JP2018204809A - Air-conditioning control device and method - Google Patents

Air-conditioning control device and method Download PDF

Info

Publication number
JP2018204809A
JP2018204809A JP2017107462A JP2017107462A JP2018204809A JP 2018204809 A JP2018204809 A JP 2018204809A JP 2017107462 A JP2017107462 A JP 2017107462A JP 2017107462 A JP2017107462 A JP 2017107462A JP 2018204809 A JP2018204809 A JP 2018204809A
Authority
JP
Japan
Prior art keywords
heat source
heat
source machine
conditioning control
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017107462A
Other languages
Japanese (ja)
Other versions
JP6978225B2 (en
Inventor
知志 名古田
Tomoji Nagoda
知志 名古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2017107462A priority Critical patent/JP6978225B2/en
Publication of JP2018204809A publication Critical patent/JP2018204809A/en
Application granted granted Critical
Publication of JP6978225B2 publication Critical patent/JP6978225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To enable accurate air-conditioning control regardless of situation of outside air.SOLUTION: A production heat quantity calculation unit 101 is configured to calculate each heat quantity a heat source machine A111a, a heat source machine B111b and a heat source machine C111c produce. A load calculation unit 102 is configured to calculate each load factor of the heat source machine A111a, heat source machine B111b and heat source machine C111c at the time when the production heat quantity calculation unit 101 calculates the heat quantity. A maximum capacity calculation unit 103 is configured to calculate a value obtained by dividing the calculated heat quantity by the calculated load factor as a maximum capacity of the heat source machine A111a, heat source machine B111b and heat source machine C111c.SELECTED DRAWING: Figure 1

Description

本発明は、空調制御装置および方法に関し、特に、熱源機の台数を制御して空調を制御する空調制御装置および方法に関する。   The present invention relates to an air conditioning control device and method, and more particularly to an air conditioning control device and method for controlling air conditioning by controlling the number of heat source units.

空調制御などに利用される熱源装置では、熱源機の設計能力(最大能力)や設計流量(最大能力発揮時におけるポンプ熱媒流量の設計値)、熱媒ポンプの搬送容量(定格流量)などが、必要とされる最大熱負荷量を考慮して定められる。   In heat source devices used for air conditioning control, etc., the heat source machine design capacity (maximum capacity), design flow rate (design value of pump heat medium flow rate when maximum capacity is exhibited), heat medium pump transfer capacity (rated flow rate), etc. It is determined in consideration of the required maximum heat load.

一般的には、熱源機の能力は、熱源機の冷温水の出口温度により大きく変動する。また、熱源機の中でも、空冷式熱源機では外気温度によっても能力が変動し、水冷式熱源機では冷却水温度によっても能力が変動する。例えば、第1の熱源機の発揮能力を最大能力の60%とした場合、40%の冷却能力の余裕がまだあるにも拘わらず、第2の熱源機への増段が図られてしまうことがある。余力を残したままで熱源機の増段を図ることは、冷却水ポンプ、冷却塔ファンを含めて、熱源機や熱媒ポンプを早めに起動することになり、エネルギーの過剰消費となる。(特許文献1参照)また、第2の熱源機は、第1の熱源機よりも低い効率とされていることが多く、これもエネルギー過剰消費の要因の1つとなる。   In general, the capacity of a heat source machine varies greatly depending on the outlet temperature of cold / hot water of the heat source machine. Among the heat source machines, the capacity of air-cooled heat source machines varies depending on the outside air temperature, and the capacity of water-cooled heat source machines varies depending on the cooling water temperature. For example, when the first heat source machine has a capacity of 60% of the maximum capacity, the stage can be increased to the second heat source machine even though the cooling capacity of 40% is still available. There is. To increase the number of stages of the heat source unit while leaving the surplus power, the heat source unit and the heat medium pump including the cooling water pump and the cooling tower fan are started up early, resulting in excessive consumption of energy. In addition, the second heat source machine is often set to have a lower efficiency than the first heat source machine, and this is one of the causes of excessive energy consumption.

熱源機の能力設定の方法としては、例えば、定格能力を設定値として通年固定で使用する技術や、外気温度あるいは冷却水温度および熱源機の冷温水の出口温度別の能力表から、各熱源機の能力を決定する技術などがある。能力表から能力を決定する方法によれば、比較的細やかな運転制御が可能である。   As a method of setting the capacity of the heat source machine, for example, from the technology that uses the rated capacity as a fixed value throughout the year, or from the outside air temperature or cooling water temperature and the capacity table according to the outlet temperature of the cold / hot water of each heat source machine, There are techniques to determine the ability of According to the method for determining the capability from the capability table, relatively fine operation control is possible.

