WO2018225624A1 - 無線通信装置およびその制御方法 - Google Patents

無線通信装置およびその制御方法 Download PDF

Info

Publication number
WO2018225624A1
WO2018225624A1 PCT/JP2018/021043 JP2018021043W WO2018225624A1 WO 2018225624 A1 WO2018225624 A1 WO 2018225624A1 JP 2018021043 W JP2018021043 W JP 2018021043W WO 2018225624 A1 WO2018225624 A1 WO 2018225624A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
wireless communication
wired communication
wired
wireless
Prior art date
Application number
PCT/JP2018/021043
Other languages
English (en)
French (fr)
Inventor
元 志村
裕彦 猪膝
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017111360A external-priority patent/JP7140470B2/ja
Priority claimed from JP2017230042A external-priority patent/JP7130366B2/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018225624A1 publication Critical patent/WO2018225624A1/ja
Priority to US16/704,351 priority Critical patent/US11539391B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]

Definitions

  • the present invention relates to a wireless communication apparatus and a control method thereof.
  • Patent Document 1 in a data communication device to which a wireless communication device is connected, clock control is performed so that the frequency multiplied by the operation clock of the main CPU does not interfere with the frequency band used by the wireless communication device for wireless communication. The point is disclosed.
  • an object of the present invention is to reduce an adverse effect of noise generated by data communication of wired communication on wireless communication performance.
  • an aspect of a wireless communication apparatus includes a first communication unit that performs wireless communication corresponding to a plurality of wireless communication schemes using different frequency bands, and a basic used for data communication.
  • Second communication means for performing wired communication corresponding to a plurality of wired communication systems having different frequencies, and the basic frequency is out of a predetermined frequency band including a use frequency band of the wireless communication by the first communication means.
  • switching means for switching a wired communication system used in the wired communication by the second communication means is provided.
  • composition of electronic equipment provided with a radio communication apparatus concerning this embodiment. It is a figure which shows the structural example of a radio
  • FIG. 1 is a configuration example of an electronic device 10 including a wireless communication device 20 according to the present embodiment.
  • the electronic device 10 can be a digital camera, for example, and the wireless communication device 20 can be a wireless communication module that communicates with another wireless communication device by a wireless signal.
  • the electronic device 10 in the present embodiment can simultaneously execute a plurality of communication applications (hereinafter also referred to as “communication apps”) using a plurality of wireless communications with different use frequencies.
  • communication apps a plurality of communication applications
  • the wireless communication device 20 has a wireless communication function corresponding to a plurality of wireless communication methods compliant with a plurality of wireless communication standards.
  • the wireless communication standard used by the wireless communication device 20 is an IEEE 802.11 standard series that is a wireless LAN communication standard.
  • the IEEE 802.11 standard series includes at least the IEEE 802.11a standard, the IEEE 802.11b standard, the IEEE 802.11g standard, the IEEE 802.11n standard, the IEEE 802.11ac standard, and the IEEE 802.11ax standard, but other IEEE 802.11 standard.
  • the frequency band (used frequency band) used for performing wireless communication is at least one of the 2.4 GHz band and the 5 GHz band.
  • the wireless communication device 20 performs, for example, a plurality of wireless communication conforming to a plurality of wireless communication standards such as the IEEE802.11a standard using the 5 GHz band and the IEEE802.11b standard using the 2.4 GHz band according to a communication application to be used. Can be done simultaneously.
  • the wireless communication device 20 performs wireless communication “simultaneously” when, for example, the wireless communication device 20 participates or constructs simultaneously in a plurality of wireless networks using different frequency bands such as a 5 GHz band and a 2.4 GHz band. Including being in a state of When the own apparatus operates as an access point (AP), it is in a state where a plurality of wireless networks using different frequency bands are being constructed simultaneously.
  • AP access point
  • the own device when the own device operates as a device (STA) connected to an access point (AP), it is in a state where it is simultaneously participating in a plurality of wireless networks using different frequency bands. Or, when the own device is operating as an AP and STA, the frequency band of the wireless network constructed by the own device is different from the frequency band of the wireless network in which the own device is participating. It is in a state.
  • the fact that the wireless communication device 20 performs wireless communication “simultaneously” means that actual data communication by wireless is performed by switching each of the different frequency bands in a time division manner, but the wireless communication device 20 is a wireless network of a different frequency band Including being in a state of participating or building at the same time. Or since the radio
  • the wireless communication device 20 is connected to an electronic circuit board 21, an antenna 22 that transmits and receives electromagnetic waves for wireless communication, a WiFi chip 23, a connector 24, and one end of the connector 24.
  • Cable 25 for wired communication is a flexible cable, and the other end of the cable 25 is connected to a connector 11 connected to a main electronic circuit board (not shown) of the electronic device 10. That is, the electronic circuit board 21 of the wireless communication device 20 is connected to the main electronic circuit board of the electronic device 10 by wire. Between the electronic circuit board 21 and the main electronic circuit board, data (for example, video data) through which the wireless communication device 20 performs wireless communication is transmitted.
  • the wireless communication device 20 has a wireless communication function and a wired communication function.
  • the wireless communication device 20 has a wired communication function corresponding to a plurality of wired communication systems compliant with a plurality of wired communication standards. For example, it is assumed that the wireless communication device 20 can use USB 1.0, USB 1.1, USB 2.0, USB 3.0, and USB 3.1 as wired communication standards.
  • noise (data noise N) caused by data communication may occur when performing data communication. If the antenna 22 receives this data noise N, it may adversely affect wireless communication.
  • the wireless communication device 20 has a wireless communication function and a wired communication function. When the wireless communication device 20 is incorporated in a small electronic device 10, the electronic circuit board 21 itself may be very small.
  • the distance between the antenna 22 provided on the electronic circuit board 21 for performing wireless communication, the cable 25 for performing wired communication, the connector 24, the wiring on the electronic circuit board 21, and the like is reduced. Then, it becomes easy for the antenna 22 to receive the data noise N of wired communication, and the wireless communication is liable to be adversely affected.
  • the cable 25 is a flexible cable, and its shield performance is weaker than that of a general USB dedicated cable, so that it easily generates data noise N in wired communication.
  • the data noise N of the wire communication is generated in different frequency bands depending on the data transfer speed of the wire communication.
  • the data transfer rate of the wired communication is changed by switching the wired communication method (standard) according to the wireless communication method (standard) used by the wireless communication device 20 for wireless communication, and the data noise N is increased.
  • the wired communication system (standard) is switched so that the fundamental frequency used for USB data communication is outside a predetermined frequency band including the use frequency band of wireless communication.
  • the wireless communication device 20 can simultaneously perform a plurality of wireless communications with different use frequency bands. Therefore, in the present embodiment, the wired communication system (standard) is switched so that the fundamental frequency used for USB data communication is outside a predetermined frequency band including the frequency bands used for a plurality of wireless communication performed simultaneously.
  • FIG. 3 is a block diagram illustrating an example of a hardware configuration of the wireless communication device 20.
  • the electronic device 10 includes a communication control unit 100 that controls communication with the wireless communication device 20.
  • the communication control unit 100 can be mounted on the main electronic circuit board described above, for example.
  • the communication control unit 100 includes an I / F unit 101, a host CPU 102, and a storage unit 103.
  • the I / F unit 101 is a USB interface.
  • USB 1.0 to USB 3.1 have compatibility, the I / F unit 101 can operate as any interface from USB 1.0 to USB 3.1. Switching of the operation of the I / F unit 101 is performed by the host CPU 102.
  • the host CPU 102 is composed of one or a plurality of CPUs, and comprehensively controls operations in the electronic device 10.
  • the storage unit 103 stores a control program and the like necessary for the host CPU 102 to execute processing.
  • the storage unit 103 can be configured by a storage medium such as one or more ROMs, RAMs, HDDs, flash memories, or removable SD cards.
  • the host CPU 102 implements various functional operations by executing a control program stored in the storage unit 103.
  • the electronic device 10 since the electronic device 10 is a digital camera, the electronic device 10 includes an imaging unit, a display unit, and the like in addition to the hardware configuration illustrated in FIG.
  • the wireless communication device 20 includes an I / F unit 201, a control unit 202, a storage unit 203, a wireless unit 204, and an antenna control unit 205.
  • the I / F unit 201 is a USB interface.
  • the I / F unit 201 is connected to the I / F unit 101 of the communication control unit 100 via the cable 25 shown in FIG. As with the I / F unit 101, the I / F unit 201 can operate as an interface from USB 1.0 to USB 3.1. Switching of the operation of the I / F unit 201 is performed by the control unit 202.
  • the control unit 202 comprehensively controls operations in the wireless communication device 20.
  • the control unit 202 can be configured by one or a plurality of CPUs.
  • the storage unit 203 includes, for example, one or a plurality of storage media such as a ROM and a RAM, and stores a control program and the like necessary for the control unit 202 to execute processing.
  • the wireless unit 204 performs wireless communication conforming to the IEEE 802.11 standard series.
  • the wireless unit 204 can be configured by the WiFi chip 23.
  • the antenna control unit 205 performs output control of the above-described antenna 22 that can communicate in the 2.4 GHz band and / or the 5 GHz band.
  • FIG. 4 is an example of a software function block of the electronic device 10.
  • the functions of the units shown in FIG. 4 can be realized by the CPU of the communication control unit 100 or the wireless communication device 20 executing a program.
  • each functional block shown below is described as a function realized as a software program, but a part or all of the functional block included in the functional block may be realized by hardware.
  • a dedicated circuit may be automatically generated on the FPGA from a program for realizing each step by using a predetermined compiler.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • a Gate Array circuit may be formed in the same manner as an FPGA and realized as hardware. Further, it may be realized by an ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • the communication control unit 100 includes a communication application unit 111, a wireless control unit 112, a communication method selection unit 113, a communication method switching unit 114, and a data transmission / reception unit 115.
  • the communication application unit 111 executes a communication application that transfers data to an external communication device by wireless communication of the wireless communication device 20.
  • the communication application executed by the communication application unit 111 can be, for example, a communication application that transfers an image captured by a digital camera to an external communication device such as a smartphone or a PC.
  • the communication application unit 111 can simultaneously execute a plurality of communication applications. In addition, in order to avoid wireless communication interference between communication applications, the use frequency of wireless communication used by each communication application is different.
  • the wireless control unit 112 sets a wireless communication method used for wireless communication of the wireless communication device 20 according to a use frequency of wireless communication used by the communication application executed by the communication application unit 111, and the wireless communication device 20 It controls a wireless transmission / reception unit 211 described later.
  • the communication method selection unit 113 selects a wired communication method used for wired communication by the data transmission / reception unit 115 described later according to the wireless communication method used for wireless communication by the wireless communication device 20. Specifically, the communication method selection unit 113 selects a wired communication method in which the basic frequency of wired communication does not overlap or is not close to the frequency band used for wireless communication. When a plurality of wireless communications are performed at the same time in the wireless communication device 20, the communication method selection unit 113 does not overlap the basic frequency of the wired communication with the used frequency band of the plurality of wireless communications to be used or does not approach the wired communication method. Select. A method for selecting the wired communication method will be described later.
  • the communication method switching unit 114 switches the wired communication method used for the wired communication by the data transmission / reception unit 115 to the wired communication method selected by the communication method selection unit 113.
  • the data transmission / reception unit 115 performs data communication with the wireless communication device 20 by a wired communication method compliant with the USB standard.
  • the wireless communication device 20 includes a wireless transmission / reception unit 211, a communication method switching unit 212, and a data transmission / reception unit 213.
  • the wireless transmission / reception unit 211 transmits / receives a wireless signal to / from an external wireless communication device by a wireless communication method compliant with the IEEE 802.11 standard series.
  • the communication method switching unit 212 switches the wired communication method used for the wired communication by the data transmission / reception unit 213 to the wired communication method selected by the communication method selection unit 113 of the communication control unit 100.
  • the data transmission / reception unit 213 performs data communication by a wired communication method compliant with the USB standard.
  • FIG. 5 is a diagram showing the relationship between the physical layer data transfer rate, the effective data transfer rate of the application layer, and the fundamental frequency in the USB standard.
  • the effective data transfer rate of the application layer is not a theoretical data transfer rate but a data transfer rate that can be actually obtained when the application is used.
  • the fundamental frequency is a frequency at which energy is maximized in a frequency band used for data communication. If this fundamental frequency overlaps the frequency band used for wireless communication, data noise N generated by data communication enters from the antenna 22 and adversely affects wireless communication.
  • USB standard a standard with a high data transfer rate has been formulated, and there is a standard whose basic frequency overlaps or is close to the 2.4 GHz band or 5 GHz band used in the wireless LAN.
  • the fundamental frequency used for data transfer is 2.5 GHz
  • the frequency band of data noise N is close to the 2.4 GHz band used in the wireless LAN.
  • the fundamental frequency used for data transfer is 5 GHz
  • the frequency band of data noise N overlaps with the 5 GHz band used in the wireless LAN.
  • the data noise N generated at the fundamental frequency unlike the data noise N generated at the harmonics, has a large noise level and thus has a great influence on the wireless communication.
  • the communication method selection unit 113 in FIG. 4 selects a wired communication method in which the basic frequency of wired communication does not overlap or is not close to the use frequency band of wireless communication.
  • the communication method selection unit 113 uses a wired communication that conforms to a wired communication standard other than USB 3.0 in which the basic frequency of the wired communication is closest to the used frequency band. Select a method.
  • the communication method selection unit 113 selects a wired communication method conforming to a wired communication standard other than USB 3.1 in which the basic frequency of the wired communication matches the used frequency band. select.
  • the communication method selection unit 113 selects a wired communication method compliant with a wired communication standard other than USB 3.0 and USB 3.1. To do.
  • the communication method selection unit 113 selects the wired communication method so that the basic frequency of wired communication is outside the predetermined frequency band including the use frequency band of wireless communication.
  • the predetermined frequency band is set to a frequency band of 2.4 GHz to 2.5 GHz, more preferably a frequency band of 2 GHz to 3 GHz.
  • the predetermined frequency band is set to a frequency band of 5 GHz to 6 GHz, more preferably a frequency band of 4 GHz to 7 GHz.
  • the predetermined frequency band is not necessarily limited to the above 2 GHz to 3 GHz or 4 GHz to 7 GHz. is not.
  • the communication method selection unit 113 performs wired communication that maximizes the data transfer speed among wired communication methods in which the fundamental frequency is outside the predetermined frequency band including the use frequency band of wireless communication. Select a method. Specifically, when the 2.4 GHz band is used in the wireless LAN, the communication method selection unit 113 is wired based on USB 3.1, which has a maximum data transfer speed with a wired communication standard other than USB 3.0. Select the communication method. Note that when the wireless communication device 20 can use USB 1.0 to USB 3.0 as a wired communication standard and cannot use USB 3.1, the data transfer speed is the maximum with a wired communication standard other than USB 3.0. Select a wired communication system compliant with USB 2.0.
  • FIG. 6A is an image diagram of a frequency spectrum of noise when the noise source is a clock
  • FIG. 6B is an image diagram of a frequency spectrum of noise when the noise source is data communication. Since the clock generally repeats ON and OFF at a constant cycle, when the noise source is a clock, the clock noise appears in a narrow band as shown in FIG. 6A. Therefore, when clock noise has an adverse effect on wireless communication, it is possible to easily shift narrow-band clock noise outside the frequency band used for wireless communication by changing the clock frequency slightly. Yes, the adverse effect on wireless communication can be greatly reduced. On the other hand, in data communication, since the ON / OFF cycle is generally not constant, when the noise source is data communication, data noise appears in a wide band as shown in FIG. 6B.
