JP2018203297A - Sterilization container - Google Patents
Sterilization container Download PDFInfo
- Publication number
- JP2018203297A JP2018203297A JP2017108284A JP2017108284A JP2018203297A JP 2018203297 A JP2018203297 A JP 2018203297A JP 2017108284 A JP2017108284 A JP 2017108284A JP 2017108284 A JP2017108284 A JP 2017108284A JP 2018203297 A JP2018203297 A JP 2018203297A
- Authority
- JP
- Japan
- Prior art keywords
- propylene
- mass
- ethylene
- component
- based resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Bag Frames (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、120℃以上の高温滅菌に耐えうる耐熱性と、良好な透明性、耐ブロッキング性、耐衝撃性を併せ持つ滅菌容器に関する The present invention relates to a sterilization container having both heat resistance capable of withstanding high-temperature sterilization at 120 ° C. or higher and good transparency, blocking resistance, and impact resistance.
食品や医薬品を収容する容器は、内容物を入れた状態で加熱滅菌に供されるものがある。
現在使用されている加熱滅菌用の食品包装用容器は、通称レトルトパウチと呼ばれ、表面保護・印刷層(PETフィルム等)、バリア層(Al箔等)、ヒートシール層(ポリプロピレンやポリエチレンなどのポリオレフィンフィルム)とを接着剤を介して貼り合せた構成になっており、ヒートシール層がパウチの内側となるため、内容物と接触する。このため、ヒートシール層には加熱滅菌時や保管時の内容物の保護に必要なヒートシール強度、内容物を充填したパウチの落下にも耐えうる十分な耐衝撃性、加熱滅菌に耐えられる耐熱性が求められる。
Some containers for food and medicine are subjected to heat sterilization with the contents in the container.
Currently used food packaging containers for heat sterilization are commonly called retort pouches, and include surface protection / printing layers (PET film, etc.), barrier layers (Al foil, etc.), heat seal layers (polypropylene, polyethylene, etc.) Polyolefin film) is bonded to each other through an adhesive, and the heat seal layer is inside the pouch, so that it comes into contact with the contents. For this reason, the heat seal layer has heat seal strength necessary to protect the contents during heat sterilization and storage, sufficient impact resistance that can withstand dropping of the pouch filled with the contents, and heat resistance that can withstand heat sterilization. Sex is required.
これに加えて近年は電子レンジによる加熱や内容物の視認等のニーズが高まっており、バリア層としてAl箔を使用しない場合も多く、その場合ヒートシール層に使用されるポリオレフィンフィルムの透明性が重要視されることがある。 In addition, in recent years, needs such as heating with a microwave oven and visual recognition of contents are increasing, and in many cases, Al foil is not used as a barrier layer. In that case, the transparency of the polyolefin film used for the heat seal layer is high. May be emphasized.
また、現在使用されている加熱滅菌用の医療用容器には、ガラス、ポリエチレン、ポリプロピレンからなる硬質の容器と、可塑剤を含むポリ塩化ビニルやポリエチレンからなる軟質の袋がある。上記の硬質の容器は、血液、薬液などの内容液を滴下する際に、通気針または通気孔付の輸液セットを用いて空気を導入する必要があり、またこれらの器具による内容物の汚染などが生じるおそれがある。一方、軟質の袋は内容液を滴下する際に上記の硬質の容器とは異なり空気の導入が不要であり、内容液の滴下とともに袋自体が大気圧によって絞られる為、衛生性、運搬の利便性、廃棄物の嵩が小さい等の利点がある。しかしながらポリ塩化ビニル製については含まれる可塑剤、残留モノマーの毒性等の問題がある。 In addition, currently used medical containers for heat sterilization include hard containers made of glass, polyethylene, and polypropylene, and soft bags made of polyvinyl chloride or polyethylene containing a plasticizer. The above-mentioned rigid container needs to introduce air using a vent needle or an infusion set with a vent when dripping the content liquid such as blood and chemicals, and the contents are contaminated by these instruments. May occur. On the other hand, unlike a hard container, the soft bag does not require the introduction of air when dripping the content liquid, and the bag itself is squeezed by the atmospheric pressure as the content liquid is dripped. There are advantages, such as the property and the small volume of waste. However, polyvinyl chloride has problems such as the plasticizer contained and the toxicity of residual monomers.
透明性を重視した加熱滅菌用のヒートシール層用フィルムに使用される材料としては、
・ポリエチレン:比較的密度の高いLLDPEやHDPE
・ポリプロピレン:ランダムPPに衝撃改良の為にエラストマー成分を配合したもの
が用いられている。
As a material used for heat seal layer film for heat sterilization with emphasis on transparency,
・ Polyethylene: LLDPE and HDPE with relatively high density
Polypropylene: Random PP blended with an elastomer component for impact improvement is used.
特許文献1では、エチレンと炭素原子数3〜12のα−オレフィンとを共重合させて得られる直鎖状ポリエチレンからなる層を有する容器であり、該直鎖状ポリエチレンは、(i)密度が0.918〜0.940g/cm3の範囲にあり、(ii)GPCにより測定した分子量分布(Mw/Mn:Mw=重量平均分子量、Mn=数平均分子量)が1.5〜3.0の範囲にあり、かつ、該直鎖状ポリエチレンからなる層は、(a)レトルト滅菌処理後のヘイズが30%以下であり、(b)変形開始温度(Td[℃])が滅菌処理温度よりも高温であることを特徴としている。しかしながら、この容器ではポリエチレン系樹脂のみを用いているため、120℃以上の高温滅菌には耐えられないという課題がある。 In patent document 1, it is a container which has a layer which consists of a linear polyethylene obtained by copolymerizing ethylene and a C3-C12 alpha olefin, and this linear polyethylene has (i) density. in the range of 0.918~0.940g / cm 3, (ii) a molecular weight distribution measured by GPC (Mw / Mn: Mw = weight average molecular weight, Mn = number average molecular weight) of 1.5 to 3.0 The layer composed of the linear polyethylene is within the range, (a) haze after retort sterilization is 30% or less, (b) deformation start temperature (Td [° C.]) is higher than sterilization temperature. It is characterized by high temperature. However, since this container uses only a polyethylene-based resin, there is a problem that it cannot withstand high-temperature sterilization at 120 ° C. or higher.
特許文献2では、低温での耐衝撃性と耐ブロッキング性に優れたレトルト用ポリプロピレン系フィルムが開示されている。このレトルト用ポリプロピレン系フィルムは、プロピレン・エチレンブロック共重合体が96〜99wt%であり、高密度ポリエチレンが1〜4wt%からなるフィルムであって、プロピレン・エチレンブロック共重合体が次の(a)〜(c)に規定する特性を有することを特徴とする。
(a)融点が157〜164℃であること。
(b)キシレン可溶分量が16〜25%であること。
(c)MFRが1.0〜3.0g/10分であること。
Patent Document 2 discloses a polypropylene film for retort that is excellent in impact resistance and blocking resistance at low temperatures. This polypropylene film for retort is a film in which propylene / ethylene block copolymer is 96 to 99 wt% and high density polyethylene is 1 to 4 wt%, and the propylene / ethylene block copolymer is the following (a ) To (c).
(A) Melting | fusing point is 157-164 degreeC.
(B) The xylene soluble content is 16 to 25%.
(C) MFR is 1.0 to 3.0 g / 10 min.
特許文献3では、レトルト食品包装用フィルムの材料として好適なポリプロピレン系樹脂組成物が開示されている。特許文献3のポリプロピレン系樹脂組成物は、極限粘度が2.0(dL/g)以上のプロピレンが主成分である単量体の重合体部分と、プロピレンとエチレンとの共重合体部分からなるプロピレン系共重合体(A)94〜98重量部と、密度が0.920g/cm3以上であるエチレン重合体(B)2〜6重量部とを含有する組成物(但し、(A)と(B)の合計を100重量部とする)を、有機過酸化物(C)の存在下で溶融混練して得られ、メルトフローレートが1.5(g/10分)以上であることを特徴とする。 Patent Document 3 discloses a polypropylene resin composition suitable as a material for a retort food packaging film. The polypropylene resin composition of Patent Document 3 comprises a polymer part of a monomer whose main component is propylene having an intrinsic viscosity of 2.0 (dL / g) or more, and a copolymer part of propylene and ethylene. A composition (provided that (A) and 94 to 98 parts by weight of a propylene-based copolymer (A) and 2 to 6 parts by weight of an ethylene polymer (B) having a density of 0.920 g / cm 3 or more) (B) is obtained by melt-kneading in the presence of the organic peroxide (C), and the melt flow rate is 1.5 (g / 10 min) or more. Features.
特許文献4のポリプロピレン系フィルムは、(a)プロピレン・エチレンブロック共重合体80〜96重量%、(b)炭素数3〜10のα−オレフィンとエチレンとを含有し、密度が0.86〜0.90g/cm3であるエチレン・α−オレフィン共重合体エラストマー2〜10重量%、および(c)密度0.94〜0.97g/cm3のポリエチレン系重合体2〜10重量%からなる樹脂組成物を溶融製膜したポリプロピレン系フィルムであって、(a)プロピレン・エチレンブロック共重合体は、20℃キシレン不溶部の割合が75〜90重量%で、該不溶部の極限粘度([η]H)が1.8〜2.2dl/gであり、該可溶部の極限粘度([η]EP)が2.5〜3.3dl/gであって、かつ、[η]H+0.6≦[η]EPであることを特徴とする。サンプルを135℃で30分レトルト処理した後の耐ユズ肌性、耐屈曲白化性が評価されている。 The polypropylene film of Patent Document 4 contains (a) 80 to 96% by weight of a propylene / ethylene block copolymer, (b) an α-olefin having 3 to 10 carbon atoms and ethylene, and a density of 0.86 to 2 to 10% by weight of an ethylene / α-olefin copolymer elastomer of 0.90 g / cm 3 and (c) 2 to 10% by weight of a polyethylene-based polymer having a density of 0.94 to 0.97 g / cm 3. A polypropylene-based film obtained by melt-forming a resin composition, wherein (a) the propylene / ethylene block copolymer has a proportion of a 20 ° C. xylene insoluble part of 75 to 90% by weight, and an intrinsic viscosity ([ η] H ) is 1.8 to 2.2 dl / g, the intrinsic viscosity ([η] EP ) of the soluble part is 2.5 to 3.3 dl / g, and [η] H + 0.6 ≦ [η] EP der It is characterized in. The skin resistance and bending whitening resistance after retorting the sample at 135 ° C. for 30 minutes are evaluated.
特許文献5は、デカン不溶分、デカン可溶分、該デカン不溶分及びデカン可溶分の極限粘度、MFRが特定範囲にあるプロピレン系重合体(A)の60〜80重量%と、シングルサイト触媒を用いて重合され、特定密度及び特定MFRを有するエチレン・α−オレフィン共重合体(B)の20〜40重量%と、(A)及び(B)の合計100重量部に対して造核剤0.1〜0.4重量部含むプロピレン系樹脂組成物が開示されている。このプロピレン系樹脂組成物は、食品包装容器等の容器をはじめとする成形体を製造した際に、従来よりも肉薄化、軽量化した場合であっても剛性、低温耐衝撃性、透明性に優れるとされている。 Patent Document 5 discloses a decane insoluble content, a decane soluble content, an intrinsic viscosity of the decane insoluble content and a decane soluble content, 60 to 80% by weight of the propylene-based polymer (A) having an MFR in a specific range, and a single site. Nucleation for 20 to 40% by weight of ethylene / α-olefin copolymer (B) polymerized using a catalyst and having a specific density and a specific MFR, and a total of 100 parts by weight of (A) and (B) A propylene-based resin composition containing 0.1 to 0.4 parts by weight of an agent is disclosed. This propylene-based resin composition has rigidity, low-temperature impact resistance, and transparency even when it is thinner and lighter than conventional products when manufacturing molded articles such as food packaging containers. It is said to be excellent.