特開2004-184052号公報JP 2004-184052 A

しかしながら、定格能力を設定値として通年固定で使用する技術では、外気の条件などにより熱源機の最大能力が変動するため、定格能力の値との間に乖離が生じ、正確な能力設定が行えない。このため、中間期などの外気条件が厳しくない時期・時間帯では、熱源機の能力に余裕があっても、熱源機の台数が増段される場合が発生する。このような技術によると、本来不要な熱源機の増段が行われてしまい、省エネルギーの観点で問題があった。また、能力表を用いる技術においても、能力表の精度や熱源機の経年変化などの問題により、正確に熱源機の能力を把握できないという問題がある。   However, in the technology that uses the rated capacity as a set value throughout the year, the maximum capacity of the heat source unit fluctuates due to outside air conditions, etc., so there is a discrepancy from the rated capacity value, and accurate capacity setting cannot be performed. . For this reason, when the outside air conditions are not severe, such as an intermediate period, the number of heat source units may be increased even if the capacity of the heat source units is sufficient. According to such a technique, originally unnecessary heat source machines are increased, which causes a problem in terms of energy saving. In addition, the technology using the capability table has a problem that the capability of the heat source device cannot be accurately grasped due to problems such as the accuracy of the capability table and the secular change of the heat source device.

本発明は、以上のような問題点を解消するためになされたものであり、外気の条件などにかかわらず、熱源機の最大能力を発揮させることが可能な熱源機の台数制御方法を提供することを目的の1つとする。   The present invention has been made to solve the above-described problems, and provides a method for controlling the number of heat source units capable of exerting the maximum capacity of the heat source unit regardless of the conditions of the outside air. This is one of the purposes.

本発明に係る空調制御装置は、熱源機が製造している熱量を求めるように構成された製造熱量算出部と、製造熱量算出部が熱量を求めた時点の熱源機の負荷率を算出するように構成された負荷算出部と、熱量を負荷率で除した値を熱源機の最大能力として算出するように構成された最大能力算出部と、最大能力に基づいて熱源機の運転台数を決定するように構成された運転台数決定部とを備える。   The air-conditioning control device according to the present invention calculates a production heat amount calculation unit configured to obtain the amount of heat produced by the heat source unit, and calculates a load factor of the heat source unit at the time when the production heat amount calculation unit obtains the heat amount. The load calculation unit configured in the above, the maximum capacity calculation unit configured to calculate the value obtained by dividing the amount of heat by the load factor as the maximum capacity of the heat source unit, and the number of operating heat source units is determined based on the maximum capacity An operation number determining unit configured as described above.

上記空調制御装置において、負荷算出部は、熱源機の圧縮機を駆動するモータの運転周波数に基づいて負荷率を算出すればよい。なお、負荷算出部は、熱源機の圧縮機を駆動するモータの消費電力に基づいて負荷率を算出してもよい。   In the air conditioning control device, the load calculation unit may calculate the load factor based on the operating frequency of the motor that drives the compressor of the heat source device. The load calculation unit may calculate the load factor based on the power consumption of the motor that drives the compressor of the heat source device.

上記空調制御装置において、製造熱量算出部は、熱源機の冷温水の入口温度と、熱源機の冷温水の出口温度との差に、冷温水の流量を乗じた値を熱量として算出すればよい。   In the air conditioning control device, the production heat quantity calculation unit may calculate a value obtained by multiplying the difference between the cold / hot water outlet temperature of the heat source machine and the cold / hot water outlet temperature of the heat source machine by the flow rate of the cold / hot water as the heat quantity. .

本発明に係る空調制御方法は、熱源機が製造している熱量を求める第1ステップと、熱量を求めた時点の熱源機の負荷率を算出する第2ステップと、熱量を負荷率で除した値を熱源機の最大能力として算出する第3ステップと、最大能力に基づいて熱源機の運転台数を決定する第4ステップとを備える。   In the air conditioning control method according to the present invention, the first step for determining the amount of heat produced by the heat source unit, the second step for calculating the load factor of the heat source unit at the time of determining the amount of heat, and the amount of heat divided by the load factor. A third step of calculating the value as the maximum capacity of the heat source unit and a fourth step of determining the number of operating heat source units based on the maximum capacity.

上記空調制御方法において、第2ステップでは、熱源機の圧縮機を駆動するモータの運転周波数に基づいて負荷率を算出すればよい。なお、熱源機の圧縮機を駆動するモータの消費電力に基づいて負荷率を算出してもよい。   In the air conditioning control method, in the second step, the load factor may be calculated based on the operating frequency of the motor that drives the compressor of the heat source device. In addition, you may calculate a load factor based on the power consumption of the motor which drives the compressor of a heat source machine.