  • noise components exist in the frequency band used for wireless communication even when the fundamental frequency, which is the frequency at which the energy is about the maximum in the frequency band used for data communication, does not overlap the frequency band used for wireless communication. May end up. That is, depending on the situation, wireless communication performance may be greatly degraded.
  • the data noise is broadband. Therefore, noise components exist in the frequency band used for wireless communication even when the fundamental frequency, which is the frequency at which the energy is about the maximum in the frequency band used for data communication, does not overlap the frequency band used for wireless communication. May end up. Therefore, when the 2.4 GHz band is used in the wireless LAN, the wired communication method conforming to USB 3.1 whose fundamental frequency is the GHz band is not selected, but the fundamental frequency is the MHz band and the data USB 2.0 that maximizes the transfer speed may be selected.
  • the communication method selection unit 113 selects a wired communication method that complies with USB 3.0 that has a maximum data transfer speed with a wire communication standard other than USB 3.1. .
  • the wireless communication device 20 can use USB 1.0, USB 1.1, USB 2.0, and USB 3.0 as wired communication standards, and even when USB 3.1 cannot be used, wired communication that conforms to USB 3.0. Select a method.
  • the data noise has a wide band. Therefore, noise components exist in the frequency band used for wireless communication even when the fundamental frequency, which is the frequency at which the energy is about the maximum in the frequency band used for data communication, does not overlap the frequency band used for wireless communication. May end up.
  • the basic frequency is the MHz band and the data transfer speed is not selected, instead of selecting a wired communication system conforming to USB3.0 whose fundamental frequency is the GHz band. You may select USB2.0 that maximizes.
  • FIG. 7 is a sequence diagram between the communication control unit 100 and the wireless communication device 20.
  • the alphabet S shall mean a step.
  • the communication control unit 100 activates the first communication application 1 and sets the use frequency (radio frequency) of the wireless communication used by the communication application 1 to the 5 GHz band (S101).
  • the communication control unit 100 selects a wired communication method in which the fundamental frequency does not overlap with the 5 GHz frequency band (S102). Based on the information shown in FIG. 5, USB3.0 is selected here as the wired communication method.
  • the communication control unit 100 transmits an instruction to set the wired communication method to USB 3.0 to the wireless communication device 20 (S103). Accordingly, the wireless communication device 20 that has received the instruction sets the wired communication method to USB 3.0.
  • the communication control unit 100 transmits an instruction to activate the wireless transmission / reception unit 211 by setting the use frequency of the wireless communication to the 5 GHz band to the wireless communication device 20 (S104).
  • the wireless communication device 20 that has received the instruction starts wireless communication using the 5 GHz band with a communication device such as a PC or a smartphone (S105).
  • the communication control unit 100 activates the second communication application 2 (S106). At this time, the communication control unit 100 sets the use frequency of the wireless communication used in the communication application 2 to the 2.4 GHz band in order to avoid interference with the communication application 1 that is already activated. Next, the communication control unit 100 selects a wired communication method in which the fundamental frequency does not overlap with the already used frequency band of the 5 GHz band and the newly activated 2.4 GHz band (S107). Based on the information shown in FIG. 5, USB 2.0 is selected as the wired communication method here. Next, the communication control unit 100 transmits an instruction to switch the wired communication method to USB 2.0 to the wireless communication device 20 (S108).
  • the wireless communication device 20 that has received the instruction switches the wired communication method to USB 2.0. Further, the communication control unit 100 transmits an instruction to activate the wireless transmission / reception unit 211 by setting the use frequency of the wireless communication to the 2.4 GHz band to the wireless communication device 20 (S109). As a result, the wireless communication device 20 that has received the instruction starts wireless communication using the 2.4 GHz band in addition to the 5 GHz band (S110). As described above, the wired communication method used in the wired communication is switched so that the fundamental frequency does not overlap with any of the plurality of wireless communication usage frequencies used in the plurality of communication applications.
  • FIG. 8 is a flowchart illustrating a selection process procedure of a wired communication method when the communication control unit 100 activates a predetermined communication application.
  • the processing illustrated in FIG. 8 is realized by the CPU included in the communication control unit 100 reading and executing a necessary program. However, the processing of FIG. 8 may be realized by operating at least a part of each functional module shown in FIG. 4 as dedicated hardware. In this case, the dedicated hardware operates based on the control of the CPU.
  • the communication application unit 111 starts a communication application based on an instruction from the user of the electronic device 10 and sets a use frequency (wireless frequency) of wireless communication used in the communication application.
  • the communication frequency selection unit 113 selects a wired communication method whose basic frequency does not overlap with the use frequency of the wireless communication that is used in all active communication applications. For example, when a communication application that uses a frequency band of 5 GHz band has already been activated and a communication application that uses a frequency band of 2.4 GHz band is newly activated, it is necessary to avoid both frequency bands. In this case, the communication method selection unit 113 selects a wired communication method compliant with USG 2.0. Note that if there is no active communication app, the communication method selection unit 113 selects a wired communication method in consideration of only the wireless communication frequency used by the newly activated communication app.
  • the data transmission / reception unit 115 performs data transmission / reception by the communication application. That is, the data transmission / reception unit 115 transmits data to the wireless communication device 20 by the wired communication method selected in S2.
  • the communication application unit 111 determines whether or not an instruction to end the communication application from the user has been detected. When the instruction to end is detected, the process in FIG. 8 ends, and the instruction to end is not detected.
  • the communication control unit 100 determines whether or not there is a change in the use frequency of the wireless communication being used by the communication application. If a change is detected, the process proceeds to S6, and if no change is detected, the process proceeds to S3.
  • the change of the use frequency of wireless communication may be instructed by the user, or the wireless communication device 20 may autonomously switch to a use frequency with better communication quality depending on the communication status.
  • the communication control unit 100 determines whether or not switching of the currently used wired communication method is necessary in accordance with the change in the use frequency of the wireless communication. If switching is necessary, the communication control unit 100 proceeds to S2. If the wired communication method is selected again and switching is not necessary, the process proceeds to S3.
  • the wireless communication device 20 includes a wireless communication function that supports a plurality of wireless communication systems, and a wired communication function that supports a plurality of wired communication systems that use different fundamental frequencies for data communication.
  • the wireless communication device 20 can simultaneously perform a plurality of wireless communications with different use frequencies.
  • the wireless communication device 20 uses wired communication so that the fundamental frequency is outside a predetermined frequency band including a use frequency band of the plurality of wireless communications performed simultaneously. Switch the communication method.
  • the wireless communication device 20 switches the wired communication method so that the basic frequency does not overlap any of the usage frequencies of the plurality of wireless communications even when a plurality of wireless communications with different usage frequencies are simultaneously performed. Can do. Thereby, it can suppress that the noise which generate
  • the wireless communication device 20 As a wired communication system (standard), there is a parallel communication system such as SDIO (Secure Digital Input / Output).
  • SDIO Secure Digital Input / Output
  • the frequency of the clock signal propagating through the SDIO clock line can be changed according to the frequency band used for wireless communication.
  • USB does not have a clock line, and the data transfer rate cannot be arbitrarily changed.
  • the wireless communication device 20 has a wired communication function corresponding to a plurality of wired communication systems having different fundamental frequencies used for data communication, and performs wired communication according to the frequency band used for wireless communication. Switch the method. Therefore, even when a wired communication method that does not have a clock line and the data transfer rate cannot be changed arbitrarily is adopted, noise generated by data communication is suppressed from adversely affecting wireless communication, and wireless communication performance is improved. Deterioration can be reduced.
  • the wireless communication device 20 selects and switches the wired communication system whose basic frequency is outside the predetermined frequency band and whose data transfer speed is the maximum among the plurality of wired communication systems. You can also. In this case, it is possible to make use of the high speed of the wireless communication while suppressing the noise generated by the data communication from adversely affecting the wireless communication.
  • the wireless communication device 20 employs the USB standard as a wired communication standard.
  • the USB standard has a plurality of standards with different data transfer rates, and they are compatible. Since USB 1.1 to USB 3.1 are upwardly compatible, if a wired communication system compliant with the USB standard is adopted, the data transfer speed can be switched without changing the hardware. That is, it is not necessary to mount a plurality of wired communication hardware on the electronic circuit board 21 when it is desired to switch the data transfer rate of the wired communication according to the frequency band used for wireless communication. Therefore, the cost cut and the substrate area can be reduced accordingly.
  • FIG. 9 is a sequence diagram between the communication control unit 100 and the wireless communication device 20.
  • the communication control unit 100 activates a predetermined communication application, and sets the use frequency (radio frequency) of wireless communication used by the communication application to the 5 GHz band (S121).
  • the communication control unit 100 selects a wired communication method in which the fundamental frequency does not overlap with the 5 GHz frequency band (S122). Based on the information shown in FIG. 5, USB3.0 is selected here as the wired communication method.
  • the communication control unit 100 transmits an instruction to set the wired communication method to USB 3.0 to the wireless communication device 20 (S123).
  • the wireless communication device 20 that has received the instruction sets the wired communication method to USB 3.0. Further, the communication control unit 100 transmits an instruction to activate the wireless transmission / reception unit 211 by setting the use frequency of the wireless communication to the 5 GHz band to the wireless communication device 20 (S124). As a result, the wireless communication device 20 that has received the instruction starts wireless communication using the 5 GHz band with a communication device such as a PC or a smartphone (S125).
  • a communication device such as a PC or a smartphone
  • the wireless communication device 20 When receiving the management frame from the counterpart device for wireless communication (S126), the wireless communication device 20 notifies the communication control unit 100 of information included in the received management frame.
  • the wireless communication device 20 When operating as a wireless LAN STA (Station: terminal station), the wireless communication device 20 receives a management frame called a Beacon frame from a partner device operating as an AP (Access Point: control station). This Beacon frame includes information on the data transfer rate of wireless communication supported by the AP.
  • the wireless communication device 20 when the wireless communication device 20 operates as a wireless LAN AP, the wireless communication device 20 receives a management frame called an association request frame when a partner device operating as a STA connects to a wireless network.
  • This Association Request frame includes information on the data transfer rate of the wireless communication requested by the STA.
  • the wireless communication device 20 When receiving the management frame from the counterpart device for wireless communication, the wireless communication device 20 notifies the communication control 100 of information (data transfer rate information) regarding the data transfer rate of the wireless communication included in the management frame (S127).
  • the data transfer rate of wireless communication is 150 Mbps.
  • the communication control unit 100 reselects the wired communication method based on the received data transfer rate information and the effective data transfer rate of the wired communication method ( S128).
  • the data transfer rate of wireless communication is 150 Mbps
  • USB2.0, USB3.0, or USB3.1 having an effective data transfer rate of 150 Mbps or higher is selected based on the information shown in FIG. It can be seen that the transfer rate is sufficient.
  • the communication control unit 100 performs wired communication in which the fundamental frequency does not overlap with all the use frequencies of the wireless communication that the wireless communication device 20 may use from USB 2.0, USB 3.0, and USB 3.1. Select a method. For example, when there is a possibility that the wireless communication device 20 uses the 2.4 GHz band and the 5 GHz band, USB 2.0 whose basic frequency does not overlap with them is selected.
  • the communication control unit 100 transmits an instruction to switch the wired communication method to USB 2.0 to the wireless communication device 20 (S129).
  • the wireless communication device 20 that has received the instruction switches the wired communication method to USB 2.0.
  • the wireless communication device 20 switches the use frequency of the wireless communication to the 2.4 GHz band by detecting a decrease in the communication quality of the 5 GHz band (S130), and the 2.4 GHz band communication is started. (S131). Even in such a case, since the wired communication system has been switched to USB 2.0 in advance, switching of the wired communication system does not occur due to switching of the wireless communication usage frequency.
  • the wireless communication device 20 acquires the data transfer rate of the wireless communication using the management frame received from the partner device of the wireless communication. It is not limited.
  • the data transfer rate determined based on the wireless communication standard corresponding to the wireless communication device 20 may be acquired. That is, when the wireless communication device 20 is compatible with two wireless communication standards, the IEEE802.11a standard and the IEEE802.11b standard, the maximum data transfer rate of wireless communication is 54 Mbps. Therefore, the maximum data transfer rate may be acquired as the data transfer rate for wireless communication. In this case, the data transfer rate of wireless communication can be acquired without receiving a management frame.
  • FIG. 10 is a flowchart illustrating a selection process procedure of a wired communication method when the communication control unit 100 activates a predetermined communication application.
  • the processing illustrated in FIG. 10 is realized by the CPU included in the communication control unit 100 reading and executing a necessary program. However, the processing of FIG. 10 may be realized by operating at least a part of each functional module shown in FIG. 4 as dedicated hardware. In this case, the dedicated hardware operates based on the control of the CPU.
  • the communication application unit 111 performs the same processing as in S1 of FIG.
  • the communication method selection unit 113 selects a wired communication method in which the fundamental frequency does not overlap with the use frequency of the wireless communication used by the active communication application.
  • the data transmitting / receiving unit 115 performs the same process as in S3 of FIG.
  • the communication application unit 111 performs the same process as in S24 of FIG.
  • the communication control unit 100 determines whether or not there is a change in the use frequency of the wireless communication being used by the communication application. If a change is detected, the process proceeds to S26. If no change is detected, the process proceeds to S27.
  • the communication control unit 100 determines whether or not switching of the currently used wired communication method is necessary in accordance with the change of the wireless communication usage frequency. If the communication control unit 100 determines that switching is necessary, the communication control unit 100 proceeds to S22 and selects the wired communication method again. If it is determined that switching is not necessary, the communication control unit 100 proceeds to S27.
  • the communication control unit 100 determines whether the wireless communication device 20 has received a management frame from a wireless communication partner such as a smartphone or a PC. Specifically, the communication control unit 100 determines whether data transfer rate information has been received from the wireless communication device 20. Then, the communication control unit 100 proceeds to S28 when the data transfer rate information is received, and proceeds to S24 when the data transfer rate information is not received. In S28, the communication control unit 100 determines whether there is a switchable wired communication system based on the data transfer rate information.
  • the switchable wired communication system has an effective data transfer rate that is equal to or higher than the data transfer rate of wireless communication, and the fundamental frequency does not overlap with all the use frequencies of wireless communication supported by the wireless communication device 20.
  • the communication control unit 100 determines that the corresponding wired communication method does not exist, the communication control unit 100 proceeds to S24. If the communication control unit 100 determines that the corresponding wired communication method exists, the communication control unit 100 proceeds to S29. Select a new method. For example, consider a case where the wireless communication data transfer rate is 150 Mbps and the wireless communication usage frequency supported by the wireless communication device 20 is in the 2.4 GHz band and the 5 GHz band. In this case, USB 2.0 that has an effective data transfer rate of 150 Mbps or more and operates at a fundamental frequency that does not overlap the 2.4 GHz band and the 5 GHz band is selected.
  • the wireless communication device 20 includes a wireless communication function that supports a plurality of wireless communication systems, and a wired communication function that supports a plurality of wired communication systems that use different fundamental frequencies for data communication.