上記の従来技術による材料では、透明性、耐熱性、剛性、耐ブロッキング性の全てを満足する容器を提供できていないのが実情である。特に120℃以上の温度での加熱滅菌に対する耐性を有し、且つ、透明性、剛性、耐ブロッキング性を備えた容器の提供には大いなる要望がある。 In fact, the above-described conventional materials cannot provide a container that satisfies all of transparency, heat resistance, rigidity, and blocking resistance. In particular, there is a great demand for providing a container having resistance to heat sterilization at a temperature of 120 ° C. or more and having transparency, rigidity, and blocking resistance.
本発明の目的は、120℃以上の高温滅菌に耐えうる耐熱性と、良好な透明性、耐ブロッキング性、耐衝撃性を併せ持つ容器を提供することにある。 An object of the present invention is to provide a container having both heat resistance capable of withstanding high-temperature sterilization at 120 ° C. or higher and good transparency, blocking resistance and impact resistance.
本発明者らは上記課題を達成するために鋭意検討した結果、特定のプロピレン系樹脂と特定のエチレン系樹脂とを特定の配合比で含む組成物を加熱滅菌して使用される容器の一つの層として使用することで、透明性、耐熱性、剛性、耐ブロッキング性に優れた容器が得られることを見出し、本発明を完成させた。
すなわち、本発明は以下の態様[1]〜[6]を含むものである。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that one of the containers used by heat sterilizing a composition containing a specific propylene resin and a specific ethylene resin at a specific mixing ratio. By using it as a layer, it discovered that the container excellent in transparency, heat resistance, rigidity, and blocking resistance was obtained, and completed this invention.
That is, the present invention includes the following modes [1] to [6].
[1]70〜95質量%の下記(a1)〜(a2)の要件を満たすプロピレン系樹脂(A)と、
(a1)230℃、2.16kg荷重下のMFRが0.3〜5.0g/10分
(a2)エチレン含有量が3.0〜10.0質量%
5〜30質量%の下記(b1)〜(b3)のすべての要件を満たすエチレン系樹脂(B)と、
(b1)190℃、2.16kg荷重下のMFRが0.3〜3.0g/10分
(b2)密度が890〜915kg/m3
(b3)GPCで測定して求められる分子量分布(Mw/Mn)が3.0以下である。
を含む(ただし(A)と(B)の合計を100質量%とする)樹脂組成物の層を含む容器。
[1] 70 to 95% by mass of a propylene-based resin (A) that satisfies the following requirements (a1) to (a2);
(A1) MFR under load of 230 ° C. and 2.16 kg is 0.3 to 5.0 g / 10 minutes (a2) Ethylene content is 3.0 to 10.0% by mass
5-30% by mass of an ethylene-based resin (B) satisfying all the following requirements (b1) to (b3);
(B1) MFR under 190 ° C. and 2.16 kg load is 0.3 to 3.0 g / 10 minutes (b2) Density is 890 to 915 kg / m 3
(B3) The molecular weight distribution (Mw / Mn) determined by GPC is 3.0 or less.
(However, the sum of (A) and (B) is 100% by mass).
[2]前記プロピレン系樹脂(A)が、更に下記の要件(a3)を満たすことを特徴とする、[1]に記載の容器。
(a3)DSCにより測定される融点が135℃以上、170℃以下である。
[2] The container according to [1], wherein the propylene-based resin (A) further satisfies the following requirement (a3).
(A3) The melting point measured by DSC is 135 ° C. or higher and 170 ° C. or lower.
[3]前記プロピレン系樹脂(A)が、
プロピレン含量が100〜94質量%、エチレン含量が0〜6質量%であるプロピレン単独重合成分及び/またはプロピレン・エチレン共重合成分である[α1]を100〜75質量%と、
プロピレン含量が85〜70質量%、エチレン含量が15〜30質量%であるプロピレン・エチレン共重合成分である[α2]を0〜25質量%とを
含んでいることを特徴とする、[1]又は[2]に記載の容器。
[3] The propylene-based resin (A) is
[Α1] which is a propylene homopolymer component and / or propylene / ethylene copolymer component having a propylene content of 100 to 94% by mass and an ethylene content of 0 to 6% by mass, and 100 to 75% by mass,
1 to 25% by mass of [α2], which is a propylene / ethylene copolymer component having a propylene content of 85 to 70% by mass and an ethylene content of 15 to 30% by mass, [1] Or the container as described in [2].
[4]前記プロピレン系樹脂(A)が更に下記の要件(a4)〜(a6)
(a4)室温n−デカンに不溶な成分(Dinsol)の、NMR測定によって求められるペンタッド分率が95mol%以上であり、かつ
(a5)室温n−デカンに可溶な成分(Dsol)の、135℃デカリン中における極限粘度([η]sol)が2.5dl/g〜4.0dl/gであり、さらに、
(a6)室温n−デカンに可溶な成分(Dsol)中のエチレンに由来する構造単位の含有量(C2sol)が20〜30質量%である、
を満たす[1]〜[3]のいずれか1項に記載の容器。
[4] The propylene resin (A) further includes the following requirements (a4) to (a6):
(A4) A pentad fraction determined by NMR measurement of a component insoluble in room temperature n-decane (Dinsol) is 95 mol% or more, and (a5) of a component soluble in room temperature n-decane (Dsol), 135 The intrinsic viscosity ([η] sol) in decalin at 2.5 ° C. is 2.5 dl / g to 4.0 dl / g,
(A6) The content (C2sol) of the structural unit derived from ethylene in the component (Dsol) soluble in room temperature n-decane is 20 to 30% by mass,
The container according to any one of [1] to [3], wherein
[5]120℃以上で加熱滅菌処理が可能な[1]〜[4]のいずれか1項に記載の容器。 [5] The container according to any one of [1] to [4], which can be heat-sterilized at 120 ° C. or higher.
[6]上記[3]に記載のプロピレン系樹脂(A)の製造方法であって、
少なくとも1段の重合プロセスを含み、
その1段目において、プロピレン100〜94質量%とエチレン0〜6質量%(ただしプロピレンとエチレンの合計を100質量%とする)とを(共)重合する工程を含み、
さらに2段目において、プロピレン85〜70質量%とエチレン15〜30質量%(ただしプロピレンとエチレンの合計を100質量%とする)とを共重合する工程を含み、
前記1段目の(共)重合体成分と2段目の共重合体成分とが、1段目/2段目が75〜100/25〜0の質量比であり、且つプロピレン系樹脂(A)中のエチレン含有量が3.0〜10.0質量%となるプロピレンとエチレンの共重合工程を含むことを特徴とする、プロピレン系樹脂(A)の製造方法。
[6] A method for producing the propylene-based resin (A) according to [3] above,
Including at least one stage polymerization process;
The first stage includes a step of (co) polymerizing 100 to 94% by mass of propylene and 0 to 6% by mass of ethylene (provided that the total of propylene and ethylene is 100% by mass),
Furthermore, in the second stage, a step of copolymerizing 85 to 70% by mass of propylene and 15 to 30% by mass of ethylene (provided that the total of propylene and ethylene is 100% by mass),
The first stage (co) polymer component and the second stage copolymer component have a mass ratio of 75 to 100/25 to 0 in the first stage / second stage, and a propylene resin (A The process for producing a propylene-based resin (A) is characterized by including a copolymerization step of propylene and ethylene in which the ethylene content is 3.0 to 10.0% by mass.
本発明によれば、120℃以上の高温滅菌に耐えうる耐熱性と、良好な透明性、耐ブロッキング性、耐衝撃性を併せ持つ容器が提供される。 According to the present invention, there is provided a container having both heat resistance that can withstand high temperature sterilization at 120 ° C. or higher and good transparency, blocking resistance, and impact resistance.
本発明にかかる容器は、レトルトパウチに代表される食品包装用容器あるいは輸液バッグや輸液ボトルなどの医療用容器であり、120℃以上の高温滅菌が必要な内容物を収容する容器に関する。
本発明にかかる容器は、その少なくとも1層が特定のプロピレン系樹脂組成物からなるものである。以下、プロピレン系樹脂組成物について詳細に説明する。
The container according to the present invention is a food packaging container typified by a retort pouch or a medical container such as an infusion bag or an infusion bottle, and relates to a container that contains contents that require high-temperature sterilization at 120 ° C. or higher.
As for the container concerning this invention, the at least 1 layer consists of a specific propylene-type resin composition. Hereinafter, the propylene-based resin composition will be described in detail.
[プロピレン系樹脂組成物]
本発明にかかるプロピレン系樹脂組成物は、70〜95質量%の下記(a1)〜(a2)の要件を満たすプロピレン系樹脂(A)と、5〜30質量%の下記(b1)〜(b3)のすべての要件を満たすエチレン系樹脂(B)とを含む(ただし(A)と(B)の合計を100質量%とする)。
(a1)230℃、2.16kg荷重下のMFRが0.3〜5.0g/10分
(a2)エチレン含有量が3.0〜10.0質量%
(b1)190℃、2.16kg荷重下のMFRが0.3〜3.0g/10分
(b2)密度が890〜915kg/m3
(b3)GPCで測定して求められる分子量分布(Mw/Mn)が3.0以下である。
[Propylene-based resin composition]
The propylene resin composition according to the present invention includes 70 to 95% by mass of the propylene resin (A) satisfying the following requirements (a1) to (a2), and 5 to 30% by mass of the following (b1) to (b3). ) Containing an ethylene-based resin (B) that satisfies all the requirements of (A) and (B) as a sum of 100% by mass.
(A1) MFR under load of 230 ° C. and 2.16 kg is 0.3 to 5.0 g / 10 minutes (a2) Ethylene content is 3.0 to 10.0% by mass
(B1) MFR under 190 ° C. and 2.16 kg load is 0.3 to 3.0 g / 10 minutes (b2) Density is 890 to 915 kg / m 3
(B3) The molecular weight distribution (Mw / Mn) determined by GPC is 3.0 or less.
<プロピレン系樹脂(A)>
プロピレン系樹脂(A)の230℃、2.16kg荷重下のMFRは、0.3〜5.0g/10分の範囲内である。MFRが0.3g/10分未満であると、エチレン系樹脂(B)と混合して得られる組成物の押出成形性が悪化する虞があり、5.0g/10分を超えるとブロー成形時にドローダウンが大きくなる。プロピレン系樹脂(A)のMFRは、0.5g/10分以上であることが好ましい。また、MFRは4.0g/10分以下であることが好ましい。
<Propylene resin (A)>
The MFR of the propylene-based resin (A) at 230 ° C. and a load of 2.16 kg is within a range of 0.3 to 5.0 g / 10 minutes. If the MFR is less than 0.3 g / 10 min, the extrusion moldability of the composition obtained by mixing with the ethylene-based resin (B) may deteriorate, and if it exceeds 5.0 g / 10 min, Drawdown increases. The MFR of the propylene-based resin (A) is preferably 0.5 g / 10 minutes or more. Moreover, it is preferable that MFR is 4.0 g / 10min or less.