上記空調制御方法において、第1ステップでは、熱源機の冷温水の入口温度と、熱源機の冷温水の出口温度との差に、冷温水の流量を乗じた値を熱量として算出すればよい。   In the air conditioning control method, in the first step, a value obtained by multiplying the difference between the temperature of the cold / hot water of the heat source device and the temperature of the cold / warm water of the heat source device by the flow rate of the cold / warm water may be calculated as the amount of heat.

以上説明したことにより、本発明によれば、外気の条件などにかかわらず、熱源機の最大能力を発揮させて最小台数の運転を長くすることができるという優れた効果が得られる。   As described above, according to the present invention, it is possible to obtain an excellent effect that the maximum capacity of the heat source device can be exhibited and the operation of the minimum number of units can be lengthened regardless of the conditions of the outside air.

図1は、本発明の実施の形態における空調制御装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of an air conditioning control device according to an embodiment of the present invention. 図2は、本発明の実施の形態における空調制御方法を説明するフローチャートである。FIG. 2 is a flowchart illustrating an air conditioning control method according to the embodiment of the present invention. 図3は、本発明における空調制御装置のハードウエア構成を示す構成図である。FIG. 3 is a block diagram showing a hardware configuration of the air conditioning control device according to the present invention. 図4は、本発明の実施の形態における空調制御装置の他の構成を示す構成図である。FIG. 4 is a configuration diagram showing another configuration of the air-conditioning control apparatus in the embodiment of the present invention. 図5は、本発明の実施の形態における空調制御装置の他の構成を示す構成図である。FIG. 5 is a configuration diagram showing another configuration of the air-conditioning control apparatus according to the embodiment of the present invention. 図6は、熱源機における消費電力と負荷率との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between power consumption and load factor in the heat source device.

以下、本発明の実施の形態における空調制御装置について図1を参照して説明する。この空調制御装置は、製造熱量算出部101、負荷算出部102、最大能力算出部103、運転台数決定部104を備える。この空調制御装置は、よく知られているように、複数の熱源機A111a、熱源機B111b、熱源機C111cの動作台数を増減することで、外部負荷113に供給する冷温水を制御している。熱源機A111a、熱源機B111b、熱源機C111cより生成される冷温水は、往ヘッダ112を介して外部負荷113に供給される。また、外部負荷113で空調に用いられた冷温水は、還ヘッダ114を介して、熱源機A111a、熱源機B111b、熱源機C111cに戻る。   Hereinafter, an air-conditioning control apparatus according to an embodiment of the present invention will be described with reference to FIG. The air conditioning control device includes a manufacturing heat quantity calculation unit 101, a load calculation unit 102, a maximum capacity calculation unit 103, and an operating number determination unit 104. As is well known, this air conditioning control device controls the cold / hot water supplied to the external load 113 by increasing or decreasing the number of operating heat source devices A111a, B111b, and C111c. Cold / hot water generated from the heat source machine A 111 a, the heat source machine B 111 b, and the heat source machine C 111 c is supplied to the external load 113 via the forward header 112. Moreover, the cold / hot water used for the air conditioning by the external load 113 returns to the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c via the return header 114.

製造熱量算出部101は、熱源機A111a、熱源機B111b、熱源機C111cが製造している熱量を各々求める。例えば、製造熱量算出部101は、熱源機A111a、熱源機B111b、熱源機C111cの冷温水の入口温度と、熱源機A111a、熱源機B111b、熱源機C111cの冷温水の出口温度との差に、冷温水の流量を乗じた値を熱量Q0として算出する。 The production heat quantity calculation unit 101 obtains the quantity of heat produced by the heat source machine A111a, the heat source machine B111b, and the heat source machine C111c, respectively. For example, the production heat quantity calculation unit 101 calculates the difference between the inlet temperature of the cold / hot water of the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c and the outlet temperature of the cold / hot water of the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c. A value obtained by multiplying the flow rate of the cold / hot water is calculated as the heat quantity Q 0 .

熱源機A111aの冷温水の入口温度は、温度計115aに測定される。また、熱源機B111bの冷温水の入口温度は、温度計115bに測定される。熱源機C111cの冷温水の入口温度は、温度計115cに測定される。   The inlet temperature of the cold / hot water of the heat source device A111a is measured by the thermometer 115a. Moreover, the inlet temperature of the cold / hot water of heat-source equipment B111b is measured by the thermometer 115b. The inlet temperature of the cold / hot water of the heat source device C111c is measured by the thermometer 115c.