  • the wireless communication device 20 acquires the data transfer rate of wireless communication.
  • the wireless communication device 20 is configured such that the fundamental frequency is outside a predetermined frequency band including the corresponding frequency bands used for wireless communication, and the effective data transfer rate is equal to or higher than the acquired data transfer rate. Switch the wired communication method used for wired communication.
  • the wireless communication device 20 selects and switches in advance a wired communication method that operates at a fundamental frequency that does not overlap with all usable wireless communication frequencies within a range that satisfies the data transfer rate of wireless communication. I can keep it. Thereby, it is not necessary to switch the wired communication method even if the use frequency of the wireless communication is switched. As a result, it is possible to suppress communication interruption between the communication control unit 100 and the wireless communication device 20 that occurs when the wired communication method is switched, thereby improving the communication speed and reducing the delay time.
  • the wireless communication device 20 When the wireless communication device 20 operates as an access point (AP), the wireless communication device 20 receives a management frame transmitted from another wireless communication device connected to the AP, and relates to a data transfer rate included in the management frame. Information can be acquired. Further, when the wireless communication device 20 operates as a device (STA) connected to the access point (AP), the wireless communication device 20 receives a management frame transmitted from the AP, and information on a data transfer rate included in the management frame Can be obtained. As described above, the wireless communication device 20 can accurately acquire the data transfer rate of wireless communication based on the management frame.
  • STA device
  • the wireless communication device 20 can accurately acquire the data transfer rate of wireless communication based on the management frame.
  • the communication speed of wireless communication is generally determined by a signal-to-noise ratio (SNR). If the SNR is large, wireless communication can be performed stably, and thus the communication speed is increased. On the other hand, if the SNR is small, the communication speed becomes slow. This is because when the wireless communication device 20 receives data, if the SNR is small, the signal is disturbed by noise, making demodulation difficult.
  • the signal power which is SNR of SNR, propagates, for example, the distance between the wireless communication device 20 and the wireless communication device (hereinafter referred to as “opposite device”) that is the communication partner, or electromagnetic waves that become signals. It depends on the surrounding environment.
  • the signal power in wireless communication is not constant, and can always change due to movement of the wireless communication device 20 and changes in the surrounding environment. Therefore, in this embodiment, when the signal power changes due to a change in the environment of wireless communication, the standard for wired communication is changed appropriately in accordance with the change. Specifically, in the present embodiment, the SNR of wireless communication is acquired at a predetermined cycle, and the wired communication system is changed from the currently used wired communication system according to the acquired SNR.
  • FIG. 11 is a flowchart illustrating a procedure for changing the wired communication system executed by the wireless communication device 20 according to the present embodiment.
  • the alphabet S means a step in the flowchart.
  • the processing shown in FIG. 11 is realized by the CPU configuring the control unit 202 or the wireless unit 203 reading and executing a necessary program.
  • the processing of FIG. 7 may be realized by operating at least a part of each functional module shown in FIG. 4 as dedicated hardware. In this case, the dedicated hardware operates based on the control of the CPU.
  • the wireless transmission / reception unit 211 determines a wireless communication method according to an instruction from the user of the electronic device 10. Thereby, the use frequency band of a radio
  • the wireless transmission / reception unit 211 determines the wireless communication method according to the wireless LAN standard used by the opposite device to which the user of the electronic device 10 is to connect.
  • the wireless transmission / reception unit 211 determines the wireless communication method according to the wireless LAN standard used by the user.
  • the communication method selection unit 113 has the fastest data transfer speed among the wired communication methods in which the fundamental frequency does not overlap or is not close to the use frequency band of the wireless communication method determined in S31. Select.
  • the selection method of the wired communication method in S32 is the same as in the first embodiment described above.
  • the communication method switching unit 212 switches to the wired communication method selected by the communication method selection unit 113.
  • the wireless transmission / reception unit 211 measures the SNR when performing wireless communication. For example, the wireless transmission / reception unit 211 may acquire the SNR measured by the processing in the WiFi chip 23.
  • the communication method selection unit 113 determines whether the currently used wired communication method is a wired communication method suitable for the SNR measured in S33. For example, the communication method selection unit 113 determines whether or not the SNR measured in S33 is equal to or lower than the first threshold or equal to or higher than the second threshold larger than the first threshold. If the SNR is greater than the first threshold and less than the second threshold, it is determined that the wired communication method is suitable for the SNR, and the process proceeds to S35, where the SNR is less than or equal to the first threshold or greater than or equal to the second threshold. If there is, it is determined that the wired communication system is not suitable for SNR, and the process proceeds to S36.
  • the communication method selection unit 113 is a wired communication method suitable for the SNR by previously storing a relationship between the SNR and the suitable wire communication method as a table for each wired communication method. It may be determined whether or not.
  • the relationship between the SNR and the appropriate wired communication method differs depending on the wireless communication method
  • the relationship between the SNR and the suitable wired communication method in each wireless communication method is stored in advance as a table, and the table is stored in the table. It may be determined whether it is a wired communication system suitable for SNR with reference to.
  • the wireless transmission / reception unit 211 measures the elapsed time from the measurement of SNR in S33 by a timer, and returns to S33 after a certain period of time has elapsed.
  • the communication environment for wireless communication is not constant, and always changes due to the movement of the wireless communication device and changes in the surrounding environment. Therefore, the wireless transmission / reception unit 211 performs SNR measurement at a predetermined cycle.
  • the communication method selection unit 113 selects a wired communication method suitable for the SNR measured in S33, and the communication method switching unit 212 switches to the selected wired communication method.
  • the communication method selection unit 113 increases the SNR to within an appropriate range and reduces the data noise power in order to increase the wireless communication speed. Select a method.
  • the communication method selection unit 113 has a sufficiently high SNR and can perform stable wireless communication even if the data noise power is increased. Select a wired communication method that increases
  • the wired communication standard is the USB standard
  • the higher the data transfer speed the closer the fundamental frequency of data communication approaches to the GHz band.
  • the frequency band used for wireless communication is the GHz band
  • the data transfer rate of wired communication may be reduced.
  • the fundamental frequency used for wired communication can be separated from the use frequency band of wireless communication, and control can be performed in a direction to reduce the power of data noise.
  • the power of data noise generated by data communication among the noise power can be easily controlled by changing the wired communication method.
  • the communication method selection unit 113 selects the wired communication method to be used as a higher-speed wired communication method. Change to communication method. For example, the communication method selection unit 113 changes the wired communication method to be used to a one-step high-speed wired communication method. Thereby, the high speed of wireless communication can be utilized. However, if the currently used wired communication method is the standard for the fastest data transfer rate, the wired communication method is not changed.
  • the communication method selection unit 113 changes the wired communication method to be used to a slower wired communication method.
  • the communication method selection unit 113 changes the wired communication method to be used to a one-step low-speed wired communication method. Thereby, the noise power of the data noise in the use frequency band of wireless communication can be reduced, and the speed of wireless communication can be increased.
  • the process proceeds to S35, and returns to S33 again after a predetermined period.
  • the communication method selection unit 113 may select a wired communication method suitable for the SNR by referring to the table described above.
  • the wireless communication device 20 acquires a signal-to-noise ratio (SNR) in wireless communication, and currently uses a wired communication method used in wired communication based on the acquired SNR. Change from the current wired communication method. At that time, when the acquired SNR is equal to or less than the first threshold, the wireless communication device 20 uses a wired communication method used for wired communication at a lower data transfer rate than the currently used wired communication method. Change to wired communication system. In addition, when the acquired SNR is equal to or greater than the second threshold value that is larger than the first threshold value, the wireless communication device 20 changes the wired communication method used for wired communication to the currently used wired communication method. Change to a wired communication system with high data transfer speed.
  • SNR signal-to-noise ratio
  • the wired communication method can be appropriately selected and the data noise level can be adjusted, so that high-speed wireless communication can be performed.
  • the wired communication method selection method in the first embodiment described above there may be cases where high-speed wireless communication is performed for wireless communication and low-speed wired communication is performed for wired communication.
  • the communication speed of the wireless communication is reduced due to the rate limiting that the data transfer speed of the wired communication is low.
  • the present embodiment depending on the communication environment of wireless communication, it becomes possible to select a higher-speed wired communication method, so the communication speed of wireless communication can be increased, and wireless communication The occupancy rate of the used frequency band can be lowered. Furthermore, it is possible to reduce the power required for wireless communication.
  • the wireless communication device 20 acquires the SNR at a predetermined cycle, and determines whether the currently used wired communication method is a wired communication method suitable for the SNR. Judge and change the wired communication method if necessary. Thus, by regularly acquiring the SNR, the wired communication method can be appropriately changed in response to a change in the communication environment of wireless communication.
  • the wired communication method to be used is switched according to the use frequency band of wireless communication has been described.
  • the wired communication method to be used is switched depending on whether the electronic device (wireless communication device) is an electronic data transmission side or a reception side.
  • the electronic data is data that is in the computer or can be captured by the computer, and includes, for example, image data, moving image data, and the like.
  • the wireless communication device 20 If the SNR is small when the wireless communication device 20 receives data, the signal is disturbed by noise, making demodulation difficult. On the other hand, when the wireless communication device 20 transmits data, the magnitude of the noise power detected by the wireless communication device 20 does not significantly affect the wireless communication. Therefore, in the present embodiment, a method for performing high-speed wireless communication by appropriately selecting a standard for wired communication when the electronic device 10 transmits data to the opposite device and when receiving data from the opposite device. Will be described.
  • the electronic device 10 (wireless communication apparatus 20) is the electronic data receiving side.
  • the wireless communication device 20 is a data receiving side
  • the noise power of data noise generated from wired communication is large within the frequency band used for wireless communication, the wireless communication is greatly affected. Therefore, when the electronic device 10 is the electronic data receiving side, the wired communication method is selected using the method described in the first embodiment or the second embodiment described above. As a result, adverse effects on wireless communication due to data noise are reduced, and high-speed wireless communication is possible.
  • the electronic device 10 wireless communication device 20
  • the wireless communication device 20 is on the data transmission side
  • the wireless communication device 20 even if the noise power of data noise generated from wired communication in the frequency band used for wireless communication is large, the wireless communication is not greatly affected. Therefore, when the electronic device 10 is the electronic data transmission side, the fastest wired communication method can be selected. In this case, it is not necessary to consider the fundamental frequency of the wired communication method as in the first embodiment and the second embodiment. Thereby, it becomes possible as a communication system to transmit electronic data to an opposite apparatus at high speed.
  • the electronic device 10 needs to transmit a small amount of data such as an ACK packet to the opposite device when receiving electronic data from the opposite device. Therefore, even when the electronic device 10 is the electronic data receiving side, when transmitting a small amount of data such as an ACK packet, the fastest wired communication method may be selected.
  • the electronic device 10 After transmitting electronic data to the opposite device, the electronic device 10 receives a small amount of data such as an ACK packet from the opposite device. However, since this is a small amount of data, the SNR is reduced due to the data noise of wired communication, and the influence is small even if the communication speed of the ACK packet is lowered. For this reason, when receiving a small amount of data such as an ACK packet, it is not necessary to switch the wired communication method in consideration of the influence on data communication due to data noise. However, when the electronic device 10 is in a state where it cannot receive the ACK packet, the electronic device 10 repeatedly retransmits the electronic data to the opposite device.
  • the wired communication method when receiving the ACK packet, the wired communication method may be selected using the method described in the first embodiment or the second embodiment.
  • the above-described electronic device 10 wireless communication device 20
  • the wired communication method is selected as a wired communication method that is faster than the wired communication method used when the electronic data is received on the electronic data receiving side and slower than the fastest wired communication method. Good.
  • the wireless communication device 20 determines whether the wireless communication device is the reception side or the transmission side of wireless communication, and changes the selection method of the wired communication method according to the determination result. Thereby, a wired communication system can be selected appropriately and wireless communication can be performed at high speed.
  • a method of determining whether the wireless communication device 20 is a transmission side or a reception side of electronic data for example, the determination is made on an application program used when the user of the electronic device 10 communicates with the opposite device. The method can be used.
  • the electronic device 10 is a digital camera
  • the electronic device 10 is not limited to a digital camera.
  • the electronic device 10 may be a mobile phone, a smartphone, a tablet terminal, a personal computer (PC), a printer, a video camera, a smart watch, a PDA, or the like.
  • the wired communication method is selected in the main electronic circuit board as another communication device that performs wired communication with the wireless communication device 20 as another communication device that performs wired communication with the wireless communication device 20 has been described.
  • the wired communication method may be selected on the electronic circuit board of the wireless communication device 20.
  • a wireless communication device having a wireless communication function and a wired communication function may select a wired communication method according to the wireless communication method that the device itself uses for wireless communication.
  • the communication method selection unit 113 in FIG. 4 does not need to be included in the communication control unit 100, and the wireless communication apparatus 20 includes a functional module corresponding to the communication method selection unit 113.
  • the wireless communication device 20 does not need to be incorporated in the electronic device 10 and may be a device different from the electronic device 10. Also in this case, if the antenna for the wireless communication device 20 to perform wireless communication is close to a cable, a connector, or the like that connects the electronic device 10 and the wireless communication device 20, the data noise of wired communication becomes wireless communication. May cause adverse effects. Therefore, by applying the present invention to the communication system as described above, it is possible to prevent the data noise of wired communication from adversely affecting wireless communication.
  • the wireless communication standard used by the wireless communication device 20 is the IEEE802.11 standard series, which is a wireless LAN communication standard
  • the wired communication standard used by the wireless communication device 20 is the USB standard. I explained a case.
  • the wireless communication standard and the wired communication standard used by the wireless communication device 20 are not limited to the above.
  • the PCI Express standard may be used as a wired communication standard.
  • the PCI Express standard includes a plurality of standards such as Gen1, Gen2, Gen3, and Gen4. For example, when the use frequency band of wireless communication is a 2.4 GHz band, a wired communication method other than PCI Express 2.0 (Gen 2) may be selected and used.
  • a wireless communication standard for example, a wireless communication standard using a 60 GHz band such as IEEE802.11ad or a wireless communication standard using a 920 MHz band used in IoT and M2M may be used. Furthermore, as a wireless communication standard, a wireless communication standard using 800, 1500, 1800, 2100 MHz bands used in LTE may be used.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信装置20は、使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行う第一の通信手段と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う第二の通信手段と、基本周波数が、第一の通信手段による無線通信の使用周波数帯を含む所定の周波数帯域外となるように、第二の通信手段による有線通信で使用する有線通信方式を切り替える切替手段とを備える。