また、プロピレン系樹脂(A)は、プロピレン・エチレン共重合成分を含み、エチレン含有量が3.0〜10.0質量%の範囲内である。プロピレン系樹脂(A)としては、プロピレン含量が100〜94質量%、エチレン含量が0〜6質量%であるプロピレン単独重合成分及び/またはプロピレン・エチレン共重合成分である[α1]を100〜75質量%と、プロピレン含量が85〜70質量%、エチレン含量が15〜30質量%であるプロピレン・エチレン共重合成分である[α2]を0〜25質量%とを含んでいることが好ましい。この好ましいプロピレン系樹脂は、成分[α1]と成分[α2]のブロック共重合体、あるいは成分[α1]中のプロピレン単独重合成分とプロピレン・エチレン共重合成分とのブロック共重合体とを示し、以下、プロピレン系樹脂(A1)という。なお、ここで言う「含量」は、後述する製造方法に示すように、原料の仕込み量に相当する。 The propylene-based resin (A) contains a propylene / ethylene copolymer component and has an ethylene content in the range of 3.0 to 10.0% by mass. As the propylene-based resin (A), [α1], which is a propylene homopolymer component and / or propylene / ethylene copolymer component having a propylene content of 100 to 94% by mass and an ethylene content of 0 to 6% by mass, is 100 to 75. It is preferable to contain 0% to 25% by mass of [α2], which is a propylene / ethylene copolymer component having a propylene content of 85 to 70% by mass and an ethylene content of 15 to 30% by mass. This preferred propylene-based resin shows a block copolymer of component [α1] and component [α2], or a block copolymer of a propylene homopolymer component and a propylene / ethylene copolymer component in component [α1], Hereinafter, it is called propylene-based resin (A1). The “content” referred to here corresponds to the amount of raw material charged, as shown in the production method described later.
プロピレン系樹脂(A)は、さらに下記要件(a3)を満たすことが好ましい。
(a3)DSCにより測定される融点が135℃以上、170℃以下である。
融点が135℃未満になると、得られる容器の耐熱性が低下し、120℃以上での滅菌処理後の透明性が悪化することがある。
The propylene resin (A) preferably further satisfies the following requirement (a3).
(A3) The melting point measured by DSC is 135 ° C. or higher and 170 ° C. or lower.
When the melting point is lower than 135 ° C, the heat resistance of the resulting container is lowered, and the transparency after sterilization at 120 ° C or higher may be deteriorated.
プロピレン系樹脂(A)は、さらに下記の要件(a4)〜(a6)を満たすことが好ましい。
(a4)室温n−デカンに不溶な成分(Dinsol)の、NMR測定によって求められるペンタッド分率が95mol%以上であり、かつ
(a5)室温n−デカンに可溶な成分(Dsol)の、135℃デカリン中における極限粘度([η]sol)が2.5dl/g〜4.0dl/gであり、さらに、
(a6)室温n−デカンに可溶な成分(Dsol)中のエチレンに由来する構造単位の含有量(C2sol)が20〜30質量%である。
The propylene resin (A) preferably further satisfies the following requirements (a4) to (a6).
(A4) A pentad fraction determined by NMR measurement of a component insoluble in room temperature n-decane (Dinsol) is 95 mol% or more, and (a5) of a component soluble in room temperature n-decane (Dsol), 135 The intrinsic viscosity ([η] sol) in decalin at 2.5 ° C. is 2.5 dl / g to 4.0 dl / g,
(A6) The content (C2sol) of the structural unit derived from ethylene in the component (Dsol) soluble in room temperature n-decane is 20 to 30% by mass.
要件(a4)〜(a6)の各測定は、プロピレン系樹脂(A)から室温n−デカンに不溶な成分(Dinsol)と可溶な成分(Dsol)とを分離し、それぞれに対して実施する。分離方法としては、プロピレン系樹脂(A)のサンプル5gにn−デカン200mlを加え、145℃で30分間加熱溶解し、その後、約3時間かけて20℃まで冷却して、さらに30分間放置することで、析出物(Dinsol)を濾別する。濾液は約3倍量のアセトン中に入れ、n−デカン中に溶解していた成分(Dsol)を析出させ濾別する。 Each measurement of requirements (a4) to (a6) is performed by separating a component (Dinsol) that is insoluble in room temperature n-decane and a soluble component (Dsol) from the propylene-based resin (A). . As a separation method, 200 ml of n-decane is added to 5 g of a sample of the propylene-based resin (A), dissolved by heating at 145 ° C. for 30 minutes, then cooled to 20 ° C. over about 3 hours and left for another 30 minutes. The precipitate (Dinsol) is filtered off. The filtrate is put in about 3 times amount of acetone, and the component (Dsol) dissolved in n-decane is precipitated and separated by filtration.
要件(a4)は、DinsolのNMR(核磁気共鳴スペクトル法)によるmmmmペンタッド分率であり、Dinsol中の立体規則性を示す。Dinsolは、主にプロピレン単独重合成分であり、結晶性を有している。このDinsolのNMR測定によって求められるペンタッド分率が95mol%以上であることで、良好な耐ブロッキング性が得られる。 The requirement (a4) is a mmmm pentad fraction according to NMR (nuclear magnetic resonance spectroscopy) of Dinsol, and shows stereoregularity in Dinsol. Dinsol is mainly a propylene homopolymer component and has crystallinity. Good blocking resistance is obtained when the pentad fraction determined by NMR measurement of this Dinsol is 95 mol% or more.
一方、Dsolは、主にプロピレン・エチレン共重合成分であり、結晶性を示さないか、結晶性が低い成分である。Dsolの、135℃デカリン中における極限粘度([η]sol)が2.5dl/g〜4.0dl/gであることにより、良好な耐ブロッキング性、フィッシュアイレベルが得られる。[η]solは2.8dl/g〜3.6dl/gであることが好ましい。
また、Dsol中のエチレンに由来する構造単位の含有量(C2sol)が20〜30質量%であることにより、良好な透明性、レトルト後のヒートシール強度が得られる。C2solは20〜28質量%であることが好ましい。
On the other hand, Dsol is mainly a propylene / ethylene copolymer component and does not exhibit crystallinity or has low crystallinity. When Dsol has an intrinsic viscosity ([η] sol) in decalin of 135 ° C. of 2.5 dl / g to 4.0 dl / g, good blocking resistance and fish eye level can be obtained. [η] sol is preferably 2.8 dl / g to 3.6 dl / g.
Moreover, favorable transparency and the heat seal strength after a retort are obtained because content (C2sol) of the structural unit derived from ethylene in Dsol is 20-30 mass%. C2sol is preferably 20 to 28% by mass.
<プロピレン系樹脂(A)の製造方法>
本発明で使用するプロピレン系樹脂(A)の製造方法は、上記の要件(a1)〜(a2)を満たす限り特に限定されるものではないが、プロピレンとエチレンの共重合成分の重合プロセスを含む。特にプロピレン系樹脂(A1)の製造方法としては、以下の方法が好ましい。
<Method for producing propylene-based resin (A)>
Although the manufacturing method of the propylene-type resin (A) used by this invention is not specifically limited as long as said requirements (a1)-(a2) are satisfy | filled, The polymerization process of the copolymerization component of propylene and ethylene is included. . In particular, the following method is preferable as a method for producing the propylene-based resin (A1).
少なくとも1段の重合プロセスを含み、
その1段目において、プロピレン100〜94質量%とエチレン0〜6質量%(ただしプロピレンとエチレンの合計を100質量%とする)とを(共)重合する工程を含み、
さらに2段目において、プロピレン85〜70質量%とエチレン15〜30質量%(ただしプロピレンとエチレンの合計を100質量%とする)とを共重合する工程を含み、
前記1段目の(共)重合体成分と2段目の共重合体成分とが、1段目/2段目が75〜100/25〜0の質量比であり、且つプロピレン系樹脂(A)中のエチレン含有量が3.0〜10.0質量%となるプロピレンとエチレンの共重合工程を含む。
Including at least one stage polymerization process;
The first stage includes a step of (co) polymerizing 100 to 94% by mass of propylene and 0 to 6% by mass of ethylene (provided that the total of propylene and ethylene is 100% by mass),
Furthermore, in the second stage, a step of copolymerizing 85 to 70% by mass of propylene and 15 to 30% by mass of ethylene (provided that the total of propylene and ethylene is 100% by mass),
The first stage (co) polymer component and the second stage copolymer component have a mass ratio of 75 to 100/25 to 0 in the first stage / second stage, and a propylene resin (A ) Includes a copolymerization step of propylene and ethylene in which the ethylene content is 3.0 to 10.0% by mass.
特に、1段目においてはプロピレンの単独重合を行い、2段目においてプロピレンとエチレンとを共重合させることが好ましい。 In particular, it is preferable to homopolymerize propylene in the first stage and to copolymerize propylene and ethylene in the second stage.
また、重合は触媒存在下に連鎖移動剤となる水素ガスを用いる方法が好ましい。触媒としては、メタロセン化合物を含有する触媒あるいはチーグラーナッタ触媒が使用できるが、チーグラーナッタ触媒を使用することで立体規則性に優れたプロピレン単独重合成分を含むプロピレン系樹脂(A)が得られる。重合に使用するチーグラーナッタ触媒としては公知の種々の触媒を使用することができる。 In addition, the polymerization is preferably carried out using a hydrogen gas serving as a chain transfer agent in the presence of a catalyst. As the catalyst, a catalyst containing a metallocene compound or a Ziegler-Natta catalyst can be used. By using a Ziegler-Natta catalyst, a propylene-based resin (A) containing a propylene homopolymer component having excellent stereoregularity can be obtained. As the Ziegler-Natta catalyst used for the polymerization, various known catalysts can be used.
例えば、(a)マグネシウム、チタン、ハロゲン及び電子供与対を含有する固体状チタン触媒成分と、(b)有機金属化合物触媒成分と、(c)有機ケイ素化合物触媒成分とからなる触媒を用いることができる。 For example, a catalyst comprising (a) a solid titanium catalyst component containing magnesium, titanium, halogen and an electron donating pair, (b) an organometallic compound catalyst component, and (c) an organosilicon compound catalyst component is used. it can.
<エチレン系樹脂(B)>
(b1):エチレン系樹脂(B)の190℃、2.16kg荷重下のMFRは、0.3〜3.0g/10分の範囲内である。MFRが0.3g/10分未満であると、プロピレン系樹脂(A)と混合して得られる組成物の押出成形性が悪化する虞があり、3.0g/10分を超えるとブロー成形時にドローダウンが大きくなる。エチレン系樹脂(B)のMFRは、0.5g/10分以上であることが好ましい。また、MFRは2.5g/10分以下であることが好ましい。
<Ethylene resin (B)>
(B1): MFR of the ethylene-based resin (B) under 190 ° C. and 2.16 kg load is within a range of 0.3 to 3.0 g / 10 minutes. If the MFR is less than 0.3 g / 10 minutes, the extrusion moldability of the composition obtained by mixing with the propylene-based resin (A) may deteriorate, and if it exceeds 3.0 g / 10 minutes, Drawdown increases. The MFR of the ethylene resin (B) is preferably 0.5 g / 10 min or more. Moreover, it is preferable that MFR is 2.5 g / 10min or less.
(b2):エチレン系樹脂(B)の密度は、890〜915kg/m3の範囲内である。エチレン系樹脂(B)の密度が低いと耐ブロッキング性が悪化し、高いと耐衝撃性が悪化する恐れがある。
(b3):また、エチレン系樹脂(B)のGPCで測定して求められる分子量分布(Mw/Mn)3.0以下である。
(B2): The density of the ethylene-based resin (B) is in the range of 890 to 915 kg / m 3 . When the density of the ethylene resin (B) is low, the blocking resistance is deteriorated, and when it is high, the impact resistance may be deteriorated.
(B3): Further, the molecular weight distribution (Mw / Mn) determined by GPC of the ethylene-based resin (B) is 3.0 or less.