熱源機A111aより出て行く(生成される)冷温水の温度は、温度計116aに測定される。また、熱源機B111bの冷温水の出口温度は、温度計116bに測定される。また、熱源機C111cの冷温水の出口温度は、温度計116cに測定される。   The temperature of the cold / warm water going out (generated) from the heat source device A111a is measured by the thermometer 116a. Moreover, the exit temperature of the cold / hot water of the heat source device B111b is measured by the thermometer 116b. Moreover, the exit temperature of the cold / hot water of the heat source device C111c is measured by the thermometer 116c.

熱源機A111aにおける冷温水の流量は、冷温水が出て行く箇所に設けられた流量計117aにより測定される。また、熱源機B111bにおける冷温水の流量は、冷温水が出て行く箇所に設けられた流量計117bにより測定される。また、熱源機C111cにおける冷温水の流量は、冷温水が出て行く箇所に設けられた流量計117cにより測定される。なお、冷温水の流量は、各熱源機の内部の流路に設けられているオリフィスにおける流量計の測定値を用いてもよい。また、冷温水が戻ってくる箇所に設けられた流量計により、冷温水の流量を測定してもよい。   The flow rate of the cold / hot water in the heat source machine A111a is measured by a flow meter 117a provided at a location where the cold / hot water goes out. Further, the flow rate of the cold / hot water in the heat source device B111b is measured by a flow meter 117b provided at a location where the cold / warm water goes out. Further, the flow rate of the cold / hot water in the heat source device C111c is measured by a flow meter 117c provided at a location where the cold / warm water goes out. In addition, you may use the measured value of the flowmeter in the orifice provided in the flow path inside each heat source machine for the flow volume of cold / hot water. Moreover, you may measure the flow volume of cold / hot water with the flowmeter provided in the location where cold / hot water returns.

負荷算出部102は、製造熱量算出部101が熱量を求めた時点の熱源機A111a、熱源機B111b、熱源機C111cの負荷率を各々算出する。例えば、負荷算出部102は、熱源機A111a、熱源機B111b、熱源機C111cの圧縮機を駆動するモータの運転周波数に基づいて、負荷率を算出する。各熱源機における圧縮機を駆動するモータにおける最大周波数fmaxで、熱量を求めた時点における運転周波数f0を除すること「負荷率L=f0/fmax」で、負荷率Lを算出することができる。 The load calculation unit 102 calculates the load factors of the heat source unit A 111a, the heat source unit B 111b, and the heat source unit C 111c at the time when the production heat amount calculation unit 101 obtains the heat amount. For example, the load calculation unit 102 calculates the load factor based on the operating frequency of the motor that drives the compressors of the heat source device A 111a, the heat source device B 111b, and the heat source device C 111c. The load factor L is calculated by dividing the operation frequency f 0 at the time when the amount of heat is obtained by “the load factor L = f 0 / f max ” by the maximum frequency f max in the motor driving the compressor in each heat source device. be able to.

最大能力算出部103は、求められた熱量Q0を負荷率Lで除した値「Qmax=Q0/L」を、熱源機A111a、熱源機B111b、熱源機C111cの最大能力として算出する。このように、本発明では、制御しようとしている時点での熱源機の最大能力を求めているところに特徴がある。このようにして得られた各熱源機の最大能力に基づいて、運転台数決定部104は、熱源機A111a、熱源機B111b、熱源機C111cの運転台数を決定する。 The maximum capacity calculation unit 103 calculates a value “Q max = Q 0 / L” obtained by dividing the obtained heat quantity Q 0 by the load factor L as the maximum capacity of the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c. As described above, the present invention is characterized in that the maximum capacity of the heat source unit at the time of control is obtained. Based on the maximum capacity of each heat source machine obtained in this way, the number of operating units determination unit 104 determines the number of operating heat source machines A111a, B111b, and C111c.

次に、実施の形態における空調制御装置の動作(空調制御方法)について、図2を用いて説明する。まず、ステップS101で、製造熱量算出部101が、熱源機A111a、熱源機B111b、熱源機C111cが製造している熱量を各々求める。前述したように、熱源機A111a、熱源機B111b、熱源機C111cの冷温水の入口温度と、熱源機A111a、熱源機B111b、熱源機C111cの冷温水の出口温度との差に、冷温水の流量を乗じた値を熱量として算出する。   Next, operation | movement (air-conditioning control method) of the air-conditioning control apparatus in embodiment is demonstrated using FIG. First, in step S101, the production heat quantity calculation unit 101 obtains the heat quantities produced by the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c, respectively. As described above, the flow rate of cold / hot water is the difference between the inlet temperature of the cold / hot water of the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c and the outlet temperature of the cold / hot water of the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c. The value multiplied by is calculated as the amount of heat.