Description

無線通信装置およびその制御方法
本発明は、無線通信装置およびその制御方法に関する。
近年、様々な電子機器に無線通信機能が搭載されており、このような無線通信機能が搭載された電子機器は年々小型化され、電子機器内では多くの部品や配線が近接して配置されている。それらの部品や配線からはノイズが発生し、無線通信機能に悪影響を及ぼすおそれがある。
特許文献1には、無線通信装置が接続されるデータ通信装置において、メインCPUの動作クロックの逓倍周波数が、無線通信装置が無線通信に使用する周波数帯域に妨害を与えないようにクロック制御を行う点が開示されている。
特開2001-217743号公報
電子機器に無線通信機能を搭載する場合、無線通信機能を実現する無線通信用の電子回路基板を、電子機器のメイン電子回路基板に有線接続し、無線通信用の電子回路基板とメイン電子回路基板との間において、無線通信用の電子回路基板が無線通信により送受信するデータの伝送が行われる。このとき、無線通信用の電子回路基板とメイン電子回路基板との間では、有線通信のデータ通信によるノイズが発生し得る。このデータ通信によるノイズも、無線通信に悪影響を及ぼすおそれがある。
そこで、本発明は、有線通信のデータ通信により発生するノイズが無線通信性能へ及ぼす悪影響を低減することを目的としている。
上記課題を解決するために、本発明に係る無線通信装置の一態様は、使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行う第一の通信手段と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う第二の通信手段と、前記基本周波数が、前記第一の通信手段による前記無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替える切替手段と、を備える。
本発明によれば、有線通信のデータ通信により発生するノイズが無線通信性能へ及ぼす悪影響を低減することができる。
本実施形態に係る無線通信装置を備える電子機器の構成例である。 無線通信装置の構成例を示す図である。 無線通信装置のハードウェア構成図の一例である。 電子機器の機能ブロック図の一例である。 USB規格の説明図である。 ノイズの周波数スペクトルのイメージ図である。 ノイズの周波数スペクトルのイメージ図である。 第一の実施形態の通信制御部と無線通信装置との間のシーケンス図である。 第一の実施形態の有線通信方式の選択処理を示すフローチャートである。 第二の実施形態の通信制御部と無線通信装置との間のシーケンス図である。 第二の実施形態の有線通信方式の選択処理を示すフローチャートである。 第三の実施形態の有線通信方式の変更処理手順を示すフローチャートである。
以下、添付図面を参照して、本発明を実施するための形態について詳細に説明する。なお、以下に説明する実施の形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正または変更されるべきものであり、本発明は以下の実施の形態に限定されるものではない。
(第一の実施形態)
図1は、本実施形態に係る無線通信装置20を備える電子機器10の構成例である。本実施形態では、電子機器10に、無線通信装置20が搭載されている場合について説明する。ここで、電子機器10は、例えばデジタルカメラとすることができ、無線通信装置20は、無線信号により他の無線通信装置と通信を行う無線通信モジュールとすることができる。
本実施形態における電子機器10は、複数の通信アプリケーション(以下、「通信アプリ」ともいう。)を、使用周波数が異なる複数の無線通信をそれぞれ利用して同時に実行することができる。
無線通信装置20は、複数の無線通信規格に準拠した複数の無線通信方式に対応した無線通信機能を有する。本実施形態では、無線通信装置20が使用する無線通信規格は、無線LANの通信規格であるIEEE802.11規格シリーズである場合について説明する。ここで、IEEE802.11規格シリーズは、少なくともIEEE802.11a規格、IEEE802.11b規格、IEEE802.11g規格、IEEE802.11n規格、IEEE802.11ac規格およびIEEE802.11ax規格を含むが、これら以外のIEEE802.11関連の規格を含んでもよい。上記の各無線通信方式において、無線通信を行う上で使用する周波数帯(使用周波数帯)は、2.4GHz帯および5GHz帯の少なくとも一方である。
無線通信装置20は、利用する通信アプリに応じて、例えば5GHz帯を使用するIEEE802.11a規格と2.4GHz帯を使用するIEEE802.11b規格といった複数の無線通信規格に準拠した複数の無線通信を同時に行うことができる。尚、無線通信装置20が無線通信を「同時」に行うとは、例えば5GHz帯と2.4GHz帯のように互いに異なる周波数帯を用いた複数の無線ネットワークに無線通信装置20が同時に参加又は構築している状態であることを含む。自装置がアクセスポイント(AP)として動作する場合、互いに異なる周波数帯を用いた複数の無線ネットワークを同時に構築している状態である。一方、自装置がアクセスポイント(AP)に接続する装置(STA)として動作する場合、互いに異なる周波数帯を用いた複数の無線ネットワークに同時に参加している状態である。又は、自装置がAPとしての動作とSTAとしての動作を行っている場合は、自装置が構築している無線ネットワークの周波数帯と自装置が参加している無線ネットワークの周波数帯とが異なっている状態である。即ち、無線通信装置20が無線通信を「同時」に行うとは、無線による実際のデータ通信は異なる周波数帯それぞれを時分割で切り替えながら行われるが、無線通信装置20が異なる周波数帯の無線ネットワークに同時に参加又は構築している状態であることを含む。あるいは、無線通信装置20は、異なる周波数帯を用いて無線通信を行っているため、異なる周波数帯それぞれを時分割で切り替えることなく、無線通信を同時に行うことも可能である。
図2に示すように、無線通信装置20は、電子回路基板21と、無線通信を行うための電磁波の送受信を行うアンテナ22と、WiFiチップ23と、コネクタ24と、コネクタ24にその一端が接続された有線通信用のケーブル25と、を備える。ケーブル25は、フレキシブルケーブルであり、ケーブル25の他端は、電子機器10のメイン電子回路基板(不図示)に接続されたコネクタ11に接続されている。つまり、無線通信装置20の電子回路基板21は、電子機器10のメイン電子回路基板と有線により接続されている。この電子回路基板21とメイン電子回路基板との間では、無線通信装置20が無線通信を行うデータ(例えば、映像データ)が伝送される。このように、無線通信装置20は、無線通信機能と有線通信機能とを有する。
本実施形態では、無線通信装置20は、複数の有線通信規格に準拠した複数の有線通信方式に対応した有線通信機能を有する。例えば、無線通信装置20は、有線通信規格として、USB1.0、USB1.1、USB2.0、USB3.0およびUSB3.1を使用できるものとする。
有線通信においては、データ通信を行う上で、データ通信を起因とするノイズ(データノイズN)が発生し得る。このデータノイズNをアンテナ22が受信すると、無線通信に悪影響を及ぼすおそれがある。無線通信装置20は、上述したように無線通信機能と有線通信機能とを有しており、小型な電子機器10に組み込まれる場合、電子回路基板21自体が非常に小さい場合がある。その場合、電子回路基板21上に設けられた、無線通信を行うためのアンテナ22と、有線通信を行うためのケーブル25、コネクタ24および電子回路基板21上の配線等との距離が近くなる。すると、有線通信のデータノイズNをアンテナ22が受信しやすくなり、無線通信に悪影響を及ぼしやすくなる。特にケーブル25はフレキシブルケーブルであり、一般的なUSB専用ケーブルに比べてシールド性能が弱いため、有線通信のデータノイズNを発生させやすい。
上記の有線通信のデータノイズNは、有線通信のデータ転送速度によって異なる周波数帯に発生する。USB規格においては、USB1.0からUSB3.1のそれぞれにおいてデータ転送速度が異なるため、データノイズNが発生する周波数帯も異なる。そこで、本実施形態では、無線通信装置20が無線通信に使用する無線通信方式(規格)に応じて有線通信方式(規格)を切り替えることで有線通信のデータ転送速度を変更し、データノイズNが無線通信へ与える悪影響を低減するようにする。具体的には、USBのデータ通信に使用する基本周波数が、無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信方式(規格)を切り替えるようにする。
本実施形態では、無線通信装置20は、使用周波数帯が異なる複数の無線通信を同時に行うことができる。したがって、本実施形態では、USBのデータ通信に使用する基本周波数が、同時に行われる複数の無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信方式(規格)を切り替えるようにする。
図3は、無線通信装置20のハードウェア構成の一例を示すブロック図である。
電子機器10は、無線通信装置20との通信を制御する通信制御部100を備える。通信制御部100は、例えば上述したメイン電子回路基板に実装することができる。この通信制御部100は、I/F部101と、ホストCPU102と、記憶部103と、を備える。I/F部101は、USBインターフェースである。ここで、USB1.0からUSB3.1は、それぞれ互換性を有するため、I/F部101は、USB1.0からUSB3.1までのいずれのインターフェースとしても動作することができる。I/F部101の動作の切り替えは、ホストCPU102によって行われる。
ホストCPU102は、一つ又は複数のCPUによって構成され、電子機器10における動作を統括的に制御する。記憶部103は、ホストCPU102が処理を実行するために必要な制御プログラム等を記憶する。記憶部103は、例えば、一つ又は複数のROM、RAM、HDD、フラッシュメモリまたは着脱可能なSDカードなどの記憶媒体により構成することができる。ホストCPU102は、記憶部103に記憶された制御プログラムを実行することで各種の機能動作を実現する。なお、本実施形態において、電子機器10はデジタルカメラであるため、図2に示すハードウェア構成の他に、撮像部や表示部等を有する。
無線通信装置20は、I/F部201と、制御部202と、記憶部203と、無線部204と、アンテナ制御部205と、を備える。I/F部201は、USBインターフェースである。I/F部201は、図2に示すケーブル25を介して、通信制御部100のI/F部101に接続されている。このI/F部201は、I/F部101と同様に、USB1.0からUSB3.1までのインターフェースとして動作することができる。I/F部201の動作の切り替えは、制御部202によって行われる。
制御部202は、無線通信装置20における動作を統括的に制御する。制御部202は、一つ又は複数のCPUにより構成することができる。記憶部203は、例えば一つ又は複数のROM、RAM等の記憶媒体により構成され、制御部202が処理を実行するために必要な制御プログラム等を記憶する。無線部204は、IEEE802.11規格シリーズに準拠した無線通信を行う。無線部204は、WiFiチップ23により構成することができる。アンテナ制御部205は、2.4GHz帯および/または5GHz帯で通信可能な上述したアンテナ22の出力制御を行う。
図4は、電子機器10のソフトウェア機能ブロックの一例である。この図4に示す各部の機能は、通信制御部100または無線通信装置20が有するCPUがプログラムを実行することで実現することができる。
なお、本実施形態においては、以下に示す各機能ブロックは、ソフトウェアプログラムとして機能が実現されるものとして説明するが、本機能ブロックに含まれる一部または全部をハードウェアにより実現してもよい。ハードウェアにより実現する場合、例えば、所定のコンパイラを用いることで、各ステップを実現するためのプログラムからFPGA上に自動的に専用回路を生成すればよい。FPGAとは、Field Programmable Gate Arrayの略である。また、FPGAと同様にしてGate Array回路を形成し、ハードウェアとして実現するようにしてもよい。また、ASIC(Application Specific Integrated Circuit)により実現するようにしてもよい。なお、図4に示した機能ブロック図は一例であり、複数の機能モジュールが1つの機能モジュールを構成するようにしてもよいし、いずれかの機能モジュールが複数の機能を行うモジュールに分かれてもよい。
通信制御部100は、通信アプリ部111と、無線制御部112と、通信方式選択部113と、通信方式切替部114と、データ送受信部115と、を備える。通信アプリ部111は、無線通信装置20の無線通信によりデータを外部の通信装置へ転送する通信アプリを実行する。通信アプリ部111が実行する通信アプリは、例えばデジタルカメラにより撮像された画像をスマートフォンやPCといった外部の通信装置に転送する通信アプリなどとすることができる。通信アプリ部111は、複数の通信アプリを同時に実行することが可能である。また、通信アプリ間での無線通信の干渉を回避するため、各通信アプリが使用する無線通信の使用周波数は異なるものとする。
無線制御部112は、通信アプリ部111が実行する通信アプリが使用する無線通信の使用周波数に応じて、無線通信装置20の無線通信に使用される無線通信方式を設定し、無線通信装置20の後述する無線送受信部211を制御する。