エチレン系樹脂(B)としては、上記(b1)〜(b3)の要件を同時に満たすものであれば特に制限されず、市販のエチレン系ポリマーを使用することができる。特に、エチレンに炭素数4以上のα−オレフィンを共重合したエチレン・α−オレフィン共重合体であることが好ましく、エチレンと1−ヘキセンとの共重合体がより好ましい。また、エチレン系樹脂(B)は、2種以上のエチレン・α−オレフィン共重合体を組み合わせて上記(b1)〜(b3)の要件を同時に満たすようにしてもよい。 The ethylene resin (B) is not particularly limited as long as it satisfies the requirements (b1) to (b3) at the same time, and a commercially available ethylene polymer can be used. In particular, an ethylene / α-olefin copolymer obtained by copolymerizing ethylene with an α-olefin having 4 or more carbon atoms is preferable, and a copolymer of ethylene and 1-hexene is more preferable. The ethylene resin (B) may satisfy the requirements (b1) to (b3) at the same time by combining two or more kinds of ethylene / α-olefin copolymers.
<プロピレン系樹脂組成物の製造方法>
本発明にかかるプロピレン系樹脂組成物は、プロピレン系樹脂(A)とエチレン系樹脂(B)との合計100質量%中、前記プロピレン系重合体(A)70〜95質量%、好ましくは75〜90質量%と前記エチレン系樹脂(B)5〜30質量%、好ましくは10〜25質量%の範囲で含む。
プロピレン系樹脂(A)の量が70質量%未満の組成物は、耐ブロッキング性、剛性が悪化する。一方、95質量%を超えるとエチレン系樹脂(B)の量が少なくなりすぎて、透明性、耐衝撃性が悪化する。
<Method for producing propylene-based resin composition>
The propylene-based resin composition according to the present invention is a propylene-based polymer (A) of 70 to 95 mass%, preferably 75 to 100 mass% in total of 100 mass% of the propylene-based resin (A) and the ethylene-based resin (B). 90 mass% and 5-30 mass% of the said ethylene-type resin (B), Preferably it contains in the range of 10-25 mass%.
A composition in which the amount of the propylene-based resin (A) is less than 70% by mass deteriorates blocking resistance and rigidity. On the other hand, if it exceeds 95% by mass, the amount of the ethylene-based resin (B) becomes too small and the transparency and impact resistance deteriorate.
本発明にかかるプロピレン系樹脂組成物は、さらに必要に応じて、通常、オレフィン系重合体に添加される酸化防止剤、造核剤、滑剤、難燃剤、アンチブロッキング剤、着色剤、無機質または有機質の充填剤、種々の合成樹脂等の各種添加剤を本発明の目的を損なわない範囲で添加してもよい。 The propylene-based resin composition according to the present invention further includes an antioxidant, a nucleating agent, a lubricant, a flame retardant, an anti-blocking agent, a colorant, an inorganic or organic substance that is usually added to the olefin polymer as required. Various additives such as fillers and various synthetic resins may be added as long as the object of the present invention is not impaired.
本発明にかかるプロピレン系樹脂組成物は、種々公知の製造方法により調製することができる。例えば、予め得られたプロピレン系重合体(A)とエチレン系樹脂(B)とを前記記載の量で、必要に応じて各種添加剤を配合して、例えば、ヘンシェルミキサー、リボンブレンダー、バンバリーミキサーなどの種々公知の装置を用いて混合する方法、あるいは混合した後、単軸押出機あるいは二軸押出機、ブラベンダー又はロール等の種々公知の混練機を使用して、170〜300℃、好ましくは190〜250℃で溶融混練する方法等が挙げられる。 The propylene resin composition according to the present invention can be prepared by various known production methods. For example, the propylene polymer (A) and the ethylene resin (B) obtained in advance are blended with various additives as necessary in the amounts described above, for example, Henschel mixer, ribbon blender, Banbury mixer A method of mixing using various known devices such as, or after mixing, 170 to 300 ° C., preferably using various known kneaders such as a single screw extruder or twin screw extruder, Brabender or roll, etc. And a method of melt-kneading at 190 to 250 ° C.
[容器]
本発明にかかる容器は、上記のプロピレン系樹脂組成物からなる層を少なくとも1層有するものである。特に、レトルトパウチに代表される食品包装用容器あるいは輸液バッグや輸液ボトルなどの医療用容器などで、120℃以上の加熱滅菌処理に供される容器として適している。
[container]
The container concerning this invention has at least 1 layer which consists of said propylene-type resin composition. In particular, food packaging containers represented by retort pouches or medical containers such as infusion bags and infusion bottles are suitable as containers that are subjected to heat sterilization treatment at 120 ° C. or higher.
これら容器は、まず、上記のプロピレン系樹脂組成物からなる層を少なくとも1層有するシート又はフィルムを製造し、さらに得られたシート又はフィルムを所望の形状に成形して製造することができる。 These containers can be produced by first producing a sheet or film having at least one layer composed of the propylene-based resin composition, and further shaping the obtained sheet or film into a desired shape.
かかるシート又はフィルムは、プロピレン系樹脂組成物を用い、種々公知の成形方法、例えば、押出し機の先端にT−ダイあるいはサーキュラーダイを備えたフィルム成形機で製造し得る。 Such a sheet or film can be produced by using a propylene-based resin composition and various known molding methods, for example, a film molding machine equipped with a T-die or a circular die at the tip of an extruder.
かかるシート又はフィルムの厚さは、用途に応じて種々決め得るが、10μm〜2mmの範囲が好ましく、10〜800μmの範囲がより好ましい。本発明にかかるプロピレン系樹脂組成物は、比較的薄いフィルムとしても低温での耐衝撃性に優れている。 The thickness of the sheet or film can be variously determined depending on the application, but is preferably in the range of 10 μm to 2 mm, and more preferably in the range of 10 to 800 μm. The propylene-based resin composition according to the present invention is excellent in impact resistance at low temperatures even as a relatively thin film.
かかるシート又はフィルムは、未延伸フィルムでも延伸フィルムでもよいが、未延伸フィルムが好ましい。 Such a sheet or film may be an unstretched film or a stretched film, but an unstretched film is preferred.
かかるシート又はフィルムは単層でもレトルトパウチ等の容器材料として使用し得るが、延伸または未延伸ポリアミドフィルム、一軸または二軸延伸ポリエステルフィルム、アルミニウム箔または紙等とラミネートすることにより、複層のフィルム又はシートとして用いることができる。 Such a sheet or film can be used as a container material such as a retort pouch even in a single layer, but by laminating with stretched or unstretched polyamide film, uniaxial or biaxially stretched polyester film, aluminum foil or paper, etc., a multilayer film Or it can be used as a sheet.
また、ボトル形状の容器は、ブロー成形により製造することができる。 A bottle-shaped container can be manufactured by blow molding.
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例に限定されるものではない。
まず、使用したプロピレン系樹脂(A)及びエチレン系樹脂(B)について説明する。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this Example.
First, the used propylene resin (A) and ethylene resin (B) will be described.
<プロピレン系樹脂(A)>
[製造例1](プロピレン系樹脂(A):[PP1]の製造)
(1)固体状チタン触媒成分の調製
無水塩化マグネシウム95.2g、デカン442mlおよび2−エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
このようにして得られた均一溶液を室温に冷却した後、−20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。
2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3質量%、塩素を61質量%、マグネシウムを19質量%およびDIBPを12.5質量%の量で含有していた。
<Propylene resin (A)>
[Production Example 1] (Propylene-based resin (A): Production of [PP1])
(1) Preparation of solid titanium catalyst component An anhydrous magnesium chloride 95.2 g, decane 442 ml and 2-ethylhexyl alcohol 390.6 g were heated at 130 ° C. for 2 hours to make a homogeneous solution, and then this solution was mixed with anhydrous phthalic anhydride. 21.3 g of acid was added and further stirred and mixed at 130 ° C. for 1 hour to dissolve phthalic anhydride.
The homogeneous solution thus obtained was cooled to room temperature, and then 75 ml of this homogeneous solution was dropped into 200 ml of titanium tetrachloride maintained at −20 ° C. over 1 hour. After charging, the temperature of the mixture was raised to 110 ° C. over 4 hours, and when it reached 110 ° C., 5.22 g of diisobutyl phthalate (DIBP) was added and stirred at the same temperature for 2 hours. Retained.
After completion of the reaction for 2 hours, the solid part was collected by hot filtration, and the solid part was resuspended in 275 ml of titanium tetrachloride, and then heated again at 110 ° C. for 2 hours. After completion of the reaction, the solid part was again collected by hot filtration, and washed thoroughly with decane and hexane at 110 ° C. until no free titanium compound was detected in the solution.
The solid titanium catalyst component prepared as described above was stored as a hexane slurry. A part of the catalyst was dried to examine the catalyst composition. The solid titanium catalyst component contained 2.3 mass% titanium, 61 mass% chlorine, 19 mass% magnesium, and 12.5 mass% DIBP.
(2)前重合触媒の調製
(1)で調製した固体状チタン触媒成分87.5g、トリエチルアルミニウム19.5mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに装入し、内温15〜20℃に保ちプロピレンを263g装入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で0.7g/Lとなるよう、ヘプタンにより調整を行って触媒スラリーを得た。
(2) Preparation of prepolymerization catalyst 87.5 g of the solid titanium catalyst component prepared in (1), 19.5 mL of triethylaluminum, and 10 L of heptane were charged into an autoclave with a stirrer having an internal volume of 20 L, and an internal temperature of 15 to 20 ° C. The mixture was charged with 263 g of propylene and allowed to react with stirring for 100 minutes. After completion of the polymerization, the solid component was precipitated, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane and adjusted with heptane to obtain a solid catalyst component concentration of 0.7 g / L to obtain a catalyst slurry.
(3)本重合
内容量58Lの管状重合器に、プロピレンを30kg/時間、水素を40NL/時間、前記(2)で製造した前重合触媒スラリーを固体状チタン触媒成分として0.44g/時間、トリエチルアルミニウム4.9mL/時間、ジシクロペンチルジメトキシシラン1.6mL/時間を連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.3MPa/G(G=ゲージ圧力)であった。
得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを15kg/時間、水素を気相部の水素濃度が1.5mol%になるように供給した。重合温度70℃、圧力3.0MPa/Gで重合を行った。
得られたスラリーを内容量2.4Lの移液管に移送し、当該スラリーをガス化させ、気固分離を行った後、内容量480Lの気相重合器にポリプロピレンホモポリマーパウダーを送り、エチレン/プロピレンブロック共重合を行った。気相重合器内のガス組成が、エチレン/(エチレン+プロピレン)=0.20(モル比)、水素/エチレン=0.078(モル比)になるようにプロピレン、エチレン、水素を連続的に供給した。重合温度70℃、圧力1.0MPa/Gで重合を行った。
得られたパウダーは、気固分離を行い、80℃で真空乾燥を行った。これにより、ポリプロピレン部とエチレン・プロピレン共重合体部とを有する、プロピレン系樹脂(A)[PP1]を得た。
(3) Main polymerization In a tubular polymerization vessel having an internal volume of 58 L, propylene 30 kg / hour, hydrogen 40 NL / hour, 0.44 g / hour of the prepolymerization catalyst slurry produced in the above (2) as a solid titanium catalyst component, Triethylaluminum (4.9 mL / hour) and dicyclopentyldimethoxysilane (1.6 mL / hour) were continuously supplied, and polymerization was performed in a full liquid state without a gas phase. The temperature of the tubular polymerizer was 70 ° C., and the pressure was 3.3 MPa / G (G = gauge pressure).
The obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 70 L and further polymerized. To the polymerization vessel, propylene was supplied at 15 kg / hour, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 1.5 mol%. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 3.0 MPa / G.
The obtained slurry was transferred to a transfer pipe having an internal volume of 2.4 L, gasified and gas-solid separated, and then the polypropylene homopolymer powder was sent to a gas phase polymerizer having an internal volume of 480 L. / Propylene block copolymerization was performed. Propylene, ethylene, and hydrogen are continuously added so that the gas composition in the gas phase polymerization reactor is ethylene / (ethylene + propylene) = 0.20 (molar ratio) and hydrogen / ethylene = 0.078 (molar ratio). Supplied. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 1.0 MPa / G.
