得する取得手段と、
    前記取得手段により取得された信号対雑音比に基づいて、前記第二の通信手段による前記有線通信で使用する有線通信方式を、現在使用している有線通信方式から変更する変更手段と、をさらに備えることを特徴とする請求項1または2に記載の無線通信装置。
  4. 前記変更手段は、
    前記取得手段により取得された信号対雑音比が第1の閾値以下である場合、前記第二の通信手段による前記有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が低い有線通信方式に変更し、
    前記取得手段により取得された信号対雑音比が前記第1の閾値よりも大きい第2の閾値以上である場合、前記第二の通信手段による前記有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が高い有線通信方式に変更することを特徴とする請求項3に記載の無線通信装置。
  5. 前記取得手段は、所定の周期で信号対雑音比を取得することを特徴とする請求項3または4に記載の無線通信装置。
  6. 前記無線通信装置が前記無線通信の受信側であるか送信側であるかを判定する判定手段をさらに備え、
    前記切替手段は、
    前記判定手段により前記無線通信の受信側であると判定された場合、前記基本周波数が前記所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替えることを特徴とする請求項1から5のいずれか1項に記載の無線通信装置。
  7. 前記切替手段は、
    前記判定手段により前記無線通信の送信側であると判定された場合、前記第二の通信手段による前記有線通信で使用する有線通信方式を、前記第一の通信手段による前記無線通信の使用周波数帯にかかわらず、前記複数の有線通信方式のうちデータ転送速度が最大である有線通信方式に切り替えることを特徴とする請求項6に記載の無線通信装置。
  8. 前記第二の通信手段は、
    互換性を有する複数の有線通信方式に対応していることを特徴とする請求項1から7のいずれか1項に記載の無線通信装置。
  9. 前記第二の通信手段は、
    複数のUSB規格に準じた有線通信方式に対応していることを特徴とする請求項1から8のいずれか1項に記載の無線通信装置。
  10. 前記第一の通信手段は、
    前記使用周波数帯が、2.4GHz帯および5GHz帯の少なくとも一方である複数の無線通信方式に対応していることを特徴とする請求項1から9のいずれか1項に記載の無線通信装置。
  11. 前記切替手段は、
    前記第一の通信手段による前記無線通信の使用周波数帯が2.4GHz帯である場合、前記所定の周波数帯域を2.4GHz以上2.5GHz以下の周波数帯域に設定することを特徴とする請求項10に記載の無線通信装置。
  12. 前記切替手段は、
    前記第一の通信手段による前記無線通信の使用周波数帯が5GHz帯である場合、前記所定の周波数帯域を5GHz以上6GHz以下の周波数帯域に設定することを特徴とする請求項10または11に記載の無線通信装置。
  13. 前記切替手段は、前記無線通信の使用周波数帯がGHz帯域である場合に、前記有線通信で使用する有線通信方式を、MHz帯域に基本周波数がある有線通信方式に切り替えることを特徴とする請求項1から12のいずれか1項に記載の無線通信装置。
  14. データ通信に使用する基本周波数が異なる複数の有線通信方式に対応し、他の無線通信装置と有線通信を行う通信手段と、
    前記基本周波数が、前記他の無線通信装置による無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記通信手段による前記有線通信で使用する有線通信方式を切り替える切替手段と、を備えることを特徴とする通信装置。
  15. 使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行うとともに、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う無線通信装置の制御方法であって、
    前記基本周波数が、前記無線通信装置における前記無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記無線通信装置が前記有線通信で使用する有線通信方式を選択するステップと、
    前記無線通信装置が有線通信で使用する有線通信方式を、選択された有線通信方式に切り替えるステップを、を含むことを特徴とする制御方法。
  16. データ通信に使用する基本周波数が異なる複数の有線通信方式に対応し、他の無線通信装置と有線通信を行う通信装置の制御方法であって、
    前記基本周波数が、前記他の無線通信装置における無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記通信装置が前記有線通信で使用する有線通信方式を選択するステップと、
    前記通信装置が有線通信で使用する有線通信方式を、選択された有線通信方式に切り替えるステップを、を含むことを特徴とする制御方法。
  17. コンピュータを、請求項1から13のいずれか1項に記載された無線通信装置の各手段として機能させるためのプログラム。
JP2017111360A 2017-06-06 2017-06-06 無線通信装置およびその制御方法 Active JP7140470B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017111360A JP7140470B2 (ja) 2017-06-06 2017-06-06 無線通信装置およびその制御方法
PCT/JP2018/021043 WO2018225624A1 (ja) 2017-06-06 2018-05-31 無線通信装置およびその制御方法
US16/704,351 US11539391B2 (en) 2017-06-06 2019-12-05 Wireless communication apparatus and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111360A JP7140470B2 (ja) 2017-06-06 2017-06-06 無線通信装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2018207325A true JP2018207325A (ja) 2018-12-27
JP7140470B2 JP7140470B2 (ja) 2022-09-21

Family

ID=64958329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111360A Active JP7140470B2 (ja) 2017-06-06 2017-06-06 無線通信装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP7140470B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114517A1 (ko) * 2020-11-27 2022-06-02 삼성전자 주식회사 전자 디바이스와 통신하는 호스트 디바이스 및 호스트 디바이스의 통신 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073827A1 (en) * 2002-12-19 2006-04-06 Nokia Corporation System and handover mechanism in frequency multilple band environment and equipment therefor
WO2017088308A1 (zh) * 2015-11-23 2017-06-01 西安中兴新软件有限责任公司 一种通用串行总线接口模式控制方法及装置、存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060073827A1 (en) * 2002-12-19 2006-04-06 Nokia Corporation System and handover mechanism in frequency multilple band environment and equipment therefor
WO2017088308A1 (zh) * 2015-11-23 2017-06-01 西安中兴新软件有限责任公司 一种通用串行总线接口模式控制方法及装置、存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114517A1 (ko) * 2020-11-27 2022-06-02 삼성전자 주식회사 전자 디바이스와 통신하는 호스트 디바이스 및 호스트 디바이스의 통신 방법

Also Published As

Publication number Publication date
JP7140470B2 (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
CN109257958B (zh) 用于物理随机接入信道重传的装置与方法
CN106230492B (zh) 一种终端天线的切换方法、装置及移动终端
KR102566509B1 (ko) 동적 시분할 듀플렉스 환경에서 셀 간 간섭 완화 방법 및 그 전자 장치
CN103974267A (zh) 降低干扰的方法、装置以及移动终端
CN110011743B (zh) 无线通信方法及相关装置
WO2016186025A1 (ja) 端末装置および通信システム
CN110768770B (zh) 一种参考信号发送、接收方法、装置及设备
US11539391B2 (en) Wireless communication apparatus and control method therefor
KR102342740B1 (ko) 신호 송수신 방법 및 장치
JP7130366B2 (ja) 通信装置およびその制御方法
EP3534660A1 (en) Data transmission method and device
JP2018207325A (ja) 無線通信装置およびその制御方法
CN108282871B (zh) 接收节点、发送节点和传输方法
EP4221398A1 (en) Method and apparatus for determining transmission frequency, and communication device
JP6507758B2 (ja) 通信モジュール及び通信制御方法
TW202241174A (zh) 用於探測參考訊號之部分探測方法及其使用者設備
JP5676542B2 (ja) クロック制御装置、クロック制御方法、クロック制御プログラム
CN114080043B (zh) 资源传输方法、装置及通信设备
EP3018829A1 (en) Terminal and method for improving terminal reception sensitivity
JP6773336B2 (ja) 無線通信端末装置、無線通信システム、制御方法、及びプログラム
US20230361896A1 (en) Techniques for Pathloss Reference Signal Measurement in Unlicensed Bands
JP2010161469A (ja) 無線端末
JP7004376B2 (ja) 無線通信装置、および、受信感度制御方法
KR20220029131A (ko) 무선 통신을 수행하는 전자 장치 및 그 방법
JP2017216520A (ja) 通信機器、通信方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R151 Written notification of patent or utility model registration

Ref document number: 7140470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151