通信方式選択部113は、無線通信装置20による無線通信に使用される無線通信方式に応じて、後述するデータ送受信部115による有線通信に使用される有線通信方式を選択する。具体的には、通信方式選択部113は、無線通信の使用周波数帯に、有線通信の基本周波数が重ならない、あるいは近接しない有線通信方式を選択する。無線通信装置20において複数の無線通信が同時に行われる場合、通信方式選択部113は、使用される複数の無線通信の使用周波数帯に、有線通信の基本周波数が重ならない、あるいは近接しない有線通信方式を選択する。有線通信方式の選択方法については後述する。
通信方式切替部114は、データ送受信部115による有線通信に使用される有線通信方式を、通信方式選択部113において選択された有線通信方式に切り替える。データ送受信部115は、USB規格に準拠した有線通信方式により無線通信装置20とデータ通信を行う。
無線通信装置20は、無線送受信部211と、通信方式切替部212と、データ送受信部213と、を備える。
無線送受信部211は、IEEE802.11規格シリーズに準拠した無線通信方式により、外部の無線通信装置との間で無線信号を送受信する。通信方式切替部212は、データ送受信部213による有線通信に使用される有線通信方式を、通信制御部100の通信方式選択部113において選択された有線通信方式に切り替える。データ送受信部213は、USB規格に準拠した有線通信方式によりデータ通信を行う。
以下、有線通信方式の選択方法について説明する。
まず、USB規格について説明する。図5は、USB規格における物理層データ転送速度、アプリケーション層の実効データ転送速度および基本周波数の関係を示す図である。ここで、アプリケーション層の実効データ転送速度は、理論上のデータ転送速度ではなく、アプリケーションの利用時に実際に出すことのできるデータ転送速度を示している。また、基本周波数は、データ通信に使用する周波数帯において、およそエネルギーが最大となる周波数である。この基本周波数が、無線通信の使用周波数帯に重なると、データ通信により発生するデータノイズNがアンテナ22から混入し、無線通信に悪影響を与えることになる。
図5に示すように、USB規格では、データ転送速度が高速な規格が策定されており、基本周波数が、無線LANにおいて使用される2.4GHz帯あるいは5GHz帯に重なる、あるいは近接する規格が存在する。USB3.0は、データ転送に使用する基本周波数が2.5GHzであり、データノイズNの周波数帯が無線LANにおいて使用される2.4GHz帯に近接する。また、USB3.1は、データ転送に使用する基本周波数が5GHzであり、データノイズNの周波数帯が無線LANにおいて使用される5GHz帯に重なる。基本周波数において発生するデータノイズNは、高調波において発生するデータノイズNとは異なり、ノイズとしてのレベルが大きいため、無線通信に与える影響も大きい。
そこで、図4の通信方式選択部113は、上述したように、無線通信の使用周波数帯に、有線通信の基本周波数が重ならない、あるいは近接しない有線通信方式を選択する。つまり、通信方式選択部113は、無線LANにおいて2.4GHz帯が使用される場合には、有線通信の基本周波数が当該使用周波数帯に最も近いUSB3.0以外の有線通信規格に準拠した有線通信方式を選択する。また、通信方式選択部113は、無線LANにおいて5GHz帯が使用される場合には、有線通信の基本周波数が当該使用周波数帯に一致するUSB3.1以外の有線通信規格に準拠した有線通信方式を選択する。また、通信方式選択部113は、無線LANにおいて2.4GHz帯と5GHz帯の両方が同時に使用される場合には、USB3.0およびUSB3.1以外の有線通信規格に準拠した有線通信方式を選択する。
このように、通信方式選択部113は、有線通信の基本周波数が、無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信方式を選択する。ここで、無線LANにおいて2.4GHz帯が使用される場合には、上記所定の周波数帯域は、2.4GHz以上2.5GHz以下の周波数帯域、より好ましくは2GHz以上3GHz以下の周波数帯域に設定する。また、無線LANにおいて5GHz帯が使用される場合には、上記所定の周波数帯域は、5GHz以上6GHz以下の周波数帯域、より好ましくは4GHz以上7GHz以下の周波数帯域に設定する。尚、有線通信の基本周波数が無線通信の使用周波数帯から十分離れた周波数となることが望ましいため、上記所定の周波数帯域は、必ずしも上述の2GHz以上3GHz以下や4GHz以上7GHz以下に限定されるものではない。
また、本実施形態では、通信方式選択部113は、基本周波数が、無線通信の使用周波数帯を含む上記の所定の周波数帯域外となる有線通信方式のうち、データ転送速度が最大となる有線通信方式を選択する。具体的には、通信方式選択部113は、無線LANにおいて2.4GHz帯が使用される場合には、USB3.0以外の有線通信規格でデータ転送速度が最大であるUSB3.1に準拠した有線通信方式を選択する。
なお、無線通信装置20が、有線通信規格として、USB1.0~USB3.0を使用でき、USB3.1が使用できない場合には、USB3.0以外の有線通信規格でデータ転送速度が最大であるUSB2.0に準拠した有線通信方式を選択する。
図6Aは、ノイズ源がクロックである場合のノイズの周波数スペクトルのイメージ図、図6Bは、ノイズ源がデータ通信である場合のノイズの周波数スペクトルのイメージ図である。クロックは、一般的に一定の周期でON、OFFを繰り返すため、ノイズ源がクロックである場合、図6Aに示すように、クロックノイズは狭帯域で現れる。そのため、クロックノイズが無線通信に悪影響を与えている場合には、クロック周波数を僅かに変更するだけで、狭帯域なクロックノイズを、無線通信の使用周波数帯域外に容易にシフトすることが可能であり、無線通信への悪影響を大幅に減らすことができる。
一方で、データ通信は、一般的にON、OFFの周期が一定ではないため、ノイズ源がデータ通信である場合、図6Bに示すように、データノイズは広帯域で現れる。そのため、データ通信に使用する周波数帯において、エネルギーがおよそ最大となる周波数である基本周波数が、無線通信の使用周波数帯に重ならない場合であっても、無線通信の使用周波数帯にノイズ成分が存在してしまう場合がある。つまり、状況によっては、無線通信の性能が大きく劣化してしまう場合がある。
上述したように、データノイズは広帯域である。そのため、データ通信に使用する周波数帯において、エネルギーがおよそ最大となる周波数である基本周波数が、無線通信の使用周波数帯に重ならない場合であっても、無線通信の使用周波数帯にノイズ成分が存在してしまう場合がある。よって、無線LANにおいて2.4GHz帯が使用される場合には、基本周波数がGHz帯であるUSB3.1に準拠した有線通信方式を選択するのではなく、基本周波数がMHz帯であって、データ転送速度が最大となるUSB2.0を選択してもよい。
また、通信方式選択部113は、無線LANにおいて5GHz帯が使用される場合には、USB3.1以外の有線通信規格でデータ転送速度が最大であるUSB3.0に準拠した有線通信方式を選択する。なお、無線通信装置20が、有線通信規格として、USB1.0、USB1.1、USB2.0、USB3.0を使用でき、USB3.1が使用できない場合においても、USB3.0に準拠した有線通信方式を選択する。
また、上述したように、データノイズは広帯域である。そのため、データ通信に使用する周波数帯において、エネルギーがおよそ最大となる周波数である基本周波数が、無線通信の使用周波数帯に重ならない場合であっても、無線通信の使用周波数帯にノイズ成分が存在してしまう場合がある。よって、無線LANにおいて5GHz帯が使用される場合には、基本周波数がGHz帯であるUSB3.0に準拠した有線通信方式を選択するのではなく、基本周波数がMHz帯であって、データ転送速度が最大となるUSB2.0を選択してもよい。
図7は、通信制御部100と無線通信装置20との間のシーケンス図である。以降、アルファベットSはステップを意味するものとする。
まず、通信制御部100は、1つ目の通信アプリ1を起動し、その通信アプリ1で使用する無線通信の使用周波数(無線周波数)を5GHz帯に設定する(S101)。次に、通信制御部100は、基本周波数が、5GHz帯の周波数帯域と重ならない有線通信方式を選択する(S102)。図5で示される情報に基づき、ここでは有線通信方式としてUSB3.0が選択される。次に通信制御部100は、無線通信装置20に対して有線通信方式をUSB3.0に設定する指示を送信する(S103)。これにより、指示を受信した無線通信装置20は、有線通信方式をUSB3.0に設定する。さらに、通信制御部100は、無線通信装置20に対して無線通信の使用周波数を5GHz帯に設定して無線送受信部211を起動する指示を送信する(S104)。これにより、指示を受信した無線通信装置20は、PCやスマートフォンといった通信側の通信装置と5GHz帯を使用した無線通信を開始する(S105)。
その後、しばらくして、通信制御部100は、2つ目の通信アプリ2を起動する(S106)。このとき、通信制御部100は、既に起動している通信アプリ1との干渉を避けるために、通信アプリ2で使用する無線通信の使用周波数を2.4GHz帯に設定する。次に、通信制御部100は、基本周波数が、既に使用中の5GHz帯と新たに起動した2.4GHz帯の周波数帯域と重ならない有線通信方式を選択する(S107)。図5で示される情報に基づき、ここでは有線通信方式としてUSB2.0が選択される。次に通信制御部100は、無線通信装置20に対して有線通信方式をUSB2.0に切り替える指示を送信する(S108)。これにより、指示を受信した無線通信装置20は、有線通信方式をUSB2.0に切り替える。さらに、通信制御部100は、無線通信装置20に対して無線通信の使用周波数を2.4GHz帯に設定して無線送受信部211を起動する指示を送信する(S109)。これにより、指示を受信した無線通信装置20は、5GHz帯に加えて2.4GHz帯を使用した無線通信を開始する(S110)。
以上のように、基本周波数が、複数の通信アプリで使用する複数の無線通信の使用周波数のいずれとも重ならないように、有線通信で使用する有線通信方式を切り替える。
図8は、通信制御部100が所定の通信アプリを起動した際の有線通信方式の選択処理手順を示すフローチャートである。図8に示す処理は、通信制御部100が有するCPUが、必要なプログラムを読み出して実行することにより実現される。ただし、図4に示す各機能モジュールのうち少なくとも一部が専用のハードウェアとして動作することで図8の処理が実現されるようにしてもよい。この場合、専用のハードウェアは、上記CPUの制御に基づいて動作する。
まずS1において、通信アプリ部111は、電子機器10のユーザの指示に基づいて通信アプリを開始し、通信アプリで使用する無線通信の使用周波数(無線周波数)の設定を行う。次にS2では、基本周波数が、通信方式選択部113は、起動中の全通信アプリで使用している無線通信の使用周波数と重ならない有線通信方式を選択する。例えば、先に5GHz帯の周波数帯域を使用する通信アプリを起動済で、新たに2.4GHz帯の周波数帯域を使用する通信アプリを起動した場合、両方の周波数帯域を避ける必要がある。この場合、通信方式選択部113は、USG2.0に準拠した有線通信方式を選択する。なお、通信方式選択部113は、起動中の通信アプリが無い場合、新たに起動した通信アプリが使用する無線通信の使用周波数だけを考慮して、有線通信方式を選択する。
S3では、データ送受信部115は、通信アプリによるデータ送受信を行う。つまり、データ送受信部115は、S2において選択された有線通信方式により無線通信装置20へデータを送信する。S4では、通信アプリ部111は、ユーザからの通信アプリの終了指示が検出されたか否かを判定し、終了指示が検出された場合には図8の処理を終了し、終了指示が検出されない場合にはS5に移行する。
S5では、通信制御部100は、通信アプリで使用中の無線通信の使用周波数に変更があるか否かを判定し、変更が検出された場合はS6に移行し、変更が検出されない場合はS3に移行する。ここで、無線通信の使用周波数の変更は、ユーザが指示する場合や、無線通信装置20が通信状況に応じてより通信品質の良い使用周波数へ自律的に切り替える場合がある。S6では、通信制御部100は、無線通信の使用周波数の変更に伴って、現在使用中の有線通信方式の切り替えが必要か否かを判定し、切り替えが必要である場合はS2に移行して再度有線通信方式を選択し、切り替えが必要でない場合はS3に移行する。
以上説明したように、本実施形態における無線通信装置20は、複数の無線通信方式に対応した無線通信機能と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信機能とを有する。また、無線通信装置20は、使用周波数が異なる複数の無線通信を同時に行うことができる。そして、無線通信装置20は、複数の無線通信を同時に行う場合、基本周波数が、同時に行われる複数の無線通信の使用周波数帯を含む所定の周波数帯域外となるように、有線通信で使用する有線通信方式を切り替える。
このように、無線通信装置20は、使用周波数が異なる複数の無線通信が同時に行われる場合においても、基本周波数が、複数の無線通信の使用周波数のいずれとも重ならないよう、有線通信方式を切り替えることができる。これにより、有線通信を用いたデータ通信により発生するノイズが無線通信に悪影響を与えることを抑制することができる。したがって、無線通信装置20の通信能力の低下を抑制し、通信スループットの低下を抑制することができる。
ところで、有線通信方式(規格)としてSDIO(Secure Digital Input / Output)のようなパラレル通信の通信方式がある。SDIOを使用した場合、SDIOクロック線を伝搬するクロック信号の周波数を無線通信の使用周波数帯に応じて変更することができる。これにより、無線通信への影響を低減することが可能である。しかしながら、USBのようなシリアル通信の通信方式を使用する場合、USBにはクロック線はなく、またデータ転送速度を任意に変更することもできない。