The obtained powder was gas-solid separated and vacuum dried at 80 ° C. As a result, a propylene-based resin (A) [PP1] having a polypropylene part and an ethylene / propylene copolymer part was obtained.
[製造例2](プロピレン系樹脂(A)[PP2]の製造)
(1)マグネシウム化合物の調製
内容積500Lの攪拌機付き反応槽を窒素ガスで充分に置換し、エタノール97.2kg、ヨウ素640g及び金属マグネシウム6.4kgを投入したのち、攪拌しながら、還流条件下で系内から水素ガスの発生がなくなるまで反応させ、体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより目的のマグネシウム化合物(固体生成物)を得た。
[Production Example 2] (Production of propylene-based resin (A) [PP2])
(1) Preparation of Magnesium Compound The reaction vessel with a stirrer having an internal volume of 500 L was sufficiently replaced with nitrogen gas, and after charging 97.2 kg of ethanol, 640 g of iodine and 6.4 kg of metal magnesium, the mixture was stirred under reflux conditions. The reaction was carried out until no hydrogen gas was generated from the system to obtain a body-like reaction product. The target magnesium compound (solid product) was obtained by drying the reaction solution containing the solid reaction product under reduced pressure.
(2)固体状チタン触媒成分の調製
窒素ガスで充分に置換した内容積500Lの攪拌機付き反応槽に、上記(1)で得られたマグネシウム化合物(粉砕していないもの)30kg、精製ヘプタン150L,四塩化ケイ素4.5L及びフタル酸ジエチル4.3Lを仕込んだ。系内を90℃に保ち、攪拌しながら四塩化チタン144Lを加えて110℃で2時間反応させたのち、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン228Lを加え、110℃で2時間反応させたのち、精製ヘプタンで充分に洗浄し、固体状チタン触媒成分を得た。
(2) Preparation of solid titanium catalyst component In a reaction tank equipped with a stirrer with an internal volume of 500 L sufficiently substituted with nitrogen gas, 30 kg of the magnesium compound obtained in (1) above (not pulverized), 150 L of purified heptane, 4.5 L of silicon tetrachloride and 4.3 L of diethyl phthalate were charged. The system was kept at 90 ° C., 144 L of titanium tetrachloride was added with stirring and reacted at 110 ° C. for 2 hours, and then the solid components were separated and washed with purified heptane at 80 ° C. Further, 228 L of titanium tetrachloride was added and reacted at 110 ° C. for 2 hours, and then sufficiently washed with purified heptane to obtain a solid titanium catalyst component.
(3)前重合触媒の調製
内容積500Lの攪拌機付き反応槽に精製ヘプタン230Lを投入し、さらに、前記(2)で得られた固体触媒成分25kgを加え、次いで、この固体触媒成分中のTi原子1モルに対し、トリエチルアルミニウムを0.6モル及びシクロヘキシルメチルジメトキシシランを0.4モルの割合で加えたのち、プロピレンをプロピレン分圧で29.4kPa/G(0.3kg/cm2G)になるまで導入し、25℃で4時間反応させた。反応終了後、固体触媒成分を精製ヘプタンで数回洗浄し、二酸化炭素を供給し24時間攪拌し、前重合触媒スラリーを得た。
(3) Preparation of prepolymerization catalyst 230 L of purified heptane was charged into a reaction tank with an internal volume of 500 L, and further 25 kg of the solid catalyst component obtained in the above (2) was added. After adding 0.6 mol of triethylaluminum and 0.4 mol of cyclohexylmethyldimethoxysilane to 1 mol of atom, propylene is added at a partial pressure of propylene of 29.4 kPa / G (0.3 kg / cm 2 G). The mixture was introduced until the reaction temperature reached 25 ° C. for 4 hours. After completion of the reaction, the solid catalyst component was washed several times with purified heptane, supplied with carbon dioxide and stirred for 24 hours to obtain a prepolymerized catalyst slurry.
(4)重合
内容積200Lの攪拌機付き重合装置(R−1)に、上記(3)の前重合触媒スラリーをTi原子換算で3ミリモル/hrで、トリエチルアルミニウムを413ミリモル/hr(7.5ミリモル/kg−PP)で、シクロヘキシルメチルジメトキシシランを105ミリモル/hr(1.9ミリモル/kg−PP)でそれぞれ供給し、重合温度80℃、全圧3MPa・Gでプロピレンを重合させた。この際、プロピレンを99.93mol%及び水素を0.07mol%のガス組成になるように調整して供給した。次いで、R−1から連続的にパウダーを抜き出し、内容積200Lの攪拌機付き重合装置(R−2)へ移送した。R−2では重合温度50℃、全圧1.1MPa・Gでプロピレンとエチレンを共重合させた。この際、プロピレンを81.4mol%,エチレンを14.5mol%及び水素を4.1mol%のガス組成になるように調整して供給した。このようにしてプロピレン系樹脂(A)[PP2]を得た。
(4) Polymerization In a polymerization apparatus (R-1) with a stirrer having an internal volume of 200 L, the prepolymerization catalyst slurry of the above (3) was converted into Ti atom at 3 mmol / hr and triethylaluminum at 413 mmol / hr (7.5 The cyclohexylmethyldimethoxysilane was supplied at 105 mmol / hr (1.9 mmol / kg-PP) at a mmol / kg-PP), and propylene was polymerized at a polymerization temperature of 80 ° C. and a total pressure of 3 MPa · G. At this time, propylene was adjusted to 99.93 mol% and hydrogen was adjusted to a gas composition of 0.07 mol% and supplied. Subsequently, powder was continuously extracted from R-1 and transferred to a polymerization apparatus (R-2) with an internal volume of 200 L equipped with a stirrer. In R-2, propylene and ethylene were copolymerized at a polymerization temperature of 50 ° C. and a total pressure of 1.1 MPa · G. At this time, propylene was adjusted to 81.4 mol%, ethylene was adjusted to 14.5 mol%, and hydrogen was adjusted so as to have a gas composition of 4.1 mol%. In this way, a propylene resin (A) [PP2] was obtained.
[製造例3](プロピレン系樹脂(A)[PP3]の製造)
(1)固体状チタン触媒成分の調製、(2)前重合触媒の調製は[製造例1]と同様に行った。
(3)本重合
内容積500Lの攪拌機付き重合槽に液化プロピレンを300L装入し、この液位を保ちながら、液化プロピレン130kg/h、前重合触媒スラリーを固体状チタン触媒成分として0.9g/h、トリエチルアルミニウム4.9ml/h、ジシクロペンチルジメトキシシラン8.3ml/hを連続的に供給し、温度70℃で重合した。また重合槽内の気相部の水素濃度が0.4mol%、エチレン濃度が2.0mol%となるように、水素及びエチレンを連続的に供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてパウダー状のプロピレン・エチレン共重合体(PP3)を得た。
[Production Example 3] (Production of propylene-based resin (A) [PP3])
(1) Preparation of the solid titanium catalyst component and (2) preparation of the prepolymerized catalyst were carried out in the same manner as in [Production Example 1].
(3) Main polymerization 300 L of liquefied propylene was charged into a polymerization tank equipped with a stirrer with an internal volume of 500 L, and while maintaining this liquid level, 130 kg / h of liquefied propylene and 0.9 g / l of prepolymerized catalyst slurry as a solid titanium catalyst component were used. h, 4.9 ml / h of triethylaluminum and 8.3 ml / h of dicyclopentyldimethoxysilane were continuously fed, and polymerization was performed at a temperature of 70 ° C. Further, hydrogen and ethylene were continuously supplied so that the hydrogen concentration in the gas phase portion in the polymerization tank was 0.4 mol% and the ethylene concentration was 2.0 mol%. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain a powdery propylene / ethylene copolymer (PP3).
[製造例4](プロピレン系樹脂(A)[PP4]の製造)
(1)固体状チタン触媒成分の調製、(2)前重合触媒の調製は[製造例1]と同様に行った。
(3)本重合
内容積500Lの攪拌機付き重合槽に液化プロピレンを300L装入し、この液位を保ちながら、液化プロピレンを130kg/h、前重合触媒スラリーを固体状チタン触媒成分として0.7g/h、トリエチルアルミニウムを4.0ml/h、ジシクロペンチルジメトキシシランを6.8ml/hで連続的に供給し、温度70℃で重合した。また重合槽内の気相部の水素濃度が1.0mol%、エチレン濃度が2.2mol%となるように、水素及びエチレンを連続的に供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてパウダー状のプロピレン・エチレン共重合体(PP4)を得た。
[Production Example 4] (Production of propylene-based resin (A) [PP4])
(1) Preparation of the solid titanium catalyst component and (2) preparation of the prepolymerized catalyst were carried out in the same manner as in [Production Example 1].
(3) Main polymerization 300 L of liquefied propylene was charged into a polymerization tank equipped with a stirrer with an internal volume of 500 L, and while maintaining this liquid level, 130 g / h of liquefied propylene and 0.7 g of prepolymerized catalyst slurry as a solid titanium catalyst component were used. / H, triethylaluminum was continuously supplied at 4.0 ml / h, and dicyclopentyldimethoxysilane was continuously supplied at 6.8 ml / h, and polymerization was performed at a temperature of 70 ° C. Further, hydrogen and ethylene were continuously supplied so that the hydrogen concentration in the gas phase portion in the polymerization tank was 1.0 mol% and the ethylene concentration was 2.2 mol%. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain a powdery propylene / ethylene copolymer (PP4).
[製造例5](プロピレン系樹脂(A)[PP5]の製造)
(1)マグネシウム化合物の調製
攪拌機付き反応槽(内容積500L)内を窒素ガスで充分に置換し、エタノール97.2kg、ヨウ素640g、及び金属マグネシウム6.4kgを投入し、攪拌しながら還流条件下で系内から水素ガスの発生が無くなるまで反応させ、固体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより目的のマグネシウム化合物(固体触媒の担体)を得た。
[Production Example 5] (Production of propylene-based resin (A) [PP5])
(1) Preparation of Magnesium Compound The inside of a reactor equipped with a stirrer (internal volume 500 L) was sufficiently replaced with nitrogen gas, and 97.2 kg of ethanol, 640 g of iodine, and 6.4 kg of magnesium metal were added and refluxed with stirring. The reaction was continued until no hydrogen gas was generated from the system to obtain a solid reaction product. The reaction solution containing the solid reaction product was dried under reduced pressure to obtain the target magnesium compound (solid catalyst carrier).
(2)固体触媒成分の調製
窒素ガスで充分に置換した攪拌機付き反応槽(内容積500L)に、前記マグネシウム化合物(粉砕していないもの)30kg、精製ヘプタン(n−ヘプタン)150L、四塩化ケイ素4.5L、及びフタル酸ジ−n−ブチル5.4Lを加えた。系内を90℃に保ち、攪拌しながら四塩化チタン144Lを投入して110℃で2時間反応させた後、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン228Lを加え、110℃で2時間反応させた後、精製ヘプタンで充分に洗浄し、固体触媒成分を得た。
(2) Preparation of solid catalyst component In a reactor equipped with a stirrer sufficiently substituted with nitrogen gas (internal volume 500 L), 30 kg of the magnesium compound (not pulverized), 150 L of purified heptane (n-heptane), silicon tetrachloride 4.5 L and 5.4 L of di-n-butyl phthalate were added. The system was maintained at 90 ° C., and 144 L of titanium tetrachloride was added while stirring and reacted at 110 ° C. for 2 hours. Then, the solid component was separated and washed with purified heptane at 80 ° C. Further, 228 L of titanium tetrachloride was added and reacted at 110 ° C. for 2 hours, and then sufficiently washed with purified heptane to obtain a solid catalyst component.