次に、ステップS102で、負荷算出部102が、熱量を求めた時点の熱源機A111a、熱源機B111b、熱源機C111cの負荷率を各々算出する。前述したように、熱源機A111a、熱源機B111b、熱源機C111cの圧縮機を駆動するモータの運転周波数に基づいて負荷率を算出する。なお、各熱源機の圧縮機を駆動するモータの消費電力に基づいて負荷率を算出してもよい。   Next, in step S102, the load calculation unit 102 calculates the load factors of the heat source device A 111a, the heat source device B 111b, and the heat source device C 111c at the time when the amount of heat is obtained. As described above, the load factor is calculated based on the operating frequency of the motor that drives the compressor of the heat source device A111a, the heat source device B111b, and the heat source device C111c. In addition, you may calculate a load factor based on the power consumption of the motor which drives the compressor of each heat source machine.

次に、ステップS103で、最大能力算出部103が、各々求めた熱量を各々求めた負荷率で除した値を、熱源機A111a、熱源機B111b、熱源機C111cの最大能力として算出する。次に、ステップS104で、運転台数決定部104が、各々求めた 最大能力に基づいて、熱源機A111a、熱源機B111b、熱源機C111cの運転台数を決定する。   Next, in step S103, the maximum capacity calculation unit 103 calculates a value obtained by dividing each calculated amount of heat by the calculated load factor as the maximum capacity of the heat source apparatus A111a, the heat source apparatus B111b, and the heat source apparatus C111c. Next, in step S104, the operating number determination unit 104 determines the operating number of the heat source unit A111a, the heat source unit B111b, and the heat source unit C111c based on the maximum capacities obtained.

なお、上述した実施の形態における空調制御装置は、図3に示すように、CPU(Central Processing Unit;中央演算処理装置)201と主記憶装置202と外部記憶装置203とネットワーク接続装置204となどを備えたコンピュータ機器であり、主記憶装置に展開されたプログラムによりCPUが動作することで、上述した各機能が実現される。ネットワーク接続装置204は、ネットワーク205に接続する。また、各機能は、複数のコンピュータ機器に分散させるようにしてもよい。   The air conditioning control device in the above-described embodiment includes a CPU (Central Processing Unit) 201, a main storage device 202, an external storage device 203, a network connection device 204, and the like, as shown in FIG. Each of the functions described above is realized by the CPU operating by a program developed in the main storage device. The network connection device 204 is connected to the network 205. Each function may be distributed among a plurality of computer devices.

ところで、上記モータの消費電力から負荷率を求めるようにしてもよい。   By the way, you may make it obtain | require a load factor from the power consumption of the said motor.

例えば、熱源機が空冷式熱源機の場合、図4に示すように、複数の外気温度および複数の冷水の出口温度および複数の冷水の出入り口温度差の各々における、モータの最大消費電力を予め求めて記憶部105に記憶しておく。   For example, when the heat source device is an air-cooled heat source device, as shown in FIG. 4, the maximum power consumption of the motor at each of a plurality of outside air temperatures, a plurality of cold water outlet temperatures, and a plurality of cold water inlet / outlet temperature differences is obtained in advance. And stored in the storage unit 105.

この場合、負荷算出部102は、まず、外気温度計測部106が計測している外気温度と、温度計116a,温度計116b、温度計116cで測定されている出口温度と、温度計115a,温度計115b、温度計115c、温度計116a,温度計116b、温度計116cで測定されている出入り口温度差とにより、熱量を求めた時点における熱源機A111a、熱源機B111b、熱源機C111cにおけるモータの最大消費電力を求める。負荷算出部102は、上述したように求めた最大消費電力を、熱源機A111a、熱源機B111b、熱源機C111cにおける、熱量を求めた時点におけるモータの実際の消費電力で除することで、各々の負荷率を算出する。このようにして求めた負荷率を用い、最大能力算出部103は、熱源機A111a、熱源機B111b、熱源機C111cの最大能力として算出する。   In this case, the load calculation unit 102 first determines the outside air temperature measured by the outside air temperature measurement unit 106, the outlet temperature measured by the thermometer 116a, the thermometer 116b, and the thermometer 116c, the thermometer 115a, and the temperature. 115b, thermometer 115c, thermometer 116a, thermometer 116b, maximum temperature of motor in heat source apparatus A111a, heat source apparatus B111b, and heat source apparatus C111c at the time when the amount of heat is obtained by the temperature difference between the entrance and exit measured by thermometer 116c. Obtain power consumption. The load calculation unit 102 divides the maximum power consumption obtained as described above by the actual power consumption of the motor at the time of obtaining the amount of heat in the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c. Calculate the load factor. Using the load factor thus determined, the maximum capacity calculation unit 103 calculates the maximum capacity of the heat source device A 111a, the heat source device B 111b, and the heat source device C 111c.