これに対して、本実施形態における無線通信装置20は、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信機能を有し、無線通信の使用周波数帯に応じて有線通信方式を切り替える。したがって、クロック線を持たず、データ転送速度を任意に変更できない有線通信方式を採用した場合であっても、データ通信により発生するノイズが無線通信に悪影響を与えることを抑制し、無線通信性能の劣化を低減することができる。
また、無線通信装置20は、有線通信方式の切り替えに際し、基本周波数が上記所定の周波数帯域外で、且つ複数の有線通信方式のうちデータ転送速度が最大である有線通信方式を選択し、切り替えることもできる。この場合、データ通信により発生するノイズが無線通信に悪影響を与えることを抑制しつつ、無線通信の高速性を活かすことができる。
さらに、無線通信装置20は、有線通信規格としてUSB規格を採用する。USB規格は、データ転送速度が異なる規格を複数有しており、かつそれらは互換性を有する。USB1.1からUSB3.1までは上位互換であるため、USB規格に準拠した有線通信方式を採用すれば、ハードウェアを変えることなくデータ転送速度を切り替えることが可能となる。つまり、無線通信の使用周波数帯に応じて、有線通信のデータ転送速度を切り替えて使用したい場合に、複数の有線通信用のハードウェアを電子回路基板21に実装する必要がない。そのため、その分のコストカットや基板面積の縮小が図れる。
(第二の実施形態)
次に、本発明の第二の実施形態について説明する。
上述した第一の実施形態では、無線通信の使用周波数帯近傍に有線通信の基本周波数が存在しないような有線通信方式を選択し、有線通信方式を切り替える場合について説明した。この第二の実施形態では、さらに、無線通信のデータ転送速度を考慮して有線通信方式を選択する場合について説明する。
本実施形態では、通信機器10が単一の通信アプリを使用する場合について説明する。図9は、通信制御部100と無線通信装置20との間のシーケンス図である。
まず、通信制御部100は、所定の通信アプリを起動し、その通信アプリで使用する無線通信の使用周波数(無線周波数)を5GHz帯に設定する(S121)。次に、通信制御部100は、基本周波数が、5GHz帯の周波数帯域と重ならない有線通信方式を選択する(S122)。図5で示される情報に基づき、ここでは有線通信方式としてUSB3.0が選択される。次に通信制御部100は、無線通信装置20に対して有線通信方式をUSB3.0に設定する指示を送信する(S123)。これにより、指示を受信した無線通信装置20は、有線通信方式をUSB3.0に設定する。さらに、通信制御部100は、無線通信装置20に対して無線通信の使用周波数を5GHz帯に設定して無線送受信部211を起動する指示を送信する(S124)。これにより、指示を受信した無線通信装置20は、PCやスマートフォンといった通信側の通信装置と5GHz帯を使用した無線通信を開始する(S125)。
その後、無線通信装置20は、無線通信の相手装置から管理フレームを受信すると(S126)、受信した管理フレームに含まれる情報を通信制御部100へ通知する。
無線通信装置20は、無線LANのSTA(Station:端末局)として動作する場合、AP(Access Point:制御局)として動作する相手装置から、Beaconフレームと呼ばれる管理フレームを受信する。このBeaconフレームには、APがサポートする無線通信のデータ転送速度に関する情報が含まれる。また、無線通信装置20は、無線LANのAPとして動作する場合、STAとして動作する相手装置が無線ネットワークに接続する際に、Association Requestフレームと呼ばれる管理フレームを受信する。このAssociation Requestフレームには、STAが要求する無線通信のデータ転送速度に関する情報が含まれる。
無線通信装置20は、無線通信の相手装置から管理フレームを受信した場合、管理フレームに含まれる無線通信のデータ転送速度に関する情報(データ転送速度情報)を通信制御100へ通知する(S127)。ここでは、例として無線通信のデータ転送速度を150Mbpsとしている。
通信制御部100は、無線通信装置20から無線通信のデータ転送速度情報を受信すると、受信したデータ転送速度情報と、有線通信方式の実効データ転送速度とに基づき、有線通信方式を再度選択する(S128)。ここで、無線通信のデータ転送速度は150Mbpsなので、図5で示される情報に基づき、有線通信方式の実効データ転送速度が150Mbps以上であるUSB2.0、USB3.0或いはUSB3.1を選択すれば、転送速度として十分であることがわかる。そこで、通信制御部100は、USB2.0、USB3.0およびUSB3.1の中から、基本周波数が、無線通信装置20が使用する可能性のある全ての無線通信の使用周波数と重ならない有線通信方式を選択する。例えば、無線通信装置20が2.4GHz帯と5GHz帯とを使用する可能性がある場合、基本周波数がそれらと重ならないUSB2.0が選択される。
次に通信制御部100は、無線通信装置20に対して有線通信方式をUSB2.0に切り替える指示を送信する(S129)。これにより、指示を受信した無線通信装置20は、有線通信方式をUSB2.0に切り替える。その後、しばらくして、無線通信装置20が5GHz帯の通信品質の低下を検出するなどして無線通信の使用周波数を2.4GHz帯に切り替え(S130)、2.4GHz帯の通信を開始したものとする(S131)。このような場合であっても、予め有線通信方式はUSB2.0に切り替えられているため、無線通信の使用周波数の切り替えによって有線通信方式の切り替えは発生しない。
なお、図9に示す例では、無線通信装置20は、無線通信の相手装置から受信した管理フレームにより無線通信のデータ転送速度を取得する場合について説明したが、データ転送速度の取得方法は上記に限定されない。例えば、無線通信装置20の対応する無線通信規格に基づいて判断されるデータ転送速度を取得してもよい。つまり、無線通信装置20がIEEE802.11a規格とIEEE802.11b規格の2つの無線通信規格に対応している場合、無線通信の最大データ転送速度は54Mbpsである。そのため、当該最大データ転送速度を無線通信のデータ転送速度として取得してもよい。この場合、管理フレームを受信せずとも、無線通信のデータ転送速度を取得することができる。
図10は、通信制御部100が所定の通信アプリを起動した際の有線通信方式の選択処理手順を示すフローチャートである。図10に示す処理は、通信制御部100が有するCPUが、必要なプログラムを読み出して実行することにより実現される。ただし、図4に示す各機能モジュールのうち少なくとも一部が専用のハードウェアとして動作することで図10の処理が実現されるようにしてもよい。この場合、専用のハードウェアは、上記CPUの制御に基づいて動作する。
まず、S21において、通信アプリ部111は、図8のS1と同様の処理を行う。次にS22では、通信方式選択部113は、基本周波数が、起動中の通信アプリで使用している無線通信の使用周波数と重ならない有線通信方式を選択する。S23では、データ送受信部115は、図8のS3と同様の処理を行う。S24では、通信アプリ部111は、図8のS24と同様の処理を行う。
S25では、通信制御部100は、図8のS25と同様に、通信アプリで使用中の無線通信の使用周波数に変更があるか否かを判定し、変更が検出された場合はS26に移行し、変更が検出されない場合はS27に移行する。S26では、通信制御部100は、図8のS26と同様に、無線通信の使用周波数の変更に伴って、現在使用中の有線通信方式の切り替えが必要か否かを判定する。そして、通信制御部100は、切り替えが必要であると判定した場合はS22に移行して再度有線通信方式を選択し、切り替えが必要でないと判定した場合はS27に移行する。
S27では、通信制御部100は、無線通信装置20がスマートフォンやPCといった無線通信の通信相手から管理フレームを受信したか否かを判定する。具体的には、通信制御部100は、無線通信装置20からデータ転送速度情報を受信したか否かを判定する。そして、通信制御部100は、データ転送速度情報を受信した場合にはS28に移行し、データ転送速度情報を受信しない場合にはS24に移行する。
S28では、通信制御部100は、データ転送速度情報に基づいて、切替可能な有線通信方式が存在するか否かを判定する。ここで、切替可能な有線通信方式とは、無線通信のデータ転送速度以上の実効データ転送速度を備え、かつ、基本周波数が、無線通信装置20が対応する全ての無線通信の使用周波数と重ならない有線通信方式である。そして、通信制御部100は、該当する有線通信方式が存在しないと判定した場合にはS24に移行し、該当する有線通信方式が存在すると判定した場合にはS29に移行して、該当する有線通信方式を新たに選択する。例えば、無線通信のデータ転送速度が150Mbpsで、無線通信装置20が対応する無線通信の使用周波数が2.4GHz帯と5GHz帯とである場合について考える。この場合、実効データ転送速度が150Mbps以上であり、かつ、2.4GHz帯と5GHz帯と重ならない基本周波数で動作するUSB2.0が選択される。
以上説明したように、本実施形態における無線通信装置20は、複数の無線通信方式に対応した無線通信機能と、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信機能とを有する。また、無線通信装置20は、無線通信のデータ転送速度を取得する。そして、無線通信装置20は、基本周波数が、対応する複数の無線通信の使用周波数帯を含む所定の周波数帯域外となり、かつ、実効データ転送速度が、取得されたデータ転送速度以上となるように、有線通信で使用する有線通信方式を切り替える。このように、無線通信装置20は、無線通信のデータ転送速度を満たす範囲で、使用可能性のある全ての無線通信の使用周波数と重ならない基本周波数で動作する有線通信方式を選択し、予め切り替えておくことができる。これにより、無線通信の使用周波数が切り替わっても、有線通信方式を切り替える必要がなくなる。その結果、有線通信方式の切り替えに伴って発生する通信制御部100と無線通信装置20との間の通信途絶を抑制し、通信速度の向上や遅延時間の低減が可能となる。
また、無線通信装置20は、自装置がアクセスポイント(AP)として動作する場合、APに接続する他の無線通信装置から送信される管理フレームを受信し、当該管理フレームに含まれるデータ転送速度に関する情報を取得することができる。また、無線通信装置20は、自装置がアクセスポイント(AP)に接続する装置(STA)として動作する場合、APから送信される管理フレームを受信し、当該管理フレームに含まれるデータ転送速度に関する情報を取得することができる。このように、無線通信装置20は、管理フレームをもとに、無線通信のデータ転送速度を精度良く取得することができる。
(第三の実施形態)
次に、本発明の第三の実施形態について説明する。
上述した第一の実施形態では、無線通信の使用周波数帯近傍に有線通信の基本周波数が存在しないような有線通信方式を選択し、有線通信方式を切り替える場合について説明した。この第三の実施形態では、さらに、無線通信の環境の変化により信号電力が変化した場合に、それに対応して適切に有線通信方式を変更する場合について説明する。
無線通信の通信速度は、一般的に信号対雑音比(SNR:Signal-to-Noise Ratio)によって決まる。SNRが大きければ、安定して無線通信を行うことができるため、通信速度は速くなる。一方、SNRが小さければ、通信速度は遅くなる。これは、無線通信装置20がデータを受信するときにSNRが小さいと、信号がノイズによって乱れ、復調が困難になるためである。ここで、SNRのSである信号電力は、例えば無線通信装置20とその通信相手である無線通信装置(以下、「対向機器」という。)との間の距離や、信号となる電磁波が伝搬する周囲環境等によって決まる。つまり、無線通信における信号電力は一定ではなく、無線通信装置20の移動や周囲環境の変化により、常に変化し得る。
そこで、本実施形態では、無線通信の環境の変化により信号電力が変化した場合には、その変化に対応して適切に有線通信の規格を変更するようにする。具体的には、本実施形態では、無線通信のSNRを所定の周期で取得し、取得されたSNRに応じて、有線通信方式を現在使用している有線通信方式から変更するようにする。
図11は、本実施形態における無線通信装置20が実行する有線通信方式の変更処理手順を示すフローチャートである。以降、アルファベットSはフローチャートにおけるステップを意味するものとする。図11に示す処理は、制御部202または無線部203を構成するCPUが、必要なプログラムを読み出して実行することにより実現される。ただし、図4に示す各機能モジュールのうち少なくとも一部が専用のハードウェアとして動作することで図7の処理が実現されるようにしてもよい。この場合、専用のハードウェアは、上記CPUの制御に基づいて動作する。
まずS31において、無線送受信部211は、電子機器10のユーザの指示等により、無線通信方式を決定する。これにより、無線通信方式の使用周波数帯が決定される。ここで、無線送受信部211は、電子機器10がステーションとして機能する場合、電子機器10のユーザが接続しようとする対向機器が使用している無線LAN規格によって無線通信方式を決定する。一方、無線送受信部211は、電子機器10がアクセスポイントとして機能する場合、ユーザが使用する無線LAN規格によって無線通信方式を決定する。