(3)前重合触媒の調製
内容積500Lの攪拌機付き反応槽に精製ヘプタン230Lを投入し、前記の固体状チタン触媒成分を25kg、トリエチルアルミニウムを固体状チタン触媒成分中のチタン原子に対して1.0mol/mol、ジシクロペンチルジメトキシシランを1.8mol/molの割合で供給した。その後、プロピレンをプロピレン分圧で29.4kPa/G(0.3kg/cm 2 G)になるまで導入し、25℃で4時間反応させた。反応終了後、固体状チタン触媒成分を精製ヘプタンで数回洗浄し、更に二酸化炭素を供給し24時間攪拌し、前重合触媒スラリーを得た。
(3) Preparation of pre-polymerization catalyst 230 L of purified heptane was charged into a reaction tank with an internal volume of 500 L, and the solid titanium catalyst component was 25 kg, and triethylaluminum was added to the titanium atom in the solid titanium catalyst component. 0.0 mol / mol and dicyclopentyldimethoxysilane were supplied at a rate of 1.8 mol / mol. Thereafter, propylene was introduced until the partial pressure of propylene reached 29.4 kPa / G (0.3 kg / cm 2 G ) and reacted at 25 ° C. for 4 hours. After completion of the reaction, the solid titanium catalyst component was washed several times with purified heptane, further supplied with carbon dioxide and stirred for 24 hours to obtain a prepolymerized catalyst slurry.
(4)重合
内容積200Lの攪拌機付き重合装置に前記前重合触媒スラリーを成分中のチタン原子換算で3mmol/hrで、トリエチルアルミニウムを4mmol/kg−PPで、ジシクロペンチルジメトキシシランを1mmol/kg−PPでそれぞれ供給し、重合温度80℃、重合圧力(全圧)2.75MPa/G(28kg/cm2G)でプロピレンとエチレンを反応させた。この時、重合装置内のエチレン濃度を、2.4mol%、水素濃度を、5.5mol%とし、所望のエチレン含有量及び分子量となるように調整した。
(4) Polymerization In a polymerization apparatus with a stirrer having an internal volume of 200 L, the prepolymerization catalyst slurry was converted to 3 mmol / hr in terms of titanium atoms in the components, triethylaluminum at 4 mmol / kg-PP, and dicyclopentyldimethoxysilane at 1 mmol / kg-. Propylene and ethylene were reacted at a polymerization temperature of 80 ° C. and a polymerization pressure (total pressure) of 2.75 MPa / G (28 kg / cm 2 G), respectively. At this time, the ethylene concentration in the polymerization apparatus was adjusted to 2.4 mol% and the hydrogen concentration was set to 5.5 mol% so that the desired ethylene content and molecular weight were obtained.
製造例1〜5で得られたプロピレン系樹脂[PP1]〜[PP5]の物性を表1に示す。
各評価項目の測定方法は以下の通り:
・メルトフローレート(MFR:g/10分)
JIS K7210に準拠し、230℃、2.16kg荷重(kgf)の条件下で測定した。
Table 1 shows the physical properties of the propylene resins [PP1] to [PP5] obtained in Production Examples 1 to 5.
The measurement method for each evaluation item is as follows:
Melt flow rate (MFR: g / 10 minutes)
Based on JIS K7210, the measurement was performed under the conditions of 230 ° C. and 2.16 kg load (kgf).
・Dsol、Dinsolの分別法(デカン可溶分分別法)
最終生成物(すなわち、本発明のプロピレン系樹脂(A))のサンプル5gにn−デカン200mlを加え、145℃で30分間加熱溶解した。約3時間かけて、20℃まで冷却させ、30分間放置した。その後、析出物(以下、n−デカン不溶部:Dinsol)を濾別した。濾液を約3倍量のアセトン中入れ、n−デカン中に溶解していた成分を析出させた(析出物(A))。析出物(A)とアセトンを濾別し、析出物(Dsol)を乾燥した。なお、濾液側を濃縮乾固しても残渣は認められなかった。
・ D sol and D insol fractionation method (decane soluble fractionation method)
200 ml of n-decane was added to 5 g of a sample of the final product (that is, the propylene-based resin (A) of the present invention) and dissolved by heating at 145 ° C. for 30 minutes. It was cooled to 20 ° C. over about 3 hours and left for 30 minutes. Thereafter, the precipitate (hereinafter, n-decane insoluble portion: D insol ) was filtered off. The filtrate was put in about 3 times the amount of acetone to precipitate the components dissolved in n-decane (precipitate (A)). The precipitate (A) and acetone were separated by filtration, and the precipitate (D sol ) was dried. Even when the filtrate side was concentrated to dryness, no residue was observed.
・エチレン含有量(質量%:wt%と記す)
プロピレン系重合体(A)について、1段目重合体中(プロピレン−エチレン共重合体の場合)、2段目(最終生成物)中、Dsol(C2sol)中のエチレンに由来する骨格濃度を測定するために、サンプル20〜30mgを1,2,4−トリクロロベンゼン/重ベンゼン(2:1)溶液0.6mlに溶解後、炭素核磁気共鳴分析(13C−NMR)を行った。プロピレン、エチレン、α−オレフィンの定量はダイアッド連鎖分布より求めた。例えば、プロピレン−エチレン共重合体の場合、PP=Sαα、EP=Sαγ+Sαβ、EE=1/2(Sβδ+Sδδ)+1/4Sγδを用い、以下の計算式(Eq-1)および(Eq-2)により求めた。
プロピレン(mol%) = (PP+1/2EP)×100/[(PP+1/2EP)+(1/2EP+EE)] …(Eq-1)
エチレン(mol%) = (1/2EP+EE)×100/[(PP+1/2EP)+(1/2EP+EE)] …(Eq-2)
なお、本実施例におけるエチレン含有量の単位は、質量%に換算して表記した。
・ Ethylene content (mass%: wt%)
For the propylene polymer (A), the skeleton concentration derived from ethylene in D sol (C2sol) in the first stage polymer (in the case of propylene-ethylene copolymer), second stage (final product) In order to measure, 20-30 mg of sample was dissolved in 0.6 ml of 1,2,4-trichlorobenzene / heavy benzene (2: 1) solution, and then carbon nuclear magnetic resonance analysis ( 13 C-NMR) was performed. Propylene, ethylene and α-olefin were quantitatively determined from the dyad chain distribution. For example, propylene - if ethylene copolymer, PP = S αα, EP = S αγ + S αβ, using EE = 1/2 (S βδ + S δδ) + 1 / 4S γδ, the following equation (the eq- Obtained by 1) and (Eq-2).
Propylene (mol%) = (PP + 1 / 2EP) × 100 / [(PP + 1 / 2EP) + (1 / 2EP + EE)]… (Eq-1)
Ethylene (mol%) = (1 / 2EP + EE) × 100 / [(PP + 1 / 2EP) + (1 / 2EP + EE)]… (Eq-2)
In addition, the unit of ethylene content in a present Example was converted and expressed in the mass%.
・融点
結晶融点はJIS−K7121に従って、示差走査熱量計(DSC、パーキンエルマー社製(Diamond DSC))を用いて下記測定条件にて測定を行うことにより求めることができる。なお、下記測定条件で測定を行った際の、第3ステップにおける吸熱ピークの頂点を結晶融点(Tm)と定義した。吸熱ピークが複数ある場合はピークの高さが最大となる吸熱ピーク頂点を結晶融点(Tm)と定義する。
(測定条件)
測定環境:窒素ガス雰囲気
サンプル量: 5mg
サンプル形状: プレスフィルム(230℃成形、厚み400μm)
サンプルパン: 底が平面のアルミ製サンプルパン
第1ステップ: 30℃より10℃/minで200℃まで昇温し、10min間保持する。
第2ステップ: 10℃/minで30℃まで降温する。
第3ステップ: 10℃/minで200℃まで昇温する。
-Melting | fusing point Crystal melting | fusing point can be calculated | required by measuring on the following measuring conditions using a differential scanning calorimeter (DSC, the Perkin-Elmer company make (Diamond DSC)) according to JIS-K7121. The peak of the endothermic peak in the third step when the measurement was performed under the following measurement conditions was defined as the crystalline melting point (Tm). When there are a plurality of endothermic peaks, the peak of the endothermic peak where the peak height is maximum is defined as the crystalline melting point (Tm).
(Measurement condition)
Measurement environment: Nitrogen gas atmosphere Sample amount: 5mg
Sample shape: Press film (molded at 230 ° C, thickness 400 µm)
Sample pan: Aluminum sample pan with a flat bottom First step: The temperature is increased from 30 ° C. to 200 ° C. at 10 ° C./min and held for 10 min.
Second step: The temperature is lowered to 30 ° C. at 10 ° C./min.
Third step: The temperature is raised to 200 ° C. at 10 ° C./min.
・Dinsolペンタッド分率(mmmm:〔%〕)
重合体の立体規則性の指標の1つであり、そのミクロタクティシティーを調べたペンタド分率(mmmm,%)は、上記のDinsol成分においてMacromolecules 8,687(1975)に基づいて帰属した13C−NMRスペクトルのピーク強度比より算出した。13C−NMRスペクトルは、日本電子製EX−400の装置を用い、TMSを基準とし、温度130℃、o−ジクロロベンゼン溶媒を用いて測定した。
・ Dinsol pentad fraction (mmmm: [%])
It is one of the indexes of the stereoregularity of the polymer, and the pentad fraction (mmmm,%) whose microtacticity was examined was 13 C assigned based on Macromolecules 8,687 (1975) in the above Dinsol component. -It calculated from the peak intensity ratio of the NMR spectrum. The 13C-NMR spectrum was measured using an EX-400 device manufactured by JEOL, based on TMS, at a temperature of 130 ° C., and an o-dichlorobenzene solvent.
・極限粘度[η]sol
デカリン溶媒を用いて、135℃で測定した値である。すなわち造粒ペレット約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定する。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求める。
[η]=lim(ηsp/C) (C→0)
・ Intrinsic viscosity [η] sol
It is a value measured at 135 ° C. using a decalin solvent. That is, about 20 mg of granulated pellets are dissolved in 15 ml of decalin, and the specific viscosity ηsp is measured in an oil bath at 135 ° C. After adding 5 ml of decalin solvent to the decalin solution for dilution, the specific viscosity ηsp is measured in the same manner. This dilution operation is further repeated twice, and the value of ηsp / C when the concentration (C) is extrapolated to 0 is obtained as the intrinsic viscosity.
[Η] = lim (ηsp / C) (C → 0)
<エチレン系樹脂(B)>
エチレン系樹脂(B)として以下のPE1〜PE6を用いた。
PE1:エボリュー(登録商標)SP0510、(株)プライムポリマー製
PE2:下記製造例6により製造
PE3:エボリュー(登録商標)SP2120、(株)プライムポリマー製
PE4:ウルトゼックス(登録商標)1540L、(株)プライムポリマー製
PE5:タフマー(登録商標)A−0585X、Mitsui Elastomers Singapore社製
PE6:タフマー(登録商標)P−0480、Mitsui Elastomers Singapore社製
<Ethylene resin (B)>
The following PE1 to PE6 were used as the ethylene resin (B).