また、熱源機が水冷式熱源機の場合、図5に示すように、複数の冷却水温度および複数の冷水の出口温度および複数の冷水の出入り口温度差の各々における、モータの最大消費電力を予め求めて記憶部105に記憶しておく。   When the heat source device is a water-cooled heat source device, as shown in FIG. 5, the maximum power consumption of the motor at each of a plurality of cooling water temperatures, a plurality of cooling water outlet temperatures, and a plurality of cooling water inlet / outlet temperature differences is previously determined. Obtained and stored in the storage unit 105.

この場合、負荷算出部102は、まず、冷却水温度計測部107が計測している冷却水温度と、温度計116a,温度計116b、温度計116cで測定されている出口温度と、温度計115a,温度計115b、温度計115c、温度計116a,温度計116b、温度計116cで測定されている出入り口温度差とにより、熱量を求めた時点における熱源機A111a、熱源機B111b、熱源機C111cにおけるモータの最大消費電力を求める。負荷算出部102は、上述したように求めた最大消費電力を、熱源機A111a、熱源機B111b、熱源機C111cにおける、熱量を求めた時点におけるモータの実際の消費電力で除することで、各々の負荷率を算出する。このようにして求めた負荷率を用い、最大能力算出部103は、熱源機A111a、熱源機B111b、熱源機C111cの最大能力として算出する。   In this case, the load calculation unit 102 first determines the cooling water temperature measured by the cooling water temperature measurement unit 107, the outlet temperature measured by the thermometer 116a, the thermometer 116b, and the thermometer 116c, and the thermometer 115a. , Thermometer 115b, thermometer 115c, thermometer 116a, thermometer 116b, motors in heat source apparatus A111a, heat source apparatus B111b, and heat source apparatus C111c at the time when the amount of heat is obtained by the temperature difference between the entrance and exit measured by thermometer 116c Find the maximum power consumption. The load calculation unit 102 divides the maximum power consumption obtained as described above by the actual power consumption of the motor at the time of obtaining the amount of heat in the heat source machine A 111a, the heat source machine B 111b, and the heat source machine C 111c. Calculate the load factor. Using the load factor thus determined, the maximum capacity calculation unit 103 calculates the maximum capacity of the heat source device A 111a, the heat source device B 111b, and the heat source device C 111c.

ところで、実際には、熱源機における消費電力と負荷率との関係は、図6に実線で示すように、特に低中負荷の領域において線形な関係とならない場合がある。このため、上述したように電力消費から負荷率を推定する場合、図6に示すような状態を補正することでより正確な関係が得られるようになる。   By the way, in practice, the relationship between the power consumption and the load factor in the heat source device may not be a linear relationship particularly in a low-medium load region as shown by a solid line in FIG. For this reason, when the load factor is estimated from the power consumption as described above, a more accurate relationship can be obtained by correcting the state shown in FIG.

以上に説明したように、熱源機の熱量を求めた時点の熱源機の負荷率を求め、熱量を負荷率で除した値を熱源機の最大能力とし、熱源機の運転台数を決定するようにしたので、外気の条件などにかかわらず、より正確に空調制御ができるようになる。本発明では、制御しようとしている時点での熱源機の最大能力を算出しているので、外気の条件や、熱源機の劣化などにより、熱源機の性能が変化していても、実態に沿った熱源機の台数制御を行う事が可能となる。   As explained above, the load factor of the heat source machine at the time of obtaining the heat quantity of the heat source machine is obtained, the value obtained by dividing the heat quantity by the load factor is the maximum capacity of the heat source machine, and the number of operating heat source machines is determined. As a result, air conditioning control can be performed more accurately regardless of outside air conditions. In the present invention, since the maximum capacity of the heat source machine at the time of control is calculated, even if the performance of the heat source machine has changed due to outside air conditions, deterioration of the heat source machine, etc. It is possible to control the number of heat source units.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、上述では、3台の熱源機の台数制御を例に説明したが、これに限るものではなく、2台の場合、または、4台以上の場合であっても同様である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, in the above description, the control of the number of three heat source units has been described as an example, but the present invention is not limited to this, and the same applies to the case of two units or four or more units.

101…製造熱量算出部、102…負荷算出部、103…最大能力算出部、104…運転台数決定部、111a…熱源機A、111b…熱源機B、111c…熱源機C、113…外部負荷、114…還ヘッダ、115a,115b,115c…温度計、116a,116b,116c…温度計、117a,117b,117c…流量計。   DESCRIPTION OF SYMBOLS 101 ... Manufacturing heat quantity calculation part, 102 ... Load calculation part, 103 ... Maximum capacity calculation part, 104 ... Operation number determination part, 111a ... Heat source machine A, 111b ... Heat source machine B, 111c ... Heat source machine C, 113 ... External load, 114 ... Return header, 115a, 115b, 115c ... Thermometer, 116a, 116b, 116c ... Thermometer, 117a, 117b, 117c ... Flow meter.

Claims (8)

熱源機が製造している熱量を求めるように構成された製造熱量算出部と、
前記製造熱量算出部が前記熱量を求めた時点の前記熱源機の負荷率を算出するように構成された負荷算出部と、
前記熱量を前記負荷率で除した値を前記熱源機の最大能力として算出するように構成された最大能力算出部と、
前記最大能力に基づいて前記熱源機の運転台数を決定するように構成された運転台数決定部と
を備えることを特徴とする空調制御装置。
A calorific value calculation unit configured to determine the amount of heat produced by the heat source device; and
A load calculation unit configured to calculate a load factor of the heat source machine at the time when the production heat amount calculation unit obtains the heat amount; and
A maximum capacity calculator configured to calculate a value obtained by dividing the amount of heat by the load factor as the maximum capacity of the heat source unit;
An air-conditioning control apparatus comprising: an operating unit number determining unit configured to determine the operating unit number of the heat source units based on the maximum capacity.
請求項1記載の空調制御装置において、
前記負荷算出部は、前記熱源機の圧縮機を駆動するモータの運転周波数に基づいて前記負荷率を算出することを特徴とする空調制御装置。
In the air-conditioning control device according to claim 1,
The load calculating unit calculates the load factor based on an operating frequency of a motor that drives a compressor of the heat source unit.
請求項1記載の空調制御装置において、
前記負荷算出部は、前記熱源機の圧縮機を駆動するモータの消費電力に基づいて前記負荷率を算出することを特徴とする空調制御装置。
In the air-conditioning control device according to claim 1,
The load calculation unit calculates the load factor based on power consumption of a motor that drives a compressor of the heat source unit.
請求項1〜3のいずれか1項に記載の空調制御装置において、
前記製造熱量算出部は、前記熱源機の冷温水の入口温度と、前記熱源機の冷温水の出口温度との差に、前記冷温水の流量を乗じた値を前記熱量として算出することを特徴とする空調制御装置。
In the air-conditioning control device according to any one of claims 1 to 3,
The production heat quantity calculation unit calculates, as the heat quantity, a value obtained by multiplying a difference between an inlet temperature of the cold / hot water of the heat source machine and an outlet temperature of the cold / hot water of the heat source machine by a flow rate of the cold / hot water. Air conditioning control device.
熱源機が製造している熱量を求める第1ステップと、
前記熱量を求めた時点の前記熱源機の負荷率を算出する第2ステップと、
前記熱量を前記負荷率で除した値を前記熱源機の最大能力として算出する第3ステップと、
前記最大能力に基づいて前記熱源機の運転台数を決定する第4ステップと
を備えることを特徴とする空調制御方法。
A first step for determining the amount of heat produced by the heat source device;
A second step of calculating a load factor of the heat source machine at the time of obtaining the heat quantity;
A third step of calculating a value obtained by dividing the amount of heat by the load factor as the maximum capacity of the heat source unit;
And a fourth step of determining the number of operating heat source units based on the maximum capacity.
請求項5記載の空調制御方法において、
前記第2ステップでは、前記熱源機の圧縮機を駆動するモータの運転周波数に基づいて前記負荷率を算出することを特徴とする空調制御方法。
In the air-conditioning control method according to claim 5,
In the second step, the load factor is calculated based on an operating frequency of a motor that drives a compressor of the heat source unit.
請求項5記載の空調制御方法において、
前記第2ステップでは、前記熱源機の圧縮機を駆動するモータの消費電力に基づいて前記負荷率を算出することを特徴とする空調制御方法。
In the air-conditioning control method according to claim 5,
In the second step, the load factor is calculated based on power consumption of a motor that drives a compressor of the heat source unit.
請求項5〜7のいずれか1項に記載の空調制御方法において、
前記第1ステップでは、前記熱源機の冷温水の入口温度と、前記熱源機の冷温水の出口温度との差に、前記冷温水の流量を乗じた値を前記熱量として算出することを特徴とする空調制御方法。
In the air-conditioning control method according to any one of claims 5 to 7,
In the first step, a value obtained by multiplying a difference between an inlet temperature of the cold / hot water of the heat source machine and an outlet temperature of the cold / hot water of the heat source machine by the flow rate of the cold / hot water is calculated as the heat quantity. Air conditioning control method.
JP2017107462A 2017-05-31 2017-05-31 Air conditioning controller and method Active JP6978225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107462A JP6978225B2 (en) 2017-05-31 2017-05-31 Air conditioning controller and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107462A JP6978225B2 (en) 2017-05-31 2017-05-31 Air conditioning controller and method