次にS32では、通信方式選択部113は、S31において決定された無線通信方式の使用周波数帯に、基本周波数が重ならない、あるいは近接しない有線通信方式のうち、最もデータ転送速度が速い有線通信方式を選択する。このS32における有線通信方式の選択方法は、上述した第一の実施形態と同様である。そして、通信方式切替部212は、通信方式選択部113において選択された有線通信方式に切り替える。
S33では、無線送受信部211は、無線通信を行っている際のSNRを測定する。例えば、無線送受信部211は、WiFiチップ23内の処理で測定されたSNRを取得してもよい。
S34では、通信方式選択部113は、現在使用している有線通信方式が、S33において測定されたSNRに適した有線通信方式であるか否かを判定する。例えば、通信方式選択部113は、S33において測定されたSNRが第1の閾値以下、もしくは第1の閾値よりも大きい第2の閾値以上であるか否かを判定する。そして、SNRが第1の閾値よりも大きく第2の閾値未満である場合、SNRに適した有線通信方式と判定してS35に移行し、SNRが第1の閾値以下もしくは第2の閾値以上である場合、SNRに適した有線通信方式ではないと判定してS36に移行する。
上述したように、SNRが大きければ無線通信における通信速度が速くなり、逆にSNRが小さければ無線通信における通信速度は遅くなる。そこで、本実施形態では、第1の閾値よりも大きく第2の閾値未満である範囲をSNRの適正範囲として設定し、SNRが適正範囲外である場合、現在使用している有線通信方式がSNRに適した有線通信方式ではないと判定する。
なお、通信方式選択部113は、各有線通信方式について、SNRとそれに適した有線通信方式との関係を予めテーブルとして保持しておき、そのテーブルを参照してSNRに適した有線通信方式であるか否かを判定してもよい。
また、無線通信方式によって、SNRとそれに適した有線通信方式の関係は異なるため、各無線通信方式における、SNRとそれに適した有線通信方式との関係を予めテーブルとして保持しておき、そのテーブルを参照してSNRに適した有線通信方式であるか否かを判定してもよい。
S35では、無線送受信部211は、タイマーにより、S33におけるSNRの測定からの経過時間を計測し、一定期間経過後にS33に戻る。上述したように、無線通信の通信環境は一定ではなく、無線通信装置の移動や、周囲環境の変化により常に変化する。そのため、無線送受信部211は、所定の周期でSNRの測定を行うようにする。
S36では、通信方式選択部113は、S33において測定されたSNRに適した有線通信方式を選択し、通信方式切替部212は、選択された有線通信方式に切り替える。上述したように、SNRが大きければ無線通信の通信速度は速くなり、SNRが小さければ無線通信の通信速度は遅くなる。そこで、通信方式選択部113は、SNRが第1の閾値以下である場合には、SNRを適正範囲内まで上げ、無線通信の通信速度を上げるために、データノイズの電力を下げるような有線通信方式を選択する。一方、通信方式選択部113は、SNRが第2の閾値以上である場合には、SNRが十分に大きく、データノイズの電力を上げても安定した無線通信が可能であるため、データノイズの電力を上げるような有線通信方式を選択する。
本実施形態のように、有線通信規格がUSB規格である場合、データ転送速度が高いほど、データ通信の基本周波数はGHz帯に近づく。本実施形態において、無線通信の使用周波数帯はGHz帯であるため、無線通信の使用周波数帯域内のデータノイズの電力を下げるためには、有線通信のデータ転送速度を下げればよい。これにより、有線通信に使用する基本周波数を無線通信の使用周波数帯から離すことができ、データノイズの電力を下げる方向に制御することができる。このように、ノイズ電力のうち、データ通信によって発生するデータノイズの電力に関しては、有線通信方式を変更することで容易に制御可能である。
そこで、通信方式選択部113は、SNRが第2の閾値以上であり、ノイズ電力がより大きくなっても高速な無線通信が可能である場合には、使用する有線通信方式を、より高速な有線通信方式に変更する。例えば、通信方式選択部113は、使用する有線通信方式を、一段階高速な有線通信方式に変更する。これにより、無線通信の高速性を活かすことができる。ただし、現在使用している有線通信方式が最速のデータ転送速度の規格である場合には、有線通信方式の変更は行わない。
一方、通信方式選択部113は、SNRが第1の閾値以下であり、無線通信の通信速度が適正速度ではない場合には、使用する有線通信方式を、より低速な有線通信方式に変更する。例えば、通信方式選択部113は、使用する有線通信方式を、一段階低速な有線通信方式に変更する。これにより、無線通信の使用周波数帯におけるデータノイズのノイズ電力を低減することができ、無線通信の高速化が図れる。
S36において有線通信方式を変更した後は、S35に移行し、一定期間経過後に再度S33に戻る。なお、S36において、通信方式選択部113は、上述したテーブルを参照し、SNRに適した有線通信方式を選択するようにしてもよい。
以上説明したように、本実施形態における無線通信装置20は、無線通信における信号対雑音比(SNR)を取得し、取得されたSNRに基づいて、有線通信で使用する有線通信方式を、現在使用している有線通信方式から変更する。その際、無線通信装置20は、取得されたSNRが第1の閾値以下である場合には、有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が低い有線通信方式に変更する。また、無線通信装置20は、取得されたSNRが第1の閾値よりも大きい第2の閾値以上である場合には、有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が高い有線通信方式に変更する。
これにより、無線通信の通信環境が変動する中においても、適切に有線通信方式を選択し、データノイズのレベルを調整することができるので、高速な無線通信を行うことが可能になる。
上述した第一の実施形態における有線通信方式の選択方法では、無線通信については高速な無線通信が行われ、有線通信については低速な有線通信が行われる、というケースが生じ得る。この場合、電子機器10の通信システムとしては、有線通信のデータ転送速度が遅いことに律速して無線通信の通信速度が低下する場合も生じる。これに対して、本実施形態では、無線通信の通信環境によっては、より高速な有線通信方式を選択することが可能となるため、無線通信の通信速度の高速化を図ることができ、無線通信の使用周波数帯の占有率を下げることができる。さらに、無線通信に必要な電力も少なくすることが可能となる。
また、無線通信の通信環境は一定ではないため、無線通信装置20は、所定の周期でSNRを取得し、現在使用している有線通信方式がSNRに適した有線通信方式であるか否かを判定し、必要に応じて有線通信方式を変更する。このように、定期的にSNRを取得することで、無線通信の通信環境の変化に対応して、有線通信方式を適切に変更することができる。
(第四の実施形態)
次に、本発明の第四の実施形態について説明する。
上述した各実施形態では、無線通信の使用周波数帯に応じて、使用する有線通信方式を切り替える場合について説明した。この第四の実施形態では、電子機器(無線通信装置)が電子データの送信側であるか受信側であるかによって、使用する有線通信方式を切り替える場合について説明する。ここで、上記電子データは、コンピュータ内にあるか、コンピュータに取り込める形になっているデータであり、例えば、画像データや動画データ等を含む。
無線通信装置20がデータを受信する際にSNRが小さいと、信号がノイズによって乱れ、復調が困難になる。一方、無線通信装置20がデータを送信する際には、無線通信装置20が検知するノイズ電力の大小は無線通信に大きな影響は及ぼさない。そこで、本実施形態では、電子機器10がデータを対向機器に送信する場合と、対向機器から受信する場合とにおいて、それぞれ適切に有線通信の規格を選択することで、高速な無線通信を行う方法について説明する。
まず、電子機器10(無線通信装置20)が電子データの受信側である場合について説明する。無線通信装置20がデータの受信側である場合、無線通信の使用周波数帯域内における、有線通信から発生するデータノイズのノイズ電力が大きい場合、無線通信に大きな影響を与える。よって、電子機器10が電子データの受信側である場合には、上述した第一の実施形態や第二の実施形態において述べた方法を用いて有線通信方式を選択する。これにより、データノイズによる無線通信への悪影響を低減し、高速な無線通信が可能となる。
次に、電子機器10(無線通信装置20)が電子データ送信側である場合について説明する。無線通信装置20がデータの送信側である場合、無線通信の使用周波数帯域内における、有線通信から発生するデータノイズのノイズ電力が大きくても、無線通信に大きな影響は与えない。よって、電子機器10が電子データの送信側である場合には、最も高速な有線通信方式を選択することができる。この場合、第一の実施形態や第二の実施形態のように、有線通信方式の基本周波数を考慮する必要はない。これにより、通信システムとして高速に対向機器に対して電子データを送信することが可能となる。
なお、電子機器10は、電子データを対向機器から受信した際、対向機器に対してACKパケットのような少量のデータを送信する必要がある。よって、電子機器10が電子データの受信側である場合であっても、ACKパケットのような少量のデータを送信する際には、最速の有線通信方式を選択するようにしてもよい。
また、電子機器10は、電子データを対向機器に対して送信した後、対向機器からACKパケットのような少量のデータを受信する。しかしながら、これは少量のデータであるため、有線通信のデータノイズに起因してSNRが小さくなり、ACKパケットの通信速度が低くなっても影響は小さい。そのため、ACKパケットのような少量のデータを受信する際に、データノイズによる無線通信への影響を考慮して有線通信方式を切り替える必要はない。
ただし、電子機器10がACKパケットをほぼ受信できないような状態になると、電子機器10は、対向機器に対する電子データの再送を繰り返してしまう。したがって、そのような場合には、ACKパケットを受信する際に、第一の実施形態や第二の実施形態で述べた方法を用いて有線通信方式を選択してもよい。あるいは、上述した電子機器10(無線通信装置20)が電子データの受信側の場合に使用する有線通信方式よりも高速で、かつ最速の有線通信方式よりも低速の有線通信方式を選択してもよい。
以上説明したように、本実施形態における無線通信装置20は、無線通信の受信側であるか送信側であるかを判定し、その判定結果に応じて有線通信方式の選択方法を変更する。これにより、有線通信方式を適切に選択することができ、無線通信を高速に行うことが可能となる。無線通信装置20が電子データの送信側であるか受信側であるかを判定する方法としては、例えば、電子機器10のユーザが対向機器と通信を行う際に使用する、アプリケーションプログラム上で判定する方法を用いることができる。
(変形例)
上記各実施形態においては、電子機器10がデジタルカメラである場合について説明したが、電子機器10はデジタルカメラに限定されるものではない。例えば、電子機器10は、携帯電話、スマートフォン、タブレット端末、パーソナルコンピュータ(PC)、プリンタ、ビデオカメラ、スマートウォッチ、PDA等であってもよい。
また、上記各実施形態においては、無線通信装置20と有線通信を行う他の通信装置としてのメイン電子回路基板において、有線通信方式を選択する場合について説明した。しかしながら、無線通信装置20の電子回路基板において、有線通信方式の選択が行われてもよい。つまり、無線通信機能と有線通信機能とを有する無線通信装置が、自装置が無線通信に使用する無線通信方式に応じて有線通信方式を選択してもよい。この場合、図4における通信方式選択部113は、通信制御部100が備える必要はなく、無線通信装置20が通信方式選択部113に相当する機能モジュールを備える。
また、無線通信装置20は、電子機器10に組み込まれている必要はなく、電子機器10とは別の装置であってもよい。この場合にも、無線通信装置20が無線通信を行うためのアンテナが、電子機器10と無線通信装置20とを接続するケーブルやコネクタ等と近い場合には、有線通信のデータノイズが無線通信に悪影響を与えるおそれがある。そのため、上記のような通信システムにも本発明を適用することで、有線通信のデータノイズが無線通信に悪影響を与えることを抑制することができる。
さらに、上記各実施形態においては、無線通信装置20が使用する無線通信規格が、無線LANの通信規格であるIEEE802.11規格シリーズであり、無線通信装置20が使用する有線通信規格がUSB規格である場合について説明した。しかしながら、無線通信装置20が使用する無線通信規格および有線通信規格は、上記に限定されるものではない。例えば、有線通信規格として、PCI Express規格を使用してもよい。PCI Express規格は、Gen1、Gen2、Gen3およびGen4といった複数の規格を含む。例えば、無線通信の使用周波数帯が2.4GHz帯である場合、PCIExpress2.0(Gen2)以外の有線通信方式を選択し、使用するようにしてもよい。また、無線通信規格として、例えばIEEE802.11adのような60GHz帯を使用する無線通信規格や、IoTやM2Mで使用される920MHz帯を使用する無線通信規格を使用してもよい。さらに、無線通信規格として、LTEで使用される800、1500、1800、2100MHz帯を使用する無線通信規格を使用してもよい。 
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
この出願は2017年6月6日に出願された日本国特許出願番号2017-111360、および2017年11月30日に出願された日本国特許出願番号2017-230042の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。