PE1: Evolue (registered trademark) SP0510, manufactured by Prime Polymer Co., Ltd. PE2: manufactured in accordance with the following Production Example 6. PE3: Evolue (registered trademark) SP2120, manufactured by Prime Polymer Co., Ltd. PE4: Ultozex (registered trademark) 1540L, (stock) ) Prime polymer PE5: Tafmer (registered trademark) A-0585X, Mitsui Elastomers Singapore manufactured PE6: Tafmer (registered trademark) P-0480, Mitsui Elastomers Singapore manufactured
[製造例6](PE2の製造)
・オレフィン重合用触媒(2)の調製
充分に窒素置換された攪拌機付きの容量110LSUS製容器に脱水ヘキサンを40L装入し、ジャケットにブライン(冷媒)を通液した。次いで、メチルアルモキサン/ヘキサン溶液2.04L(Al原子換算で3mol)、次いで下記化学式(1)で表される遷移金属錯体4.8g(Zr原子換算で6mmol)を挿入し、攪拌しながら5℃前後で2時間以上反応させて、オレフィン重合用触媒(2)を得た。
[Production Example 6] (Production of PE2)
-Preparation of Olefin Polymerization Catalyst (2) 40 L of dehydrated hexane was charged into a 110 LSUS vessel equipped with a stirrer with sufficient nitrogen substitution, and brine (refrigerant) was passed through the jacket. Next, 2.04 L of methylalumoxane / hexane solution (3 mol in terms of Al atom) and then 4.8 g (6 mmol in terms of Zr atom) represented by the following chemical formula (1) were inserted and stirred for 5 The reaction was carried out at around 0 ° C. for 2 hours or longer to obtain an olefin polymerization catalyst (2).
・エチレン・1−ヘキセン共重合体の製造
充分に窒素置換された容積130Lの攪拌翼付加圧連続重合反応器の一つの供給口に、脱水精製したn−ヘキサンを19.9L/時の流量で連続的に供給し、同時に連続重合反応器の別の供給口に、水素を4.0NL/h、エチレンを5.3kg/時の流量で、ヘキセン−1を7.7kg/時の流量で連続的に供給した。そして、上記で得られたオレフィン重合用触媒(2)を0.025mmol/時の流量で連続的に供給し、重合温度165℃、全圧2.9MPa/G、攪拌回転数256rpmの条件下で連続溶液重合を行った。重合反応器外周に設けられたジャケットに冷媒を流通させ、別に設置されたガスブロワを用いて気相部を強制的に循環させ、これを熱交換器で冷却することにより、重合反応熱を除去した。
-Production of ethylene / 1-hexene copolymer Dehydrated and purified n-hexane was fed at a flow rate of 19.9 L / hour into one feed port of a 130 L stirring blade-added-pressure continuous polymerization reactor that had been sufficiently purged with nitrogen. Continuously supplied, and at the same time to another supply port of the continuous polymerization reactor, hydrogen was continuously supplied at a flow rate of 4.0 NL / h, ethylene at a flow rate of 5.3 kg / hour, and hexene-1 at a flow rate of 7.7 kg / hour. Supplied. Then, the olefin polymerization catalyst (2) obtained above was continuously supplied at a flow rate of 0.025 mmol / hour, under the conditions of a polymerization temperature of 165 ° C., a total pressure of 2.9 MPa / G, and a stirring rotational speed of 256 rpm. Continuous solution polymerization was performed. The refrigerant was circulated through a jacket provided on the outer periphery of the polymerization reactor, the gas phase portion was forcibly circulated using a separately installed gas blower, and the polymerization reaction heat was removed by cooling it with a heat exchanger. .
上記条件で重合を行うことによって生成したエチレン・ヘキセン−1共重合体を含むヘキサン溶液は、重合反応器内平均溶液量30Lを維持するように、重合反応器最下部に設けられた排出口を介してエチレン・ヘキセン−1共重合体として5.0kg/時の速度で連続的に排出させた。 The hexane solution containing the ethylene / hexene-1 copolymer produced by polymerization under the above conditions is provided with a discharge port provided at the bottom of the polymerization reactor so as to maintain an average solution volume of 30 L in the polymerization reactor. The ethylene / hexene-1 copolymer was continuously discharged at a rate of 5.0 kg / hour.
使用するエチレン系樹脂[PE1]〜[PE6]の物性を表2に示す。各評価項目の測定方法は以下の通り:
・メルトフローレート(MFR:g/10分)
JIS K7210に準拠し、190℃、2.16kg荷重(kgf)の条件下で測定した。
・密度[kg/m3]
JIS K7112に準拠し、MFR測定時に得られるストランドを100℃で1時間熱処理し、更に室温で1時間放置した後に密度勾配管法で測定した。
・Mw/Mn測定〔重量平均分子量(Mw)、数平均分子量(Mn)〕
ウォーターズ社製GPC−150C Plusを用い以下の様にして測定した。分離カラムは、TSKgel GMH6−HT及びTSKgel GMH6−HTLであり、カラムサイズはそれぞれ内径7.5mm、長さ600mmであり、カラム温度は140℃とし、移動相にはo−ジクロロベンゼン(和光純薬工業(株))および酸化防止剤としてBHT(和光純薬工業(株))0.025質量%を用い、1.0ml/分で移動させ、試料濃度は0.1質量%とし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー(株)製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。
Table 2 shows the physical properties of the ethylene-based resins [PE1] to [PE6] to be used. The measurement method for each evaluation item is as follows:
Melt flow rate (MFR: g / 10 minutes)
Based on JIS K7210, the measurement was performed under the conditions of 190 ° C. and 2.16 kg load (kgf).
・ Density [kg / m 3 ]
Based on JIS K7112, the strand obtained at the time of MFR measurement was heat-treated at 100 ° C. for 1 hour, and further allowed to stand at room temperature for 1 hour, and then measured by a density gradient tube method.
Mw / Mn measurement [weight average molecular weight (Mw), number average molecular weight (Mn)]
It measured as follows using GPC-150C Plus by Waters. The separation columns were TSKgel GMH6-HT and TSKgel GMH6-HTL, the column size was 7.5 mm in inner diameter and 600 mm in length, the column temperature was 140 ° C., and o-dichlorobenzene (Wako Pure Chemical Industries, Ltd.) was used as the mobile phase. Kogyo Co., Ltd.) and 0.025% by mass of BHT (Wako Pure Chemical Industries, Ltd.) as an antioxidant, moved at 1.0 ml / min, the sample concentration was 0.1% by mass, and the sample injection amount Was 500 microliters, and a differential refractometer was used as a detector. Standard polystyrene used was made by Tosoh Corporation for molecular weights of Mw <1000 and Mw> 4 × 10 6 , and used by Pressure Chemical Co. for 1000 ≦ Mw ≦ 4 × 10 6 .
○実施例・比較例
<フィルム>
上記に示すプロピレン系樹脂(A)及びエチレン系樹脂(B)を表3〜表5に示す比で配合した樹脂100質量部に対して、酸化防止剤(イルガノックス(登録商標)1010、BASF社製)750ppm、熱安定剤(イルガフォス(登録商標)168、BASF社製)750ppm、ステアリン酸カルシウム500ppmを添加し、二軸混練機(神戸製鋼製、スクリュー径30mm)で混練して樹脂組成物を得た。さらに、スクリュー径75mmφの単層キャスト機を用いて、キャストロール温度40℃、引取速度55m/分(表5については30m/分)にて膜厚70μmのフィルムを成膜した。得られたフィルムは、40℃で24時間エージングした後、物性評価を実施した。結果を表3〜5に併せて示す。各評価の方法は以下の通りである。
○ Examples and Comparative Examples <Film>
For 100 parts by mass of the resin in which the propylene-based resin (A) and the ethylene-based resin (B) shown above are blended in the ratios shown in Tables 3 to 5, an antioxidant (Irganox (registered trademark) 1010, BASF Corporation) 750 ppm, heat stabilizer (Irgaphos (registered trademark) 168, manufactured by BASF) 750 ppm, calcium stearate 500 ppm, and kneaded with a twin-screw kneader (Kobe Steel, screw diameter 30 mm) to obtain a resin composition It was. Furthermore, using a single layer casting machine having a screw diameter of 75 mmφ, a film having a film thickness of 70 μm was formed at a cast roll temperature of 40 ° C. and a take-up speed of 55 m / min (30 m / min for Table 5). The obtained film was aged at 40 ° C. for 24 hours and then evaluated for physical properties. A result is combined with Tables 3-5, and is shown. The method of each evaluation is as follows.
・ヘイズ
ASTM D−1003(JIS K7105)に準拠して測定した。
・フィルムの耐衝撃性(−20℃フィルムインパクト)
フィルムを5cm×5cmにサンプリングし、−20℃でインパクトテスター(下から上へ先端1インチ(2.5cm)のハンマーを荷重3.0Jで突き上げる方式)で面衝撃強度を測定し、耐衝撃性を評価した。
-Haze It measured based on ASTM D-1003 (JIS K7105).
-Impact resistance of film (-20 ° C film impact)
The film is sampled to 5cm x 5cm, and the impact strength is measured at -20 ° C with an impact tester (a method in which a hammer with a tip of 1 inch (2.5cm) is pushed from the bottom to the top with a load of 3.0J). Evaluated.
・ブロッキング強度
MD方向10cm×TD方向10cmのフィルムのチルロール面どうしを重ね合わせ、50℃の恒温槽に200g/cm2の荷重下で3日間保持する。その後、23℃、湿度50%の室内にて24時間以上状態調節した後、引張速度200mm/minで剥離させたときの剥離強度を測定し、剥離強度を試験片幅で割った値をブロッキング係数とし、耐ブロッキング性を評価した。ここで、ブロッキング係数が小さいほど、耐ブロッキング性に優れる。
-Blocking strength The chill roll surfaces of the film of 10 cm in MD direction × 10 cm in TD direction are overlapped and held in a thermostatic bath at 50 ° C. under a load of 200 g / cm 2 for 3 days. Then, after conditioning in a room at 23 ° C. and 50% humidity for 24 hours or more, the peel strength when peeled at a tensile speed of 200 mm / min was measured, and the value obtained by dividing the peel strength by the test piece width was the blocking coefficient. And blocking resistance was evaluated. Here, the smaller the blocking coefficient, the better the blocking resistance.
・MD方向引張弾性率
引張試験機を用いて、下記試験片、測定条件にて測定
試験片:JIS K6781
チャック間80mm、引張速度200mm/分、測定温度23℃
-MD direction tensile elastic modulus Measured with the following test piece and measurement conditions using a tensile tester. Test piece: JIS K6781
80mm between chucks, tensile speed 200mm / min, measurement temperature 23 ° C
・121℃滅菌処理後の外観
得られたフィルムに対して121℃で滅菌処理を施した後、目視で外観を評価した。滅菌処理は、以下の条件で実施した。
(滅菌条件:装置、雰囲気、時間等)
評価基準は以下の通り。
○:滅菌後の白化、収縮共に滅菌前と変化無く問題なし。
△:滅菌後に部分的に白化又は収縮が認められる
×:滅菌後に全面的な白化又は収縮が認められる
-Appearance after sterilization treatment at 121 ° C The obtained film was sterilized at 121 ° C and then visually evaluated. Sterilization was performed under the following conditions.
(Sterilization conditions: equipment, atmosphere, time, etc.)
The evaluation criteria are as follows.
○: No problem with whitening and shrinkage after sterilization.
Δ: Partial whitening or shrinkage observed after sterilization ×: Fully whitening or shrinkage observed after sterilization
<ボトル>
上記に示すプロピレン系樹脂(A)及びエチレン系樹脂(B)を表6〜表8に示す比で配合した樹脂100質量部に対して、酸化防止剤(イルガノックス(登録商標)1010、BASF社製)750ppm、熱安定剤(イルガフォス(登録商標)168、BASF社製)750ppm、ステアリン酸カルシウム500ppmを添加し、二軸混練機(神戸製鋼製、スクリュー径30mm)で混練して樹脂組成物を得た。さらに、下記成形条件で中空成形を行い、内容量600ml、ボトル重量30g、胴部の厚み400μmの単層・円筒状中空容器を成形した。
・成形機:日本製鋼(株)製、型番:JEB−7中空成形機
・押出機のシリンダー温度:200℃
・ダイ温度:200℃
・金型温度:15℃
・樹脂押出量:7kg/h
<Bottle>
With respect to 100 parts by mass of the resin in which the propylene resin (A) and the ethylene resin (B) shown above were blended in the ratios shown in Tables 6 to 8, an antioxidant (Irganox (registered trademark) 1010, BASF Corporation) 750 ppm, heat stabilizer (Irgaphos (registered trademark) 168, manufactured by BASF) 750 ppm, calcium stearate 500 ppm, and kneaded with a twin-screw kneader (Kobe Steel, screw diameter 30 mm) to obtain a resin composition It was. Further, hollow molding was performed under the following molding conditions to form a single-layer / cylindrical hollow container having an internal volume of 600 ml, a bottle weight of 30 g, and a body thickness of 400 μm.