Publications (2)

Publication Number Publication Date
JP2018204809A true JP2018204809A (en) 2018-12-27
JP6978225B2 JP6978225B2 (en) 2021-12-08

Family

ID=64956788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107462A Active JP6978225B2 (en) 2017-05-31 2017-05-31 Air conditioning controller and method

Country Status (1)

Country Link
JP (1) JP6978225B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463574A (en) * 1982-03-15 1984-08-07 Honeywell Inc. Optimized selection of dissimilar chillers
JPS6441684A (en) * 1987-08-10 1989-02-13 Hitachi Ltd Controlling method for refrigeration unit
JPH08261544A (en) * 1995-03-24 1996-10-11 Yamatake Honeywell Co Ltd Control method for number of operated heat source machines
JP2006275323A (en) * 2005-03-28 2006-10-12 Sanki Eng Co Ltd Heat source system optimal operation control method and device
JP2006292329A (en) * 2005-04-14 2006-10-26 Mitsubishi Heavy Ind Ltd Heat source system, and control device and control method thereof
JP2012047429A (en) * 2010-08-30 2012-03-08 Meiwa:Kk Chiller
JP2014163586A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Turbo refrigerator maximum load factor calculation device, calculation method therein, heat source system, and method for controlling the number of turbo refrigerators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463574A (en) * 1982-03-15 1984-08-07 Honeywell Inc. Optimized selection of dissimilar chillers
JPS6441684A (en) * 1987-08-10 1989-02-13 Hitachi Ltd Controlling method for refrigeration unit
JPH08261544A (en) * 1995-03-24 1996-10-11 Yamatake Honeywell Co Ltd Control method for number of operated heat source machines
JP2006275323A (en) * 2005-03-28 2006-10-12 Sanki Eng Co Ltd Heat source system optimal operation control method and device
JP2006292329A (en) * 2005-04-14 2006-10-26 Mitsubishi Heavy Ind Ltd Heat source system, and control device and control method thereof
JP2012047429A (en) * 2010-08-30 2012-03-08 Meiwa:Kk Chiller
JP2014163586A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Turbo refrigerator maximum load factor calculation device, calculation method therein, heat source system, and method for controlling the number of turbo refrigerators

Also Published As

Publication number Publication date
JP6978225B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
JP6618860B2 (en) Heat source system and control method thereof
JP6053405B2 (en) Parallel type refrigerator control device, method and program
US9989943B2 (en) HVAC systems and controls
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
US11686517B2 (en) On board chiller capacity calculation
JP4505436B2 (en) Energy-saving operation method for cooling tower group and cooling tower group used therefor
JP2007127321A (en) Cold water load factor controller for refrigerator
WO2021190095A1 (en) Air conditioner type selection method, system and device
JP5013974B2 (en) Method and apparatus for estimating cooling water temperature
JP4173973B2 (en) Number control device and number control method for heat source equipment
JP2013170753A (en) Refrigerator system
JP2018004097A5 (en)
JP6264598B2 (en) Heat source operation navigation system and method
CN111102691B (en) Module combined air conditioning system
JP5806530B2 (en) Cooling system
JP2007303725A (en) Device and method of deciding number of operated heat source machine
JP2006250443A (en) Operation control method in one pump-type heat source equipment
JP6029363B2 (en) Heat source system
JP2018204809A (en) Air-conditioning control device and method
JP2012193903A (en) Air conditioning system using outside air, and outside air heat exchange system of the same
JP2011226680A (en) Cooling water producing facility
JP6523798B2 (en) Heat source equipment and heat source equipment control method
US10670292B2 (en) Fluid pressure calibration in climate control system
JPH10300163A (en) Method for operating air conditioner and air conditioner
JP2009008356A (en) System for controlling number of machines, and method of controlling number of machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R150 Certificate of patent or registration of utility model

Ref document number: 6978225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150