 

Claims (18)

  1. 使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行う第一の通信手段と、
    データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う第二の通信手段と、
    前記基本周波数が、前記第一の通信手段による前記無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替える切替手段と、を備えることを特徴とする無線通信装置。
  2. 前記切替手段は、
    前記基本周波数が前記所定の周波数帯域外である有線通信方式のうち、前記データ転送速度が最大である有線通信方式に切り替えることを特徴とする請求項1に記載の無線通信装置。
  3. 前記第一の通信手段による前記無線通信における信号対雑音比を取得する取得手段と、前記取得手段により取得された信号対雑音比に基づいて、前記第二の通信手段による前記有線通信で使用する有線通信方式を、現在使用している有線通信方式から変更する変更手段と、をさらに備えることを特徴とする請求項1または2に記載の無線通信装置。
  4. 前記変更手段は、
    前記取得手段により取得された信号対雑音比が第1の閾値以下である場合、前記第二の通信手段による前記有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が低い有線通信方式に変更し、
    前記取得手段により取得された信号対雑音比が前記第1の閾値よりも大きい第2の閾値以上である場合、前記第二の通信手段による前記有線通信で使用する有線通信方式を、現在使用している有線通信方式よりもデータ転送速度が高い有線通信方式に変更することを特徴とする請求項3に記載の無線通信装置。
  5. 前記取得手段は、所定の周期で信号対雑音比を取得することを特徴とする請求項3または4に記載の無線通信装置。
  6. 前記無線通信装置が前記無線通信の受信側であるか送信側であるかを判定する判定手段をさらに備え、
    前記切替手段は、
    前記判定手段により前記無線通信の受信側であると判定された場合、前記基本周波数が前記所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替えることを特徴とする請求項1から5のいずれか1項に記載の無線通信装置。
  7. 前記切替手段は、
    前記判定手段により前記無線通信の送信側であると判定された場合、前記第二の通信手段による前記有線通信で使用する有線通信方式を、前記第一の通信手段による前記無線通信の使用周波数帯にかかわらず、前記複数の有線通信方式のうちデータ転送速度が最大である有線通信方式に切り替えることを特徴とする請求項6に記載の無線通信装置。
  8. 前記第二の通信手段は、
    互換性を有する複数の有線通信方式に対応していることを特徴とする請求項1から7のいずれか1項に記載の無線通信装置。
  9. 前記第二の通信手段は、
    複数のUSB規格に準じた有線通信方式に対応していることを特徴とする請求項1から8のいずれか1項に記載の無線通信装置。
  10. 前記第一の通信手段は、
    前記使用周波数帯が、2.4GHz帯および5GHz帯の少なくとも一方である複数の無線通信方式に対応していることを特徴とする請求項1から9のいずれか1項に記載の無線通信装置。
  11. 前記切替手段は、
    前記第一の通信手段による前記無線通信の使用周波数帯が2.4GHz帯である場合、前記所定の周波数帯域を2.4GHz以上2.5GHz以下の周波数帯域に設定することを特徴とする請求項10に記載の無線通信装置。
  12. 前記切替手段は、
    前記第一の通信手段による前記無線通信の使用周波数帯が5GHz帯である場合、前記所定の周波数帯域を5GHz以上6GHz以下の周波数帯域に設定することを特徴とする請求項10または11に記載の無線通信装置。
  13. 前記切替手段は、前記無線通信の使用周波数帯がGHz帯域である場合に、前記有線通信で使用する有線通信方式を、MHz帯域に基本周波数がある有線通信方式に切り替えることを特徴とする請求項1から12のいずれか1項に記載の無線通信装置。
  14. 前記切替手段は、前記第一の通信手段により前記使用周波数が異なる複数の無線通信が同時に行われる場合に、前記基本周波数が、同時に行われる前記複数の無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記第二の通信手段による前記有線通信で使用する有線通信方式を切り替えることを特徴とする請求項1から13のいずれか1項に記載の無線通信装置。
  15. データ通信に使用する基本周波数が異なる複数の有線通信方式に対応し、他の無線通信装置と有線通信を行う通信手段と、
    前記基本周波数が、前記他の無線通信装置による無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記通信手段による前記有線通信で使用する有線通信方式を切り替える切替手段と、を備えることを特徴とする通信装置。
  16. 使用周波数帯が異なる複数の無線通信方式に対応した無線通信を行うとともに、データ通信に使用する基本周波数が異なる複数の有線通信方式に対応した有線通信を行う無線通信装置の制御方法であって、
    前記基本周波数が、前記無線通信装置における前記無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記無線通信装置が前記有線通信で使用する有線通信方式を選択するステップと、
    前記無線通信装置が有線通信で使用する有線通信方式を、選択された有線通信方式に切り替えるステップを、を含むことを特徴とする制御方法。
  17. データ通信に使用する基本周波数が異なる複数の有線通信方式に対応し、他の無線通信装置と有線通信を行う通信装置の制御方法であって、
    前記基本周波数が、前記他の無線通信装置における無線通信の使用周波数帯を含む所定の周波数帯域外となるように、前記通信装置が前記有線通信で使用する有線通信方式を選択するステップと、
    前記通信装置が有線通信で使用する有線通信方式を、選択された有線通信方式に切り替えるステップを、を含むことを特徴とする制御方法。
  18. コンピュータを、請求項1から14のいずれか1項に記載された無線通信装置の各手段として機能させるためのプログラム。

     
PCT/JP2018/021043 2017-06-06 2018-05-31 無線通信装置およびその制御方法 WO2018225624A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/704,351 US11539391B2 (en) 2017-06-06 2019-12-05 Wireless communication apparatus and control method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-111360 2017-06-06
JP2017111360A JP7140470B2 (ja) 2017-06-06 2017-06-06 無線通信装置およびその制御方法
JP2017230042A JP7130366B2 (ja) 2017-11-30 2017-11-30 通信装置およびその制御方法
JP2017-230042 2017-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/704,351 Continuation US11539391B2 (en) 2017-06-06 2019-12-05 Wireless communication apparatus and control method therefor

Publications (1)

Publication Number Publication Date
WO2018225624A1 true WO2018225624A1 (ja) 2018-12-13

Family

ID=64566141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021043 WO2018225624A1 (ja) 2017-06-06 2018-05-31 無線通信装置およびその制御方法

Country Status (2)

Country Link
US (1) US11539391B2 (ja)
WO (1) WO2018225624A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113899A (ja) * 2019-01-11 2020-07-27 キヤノン株式会社 通信装置及びその制御方法及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220102347A (ko) * 2021-01-13 2022-07-20 삼성전자주식회사 전자 장치 및 이의 동작 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106776417A (zh) * 2015-11-23 2017-05-31 西安中兴新软件有限责任公司 一种通用串行总线接口模式控制方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217743A (ja) 2000-01-31 2001-08-10 Matsushita Electric Ind Co Ltd データ通信装置
CN1720756B (zh) * 2002-12-19 2010-06-16 诺基亚公司 在多频段环境中的系统和切换机制及其装置
US7729327B2 (en) * 2005-12-15 2010-06-01 Toshiba America Research, Inc. Dynamic use of multiple IP network interfaces in mobile devices for packet loss prevention and bandwidth enhancement
US20140244852A1 (en) * 2013-02-27 2014-08-28 Ralink Technology Corp. Method of Reducing Mutual Interference between Universal Serial Bus (USB) data transmission and wireless data transmission
JP2016039570A (ja) 2014-08-08 2016-03-22 キヤノン株式会社 通信装置およびその制御方法、通信システム
US9558144B2 (en) * 2014-09-26 2017-01-31 Intel Corporation Serial bus electrical termination control
KR102301843B1 (ko) * 2014-12-18 2021-09-14 삼성전자 주식회사 환경 설정을 변경하여 무선 통신의 성능을 향상시키는 방법 및 이를 구현한 전자장치
US20160275873A1 (en) * 2015-03-20 2016-09-22 Microsoft Technology Licensing, Llc Modifying content for electronic paper display devices
US10275387B2 (en) * 2015-08-10 2019-04-30 Mediatek Inc. Method and associated interface circuit for mitigating interference due to signaling of a bus
US20170223597A1 (en) * 2016-01-29 2017-08-03 Qualcomm Incorporated Voice and/or video call continuity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106776417A (zh) * 2015-11-23 2017-05-31 西安中兴新软件有限责任公司 一种通用串行总线接口模式控制方法及装置
WO2017088308A1 (zh) * 2015-11-23 2017-06-01 西安中兴新软件有限责任公司 一种通用串行总线接口模式控制方法及装置、存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113899A (ja) * 2019-01-11 2020-07-27 キヤノン株式会社 通信装置及びその制御方法及びプログラム
JP7339735B2 (ja) 2019-01-11 2023-09-06 キヤノン株式会社 通信装置及びその制御方法及びプログラム

Also Published As

Publication number Publication date
US20200112331A1 (en) 2020-04-09
US11539391B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2016179804A1 (en) Methods and devices for beam selection
JP4487151B2 (ja) 無線通信システム、無線通信端末、無線通信端末の通信チャネル選択方法、プログラム及び記録媒体
US9125216B1 (en) Method and apparatus for avoiding interference among multiple radios
KR102566509B1 (ko) 동적 시분할 듀플렉스 환경에서 셀 간 간섭 완화 방법 및 그 전자 장치
US10292171B2 (en) Terminal device and communication system
US10425888B2 (en) Wireless communication apparatus and method of controlling wireless communication apparatus
US20180048350A1 (en) Multiband bluetooth
WO2018225624A1 (ja) 無線通信装置およびその制御方法
JP6432104B2 (ja) ライセンスバンド基地局装置、通信システム、通信制御方法およびプログラム
CN116346297A (zh) 一种通信方法与装置
JP2024518516A (ja) 測定ギャップの決定方法、端末及びネットワーク側機器
JP7130366B2 (ja) 通信装置およびその制御方法
CN111108701B (zh) 资源调度方法和终端设备
EP3534660B1 (en) Data transmission method and device
JP7140470B2 (ja) 無線通信装置およびその制御方法
US12057897B2 (en) Method and apparatus for Wi-Fi concurrent dual high band with antenna sharing
CN114080043B (zh) 资源传输方法、装置及通信设备
TW202241174A (zh) 用於探測參考訊號之部分探測方法及其使用者設備
US20200396757A1 (en) Downlink transmission resource allocation method and apparatus
JP6507758B2 (ja) 通信モジュール及び通信制御方法
US11513569B1 (en) System and method for using a handle lug structural element as an electromagnetic interference grounding element and an antenna radiator
JP6773336B2 (ja) 無線通信端末装置、無線通信システム、制御方法、及びプログラム
US11558158B2 (en) Methods and devices for dynamically avoiding radio frequency interference
JP2019004354A (ja) 通信装置、通信システム、通信制御方法および通信制御プログラム
US20240244692A1 (en) Communication apparatus, method for controlling communication apparatus, and storage medium for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813895

Country of ref document: EP

Kind code of ref document: A1