-Molding machine: manufactured by Nippon Steel Co., Ltd., model number: JEB-7 hollow molding machine-Cylinder temperature of the extruder: 200 ° C
-Die temperature: 200 ° C
・ Mold temperature: 15 ℃
・ Resin extrusion rate: 7kg / h
各評価の方法は以下の通りである。
・ヘイズ
ASTM D−1003(JIS K7105)に準拠して測定した。測定はボトルの胴部分に対して実施した。
The method of each evaluation is as follows.
-Haze It measured based on ASTM D-1003 (JIS K7105). The measurement was carried out on the barrel part of the bottle.
・シャルピー衝撃強度
シャルピー衝撃強度は、JIS K7111に従って下記の条件で行い、4mm厚の射出試験片を用いて測定した。
温度:0℃
試験片:10mm(幅)×80mm(長さ)×4mm(厚さ)
ノッチは機械加工である。
-Charpy impact strength The Charpy impact strength was measured according to JIS K7111, under the following conditions, and measured using a 4 mm-thick injection test piece.
Temperature: 0 ° C
Test piece: 10 mm (width) x 80 mm (length) x 4 mm (thickness)
The notch is machined.
・ブロッキング性
得られたボトルをSUS製のトレーに入れて121℃で滅菌処理を施した後、ブロッキング性を観察した。
○:ボトルとSUS製トレーの融着が認められない
×:ボトルとSUS製トレーの融着が認められる
-Blocking property After putting the obtained bottle into the tray made from SUS and sterilizing at 121 degreeC, blocking property was observed.
○: No fusion between the bottle and the SUS tray is recognized. ×: Fusion between the bottle and the SUS tray is recognized.
・MD方向引張弾性率/121℃滅菌処理後の外観
フィルムと同様の方法で評価した。
MD direction tensile elastic modulus / appearance after sterilization at 121 ° C. Evaluation was performed in the same manner as the film.
Claims (6)
(a1)230℃、2.16kg荷重下のMFRが0.3〜5.0g/10分
(a2)エチレン含有量が3.0〜10.0質量%
5〜30質量%の下記(b1)〜(b3)のすべての要件を満たすエチレン系樹脂(B)と、
(b1)190℃、2.16kg荷重下のMFRが0.3〜3.0g/10分
(b2)密度が890〜915kg/m3
(b3)GPCで測定して求められる分子量分布(Mw/Mn)が3.0以下である。
を含む(ただし(A)と(B)の合計を100質量%とする)樹脂組成物の層を含む容器。 70 to 95% by mass of a propylene-based resin (A) that satisfies the following requirements (a1) to (a2)
(A1) MFR under load of 230 ° C. and 2.16 kg is 0.3 to 5.0 g / 10 minutes (a2) Ethylene content is 3.0 to 10.0% by mass
5-30% by mass of an ethylene-based resin (B) satisfying all the following requirements (b1) to (b3);
(B1) MFR under 190 ° C. and 2.16 kg load is 0.3 to 3.0 g / 10 minutes (b2) Density is 890 to 915 kg / m 3
(B3) The molecular weight distribution (Mw / Mn) determined by GPC is 3.0 or less.
(However, the sum of (A) and (B) is 100% by mass).
(a3)DSCにより測定される融点が135℃以上、170℃以下である。 The container according to claim 1, wherein the propylene-based resin (A) further satisfies the following requirement (a3).
(A3) The melting point measured by DSC is 135 ° C. or higher and 170 ° C. or lower.
プロピレン含量が100〜94質量%、エチレン含量が0〜6質量%であるプロピレン単独重合成分及び/またはプロピレン・エチレン共重合成分である[α1]を100〜75質量%と、
プロピレン含量が85〜70質量%、エチレン含量が15〜30質量%であるプロピレン・エチレン共重合成分である[α2]を0〜25質量%とを
含んでいることを特徴とする、請求項1又は2に記載の容器。 The propylene resin (A) is
[Α1] which is a propylene homopolymer component and / or propylene / ethylene copolymer component having a propylene content of 100 to 94% by mass and an ethylene content of 0 to 6% by mass, and 100 to 75% by mass,
The propylene content is 85 to 70% by mass and the ethylene content is 15 to 30% by mass, and [α2] which is a propylene / ethylene copolymer component having 0 to 25% by mass is included. Or the container of 2.
(a4)室温n−デカンに不溶な成分(Dinsol)の、NMR測定によって求められるペンタッド分率が95mol%以上であり、かつ
(a5)室温n−デカンに可溶な成分(Dsol)の、135℃デカリン中における極限粘度([η]sol)が2.5dl/g〜4.0dl/gであり、さらに、
(a6)室温n−デカンに可溶な成分(Dsol)中のエチレンに由来する構造単位の含有量(C2sol)が20〜30質量%である、
を満たす請求項1〜3のいずれか1項に記載の容器。 The propylene-based resin (A) further has the following requirements (a4) to (a6):
(A4) A pentad fraction determined by NMR measurement of a component insoluble in room temperature n-decane (Dinsol) is 95 mol% or more, and (a5) of a component soluble in room temperature n-decane (Dsol), 135 The intrinsic viscosity ([η] sol) in decalin at 2.5 ° C. is 2.5 dl / g to 4.0 dl / g,
(A6) The content (C2sol) of the structural unit derived from ethylene in the component (Dsol) soluble in room temperature n-decane is 20 to 30% by mass,
The container of any one of Claims 1-3 which satisfy | fills.
少なくとも1段の重合プロセスを含み、
その1段目において、プロピレン100〜94質量%とエチレン0〜6質量%(ただしプロピレンとエチレンの合計を100質量%とする)とを(共)重合する工程を含み、
さらに2段目において、プロピレン85〜70質量%とエチレン15〜30質量%(ただしプロピレンとエチレンの合計を100質量%とする)とを共重合する工程を含み、
前記1段目の(共)重合体成分と2段目の共重合体成分とが、1段目/2段目が75〜100/25〜0の質量比であり、且つプロピレン系樹脂(A)中のエチレン含有量が3.0〜10.0%となるプロピレンとエチレンの共重合工程を含むことを特徴とする、プロピレン系樹脂(A)の製造方法。 It is a manufacturing method of the propylene-type resin (A) of Claim 3, Comprising:
Including at least one stage polymerization process;
The first stage includes a step of (co) polymerizing 100 to 94% by mass of propylene and 0 to 6% by mass of ethylene (provided that the total of propylene and ethylene is 100% by mass),
Furthermore, in the second stage, a step of copolymerizing 85 to 70% by mass of propylene and 15 to 30% by mass of ethylene (provided that the total of propylene and ethylene is 100% by mass),
The first stage (co) polymer component and the second stage copolymer component have a mass ratio of 75 to 100/25 to 0 in the first stage / second stage, and a propylene resin (A A process for producing a propylene-based resin (A), comprising a step of copolymerizing propylene and ethylene so that the ethylene content is 3.0 to 10.0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017108284A JP7055598B2 (en) | 2017-05-31 | 2017-05-31 | Sterilization container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017108284A JP7055598B2 (en) | 2017-05-31 | 2017-05-31 | Sterilization container |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018203297A true JP2018203297A (en) | 2018-12-27 |
JP7055598B2 JP7055598B2 (en) | 2022-04-18 |
Family
ID=64956181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017108284A Active JP7055598B2 (en) | 2017-05-31 | 2017-05-31 | Sterilization container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7055598B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000256532A (en) * | 1999-03-09 | 2000-09-19 | Showa Denko Plastic Products Kk | Polypropylene-based film and multilayer film thereof |
JP2002249626A (en) * | 1995-11-24 | 2002-09-06 | Chisso Corp | Propylene composition, its preparation method, polypropylene composition and its molded product |
JP2005097358A (en) * | 2003-09-22 | 2005-04-14 | Showa Denko Plastic Products Co Ltd | Polypropylenic molding and container |
WO2011090101A1 (en) * | 2010-01-22 | 2011-07-28 | 株式会社プライムポリマー | Multilayer blow-molded container, and process for production thereof |
WO2015002217A1 (en) * | 2013-07-05 | 2015-01-08 | 株式会社プライムポリマー | Motorcycle rear grip composed of propylene polymer composition |
WO2017038349A1 (en) * | 2015-08-31 | 2017-03-09 | 東レフィルム加工株式会社 | Retort-packaging polypropylene-based sealant film and laminate using same |
-
2017
- 2017-05-31 JP JP2017108284A patent/JP7055598B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002249626A (en) * | 1995-11-24 | 2002-09-06 | Chisso Corp | Propylene composition, its preparation method, polypropylene composition and its molded product |
JP2000256532A (en) * | 1999-03-09 | 2000-09-19 | Showa Denko Plastic Products Kk | Polypropylene-based film and multilayer film thereof |
JP2005097358A (en) * | 2003-09-22 | 2005-04-14 | Showa Denko Plastic Products Co Ltd | Polypropylenic molding and container |
WO2011090101A1 (en) * | 2010-01-22 | 2011-07-28 | 株式会社プライムポリマー | Multilayer blow-molded container, and process for production thereof |
WO2015002217A1 (en) * | 2013-07-05 | 2015-01-08 | 株式会社プライムポリマー | Motorcycle rear grip composed of propylene polymer composition |
WO2017038349A1 (en) * | 2015-08-31 | 2017-03-09 | 東レフィルム加工株式会社 | Retort-packaging polypropylene-based sealant film and laminate using same |
Also Published As
Publication number | Publication date |
---|---|
JP7055598B2 (en) | 2022-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4844091B2 (en) | Propylene resin composition and film thereof | |
WO1997010299A1 (en) | Polyolefin composition and article molded therefrom | |
JP2009154332A (en) | Laminate | |
JP5260846B2 (en) | Propylene resin composition for packaging materials | |
JP2008045008A5 (en) | ||
JP2005264151A (en) | Biaxially oriented polypropylene film | |
JP5206395B2 (en) | Polypropylene copolymer and film comprising the same | |
JP4401706B2 (en) | Laminated body and medical bag using the same | |
JP2010111822A (en) | Pressure-resistant pipe or pressure-resistant container | |
JP5227031B2 (en) | Polypropylene single layer film and its use | |
JP5422000B2 (en) | Multilayer heat shrinkable film | |
EP3666804B1 (en) | Polypropylene composition with favourable combination of optics, softness and low sealing | |
JP7055598B2 (en) | Sterilization container | |
JP2010189475A (en) | Molded article subjected to radiation sterilization | |
JP5342115B2 (en) | Propylene resin composition for packaging materials | |
JP2003052791A (en) | Double cell container | |
JP5224763B2 (en) | Shrink label | |
JP5052068B2 (en) | Propylene resin composition for packaging material and use thereof | |
JP3397095B2 (en) | Highly transparent film and method for producing the same | |
JPH08283491A (en) | Flexible polyolefin composition | |
JP4093551B2 (en) | Gas barrier retort pouch film | |
CN111989269B (en) | Container with a lid | |
JPS6395210A (en) | Low crystalline propylene based random copolymer composition | |
JP2010053341A (en) | Polypropylene based resin composition, and film comprising it | |
JP3726680B2 (en) | Film or container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210907 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7055598 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |