JP2018202425A - Multiple torsion pipe with spiral groove on inner surface, and method of manufacturing the same - Google Patents

Multiple torsion pipe with spiral groove on inner surface, and method of manufacturing the same Download PDF

Info

Publication number
JP2018202425A
JP2018202425A JP2017106957A JP2017106957A JP2018202425A JP 2018202425 A JP2018202425 A JP 2018202425A JP 2017106957 A JP2017106957 A JP 2017106957A JP 2017106957 A JP2017106957 A JP 2017106957A JP 2018202425 A JP2018202425 A JP 2018202425A
Authority
JP
Japan
Prior art keywords
tube
spiral groove
spiral
twisted
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017106957A
Other languages
Japanese (ja)
Other versions
JP6902930B2 (en
Inventor
祐典 中浦
Sukenori Nakaura
祐典 中浦
勇樹 波照間
Yuki HATERUMA
勇樹 波照間
将之 中本
Masayuki Nakamoto
将之 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2017106957A priority Critical patent/JP6902930B2/en
Publication of JP2018202425A publication Critical patent/JP2018202425A/en
Application granted granted Critical
Publication of JP6902930B2 publication Critical patent/JP6902930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

To provide a multiple torsion pipe with a spiral groove on an inner surface, which having high dimensional accuracy of a longitudinal groove shape and which has a neat fin shape, and provide a manufacturing method capable of adapting to a slender pipe and excellent in productivity.SOLUTION: In the present invention, a plurality of metal pipes with spiral grooves on inner surfaces, which are different in diameter, which have the plurality of spiral grooves along a lengthwise direction formed at intervals in a circumferential direction on the inner surfaces and which have a spiral fin formed between the adjacent spiral grooves, are provided. The small-diameter pipe with the spiral groove on the inner surface is inserted into the inside of the large-diameter pipe with the spiral groove on the inner surface and integrated. A sacrificial anode layer is formed on the outer periphery of the large-diameter pipe with the spiral groove on the inner surface.SELECTED DRAWING: Figure 1

Description

本発明は、熱交換器の伝熱管等に用いられる内面螺旋溝付多重捻り管とその製造方法に関する。   The present invention relates to a multi-twisted tube with an inner surface spiral groove used for a heat transfer tube of a heat exchanger and a manufacturing method thereof.

従来から、管内において内側流路とその周囲に配置された外側の複数の流路間で、内側と外側を流れる冷媒間で熱交換を行なう管式熱交換器が知られている。
特許文献1には、ヒートポンプ式の熱源機においてコストの増加を抑制しつつ熱交換性能の向上を図った二重管式熱交換器が開示されている。
2. Description of the Related Art Conventionally, a tubular heat exchanger is known that performs heat exchange between a refrigerant flowing inside and outside between an inner channel and a plurality of outer channels disposed around the inner channel in a pipe.
Patent Document 1 discloses a double-pipe heat exchanger that improves heat exchange performance while suppressing an increase in cost in a heat pump heat source machine.

特開2016−99075号公報JP-A-2006-99075

二重管式熱交換器の課題に、高コスト化を抑制し且つ熱交換性能を高めるといった要望を満足することが挙げられる。熱交換性能向上には二重管式熱交換器の長さを長くすることで実現可能であるが、一方で熱交換器が大型化するとともに、材料費の増加でコストが高くなるといった問題がある。  The problem of the double-pipe heat exchanger is to satisfy the demand of suppressing the increase in cost and improving the heat exchange performance. The heat exchange performance can be improved by increasing the length of the double-pipe heat exchanger. On the other hand, there is a problem that the heat exchanger increases in size and increases in material costs. is there.

ところで、自動車用コンデンサとエバポレータを接続する伝熱管は二重管で構成され、二重管を冷媒が通過する間において管体を介し隣接する暖かい冷媒と冷たい冷媒との間で熱交換を行うことがなされている。
この伝熱管において暖かい冷媒と冷たい冷媒の間で効率良く熱交換を行うためには、二重管が螺旋構造になっていれば、理想的な構造と考えられる。
しかし、二重管のそれぞれを螺旋構造とするのは容易ではなく、上述の如く熱交換性能を向上させようとすると熱交換器の大型化、材料費の増加が避けられないという問題がある。
また、自動車用コンデンサやエバポレータなどの熱交換器は、雨水に触れることがあり耐食性の面においても優れていることが望ましい。
By the way, the heat transfer tube connecting the condenser for an automobile and the evaporator is constituted by a double tube, and heat exchange is performed between the adjacent warm refrigerant and cold refrigerant through the pipe body while the refrigerant passes through the double tube. Has been made.
In order to efficiently exchange heat between a warm refrigerant and a cold refrigerant in this heat transfer tube, an ideal structure is considered if the double tube has a spiral structure.
However, it is not easy to make each of the double tubes have a spiral structure, and there is a problem that an increase in the size of the heat exchanger and an increase in material costs are inevitable if the heat exchange performance is improved as described above.
In addition, it is desirable that heat exchangers such as automobile condensers and evaporators are exposed to rainwater and are excellent in corrosion resistance.

本発明は、このような事情に鑑みてなされたもので、長手方向に溝形状および捻り角の寸法精度が高い内面螺旋溝付管を複数集合した構造が得られ、熱交換効率の優れた生産性と耐食性に優れる内面螺旋溝付多重捻り管を提供し、その製造方法を提供することを目的とする。  The present invention has been made in view of such circumstances, and a structure in which a plurality of internally spiral grooved tubes having a high dimensional accuracy of the groove shape and twist angle in the longitudinal direction is obtained, and production with excellent heat exchange efficiency is obtained. An object of the present invention is to provide a multi-twisted tube with an inner spiral groove that is excellent in properties and corrosion resistance, and to provide a method for manufacturing the same.

本発明に係る内面螺旋溝付多重捻り管は、内面に長さ方向に沿う複数の螺旋溝が周方向に間隔をおいて形成され、隣接する前記螺旋溝間に螺旋フィンが形成された金属製の複数の径の異なる内面螺旋溝付管を備え、大径の内面螺旋溝付管の内側に小径の内面螺旋溝付管が挿入され、一体化され、前記大径の内面螺旋溝付管の外周に犠牲陽極層が形成されたことを特徴とする。
本発明の内面螺旋溝付多重捻り管において、前記大径の内面螺旋溝付管内面の前記螺旋フィンがその内側の内面螺旋溝付管の外周面に食い込まされ、前記小径の内面螺旋溝付管の内側に第1の流路が形成され、前記小径の内面螺旋溝付管と前記大径の内面螺旋溝付管との間に第2の流路が形成された構成を採用できる。
本発明の内面螺旋溝付多重捻り管において、前記個々の内面螺旋溝付管の螺旋溝が一定の捻り周期を有する構成を採用できる。
The multi-twisted tube with an inner surface spiral groove according to the present invention is made of metal in which a plurality of spiral grooves along the length direction are formed on the inner surface at intervals in the circumferential direction, and a spiral fin is formed between the adjacent spiral grooves. A plurality of inner diameter spiral grooved tubes having different diameters, and a small diameter inner surface spiral grooved tube is inserted and integrated inside a large diameter inner surface spiral grooved tube. A sacrificial anode layer is formed on the outer periphery.
In the multi-twisted tube with an inner surface spiral groove of the present invention, the spiral fin on the inner surface of the large-diameter inner surface spiral groove tube bites into the outer peripheral surface of the inner surface inner spiral groove tube, and the inner surface spiral groove tube with the smaller diameter 1st flow path is formed inside, and the structure by which the 2nd flow path was formed between the said small diameter internal spiral grooved pipe and the said large diameter internal spiral grooved pipe | tube is employable.
In the multiple twisted tube with inner spiral grooves of the present invention, a configuration in which the spiral grooves of the individual inner spiral groove tubes have a constant twist cycle can be adopted.

本発明の内面螺旋溝付多重捻り管において、前記犠牲陽極層がZnを0.2質量%以上含み、厚さ80μm以上である構成を採用できる。
本発明の内面螺旋溝付多重捻り管において、前記個々の内面螺旋溝付管の内面に形成されている螺旋溝の捻り角が個々の内面螺旋溝付管の中心軸線に対し5〜80゜に設定された構成を採用できる。
In the multi-twisted tube with an inner surface spiral groove of the present invention, the sacrificial anode layer may include a Zn content of 0.2% by mass or more and a thickness of 80 μm or more.
In the multiple twisted tube with inner spiral grooves of the present invention, the twist angle of the spiral groove formed on the inner surface of each inner spiral groove tube is 5 to 80 ° with respect to the central axis of each inner spiral groove tube. The set configuration can be adopted.

本発明に係る内面螺旋溝付多重捻り管の製造方法は、内面に長さ方向に沿う複数の溝が周方向に間隔をおいて形成された径の異なる素管を複数本用意し、大径の素管の中に小径の素管を挿入して複合素管を形成し、この複合素管を巻き出し側キャプスタンにその導入側接線方向から巻き付けつつ前記複合素管を導出側接線に沿って巻き出し、前記巻き出し側キャプスタンを前記導出側接線を軸として軸回りに回転させることにより、前記巻き出し側キャプスタンから前記複合素管を前記軸心回りに回転させながら前記接線の延長方向に巻き出す素管巻き出し工程と、巻き出された前記複合素管を引抜きダイスに通して縮径しながら捻りを付与して内面螺旋溝付多重捻り管とする捻り引抜き工程と、前記内面螺旋溝付多重捻り管の表面に犠牲陽極層を設ける工程を備えることを特徴とする。   The method of manufacturing an inner spiral grooved multiple twisted tube according to the present invention is to prepare a plurality of elementary tubes having different diameters in which a plurality of grooves along the length direction are formed on the inner surface at intervals in the circumferential direction. A small-diameter element tube is inserted into the element tube to form a compound element tube, and the compound element tube is wound around the unwinding side capstan from the introduction side tangential direction while the compound element tube is aligned along the outlet side tangent line. Unwinding and rotating the unwinding side capstan around the axis about the lead-out side tangent, thereby extending the tangent line while rotating the composite element tube around the axis from the unwinding side capstan. An unwinding step of unrolling in the direction of the tube, a torsion pulling step of passing the unwinded union tube through a pulling die and applying a twist while reducing the diameter to form an inner spiral grooved multiple twisted tube, and the inner surface Sacrificial sun on the surface of a multi-twisted tube with spiral grooves Characterized in that it comprises the step of providing a layer.

本発明に係る内面螺旋溝付多重捻り管の製造方法は、長さ方向に沿う溝として内面に直線溝を有する素管を用いることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、長さ方向に沿う溝として内面螺旋溝を有する素管を用いることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記引抜きダイスによる縮径率を5〜40%とすることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、Znを0.2質量%以上含み、厚さ80μm以上の犠牲陽極層を形成することができる。
The manufacturing method of the multiple twisted tube with the inner surface spiral groove according to the present invention can use a raw tube having a straight groove on the inner surface as the groove along the length direction.
The manufacturing method of the multi-twisted tube with an inner surface spiral groove according to the present invention can use a raw tube having an inner surface spiral groove as a groove along the length direction.
In the method for manufacturing an inner spiral grooved multiple twisted tube according to the present invention, the diameter reduction rate by the drawing die can be 5 to 40%.
The method for manufacturing a multi-twisted tube with an inner surface spiral groove according to the present invention can form a sacrificial anode layer containing Zn in an amount of 0.2 mass% or more and having a thickness of 80 μm or more.

本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記巻出し側キャプスタンに前記複合素管を巻き始める位置と前記巻出し側キャプスタンから前記引抜きダイス側に前記複合素管を送り始める位置を前記巻出し側キャプスタンの回転軸と平行な方向にずらすことにより、前記巻出し側キャプスタンと前記引抜きダイスとの間を前記複合素管の捻り加工領域とすることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記引抜きダイスに前記複合素管を通して前記複合素管を捻りつつ縮径する際、前記複合素管に前方張力と後方張力を付加することができる。
The method of manufacturing a multi-twisted tube with an inner surface spiral groove according to the present invention includes: a position where the composite raw tube starts to be wound around the unwinding side capstan; and the composite raw tube is fed from the unwinding side capstan to the drawing die side. By shifting the starting position in a direction parallel to the rotation axis of the unwinding-side capstan, the region between the unwinding-side capstan and the drawing die can be set as a twisting region of the composite element tube.
In the method of manufacturing a multi-twisted tube with an inner surface spiral groove according to the present invention, when the diameter of the composite pipe is reduced while twisting the composite pipe through the composite pipe, the front and rear tensions are applied to the composite pipe. be able to.

本発明によれば、内面に長さ方向に沿う複数の螺旋溝が周方向に間隔をおいて形成された金属製の内面螺旋溝付管を複数本、複合した構造であって、優れた耐食性を有する従来にない内面螺旋溝付多重捻り管を提供することができる。   According to the present invention, a structure in which a plurality of metallic inner surface spiral grooved tubes in which a plurality of spiral grooves along the length direction are formed on the inner surface at intervals in the circumferential direction is combined with excellent corrosion resistance. It is possible to provide an unprecedented inner spiral grooved multiple twisted tube having

本発明に係る内面螺旋溝付多重捻り管の第1実施形態を示す断面図。Sectional drawing which shows 1st Embodiment of the multi-twisted pipe | tube with an internal spiral groove which concerns on this invention. 同実施形態の内面螺旋溝付多重捻り管の一部を切り出した展開図。The expanded view which cut out a part of multiple twisted pipe with an inner surface spiral groove of the embodiment. 同製造装置の全体構成を示す側面図。The side view which shows the whole structure of the manufacturing apparatus. 同製造装置の全体構成を示す平面図。The top view which shows the whole structure of the manufacturing apparatus. 同製造装置の巻き出し側キャプスタンに対し素管を巻き付けて巻き出した状態を示す平面図。The top view which shows the state which wound and unwound the pipe | tube with respect to the unwinding side capstan of the manufacturing apparatus. 同製造装置に供給される素管の一例を示すもので、(a)は断面図、(b)は横断面図。An example of the raw tube supplied to the manufacturing apparatus is shown, (a) is a sectional view, (b) is a transverse sectional view. 大径の素管の内側に小径の素管を挿入して複合素管を構成した状態を示す断面図。Sectional drawing which shows the state which inserted the small diameter raw tube inside the large diameter raw tube, and comprised the composite raw tube. 径の異なる3種類の内面螺旋溝付管を複合一体化した内面螺旋溝付多重捻り管の第2実施形態を示す断面図。Sectional drawing which shows 2nd Embodiment of the multi-twisted pipe | tube with an internal spiral groove which compounded and integrated three types of internal spiral groove pipes from which a diameter differs. 大径の内面螺旋溝付管の内部に小径の内面螺旋溝付管を3本複合して一体化した構造の内面螺旋溝付多重捻り管の第3実施形態を示す断面図。Sectional drawing which shows 3rd Embodiment of the multi-twisted pipe | tube with an inner surface spiral groove of the structure which combined and integrated three small diameter inner surface spiral grooved pipe | tubes inside the large diameter inner surface spiral groove tube. 同第3実施形態の内面螺旋溝付多重捻り管において小径の3本の内面螺旋溝付管を抜き出して示す斜視図。The perspective view which extracts and shows three small inner diameter spiral grooved pipes in the multiple twisted pipe with inner surface spiral grooves of the same third embodiment. 本発明に係る内面螺旋溝付多重捻り管を伝熱管として用いた熱交換器の一例を示すもので、(A)は斜視図、(B)は部分拡大図。An example of the heat exchanger which used the multiple twisted tube with an inner surface spiral groove concerning this invention as a heat exchanger tube is shown, (A) is a perspective view, (B) is a partial enlarged view. 実施例において製造された内面螺旋溝付多重捻り管の一具体例を示すもので、(a)は断面図、(b)はその部分拡大図。The specific example of the multiple twisted tube with an inner surface spiral groove manufactured in the Example is shown, (a) is sectional drawing, (b) is the elements on larger scale.

以下、本発明に係る内面螺旋溝付多重捻り管とその製造方法と製造装置の実施形態について図面を参照しながら説明する。
本実施形態の内面螺旋溝付多重捻り管の製造装置A(図3〜図4参照)は、内面に長さ方向に沿う複数の直線溝が周方向に間隔をおいて複数形成された径の異なる素管(図6、図7参照)を複数本、例えば2本(素管1、8)を複合した複合素管Fが適用される。
この例の製造装置Aは、例えば、素管1に素管8を挿入して複合素管Fを構成し、これに一定の捻りを生じさせ、図1に示す内面に螺旋溝2aを有する小径の内面螺旋溝付管2と内面に螺旋溝3aを有する大径の内面螺旋溝付管3を一体化した内面螺旋溝付多重捻り管4の基本構造を形成する装置である。この製造装置Aで捻り加工後、内面螺旋溝付管3の外周に溶射法、めっき法、塗布法、クラッド法などの適宜の方法によりZn溶射層、Znメッキ層、Znクラッド層などを形成し、必要に応じ熱処理してZnを拡散させることで犠牲陽極層14を備えた内面螺旋溝付多重捻り管4を得ることができる。
Embodiments of an inner spiral grooved multiple twisted tube, a manufacturing method thereof, and a manufacturing apparatus according to the present invention will be described below with reference to the drawings.
The manufacturing apparatus A (see FIGS. 3 to 4) of the multiple twisted tube with inner surface spiral grooves of the present embodiment has a diameter in which a plurality of linear grooves along the length direction are formed on the inner surface at intervals in the circumferential direction. A composite element tube F in which a plurality of different element tubes (see FIGS. 6 and 7), for example, two elements (element tubes 1 and 8) are combined is applied.
In the manufacturing apparatus A of this example, for example, a raw tube 8 is inserted into the raw tube 1 to form a composite raw tube F, and a constant twist is generated in this, and a small diameter having a spiral groove 2a on the inner surface shown in FIG. This is an apparatus for forming a basic structure of an inner spiral grooved multiple twisted tube 4 in which the inner spiral grooved tube 2 and a large-diameter inner spiral grooved tube 3 having a spiral groove 3a on the inner surface are integrated. After twisting with this manufacturing apparatus A, a Zn sprayed layer, a Zn plated layer, a Zn clad layer, and the like are formed on the outer periphery of the inner spiral grooved tube 3 by an appropriate method such as a spraying method, a plating method, a coating method, or a cladding method. If necessary, heat treatment is performed to diffuse Zn so that the multi-twisted tube 4 with the inner surface spiral groove provided with the sacrificial anode layer 14 can be obtained.

内面螺旋溝付多重捻り管4において、小径の内面螺旋溝付管2の内面の螺旋溝間には螺旋フィン2bが形成され、大径の内面螺旋溝付管3の内面の螺旋溝間には螺旋フィン3bが形成されている。
内面螺旋溝付多重捻り管4の外周面、即ち、内面螺旋溝付管3の外周面には犠牲陽極層14が形成されている。この犠牲陽極層14は、一例としてZn溶射層、クラッドによるZn層あるいはZnメッキ層などから、あるいは、これらから熱拡散によりZnが拡散されて形成された防食層である。アルミニウム又はアルミニウム合金から、あるいは、鉄系合金から内面螺旋溝付管3を形成した場合、犠牲陽極層14の領域はZnが拡散されていない領域より電気化学的に卑となって、優先的に腐食することにより、内面螺旋溝付管3の孔食を防止する。犠牲防食層14を構成する材料は、防食対象の内面螺旋溝付管3を構成する金属材料よりも電位が卑な(低電位な)金属の層を設けると良い。
Znの拡散を行わない場合は、内面螺旋溝付層3を構成する材料にZnを多く含ませた材料からなる溶射層、クラッド層などを設けることが好ましい。
In the multi-twisted tube 4 with the inner surface spiral groove, spiral fins 2b are formed between the inner surface spiral grooves of the small diameter inner surface spiral groove tube 2, and between the inner surface spiral grooves of the large diameter inner surface spiral groove tube 3 between the spiral grooves. Spiral fins 3b are formed.
A sacrificial anode layer 14 is formed on the outer peripheral surface of the inner spiral grooved multiple twisted tube 4, that is, on the outer peripheral surface of the inner spiral grooved tube 3. The sacrificial anode layer 14 is an anticorrosion layer formed, for example, from a Zn sprayed layer, a Zn layer by cladding, or a Zn plating layer, or from which Zn is diffused by thermal diffusion. When the inner spiral grooved tube 3 is formed from aluminum or an aluminum alloy or from an iron-based alloy, the sacrificial anode layer 14 region is electrochemically less preferentially than the region where Zn is not diffused. By corroding, pitting corrosion of the inner spiral grooved tube 3 is prevented. The material constituting the sacrificial anticorrosion layer 14 is preferably provided with a metal layer having a lower potential (lower potential) than the metal material constituting the inner spiral grooved tube 3 to be protected against corrosion.
When Zn is not diffused, it is preferable to provide a thermal spray layer, a clad layer, or the like made of a material containing a large amount of Zn in the material constituting the inner spiral grooved layer 3.

この犠牲陽極層14は、例えばZnを0.2質量%以上含むアルミニウム合金層から形成され、80μm以上の厚さに形成される。
Zn含有量が0.2質量%未満の場合は内面螺旋溝付管3の母材(Znを拡散させていない領域)との電位差が少なくなり、腐食防止効果が不充分となり易い。
犠牲陽極層14の厚さが80μm未満であると、犠牲陽極層厚が不足し、孔食に繋がりやすくなる問題を生じ易い。
The sacrificial anode layer 14 is formed of, for example, an aluminum alloy layer containing 0.2% by mass or more of Zn and has a thickness of 80 μm or more.
When the Zn content is less than 0.2% by mass, the potential difference from the base material of the inner surface spiral grooved tube 3 (region where Zn is not diffused) decreases, and the corrosion prevention effect tends to be insufficient.
If the thickness of the sacrificial anode layer 14 is less than 80 μm, the sacrificial anode layer thickness is insufficient, and a problem that easily leads to pitting corrosion tends to occur.

本実施形態において、図3は製造装置Aの全体構造の側面を示し、図4は製造装置Aの全体構造の平面を示す。
この製造装置Aは、内面に直線溝(図6参照)1aが形成された素管1に図7に示すように同等構造で小径の素管8を挿入して複合した複合素管Fを図3、図4に示すようにコイル状に巻き取った状態に保持する巻き出し側キャプスタン5と、この巻き出し側キャプスタン5から巻き出される複合素管Fを巻き出し側キャプスタン5とともに回転する回転手段6を備えている。また、製造装置Aは、巻き出し側キャプスタン5から送り出された複合素管Fを通す引抜きダイス7と、引抜きダイス7を通って捻り加工と引抜き加工がなされた内面螺旋溝付多重捻り管3を巻き付けながら送り出す引き抜き側キャプスタン9を備えている。
In the present embodiment, FIG. 3 shows a side view of the entire structure of the manufacturing apparatus A, and FIG. 4 shows a plan view of the entire structure of the manufacturing apparatus A.
This manufacturing apparatus A is a composite element tube F in which a small-diameter element tube 8 having an equivalent structure is inserted into the element tube 1 having a straight groove (see FIG. 6) 1a formed on the inner surface and combined as shown in FIG. 3, the unwinding side capstan 5 held in a coiled state as shown in FIG. 4, and the composite element tube F unwound from the unwinding side capstan 5 is rotated together with the unwinding side capstan 5. Rotating means 6 is provided. The manufacturing apparatus A also includes a drawing die 7 that passes through the composite element tube F that is fed from the unwinding side capstan 5, and a multi-twisted tube 3 with an inner spiral groove that is twisted and drawn through the drawing die 7. The pull-out side capstan 9 which feeds out while winding is provided.

素管1は例えば図6に示すように管本体1Aの内面に長さ方向に沿って直線溝1aが複数形成され、内周方向に隣接する直線溝1a、1aの間にフィン1bが形成されている。素管1はアルミニウムあるいはアルミニウム合金管からなり、例えば外径3〜20mm程度、より具体的には3〜12mm程度の外径に形成されている。
この素管1の内部に素管1の内径より若干小さな外径の素管8が素管1の長さ方向に沿って挿入され、複合素管Fが構成されている。素管8は素管1と同等構造で外径のみ若干小さく形成されたもので、アルミニウムあるいはアルミニウム合金管からなり、例えば外径3〜20mm程度、より具体的には3〜12mm程度の外径であって、素管1の内部に挿入可能な外径に形成されている。素管8において図7に示すように管本体8Aの内面に長さ方向に沿って複数の直線溝8aが形成され、内周方向に隣接する直線溝8a、8a間にフィン8bが形成されている構造についても素管1と同等構造とされている。
For example, as shown in FIG. 6, the raw tube 1 has a plurality of straight grooves 1a formed along the length direction on the inner surface of the tube body 1A, and fins 1b are formed between the straight grooves 1a and 1a adjacent to each other in the inner circumferential direction. ing. The raw tube 1 is made of aluminum or an aluminum alloy tube, and has an outer diameter of, for example, about 3 to 20 mm, more specifically about 3 to 12 mm.
An element tube 8 having an outer diameter slightly smaller than the inner diameter of the element tube 1 is inserted into the element tube 1 along the length direction of the element tube 1 to form a compound element tube F. The base tube 8 has the same structure as the base tube 1 and is formed with a slightly smaller outer diameter, and is made of an aluminum or aluminum alloy tube. For example, the outer diameter is about 3 to 20 mm, more specifically about 3 to 12 mm. And it is formed in the outer diameter which can be inserted in the inside of the raw tube 1. In the raw tube 8, as shown in FIG. 7, a plurality of linear grooves 8a are formed along the length direction on the inner surface of the tube main body 8A, and fins 8b are formed between the linear grooves 8a and 8a adjacent in the inner circumferential direction. The same structure as that of the tube 1 is also adopted.

なお、この実施形態において素管1、8はアルミニウム又はアルミニウム合金からなるが、素管1、8については銅系合金あるいはステンレス鋼などの鉄系合金から形成されていてもよい。この実施形態ではアルミニウム又はアルミニウム合金からなる素管1、8を例として説明するが、本発明で目的とする内面螺旋溝付多重捻り管は引抜きダイスにより引抜きが可能な材料であれば適用可能であるので、アルミニウム系合金、銅系合金あるいは鉄系合金など、他の金属や合金からなる素管を用いて本発明を実施しても良いのは勿論である。
外側の素管1と内側の素管8は同じ材料である必要は無く、素管1を銅合金製とし、素管8をアルミニウム合金製などとしても良い。また、同じアルミニウム合金であっても、素管1と素管8を組成の異なるアルミニウム合金製で構成することも可能である。また、素管1と素管8はこの例では相似形状の素管として表示されているが、それらの内面に形成されている直線溝1a、8aの幅やフィン1b、8bの幅、高さ、形成ピッチなどは内側の素管8と外側の素管1で異なっていても良い。
In this embodiment, the elementary tubes 1 and 8 are made of aluminum or an aluminum alloy. However, the elementary tubes 1 and 8 may be made of an iron-based alloy such as a copper alloy or stainless steel. In this embodiment, the raw tubes 1 and 8 made of aluminum or aluminum alloy will be described as an example. However, the multi-twisted tube with an inner spiral groove intended in the present invention can be applied as long as it is a material that can be drawn by a drawing die. Therefore, it goes without saying that the present invention may be carried out using a raw tube made of another metal or alloy such as an aluminum alloy, a copper alloy or an iron alloy.
The outer raw tube 1 and the inner raw tube 8 do not need to be made of the same material, and the raw tube 1 may be made of a copper alloy, and the raw tube 8 may be made of an aluminum alloy. Moreover, even if it is the same aluminum alloy, it is also possible to comprise the raw tube 1 and the raw tube 8 by the aluminum alloy from which a composition differs. In addition, the raw tube 1 and the raw tube 8 are shown as similar-shaped raw tubes in this example, but the widths of the straight grooves 1a and 8a formed on the inner surfaces thereof and the widths and heights of the fins 1b and 8b are shown. The formation pitch and the like may be different between the inner tube 8 and the outer tube 1.

巻き出し側キャプスタン5は、図3に示すように離間して前後に立設された鋼材からなる支柱部材10、11の上端部に取り付けられた軸受け部12に軸回りに回転自在に水平に支持された中空軸部13に支持されている。なお、この中空軸部13の長さ方向の延長線に沿って巻き出し側キャプスタン5とダイス7と引き抜き側キャプスタン9が順次配置され、複合素管Fが中空軸部13、巻き出し側キャプスタン5、引抜きダイス7、引き抜き側キャプスタン9の順に移動されて加工される。このため、以下の説明において複合素管Fの移動方向に沿って上流側を前段側、下流側を後段側と適宜呼称しつつ説明する。   As shown in FIG. 3, the unwinding-side capstan 5 is horizontally and freely rotatable about its axis on a bearing portion 12 attached to the upper end portions of support members 10 and 11 made of steel that are spaced apart and erected. It is supported by the supported hollow shaft portion 13. The unwinding-side capstan 5, the die 7, and the drawing-side capstan 9 are sequentially arranged along the lengthwise extension line of the hollow shaft portion 13, and the composite element tube F is connected to the hollow shaft portion 13, the unwinding side. The capstan 5, the drawing die 7, and the drawing side capstan 9 are moved and processed in this order. For this reason, in the following description, along the moving direction of the composite element tube F, the upstream side will be appropriately referred to as the front side, and the downstream side will be appropriately referred to as the rear side.

中空軸部13は支柱部材10の上端部と支柱部材11の上端部にそれぞれ設けられている軸受け部材10a、11aに支持されて水平に設けられ、その一端13aを支柱部材10の上端部から上流側外部に突出させ、その他端13bを支柱部材11の上端部から下流側外部に突出させて水平に、かつ、軸回りに回転自在に支持されている。中空軸部13の他端側に中空軸部13に対し斜め方向に隣接して延在する一対の第1支持フレーム15が設けられ、その先端部15aによって巻き出し側キャプスタン5が支持されている。
中空軸部13の他端側には中空軸部13に対し斜め方向に延在するように第2支持フレーム16が設けられ、第2支持フレーム16の先端側に延設された延長フレーム17に錘体18が取り付けられている。第1支持フレーム15と第2支持フレーム16は中空軸部13の他端13bに対しV字型に配置されるように接続され、中空軸部13の軸回りの回転によって第1支持フレーム15と第2支持フレーム16はV字型に支持されたまま回転される。
The hollow shaft portion 13 is supported horizontally by bearing members 10 a and 11 a provided at the upper end portion of the column member 10 and the upper end portion of the column member 11, and one end 13 a thereof is upstream from the upper end portion of the column member 10. The other end 13b protrudes from the upper end of the column member 11 to the downstream side outside, and is supported horizontally and rotatably about the axis. A pair of first support frames 15 extending obliquely adjacent to the hollow shaft portion 13 are provided on the other end side of the hollow shaft portion 13, and the unwinding side capstan 5 is supported by the distal end portion 15 a. Yes.
A second support frame 16 is provided on the other end side of the hollow shaft portion 13 so as to extend in an oblique direction with respect to the hollow shaft portion 13, and an extension frame 17 that extends to the distal end side of the second support frame 16 is provided. A weight 18 is attached. The first support frame 15 and the second support frame 16 are connected to the other end 13b of the hollow shaft portion 13 so as to be arranged in a V shape. The second support frame 16 is rotated while being supported in a V shape.

巻き出し側キャプスタン5の円盤部5aはその中心部を第1支持フレーム15とその先端部15aによって回転自在に支持されている。また、中空軸部13の中心軸の延長線を巻き出し側キャプスタン5の外周縁の接線と近似するように巻き出し側キャプスタン5が第1支持フレーム15によって支持されている。このため、中空軸部13の回転に伴い巻き出し側キャプスタン5が旋回すると、中空軸部13の中心軸の延長線の周囲を周回するように巻き出し側キャプスタン5が回転する。また、同様に中空軸部13の回転に伴い錘体18も中空軸部13の中心軸の延長線の周囲を周回するように回転する。
巻き出し側キャプスタン5において、円盤部5aの外周縁に沿って複合素管Fを巻き付けることができるように構成されている。
The center part of the disk part 5a of the unwinding side capstan 5 is rotatably supported by the first support frame 15 and the tip part 15a. Further, the unwinding side capstan 5 is supported by the first support frame 15 so that the extension line of the central axis of the hollow shaft portion 13 approximates the tangent line of the outer peripheral edge of the unwinding side capstan 5. For this reason, when the unwinding capstan 5 turns with the rotation of the hollow shaft portion 13, the unwinding side capstan 5 rotates so as to go around the extension line of the central axis of the hollow shaft portion 13. Similarly, with the rotation of the hollow shaft portion 13, the weight body 18 also rotates around the extension line of the central shaft of the hollow shaft portion 13.
In the unwinding side capstan 5, it is comprised so that the composite raw tube F can be wound along the outer periphery of the disk part 5a.

例えば、図3に示すように巻き出し側キャプスタン5が最も下方位置になるように中空軸部13を回転させた場合、巻き出し側キャプスタン5の最上部の若干上方を中空軸部13の中心軸の延長線が通過する。あるいは、巻き出し側キャプスタン5が最も上方位置になるように中空軸部13を回転させた場合、巻き出し側キャプスタン5の最下部の若干下方を中心軸部13の中心軸部の延長線が通過する。
中空軸部13の一端13a側の開口部には複合素管Fを挿入可能な大きさの入口部13cが形成され、中空軸部13の他端13b側の開口部には先の複合素管Fを引き出し可能な出口部13dが形成されている。
For example, as shown in FIG. 3, when the hollow shaft portion 13 is rotated so that the unwinding side capstan 5 is in the lowest position, the upper portion of the unwinding side capstan 5 is slightly above the uppermost portion of the hollow shaft portion 13. The extension line of the central axis passes. Alternatively, when the hollow shaft portion 13 is rotated so that the unwinding side capstan 5 is in the uppermost position, an extension line of the central shaft portion of the central shaft portion 13 is slightly below the lowermost portion of the unwinding side capstan 5. Pass through.
The hollow shaft portion 13 is formed with an inlet portion 13c having a size capable of inserting the composite element tube F in the opening portion on the one end 13a side. An outlet portion 13d from which F can be drawn is formed.

このため、中空軸部13の内部を通過させた複合素管Fを巻き出し側キャプスタン5の外周の接線に沿うように導入して巻き出し側キャプスタン5の外周に巻き掛けることができるとともに、巻き出し側キャプスタン5の外周に例えば1周分巻き付けた複合素管Fを巻き出し側キャプスタン5の外周から巻き出して引抜きダイス7側に導出することができる。
この巻き出し側キャプスタン5に対する複合素管Fの巻き付け状態と巻き出し状態の一例を図5に簡略的に示しておく。図5においてCは巻き出し側キャプスタン5に巻き付けられる前段側の複合素管Fの軸心を示し、C1は巻き出し側キャプスタン5から巻き出された複合素管Fの軸心を示している。
For this reason, the composite element tube F that has passed through the inside of the hollow shaft portion 13 can be introduced along the tangent line of the outer periphery of the unwinding side capstan 5 and wound around the outer periphery of the unwinding side capstan 5. For example, the composite element tube F wound around the outer periphery of the unwinding side capstan 5 can be unwound from the outer periphery of the unwinding side capstan 5 and led to the drawing die 7 side.
An example of the winding state and the unwinding state of the composite tube F with respect to the unwinding side capstan 5 is simply shown in FIG. In FIG. 5, C indicates the axis of the composite element tube F on the preceding stage wound around the unwinding side capstan 5, and C <b> 1 indicates the axis of the compound element tube F unwound from the unwinding side capstan 5. Yes.

中空軸部13の他端側にはV字型に第1支持フレーム15と第2支持フレーム16が延出され、それらの先端側に巻き出し側キャプスタン5と錘体18が取り付けられているが、錘体18と巻き出し側キャプスタン5の重量および取付位置は、それらが回転した場合に、重量バランスの均衡がとれる位置とされている。即ち、中空軸部13の回転により錘体18と巻き出し側キャプスタン5が旋回した場合、両者の回転モーメントのバランスが均衡し、両者の回転に伴う振動が可能な限り小さくなるように巻き出し側キャプスタン5と錘体18のそれぞれの重量と取付位置が調整されている。   A first support frame 15 and a second support frame 16 are extended in a V shape on the other end side of the hollow shaft portion 13, and an unwinding side capstan 5 and a weight body 18 are attached to the front end side thereof. However, the weights and the mounting positions of the weight body 18 and the unwinding side capstan 5 are positions where the weight balance is balanced when they rotate. That is, when the weight 18 and the unwinding capstan 5 are turned by the rotation of the hollow shaft 13, the unwinding is performed so that the balance of the rotational moment of both is balanced and the vibration accompanying the rotation of both is as small as possible. The weights and attachment positions of the side capstan 5 and the weight body 18 are adjusted.

支柱部材10の上部と支柱部材11の上部の間に支持板20が架設され、支持板20に駆動モーター21が取り付けられ、駆動モーター21の出力軸21aに無端ベルトなどの動力伝達装置22が接続されている。この動力伝達装置22はその上方に位置する中空軸部13の一端側に接続されていて、駆動モーター21の出力軸21aの回転により中空軸部13を回転駆動することができる。
この駆動モーター21と動力伝達装置22と中空軸部13により巻き出し側キャプスタン5と錘体18を一体に回転させる構成であり、駆動モーター21と動力伝達装置22と中空軸部13により、巻き出し側キャプスタン5を回転駆動する回転手段6が構成されている。
A support plate 20 is installed between the upper portion of the support member 10 and the upper portion of the support member 11, a drive motor 21 is attached to the support plate 20, and a power transmission device 22 such as an endless belt is connected to the output shaft 21a of the drive motor 21. Has been. The power transmission device 22 is connected to one end side of the hollow shaft portion 13 positioned above the power transmission device 22, and the hollow shaft portion 13 can be rotationally driven by the rotation of the output shaft 21 a of the drive motor 21.
The drive motor 21, the power transmission device 22, and the hollow shaft portion 13 are configured to rotate the unwinding capstan 5 and the weight body 18 together, and the drive motor 21, the power transmission device 22, and the hollow shaft portion 13 rotate the winding side. Rotating means 6 for rotating the delivery-side capstan 5 is configured.

中空軸部13の出口部13dに対し下流側に巻き出し側キャプスタン5が設けられているが、その更に下流側に引抜きダイス7が支柱部材23に支持されて設けられている。引抜きダイス7の設置位置は、図3に示すように中空軸部13の出口部13dと同等高さにダイス孔が配置され、中空軸部13の出口部13dと引抜きダイス7との中間に位置する巻き出し側キャプスタン5の外周縁がパスラインに一致するように配置されている。引抜きダイス7はこの例では支柱部材23の上端部に中空の支持架台24を介し取り付けられている。また、支持架台24の上方には引抜きダイス7のダイス孔に潤滑油を供給するためのタンク26とフレキシブル供給管27が設置されている。   The unwinding capstan 5 is provided on the downstream side with respect to the outlet portion 13 d of the hollow shaft portion 13, and the drawing die 7 is supported by the support member 23 on the further downstream side. As shown in FIG. 3, the drawing die 7 is installed at a position where the die hole is located at the same height as the outlet portion 13 d of the hollow shaft portion 13, and between the outlet portion 13 d of the hollow shaft portion 13 and the drawing die 7. It arrange | positions so that the outer periphery of the unwinding side capstan 5 to correspond may a pass line. In this example, the drawing die 7 is attached to the upper end portion of the support member 23 via a hollow support frame 24. Further, a tank 26 and a flexible supply pipe 27 for supplying lubricating oil to the die hole of the drawing die 7 are installed above the support frame 24.

引抜きダイス7は、複合素管Fを挿通させるダイス孔を有しており、複合素管Fの外径を減少させる空引きを行う。引抜きダイス7における縮径率はアルミニウム又はアルミニウム合金からなる素管1、8の場合、5〜40%程度に設定される。縮径率が小さ過ぎる場合は引抜きによる効果が乏しく、大きな捻り角を得ることが難しいので、5%以上とするのが好ましい。一方、縮径率が大きくなり過ぎると加工限界で複合素管Fに破断を生じ易くなるので、40%以下とするのが好ましい。
また、複合素管Fがダイス孔を通過する際、巻き出し側キャプスタン5が回転されるので、複合素管Fは引抜きダイス7のダイス孔によって縮径されると同時に捻りが付与される。このため、複合素管Fを構成する素管1、8は捻りが付加されて図1に示す内面螺旋溝付多重捻り管4に加工される。
The drawing die 7 has a die hole through which the composite element tube F is inserted, and performs emptying to reduce the outer diameter of the composite element tube F. In the case of the base tubes 1 and 8 made of aluminum or an aluminum alloy, the diameter reduction rate in the drawing die 7 is set to about 5 to 40%. When the diameter reduction rate is too small, the effect of drawing is poor, and it is difficult to obtain a large twist angle, so it is preferable to set it to 5% or more. On the other hand, if the diameter reduction rate is too large, the composite element tube F is liable to break at the processing limit, so 40% or less is preferable.
Further, since the unwinding-side capstan 5 is rotated when the composite element tube F passes through the die hole, the composite element tube F is reduced in diameter by the die hole of the drawing die 7 and is simultaneously twisted. For this reason, the pipes 1 and 8 constituting the composite pipe F are twisted to be processed into a multiple twisted pipe 4 with an inner surface spiral groove shown in FIG.

引抜きダイス7の下流側に支柱部材23に支持されて引き抜き側キャプスタン9が設けられ、引き抜き側キャプスタン9は支柱部材23に支持された水平軸28を介し鉛直向きに設置され、回転自在に支持されている。引き抜き側キャプスタン9の最上部は引抜きダイス7のダイス孔の位置と同等高さに設置され、その外周面に沿って引抜きダイス7で加工された内面螺旋溝付多重捻り管4が巻き付けられるようになっている。
支柱部材23において引き抜き側キャプスタン9を取り付けた側と反対側に回転駆動用の駆動モーター25の出力軸25aが水平軸28に直接連結するように設置され、駆動モーター25によって引き抜き側キャプスタン9を回転駆動できる。
A drawing-side capstan 9 is provided downstream of the drawing die 7 and supported by a support member 23. The drawing-side capstan 9 is installed in a vertical direction via a horizontal shaft 28 supported by the support member 23 and is rotatable. It is supported. The uppermost part of the drawing-side capstan 9 is installed at the same height as the die hole position of the drawing die 7 so that the inner spiral grooved multiple twisted tube 4 processed by the drawing die 7 is wound around the outer peripheral surface thereof. It has become.
The output shaft 25a of the drive motor 25 for rotational driving is installed on the column member 23 on the opposite side to the side on which the drawing-side capstan 9 is attached so as to be directly connected to the horizontal shaft 28, and the drawing motor-side capstan 9 is driven by the driving motor 25. Can be rotated.

「製造方法」
次に、以上説明のように構成された製造装置Aを用いて、内面螺旋溝付多重捻り管4の基本構造を製造する方法の一例について説明する。
予め、押出により、図6、図7に示すように、内面に長さ方向に沿う複数の直線溝1aが周方向に間隔をおいて形成された大径の素管1と、内面に長さ方向に沿う複数の直線溝8aが周方向に間隔をおいて形成された小径の素管8を作製する(素管押出工程)。
次に、外径の大きな素管1の内部に外径の小さな素管8を図7に示すように挿通して複合素管Fを構成する(複合素管作製工程)。
図3〜図5に示す製造装置Aに対し複合素管Fを供給するには、複合素管Fの先端側を中空軸部13の入口部13cから中空軸部13に挿通し、中空軸部13の出口部13dから複合素管Fを引き出し、巻き出し側キャプスタン5の外周に沿って図5に示すように1周分巻き付ける。この複合素管Fを巻き出し側キャプスタン5から接線方向に水平に巻き出して引抜きダイス7のダイス孔に挿通し、引抜きダイス7のダイス孔を通過させた複合素管Fを引き抜き側キャプスタン9に1周分以上巻き付け、引き抜き側キャプスタン9の下流側まで複合素管Fを引き出す。これらの操作は内面螺旋溝付多重捻り管の製造開始前の準備段階の作業となる。
"Production method"
Next, an example of a method for manufacturing the basic structure of the multi-twisted tube 4 with the inner surface spiral groove using the manufacturing apparatus A configured as described above will be described.
As shown in FIGS. 6 and 7, the large-diameter element tube 1 in which a plurality of linear grooves 1a along the length direction are formed on the inner surface at intervals in the circumferential direction, and the inner surface has a length. A small-diameter element tube 8 in which a plurality of linear grooves 8a along the direction are formed at intervals in the circumferential direction is manufactured (element tube extrusion process).
Next, the element tube 8 having a small outer diameter is inserted into the element tube 1 having a large outer diameter as shown in FIG. 7 to form the compound element tube F (composite element tube manufacturing step).
In order to supply the composite element tube F to the manufacturing apparatus A shown in FIGS. 3 to 5, the distal end side of the composite element tube F is inserted into the hollow shaft portion 13 from the inlet portion 13 c of the hollow shaft portion 13, and the hollow shaft portion As shown in FIG. 5, the composite element tube F is pulled out from the 13 outlet portions 13 d and wound around the outer periphery of the unwinding side capstan 5 by one turn. The composite element tube F is unwound from the unwinding side capstan 5 in the tangential direction, inserted into the die hole of the drawing die 7, and the combined element tube F passing through the die hole of the drawing die 7 is drawn out. 9 is wound around one turn or more, and the composite element tube F is pulled out to the downstream side of the extraction side capstan 9. These operations are preparatory operations before the start of the production of the multi-twisted tube with an inner spiral groove.

この準備作業の後、複合素管Fの先端側と後端側に図4に示すようにそれぞれ筒型の拘束具31を被せ、拘束具31の周壁に複数形成されているねじ孔に蝶ネジ31aを螺合して複合素管Fの先端側と後端側を拘束する。次に、図4に示すように複合素管Fの先端側の拘束具31に張力調整用のコイルバネを備えたバネばかり型の張力調整具32を接続し、複合素管Fの後端側の拘束具31に張力調整用のコイルバネを備えたバネばかり型の張力調整具33を接続する。   After this preparatory work, the front end side and the rear end side of the composite element tube F are each covered with a cylindrical restraint tool 31 as shown in FIG. 4, and a plurality of screw holes formed on the peripheral wall of the restraint tool 31 are inserted into the screw holes. The front end side and the rear end side of the composite element tube F are restrained by screwing 31a. Next, as shown in FIG. 4, a spring-type tension adjusting tool 32 including a coil spring for tension adjustment is connected to the restraining tool 31 on the distal end side of the composite element tube F, and the rear end side of the composite element tube F is connected. The restraint tool 31 is connected with a tension adjusting tool 33 of a spring type provided with a coil spring for tension adjustment.

この状態から複合素管Fの加工を開始する。加工開始とともに順次、複合素管Fを一定の速度で移動させて中空軸部13を通過させ、巻き出し側キャプスタン5に巻き付ける(巻き出し工程)。複合素管Fを引抜きダイス7に通すための引抜き力は駆動モーター25により回転させる引き抜き側キャプスタン9の回転力により与えられる。
巻き出し側キャプスタン5から巻き出した複合素管Fに引抜きダイス7を通過させて引き抜き側キャプスタン9に巻き付け、引き抜き側キャプスタン9から一定の速度で巻き出す。これらの動作を開始すると同時に中空軸部13を駆動モーター21により所定速度で回転させ、巻き出し側キャプスタン5と錘体18を回転駆動する(捻り引抜き工程)。
From this state, processing of the composite element tube F is started. With the start of processing, the composite element tube F is moved at a constant speed to pass through the hollow shaft portion 13 and wound around the unwinding side capstan 5 (unwinding step). The drawing force for passing the composite tube F through the drawing die 7 is given by the rotational force of the drawing-side capstan 9 that is rotated by the drive motor 25.
The drawing die 7 is passed through the composite tube F unwound from the unwinding side capstan 5 and wound around the unloading side capstan 9, and unwinding from the pulling side capstan 9 at a constant speed. Simultaneously with the start of these operations, the hollow shaft portion 13 is rotated at a predetermined speed by the drive motor 21 to rotationally drive the unwinding side capstan 5 and the weight body 18 (twist extraction step).

また、張力調整具32、33の張力を監視しながら、複合素管Fが巻き出し側キャプスタン5に巻き付けられる場合の後方張力を一定になるように調整する。
更に、引き抜き側キャプスタン9から複合素管Fが引き出される場合の前方張力を一定になるように調整する。
前方張力の安定的な付加のためには、張力調整具32の下流側に巻き取りローラーやウインチ装置などの引張り装置を配置し、一定の速度で張力調整具32を牽引できるように調整することが好ましい。また、後方張力の安定的な付加のためには、張力調整具33の上流側に巻き出しローラーなどの巻き出し装置を配置し、一定の速度で張力調整具33を繰り出しできるように調整することが好ましい。
あるいは、張力調整具32、33を略してこれらの位置に巻き出し用のローラーと巻取用のローラーを配置し、これらのローラーにブレーキ機構や速度調整機構を内蔵し、引抜きダイス7より下流側の複合素管Fの先端側に所望の前方張力を付加し、引抜きダイス7より上流側の複合素管Fの後端側に所望の後方張力を付加できるように構成することが大量生産を行う上では好ましい。
Further, while monitoring the tension of the tension adjusters 32 and 33, the rear tension when the composite pipe F is wound around the unwinding capstan 5 is adjusted to be constant.
Further, the front tension when the composite element tube F is pulled out from the pull-out side capstan 9 is adjusted to be constant.
For stable application of forward tension, a tensioning device such as a take-up roller or a winch device is arranged downstream of the tension adjusting device 32 and is adjusted so that the tension adjusting device 32 can be pulled at a constant speed. Is preferred. Further, in order to stably add the rear tension, an unwinding device such as an unwinding roller is arranged upstream of the tension adjuster 33 and is adjusted so that the tension adjuster 33 can be fed out at a constant speed. Is preferred.
Alternatively, the tension adjusting tools 32 and 33 are omitted, and a roller for unwinding and a roller for winding are arranged at these positions, and a brake mechanism and a speed adjusting mechanism are incorporated in these rollers, and the downstream side from the drawing die 7. It is mass-produced that a desired forward tension is applied to the front end side of the composite element tube F and a desired rear tension can be applied to the rear end side of the composite element tube F upstream of the drawing die 7. Preferred above.

引抜きダイス7を中心として下流側の複合素管Fに適切な後方張力を付加しつつ上流側の複合素管Fに適切な後方張力を付加しながら巻き出し側キャプスタン5から引抜きダイス7のダイス孔に複合素管Fを通過させると同時に、巻き出し側キャプスタン5を回転させることで引抜きダイスのダイス孔を通過する複合素管Fに引抜きと捻りを同時に作用させる。
通常、3〜20mm程度、あるいは3〜12mm程度などの外径のアルミニウムあるいはアルミニウム合金からなる薄肉の素管1、8に対し、捻り力のみを作用させると容易に座屈するか破断する。この製造装置Aでは捻り力の作用と同時に引抜き力を作用させて捻りによる破断を抑制しながら引き抜くので、上述のサイズの細径のアルミニウム又はアルミニウム合金製の素管1と素管8からなる複合素管Fであっても、破断させることなく捻りを付加できる。
なお、この実施形態においてアルミニウムあるいはアルミニウム合金からなる素管1、8を用いるが、素管1、8については銅系合金あるいはステンレス鋼などの鉄系合金から形成されていてもよく、素管1、8が別種の金属から構成されていても良い。
The die of the drawing die 7 from the unwinding side capstan 5 while applying an appropriate rear tension to the downstream composite element tube F while applying an appropriate rear tension to the downstream composite element tube F around the drawing die 7. Drawing and twisting are simultaneously applied to the composite element tube F passing through the die hole of the drawing die by rotating the unwinding side capstan 5 at the same time as the composite element tube F is passed through the hole.
Usually, when only the twisting force is applied to the thin tube 1 or 8 made of aluminum or aluminum alloy having an outer diameter of about 3 to 20 mm, or about 3 to 12 mm, it easily buckles or breaks. In this manufacturing apparatus A, the pulling force is applied simultaneously with the action of the twisting force to pull out while suppressing breakage due to the twisting. Therefore, a composite composed of the above-described small-diameter aluminum or aluminum alloy pipe 1 and base pipe 8 is used. Even the base tube F can be twisted without breaking.
In this embodiment, the raw tubes 1 and 8 made of aluminum or an aluminum alloy are used. However, the raw tubes 1 and 8 may be made of a copper-based alloy or an iron-based alloy such as stainless steel. , 8 may be made of another kind of metal.

この場合、捻りにより複合素管Fには円周接線方向にせん断応力が作用し、捻り角(リード角)が付与されるが、せん断力が座屈応力を超えた場合に座屈が生じる。しかし、引抜き加工による素管束長手方向への引張り応力により、せん断応力を低減できるため、複合素管Fの座屈の発生を抑制できる。このため上述のサイズの複合素管Fに対し5゜〜80゜程度の大きな捻り角を付与しても複合素管Fを座屈あるいは破断させることなく捻り加工することができる。  In this case, a shear stress acts on the composite element tube F in the circumferential tangential direction by twisting, and a twist angle (lead angle) is applied. However, buckling occurs when the shear force exceeds the buckling stress. However, since the shear stress can be reduced by the tensile stress in the longitudinal direction of the element bundle by drawing, the occurrence of buckling of the composite element F can be suppressed. For this reason, even if a large twist angle of about 5 ° to 80 ° is applied to the composite element tube F having the above size, the composite element tube F can be twisted without buckling or breaking.

図3に示すように巻き出し側キャプスタン5の頂上位置と引抜きダイス7の出口部分との間の長さLの領域が複合素管Fの捻り加工領域とされる。製造装置Aにあってはこの捻り加工領域の長さLを極力短くしているので、大きな捻り角を複合素管Fに与えても、素管1、8に破断を生じることなく5゜〜80゜程度まで捻りを付与することができる。   As shown in FIG. 3, a region having a length L between the top position of the unwinding-side capstan 5 and the outlet portion of the drawing die 7 is a twisted region of the composite element tube F. In the manufacturing apparatus A, since the length L of the twisted region is made as short as possible, even if a large twist angle is given to the composite pipe F, the pipes 1 and 8 do not break without causing a breakage of 5 ° to 5 °. Twist can be applied up to about 80 °.

複合素管Fは巻き出し側キャプスタン5に1周分巻き付けられることにより、図5に示すように巻き始め側の軸心Cから巻き出し側キャプスタン5の外周に沿って若干ずれた軸心C1に沿って送り出される。
引抜きダイス7のダイス孔を複合素管Fが通過する場合、複合素管Fの中心とダイス孔の中心の位置合わせを行い、複合素管Fに余計な応力が作用しないようにするためには、巻き出し側キャプスタン5から巻き出された側の軸心C1を回転中心として軸心C1の周回りに巻き出し側キャプスタン5が回転するように、中空軸部13の位置関係と第1支持フレーム15の位置関係と巻き出し側キャプスタン5の位置関係を合わせることが好ましい。
複合素管Fの中心とダイス孔の中心の位置合わせを行っていることにより、ダイス孔7を通過する複合素管Fに大きな捻りを付加し、捻り角の大きな加工を施しても複合素管Fを破断させることなく捻り加工できる。
The composite element tube F is wound around the unwinding side capstan 5 by one turn, so that the shaft center slightly deviated from the unwinding side axis C along the outer periphery of the unwinding side capstan 5 as shown in FIG. It is sent out along C1.
When the composite element tube F passes through the die hole of the drawing die 7, the center of the composite element tube F and the center of the die hole are aligned so that excessive stress does not act on the composite element tube F. The positional relationship between the hollow shaft portion 13 and the first position so that the unwinding side capstan 5 rotates around the axis C1 around the axial center C1 unwound from the unwinding side capstan 5 as the rotation center. The positional relationship of the support frame 15 and the positional relationship of the unwinding side capstan 5 are preferably matched.
By aligning the center of the composite pipe F and the center of the die hole, even if a large twist is added to the composite pipe F passing through the die hole 7 and processing with a large twist angle is performed, the composite pipe Twist processing can be performed without breaking F.

なお、巻き出し側キャプスタン5を回転させるための回転中心は中空軸部13の軸心と一致するが、この軸心は引抜きダイス7のダイス孔の中心と位置合わせされ、この軸心に沿って複合素管Fの中心が移動する必要がある。このため、巻き出し側キャプスタン5に巻き掛けられる前の複合素管Fは前記軸心から若干ずれた位置にあって回転する。このため、巻き出し側キャプスタン5に巻き付けられる前の複合素管Fは中空軸部13の内部において偏心回転することとなるが、中空軸部13の内径はこの偏心回転を吸収するだけの値に設定されているので、複合素管Fの回転に支障はない。   The rotation center for rotating the unwinding side capstan 5 coincides with the axial center of the hollow shaft portion 13, but this axial center is aligned with the center of the die hole of the drawing die 7, and along this axial center. Therefore, the center of the composite element tube F needs to move. For this reason, the composite pipe F before being wound around the unwinding side capstan 5 rotates at a position slightly deviated from the axis. For this reason, the composite element tube F before being wound around the unwinding-side capstan 5 rotates eccentrically inside the hollow shaft portion 13, but the inner diameter of the hollow shaft portion 13 is a value that only absorbs this eccentric rotation. Therefore, there is no hindrance to the rotation of the composite element tube F.

以上説明した捻り引抜き加工を行うことで引抜きダイス7を通過する複合素管Fに大きな捻りを付与することができる結果、素管1、8をそれぞれ螺旋状に捻り、内面に螺旋溝2aを有する内面螺旋溝付管2と内面に螺旋溝3aを有する内面螺旋溝付管3を一体化した図1に示す構造の内面螺旋溝付多重捻り管4を製造することができる。
この内面螺旋溝付多重捻り管4において、所定の捻り周期(捻りピッチ)で内面螺旋溝付管2と内面螺旋溝付管3が螺旋状に加工されている。このため、内面螺旋溝付管2の内面に形成された内面螺旋溝2aと内面螺旋溝付管3の内面に形成された内面螺旋溝3aの捻り周期はほぼ同一に形成されている。
As a result of being able to impart a large twist to the composite element tube F passing through the drawing die 7 by performing the twist drawing process described above, the element tubes 1 and 8 are twisted in a spiral shape, and the inner surface has a spiral groove 2a. The inner spiral grooved multiple twisted tube 4 having the structure shown in FIG. 1 can be manufactured by integrating the inner spiral grooved tube 2 and the inner surface spiral grooved tube 3 having the spiral groove 3a on the inner surface.
In this inner spiral grooved multiple twisted tube 4, the inner spiral grooved tube 2 and the inner spiral grooved tube 3 are processed into a spiral shape with a predetermined twist cycle (twist pitch). For this reason, the inner spiral groove 2a formed on the inner surface of the inner spiral groove tube 2 and the inner spiral groove 3a formed on the inner surface of the inner spiral groove tube 3 are formed to have substantially the same twisting cycle.

図2に内面螺旋溝3aが形成されている内面螺旋溝付管3の内部構造の一例を示す。内面螺旋溝付管3の内周部において内周方向に隣接する内面螺旋溝3aが形成され、それらの間に螺旋フィン3bが形成されている。
この例の内面螺旋溝3aと螺旋フィン3bの捻り角θは巻き出し側キャプスタン5の回転速度に応じて例えば5゜〜80゜程度まで製造可能となる。
図2に示す構造の内面螺旋溝付管3においてその周壁を切り開いて平面状に展開した場合、管の内周長さaに対し、内面螺旋溝3aあるいは螺旋フィン3bの1周期分の長さbとした場合、a、bを2辺とする直角三角形の1つの頂角が示すように捻り角θとして規定される。
一例として、外径8.5mmのアルミニウム合金製の内面螺旋溝付管3の場合、図1に示す底肉厚W1:0.58mm、フィン高さ:0.28mm、条数:50個、リード角:20゜に形成することができ、外径6.5mmのアルミニウム合金製の内面螺旋溝付管2の場合、底肉厚W2:0.35mm、フィン高さ:0.16mm、条数:50個、リード角:17゜に形成できる。
FIG. 2 shows an example of the internal structure of the inner spiral grooved tube 3 in which the inner spiral groove 3a is formed. An inner surface spiral groove 3a adjacent to the inner periphery in the inner periphery of the inner surface spiral groove tube 3 is formed, and a spiral fin 3b is formed between them.
In this example, the twist angle θ of the inner surface spiral groove 3a and the spiral fin 3b can be manufactured to about 5 ° to 80 °, for example, according to the rotational speed of the unwinding side capstan 5.
In the case of the inner surface spiral grooved tube 3 having the structure shown in FIG. 2, when the peripheral wall is cut open and developed in a planar shape, the length of one cycle of the inner surface spiral groove 3a or the spiral fin 3b with respect to the inner peripheral length a of the tube. In the case of b, the twist angle θ is defined as shown by one apex angle of a right triangle having two sides a and b.
As an example, in the case of an internally spiral grooved tube 3 made of an aluminum alloy having an outer diameter of 8.5 mm, the bottom wall thickness W 1: 0.58 mm shown in FIG. 1, fin height: 0.28 mm, number of strips: 50 leads In the case of the inner surface spiral grooved tube 2 made of an aluminum alloy having an outer diameter of 6.5 mm, the bottom wall thickness W2: 0.35 mm, the fin height: 0.16 mm, the number of strips: 50 pieces can be formed at a lead angle of 17 °.

図1に示す構造の内面螺旋溝付多重捻り管4において、内面螺旋溝付管3の内面側の螺旋フィン3bはそれらの先端部を径の小さな内面螺旋溝付管2の外周面に食い込ませた状態とされ、内面螺旋溝付管2と内面螺旋溝付管3が一体化されている。これは、図7に示すように径の大きな素管1の内部に径の小さい素管8を挿入し、全体を引抜きダイス7に通して引き抜きつつ縮径しながら回転させて捻るため、径の大きな素管1が縮径される際に素管内面側の直線状のフィン1bが螺旋状に加工されながら径の小さな素管8の外周面に食い込みつつ塑性変形される結果である。
このため、内面螺旋溝付管2と内面螺旋溝付管3との間に内面螺旋溝付管2の外周面と内面螺旋溝付管3の螺旋溝3aと螺旋フィン3bによって囲まれた複数の流路が形成される。このため、内面螺旋溝付多重捻り管4においては、内面螺旋溝付管2の内部側に第1の流路R1が形成され、内面螺旋溝付管2と内面螺旋溝付管3との間に第2の流路R2が複数形成される。なお、図1に示す断面のように第2の流路R2は複数の小さな流路の集合体となるが、この第2の流路R2の断面積を大きくするためには内面螺旋溝付管3の螺旋フィン3bの高さを図1の構造より大きく設定し、螺旋フィン3bの条数を少なくすることにより対応できる。
In the multi-twisted tube 4 with the inner surface spiral groove having the structure shown in FIG. 1, the spiral fins 3b on the inner surface side of the inner surface spiral groove tube 3 bite their tips into the outer peripheral surface of the inner surface spiral groove tube 2 having a small diameter. The inner surface spiral grooved tube 2 and the inner surface spiral grooved tube 3 are integrated. This is because, as shown in FIG. 7, a small diameter pipe 8 is inserted into the large diameter pipe 1, and the whole is drawn through a drawing die 7 and rotated while being reduced in diameter and twisted. As a result, when the large tube 1 is reduced in diameter, the linear fin 1b on the inner surface side of the tube is processed into a spiral shape and is plastically deformed while biting into the outer peripheral surface of the small tube 8 having a small diameter.
For this reason, between the inner surface spiral grooved tube 2 and the inner surface spiral grooved tube 3, a plurality of outer peripheral surfaces of the inner surface spiral grooved tube 2 and a plurality of spiral grooves 3a and spiral fins 3b of the inner surface spiral grooved tube 3 are surrounded. A flow path is formed. For this reason, in the multi-twisted tube 4 with the inner surface spiral groove, the first flow path R1 is formed on the inner side of the inner surface spiral groove tube 2, and between the inner surface spiral groove tube 2 and the inner surface spiral groove tube 3 A plurality of second flow paths R2 are formed. As shown in the cross section shown in FIG. 1, the second flow path R2 is an aggregate of a plurality of small flow paths. To increase the cross-sectional area of the second flow path R2, the inner spiral grooved tube is used. This can be dealt with by setting the height of the three helical fins 3b larger than that of the structure of FIG. 1 and reducing the number of the spiral fins 3b.

内面螺旋溝付多重捻り管4において、内面螺旋溝付管2の外側に内面螺旋溝付管3が配置されているので、内面螺旋溝付管2の螺旋溝2aのリード角より、内面螺旋溝付管3の螺旋溝3aのリード角が若干大きく形成される。換言すると、内面螺旋溝付管2の螺旋フィン2bのリード角より、内面螺旋溝付管3の螺旋フィン3bのリード角が若干大きく形成される。
内面螺旋溝付管2の螺旋溝2aのリード角と内面螺旋溝付管3の螺旋溝3aのリード角の大小関係は、一例として後述する実施例において示す。
In the multi-twisted tube 4 with the inner surface spiral groove, the inner surface spiral groove tube 3 is arranged outside the inner surface spiral groove tube 2, so that the inner surface spiral groove is determined from the lead angle of the spiral groove 2 a of the inner surface spiral groove tube 2. The lead angle of the spiral groove 3a of the attachment tube 3 is formed slightly larger. In other words, the lead angle of the spiral fin 3b of the inner spiral grooved tube 3 is slightly larger than the lead angle of the spiral fin 2b of the inner spiral grooved tube 2.
The magnitude relationship between the lead angle of the spiral groove 2a of the inner spiral groove tube 2 and the lead angle of the spiral groove 3a of the inner spiral groove tube 3 will be shown in an example described later as an example.

また、上述の製造方法によれば、アルミニウム又はアルミニウム合金製の内面螺旋溝付管2の螺旋溝2aの捻り角と内面螺旋溝付管3の螺旋溝3aの捻り角は、5゜〜40゜程度まで製造可能となる。内面螺旋溝付管2、3のピッチについては、複合素管Fが引抜きダイス7を通過する際の引抜き速度と巻き出し側キャプスタン5の回転数との相対により決定される。従って、複合素管Fの引抜き速度と巻き出し側キャプスタン5の回転数を一定にしておけば、長さ方向に沿って一定の捻り角で一定のピッチを有する内面螺旋溝付多重捻り管4を得ることができる。
また、複合素管Fの引抜き速度と回転数の関係を周期的に変更するならば、長さ方向にピッチと捻り角が周期的に変化する内面螺旋溝付多重捻り管4を得ることができる。
Further, according to the above-described manufacturing method, the twist angle of the spiral groove 2a of the inner surface spiral grooved tube 2 made of aluminum or aluminum alloy and the twist angle of the spiral groove 3a of the inner surface spiral groove tube 3 are 5 ° to 40 °. It becomes possible to manufacture to the extent. The pitch of the inner spiral grooved tubes 2 and 3 is determined by the relative relationship between the drawing speed when the composite element tube F passes through the drawing die 7 and the rotation speed of the unwinding side capstan 5. Therefore, if the drawing speed of the composite element tube F and the rotation speed of the unwinding capstan 5 are kept constant, the multi-twisted tube 4 with the inner surface spiral groove having a constant pitch at a constant twist angle along the length direction. Can be obtained.
Further, if the relationship between the drawing speed and the rotational speed of the composite element tube F is periodically changed, it is possible to obtain the multi-twisted tube 4 with the inner surface spiral groove whose pitch and twist angle periodically change in the length direction. .

以上説明の如く製造された図1に示す構成の内面螺旋溝付多重捻り管4であるならば、内面螺旋溝付管2の内部の第1の流路R1に加え、内面螺旋溝付管2と内面螺旋溝付管3の間の第2の流路R2に異なる温度の冷媒あるいは熱媒を流した場合、異なる温度の冷媒どうしあるいは熱媒どうし、または、冷媒と熱媒との間で熱交換ができる。
この場合、冷媒や熱媒は内面螺旋溝2a、3aの存在により冷媒や熱媒と内面螺旋溝付管2、3との間で効率の良い熱交換がなされる。
このため、例えば、本実施形態の内面螺旋溝付多重捻り管4を自動車用コンデンサとエバポレータを接続する伝熱管に適用するならば、効率の良い熱交換機能を備えた伝熱管構造を実現できる。自動車用コンデンサとエバポレータを接続する伝熱管は通常の場合2本必要であるが、図1の内面螺旋溝付多重捻り管4であれば、第1の流路R1と第2の流路R2を備えているので、1本の内面螺旋溝付多重捻り管4で両者を接続することができる。
この場合、コンデンサとエバポレータの間で行き来する冷媒または熱媒の流量を等しくするには第1の流路R1と第2の流路R2の流路断面積を同等にすれば良く、それには大径側の内面螺旋溝付管3の螺旋フィン3bの高さと幅を大きくして条数を少なくすればよい。
If the multi-twisted tube 4 with the inner surface spiral groove having the structure shown in FIG. 1 manufactured as described above, in addition to the first flow path R1 inside the inner surface spiral groove tube 2, the inner surface spiral groove tube 2 is provided. When a refrigerant or a heat medium having a different temperature is caused to flow through the second flow path R2 between the pipe 3 and the inner spiral grooved tube 3, heat is generated between the refrigerants or the heat medium having different temperatures or between the refrigerant and the heat medium. Can be exchanged.
In this case, the refrigerant and the heat medium exchange heat efficiently between the refrigerant and the heat medium and the inner surface spiral grooved pipes 2 and 3 due to the presence of the inner surface spiral grooves 2a and 3a.
For this reason, for example, if the multi-twisted tube 4 with the inner surface spiral groove of the present embodiment is applied to a heat transfer tube connecting an automobile capacitor and an evaporator, a heat transfer tube structure having an efficient heat exchange function can be realized. Normally, two heat transfer tubes for connecting the automobile condenser and the evaporator are required. However, in the case of the multi-twisted tube 4 with the inner surface spiral groove of FIG. 1, the first flow path R1 and the second flow path R2 are provided. Since they are provided, both of them can be connected by one inner spiral grooved multiple twisted tube 4.
In this case, in order to equalize the flow rate of the refrigerant or the heat medium flowing back and forth between the condenser and the evaporator, the flow path cross-sectional areas of the first flow path R1 and the second flow path R2 may be made equal. What is necessary is just to enlarge the height and width | variety of the spiral fin 3b of the inner surface spiral grooved tube 3 of a diameter side, and to reduce the number of strips.

本実施形態の製造装置Aにおいて、中空軸部13の前段側に複合素管Fの真円度を向上させるための整形を行う予備整形用のダイスを設けても良い。
また、本実施形態の製造装置Aにおいて、複合素管Fを構成する素管1、8を予め内面螺旋溝付管としておき、これらの内面螺旋溝付管を複合して引抜きダイス7に通過させて縮径と捻りを同時に付与し、内面螺旋溝付多重捻り管を構成しても良い。
本実施形態の内面螺旋溝付多重捻り管4の外周面には犠牲陽極層14が形成されているので、内面螺旋溝付多重捻り管4を腐食環境に設置した場合、犠牲陽極層14が優先的に面食される結果、内面螺旋溝付管2、3に孔食が発生し難い。このため、耐食性に優れ、孔食の発生し難い内面螺旋溝付多重捻り管4を提供できる。
In the manufacturing apparatus A of the present embodiment, a preliminary shaping die for shaping for improving the roundness of the composite element tube F may be provided on the front stage side of the hollow shaft portion 13.
Further, in the manufacturing apparatus A of the present embodiment, the raw pipes 1 and 8 constituting the composite raw pipe F are set in advance as inner surface spiral grooved tubes, and these inner surface spiral grooved tubes are combined and passed through the drawing die 7. Thus, a multiple twisted tube with an inner surface spiral groove may be formed by simultaneously applying a reduced diameter and twisting.
Since the sacrificial anode layer 14 is formed on the outer peripheral surface of the inner spiral grooved multiple twisted tube 4 of the present embodiment, when the inner spiral grooved multiple twisted tube 4 is installed in a corrosive environment, the sacrificial anode layer 14 takes precedence. As a result, the pitting corrosion hardly occurs in the inner spiral grooved tubes 2 and 3. For this reason, it is excellent in corrosion resistance and can provide the multiple twisted tube 4 with an internal spiral groove which is hard to generate pitting corrosion.

本実施形態の製造装置Aは、複合素管Fを加工することができるが、1本の素管1あるいは1本の素管8を捻り加工することもできる。例えば、製造装置Aを用いて1本の素管1に対し縮径加工と捻り加工を同時に付与することで、内面螺旋溝2aを備えた内面螺旋溝付管2を単独で得ることができる。   The manufacturing apparatus A of the present embodiment can process the composite element tube F, but can also twist one element tube 1 or one element tube 8. For example, the inner surface spiral grooved tube 2 provided with the inner surface spiral groove 2a can be obtained independently by simultaneously applying the diameter reducing process and the twisting process to the single tube 1 using the manufacturing apparatus A.

製造装置Aは1本の内面螺旋溝付管を製造することができるので、径の異なる内面螺旋溝付管を2本複合して複合素管を構成し、更に上述のように引抜きダイス7を通過させて捻り引抜き加工を施し、内面螺旋溝付多重捻り管を製造しても良い。
引抜きダイス7のダイス孔を通過する場合に引抜きと捻りを精密に加えつつ加工することで5゜〜40゜程度の捻り角の内面螺旋溝付多重捻り管を製造できるが、素管1、8を構成するアルミニウム合金の組成によっては伸びが低く、破断する恐れが高い材料であることも考えられる。このような場合は、目的の大きな捻り角に1回の捻り引抜き加工で加工するのではなく、2回や3回に分けて徐々に加工することもできる。このように複数回の加工に分けることで破断のおそれを低くしながら、大きな捻り角の内面螺旋溝付多重捻り管4を加工することができる。
Since the manufacturing apparatus A can manufacture a single inner surface spiral grooved tube, two inner surface spiral grooved tubes having different diameters are combined to form a composite element tube, and the drawing die 7 is installed as described above. A multiple twisted tube with an inner surface spiral groove may be manufactured by passing it through twisting and drawing.
When passing through the die hole of the drawing die 7, it is possible to manufacture a multi-twisted tube with an inner spiral groove having a twist angle of about 5 ° to 40 ° by processing while accurately drawing and twisting. Depending on the composition of the aluminum alloy constituting the material, the material may have a low elongation and a high risk of fracture. In such a case, it is possible to gradually process in two or three times instead of processing by a single twist drawing process at a target large twist angle. In this way, the multiple twisted tube 4 with the inner spiral groove having a large twist angle can be processed while reducing the possibility of breakage by dividing the processing into a plurality of processes.

また、1本の大径の素管にある程度の捻り引抜き加工を施して内面螺旋溝付管に加工した後、直線溝を有する小径の素管と複合して2回目の捻り引抜き加工しても良い。
この場合、最初の捻り引抜き加工で10゜のリード角を付与したとして、2回目の捻り引抜き加工で更に10゜のリード角を付与するような捻り引抜き加工を施した場合、大径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を20゜、小径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を10゜とした内面螺旋溝付多重捻り管を製造することができる。
また、1本の小径の素管にある程度の捻り引抜き加工を施して内面螺旋溝付管に加工した後、直線溝を有する大径の素管と複合して2回目の捻り引抜き加工を行えば、小径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を20゜、大径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を10゜とした内面螺旋溝付多重捻り管を製造することができる。
Also, after a certain amount of twisted drawing is performed on one large-diameter element tube to be processed into a spiral grooved tube on the inner surface, it is combined with a small-diameter element tube having a straight groove to perform the second twist-drawing process. good.
In this case, if a lead angle of 10 ° was given by the first twist drawing process, and the twist drawing process which gives a lead angle of 10 ° by the second twist drawing process is performed, the inner surface on the large diameter side The inner surface spiral groove with a lead angle of the spiral fin (spiral groove) formed on the spiral grooved tube of 20 ° and the lead angle of the spiral fin (spiral groove) formed on the inner diameter spiral groove tube on the small diameter side with 10 °. An attached multiple twisted tube can be manufactured.
In addition, after a certain amount of twisting and drawing is performed on one small-diameter element tube to form an internally spiral grooved tube, the second twist-drawing process is performed in combination with a large-diameter element tube having a straight groove. The lead angle of the spiral fin (spiral groove) formed on the inner diameter spiral groove tube on the small diameter side is 20 °, and the lead angle of the spiral fin (spiral groove) formed on the inner diameter spiral groove tube on the large diameter side is 10 °. It is possible to manufacture a multiple twisted tube with an inner spiral groove having a 0 °.

このように上述の製造装置Aを用いて素管の溝の状態を調整しつつ内面螺旋溝付多重捻り管を製造するならば、大径側の螺旋フィン(螺旋溝)のリード角と小径側の螺旋フィン(螺旋溝)のリード角の大小関係を自由に調節した構造の内面螺旋溝付多重捻り管を製造することができる。
また、引き抜き側キャプスタン9の下流側に更に整形用の引抜きダイスを設けて内面螺旋溝付多重捻り管4の真円度を高めるための仕上げ引抜きを行っても良い。
仕上げ引抜き用の引抜きダイスを設けるには、図3に示す支柱部材23と同等形状の支柱部材を支柱部材23の下流側に設け、その支柱部材上部に支持架台24と同等形状の支持架台を別途設けてその支持架台に仕上げ成形用の引抜きダイスを設けると良い。
引き抜き側キャプスタン9を通過した後の内面螺旋溝付多重捻り管を仕上げ成形用の引抜きダイスに通すことで最終的に得られる内面螺旋溝付多重捻り管の真円度を向上し、形状の整った内面螺旋溝付多重捻り管を提供できる。
If a multiple twisted tube with an inner spiral groove is manufactured using the manufacturing apparatus A as described above while adjusting the state of the groove of the raw tube, the lead angle and the smaller diameter side of the large-diameter side spiral fin (spiral groove) It is possible to manufacture a multi-twisted tube with an inner surface spiral groove having a structure in which the size relationship of the lead angles of the spiral fins (spiral grooves) is freely adjusted.
Further, a drawing die for shaping may be further provided on the downstream side of the drawing side capstan 9 to perform finish drawing for increasing the roundness of the multi-twisted tube 4 with the inner surface spiral groove.
In order to provide a drawing die for finishing drawing, a column member having the same shape as the column member 23 shown in FIG. 3 is provided on the downstream side of the column member 23, and a support frame having the same shape as the support frame 24 is separately provided above the column member. It is preferable to provide a drawing die for finish molding on the support frame.
The roundness of the inner spiral grooved multiple twisted tube finally obtained by passing the inner spiral grooved multiple twisted tube after passing through the drawing side capstan 9 through a drawing die for finishing molding is improved. A multi-twisted tube with an internal spiral groove can be provided.

「第2実施形態」
先の実施形態においては素管1、8を複合して一体化し、捻り加工と引抜き加工を施して内面螺旋溝付多重捻り管4を得たが、素管を一体化する場合の適用本数は任意の数を選択できる。
例えば、径の異なる3本の素管を挿通して3重管を構成し、この3重管を製造装置Aにより捻りを付加しながら引抜き加工することで図8に示す3重管構造の内面螺旋溝付多重捻り管34を製造することができる。
図8に示す第2実施形態の内面螺旋溝付多重捻り管34は、図1に示す構造の内面螺旋溝付多重捻り管4の外側に更に径の大きな素管を1本複合して捻り加工と引抜き加工を施して製造された構造である。
“Second Embodiment”
In the previous embodiment, the elementary tubes 1 and 8 were combined and integrated, and twisting and drawing were performed to obtain an inner spiral grooved multi-twisted tube 4, but the number of applications when integrating the elementary tubes is as follows: Any number can be selected.
For example, a triple pipe is formed by inserting three elementary pipes having different diameters, and the triple pipe is drawn while being twisted by the manufacturing apparatus A, whereby the inner surface of the triple pipe structure shown in FIG. A multi-twisted tube 34 with spiral grooves can be manufactured.
An inner spiral grooved multiple twisted tube 34 according to the second embodiment shown in FIG. 8 is twisted by combining a single larger diameter pipe outside the inner spiral grooved multiple twisted tube 4 having the structure shown in FIG. And a structure manufactured by drawing.

図8に示す構造において最も径の大きな内面螺旋溝付管35は内面螺旋溝35aと螺旋フィン35bを有し、螺旋フィン35bは内面螺旋溝付管3の外周面に食い込まされている。内面螺旋溝付管3と内面螺旋溝付管35の間には、内面螺旋溝付管3の外周面と隣接する螺旋フィン35bに囲まれる形状の第3の流路R3が複数形成されている。
なお、大径の内面螺旋溝付管35の外周面には犠牲陽極層14が形成されている。犠牲陽極層14は、先の実施形態と同等の層である。
In the structure shown in FIG. 8, the innermost spiral grooved tube 35 having the largest diameter has an inner surface spiral groove 35 a and a spiral fin 35 b, and the spiral fin 35 b is bited into the outer peripheral surface of the inner surface spiral grooved tube 3. Between the inner surface spiral grooved tube 3 and the inner surface spiral grooved tube 35, a plurality of third flow paths R3 having a shape surrounded by the spiral fins 35b adjacent to the outer peripheral surface of the inner surface spiral grooved tube 3 are formed. .
A sacrificial anode layer 14 is formed on the outer peripheral surface of the large-diameter inner surface spiral grooved tube 35. The sacrificial anode layer 14 is a layer equivalent to the previous embodiment.

図8に示す構造では第1の流路R1と第2の流路R2に加え、第3の流路R3を設けているので、3種類の冷媒または熱媒に対応する構造を提供できる。
なお、3重管構造の内面螺旋溝付多重捻り管34を製造する場合、図7に示す素管1、8の複合素管Fに対し素管1より小径の素管を複合してから製造装置Aを用いて捻り加工と引抜き加工を施しても良い。
内面螺旋溝付多重捻り管34において犠牲陽極層14の領域はZnが拡散されていない領域より卑となって優先的に腐食することにより内面螺旋溝付管35の孔食を防止する。このため、耐食性に優れた内面螺旋溝付多重捻り管34を提供できる。
In the structure shown in FIG. 8, since the third flow path R3 is provided in addition to the first flow path R1 and the second flow path R2, a structure corresponding to three types of refrigerants or heat media can be provided.
In addition, when manufacturing the multi-twisted tube 34 with the inner surface spiral groove of the triple tube structure, the tube is manufactured after combining a tube having a smaller diameter than the tube 1 with respect to the combined tube F of the tube 1 and 8 shown in FIG. The apparatus A may be used for twisting and drawing.
In the inner spiral grooved multiple twisted tube 34, the sacrificial anode layer 14 region is preferentially corroded over the region where Zn is not diffused, thereby preventing pitting corrosion of the inner surface spiral grooved tube 35. For this reason, the multiple twisted tube 34 with the inner surface spiral groove excellent in corrosion resistance can be provided.

また、先に説明した如く用いる素管として直線溝を有する素管と内面螺旋溝を有する素管のどちらを用いても良いので、例えば、螺旋フィン2bのリード角と螺旋フィン3bのリード角と螺旋フィン35bのリード角を順次異なる角度に制御することもできる。
例えば、最も径の小さな素管として直線溝を有する素管を用い、2番目に大きな素管としてリード角度10゜の内面螺旋溝付管を用い、1番大きな素管としてリード角20゜の内面螺旋溝付管を用い、製造装置Aを用いて10゜のリード角を付与する条件で捻り加工と引抜き加工を施す。
このように製造することにより、最も小さな内面螺旋溝付管のリード角を10゜、2番目に大きな内面螺旋溝付管のリード角を20゜、1番大きな内面螺旋溝付管のリード角を30゜とした3重管構造の耐食性に優れた内面螺旋溝付多重捻り管を得ることができる。
Further, as described above, any of a pipe having a straight groove and a pipe having an inner spiral groove may be used as the pipe used, for example, the lead angle of the spiral fin 2b and the lead angle of the spiral fin 3b. The lead angle of the spiral fin 35b can be sequentially controlled to different angles.
For example, an element tube having a straight groove is used as the element tube with the smallest diameter, an inner spiral grooved tube with a lead angle of 10 ° is used as the second largest element tube, and an inner surface with a lead angle of 20 ° is used as the largest element tube. Using a spiral grooved tube, the manufacturing apparatus A is used for twisting and drawing under the condition of giving a lead angle of 10 °.
By manufacturing in this way, the lead angle of the smallest inner spiral groove tube is 10 °, the lead angle of the second largest inner spiral groove tube is 20 °, and the lead angle of the largest inner spiral groove tube is It is possible to obtain a multi-twisted tube with an inner surface spiral groove excellent in corrosion resistance of a triple tube structure of 30 °.

「第3実施形態」
先の実施形態においては、素管1の内部に1本の素管8を挿通して引抜き加工と捻り加工を付加したが、素管1の内部に複数の素管8を挿通した複合素管を用いて製造装置Aにより内面螺旋溝付多重捻り管を製造することも可能である。
例えば、1本の素管1の内部にそれより小径の複数本(例えば3本)の素管を挿入して複合素管を作製し、この複合素管の全体に引抜き加工と捻り加工を施して内面螺旋溝付多重捻り管を製造することができる。
“Third Embodiment”
In the previous embodiment, a single pipe 8 is inserted into the pipe 1 and a drawing process and a twisting process are added. However, a composite pipe in which a plurality of pipes 8 are inserted into the pipe 1. It is also possible to manufacture a multi-twisted tube with an inner spiral groove by using the manufacturing apparatus A.
For example, a plurality of (for example, three) element tubes having a smaller diameter are inserted into one element tube 1 to produce a compound element tube, and the entire compound element tube is subjected to drawing and twisting. Thus, a multi-twisted tube with an inner spiral groove can be manufactured.

図9は径の大きな1本の内面溝付素管の内部に径の小さな3本の内面溝付素管を挿入し、先の製造装置Aを用いて全体に引抜き加工と捻り加工を施して得られた内面螺旋溝付多重捻り管の本実施形態を示す。
この実施形態の内面螺旋溝付多重捻り管40は、最外層に大径の内面螺旋溝付管41が設けられ、その内側に3本の撚線化された小径の内面螺旋溝付管42が設けられている。
大径の内面螺旋溝付管41の内面には長さ方向に所定のピッチで複数の螺旋溝41aと螺旋フィン41bが設けられている。3本の小径の内面螺旋溝付管42の内面にはそれぞれ長さ方向に所定のピッチで複数の螺旋溝42aと螺旋フィン42bが設けられ、小径の内面螺旋溝付管42はそれぞれ横断面略三角楕円形状に形成されている。
なお、外側の内面螺旋溝付管41の外周面には犠牲陽極層14が形成されている。犠牲陽極層14は、先の実施形態と同等の層である。
In FIG. 9, three inner surface grooved pipes with a small diameter are inserted into one inner surface grooved pipe with a larger diameter, and the whole is drawn and twisted using the manufacturing apparatus A. This embodiment of the obtained multi-twisted tube with an inner surface spiral groove is shown.
The inner spiral grooved multiple twisted tube 40 of this embodiment is provided with a large-diameter inner surface spiral grooved tube 41 on the outermost layer, and three twisted small-diameter inner spiral grooved tubes 42 inside thereof. Is provided.
A plurality of spiral grooves 41a and spiral fins 41b are provided on the inner surface of the large-diameter inner surface spiral grooved tube 41 at a predetermined pitch in the length direction. A plurality of spiral grooves 42a and spiral fins 42b are provided at predetermined pitches in the length direction on the inner surfaces of the three small diameter inner spiral groove tubes 42, respectively. It is formed in a triangular ellipse shape.
A sacrificial anode layer 14 is formed on the outer peripheral surface of the outer inner surface spiral grooved tube 41. The sacrificial anode layer 14 is a layer equivalent to the previous embodiment.

図10は最外層の内面螺旋溝付管41を除去し、その内部に収容されている撚線化された構造の3本の内面螺旋溝付管42を取り出した状態を示す斜視図である。3本の内面螺旋溝付管42は図10に示すように所定の周期で撚線化されている。
この実施形態の内面螺旋溝付多重捻り管40において、最外層の内面螺旋溝付管41の内面に形成されている螺旋溝42aの周期(撚線ピッチ)とその内側で撚線化されている3本の内面螺旋溝付管42の周期(撚線ピッチ)が略同一周期とされている。
これは、径の大きな1本の内面溝付素管の内部に径の小さな3本の内面溝付素管を挿入し、製造装置Aを用いて全体に引抜き加工と捻り加工を施して得られたためである。小径の内面螺旋溝付管42の内側には第1の流路R1が形成され、大径の内面螺旋溝付管41の内側であって小径の内面螺旋溝付管42の外側には第2の流路R2が形成されている。
本実施形態の内面螺旋溝付多重捻り管40における捻り角θは、製造装置Aを用いて巻き出し側キャプスタン5の回転速度に応じて例えば5゜〜80゜程度まで製造可能となる。
FIG. 10 is a perspective view showing a state in which the innermost spiral grooved tube 41 of the outermost layer is removed and three inner spiral grooved tubes 42 having a stranded structure housed therein are taken out. The three inner spiral grooved tubes 42 are stranded at a predetermined cycle as shown in FIG.
In the multiple twisted tube 40 with the inner surface spiral groove of this embodiment, the period (twisted wire pitch) of the spiral groove 42a formed on the inner surface of the innermost surface spiral grooved tube 41 of the outermost layer and the inside thereof are stranded. The period (twisted wire pitch) of the three inner surface spiral grooved pipes 42 is substantially the same period.
This is obtained by inserting three small-diameter inner-grooved pipes into one large-diameter inner-grooved pipe and drawing and twisting the whole using the manufacturing apparatus A. This is because. A first flow path R1 is formed inside the small-diameter inner surface spiral grooved tube 42, inside the large-diameter inner surface spiral grooved tube 41 and outside the small diameter inner surface spiral grooved tube 42. The flow path R2 is formed.
The twist angle θ in the inner spiral grooved multiple twisted tube 40 of the present embodiment can be manufactured to about 5 ° to 80 °, for example, according to the rotational speed of the unwinding side capstan 5 using the manufacturing apparatus A.

図9、図10に示す構造の内面螺旋溝付多重捻り管40を自動車用コンデンサとエバポレータを接続する伝熱管に適用することができる。3つの第1の流路R1と第2の流路R2を個別に用いて、効率の良い熱交換機能を備えた伝熱管を備えた構造を実現できる。 自動車用コンデンサとエバポレータを接続する伝熱管は通常の場合2本必要であるが、図9、図10に示す内面螺旋溝付多重捻り管40であれば、第1の流路R1と第2の流路R2をそれぞれ使い分けて、1本の内面螺旋溝付多重捻り管40で両者を接続することができる。
その場合に第1の流路R1を流れる冷媒又は熱媒は第2の流路R2を流れる冷媒または熱媒と効率良く熱交換できるので、伝熱管として熱交換性能の高い接続ができる。
また、内面螺旋溝付多重捻り管40において犠牲陽極層14の領域はZnが拡散されていない領域より卑となって優先的に腐食することにより内面螺旋溝付管41の孔食を防止する。このため、耐食性に優れた内面螺旋溝付多重捻り管40を提供できる。
The multi-twisted tube 40 with the inner surface spiral groove having the structure shown in FIGS. 9 and 10 can be applied to a heat transfer tube connecting an automobile capacitor and an evaporator. By using the three first flow paths R1 and the second flow path R2 individually, a structure including a heat transfer tube having an efficient heat exchange function can be realized. Normally, two heat transfer tubes for connecting the automobile capacitor and the evaporator are required. However, in the case of the multi-twisted tube 40 with the inner surface spiral groove shown in FIGS. 9 and 10, the first flow path R1 and the second flow tube are used. The flow paths R2 can be used separately, and both can be connected by a single multi-twisted tube 40 with an inner surface spiral groove.
In that case, since the refrigerant or the heat medium flowing through the first flow path R1 can efficiently exchange heat with the refrigerant or the heat medium flowing through the second flow path R2, a connection with high heat exchange performance can be made as a heat transfer tube.
Further, in the inner spiral grooved multiple twisted tube 40, the sacrificial anode layer 14 region is preferentially corroded over the region where Zn is not diffused, thereby preventing pitting corrosion of the inner surface spiral grooved tube 41. For this reason, the multiple twisted tube 40 with an inner surface spiral groove excellent in corrosion resistance can be provided.

また、図9、図10に示す内面螺旋溝付管42の内部に形成されている螺旋溝42aの周期と内面螺旋溝付管42の撚線ピッチは同等で無くとも良い。
先に説明したように内面に直線溝を有する素管と内面に螺旋溝を有する素管を組み合わせて製造装置Aに適用できるので、異なる内面螺旋溝を形成した3本の素管を大径素管に挿入し、製造装置Aを用いて引抜き加工と捻り加工を加えることで、撚線ピッチと異なる周期の螺旋溝を有する内面螺旋溝付管を3本備えた内面螺旋溝付多重捻り管を得ることができる。
Moreover, the period of the spiral groove 42a formed inside the inner surface spiral grooved tube 42 shown in FIGS. 9 and 10 and the stranded wire pitch of the inner surface spiral groove tube 42 may not be equal.
As described above, the element tube having the straight groove on the inner surface and the element tube having the spiral groove on the inner surface can be combined and applied to the manufacturing apparatus A. A multi-twisted tube with an inner surface spiral groove having three inner surface spiral groove tubes having a spiral groove having a period different from the stranded wire pitch is inserted into the tube and subjected to drawing and twisting using the manufacturing apparatus A. Can be obtained.

図11は先に説明した内面螺旋溝付多重捻り管4、34、40のいずれかを伝熱管50として用いた熱交換器の一例を示すもので、この例の熱交換器51は、放熱板としてのフィン52を所定の間隔で複数並列配置し、各フィン52に形成されている挿通孔52aにU字状に折曲した伝熱管50を挿通することで構成されている。
伝熱管50は例えば直管部50Aで複数のフィン52の挿通孔52aを通過するように配置され、図11(A)に示す直管部50Aの開口端どうしを更に図示略のエルボ管で接合することで蛇行状の伝熱管を構成することができる。
フィン52は一例としてアルミニウムまたはアルミニウム合金板からなり、その一部にバーリング加工などを施して挿通孔52aが形成されており、挿通孔52aの開口内周縁部分にフランジ部52bが形成されている。
FIG. 11 shows an example of a heat exchanger using any one of the inner spiral grooved multiple twisted tubes 4, 34, 40 described above as the heat transfer tube 50. The heat exchanger 51 of this example includes a heat sink. A plurality of fins 52 are arranged in parallel at predetermined intervals, and the heat transfer tubes 50 bent in a U-shape are inserted into insertion holes 52a formed in the fins 52.
For example, the heat transfer tube 50 is disposed so as to pass through the insertion holes 52a of the plurality of fins 52 in the straight tube portion 50A, and the open ends of the straight tube portion 50A shown in FIG. By doing so, a serpentine heat transfer tube can be configured.
For example, the fin 52 is made of aluminum or an aluminum alloy plate, and a part thereof is subjected to burring or the like to form an insertion hole 52a, and a flange part 52b is formed at the inner peripheral edge of the insertion hole 52a.

図11に示す構造の熱交換器51において内面螺旋溝付多重捻り管4、34、40のいずれかを適用することで熱交換効率の高い熱交換器51を提供できる。
また、内面螺旋溝付多重捻り管4、34、40の外周面には犠牲陽極層14が形成されているため、熱交換器51が腐食環境に設置された場合、電位の卑な犠牲陽極層14が優先的に腐食される。この結果、腐食生成物が内面螺旋溝付多重捻り管4、34,40の表面に生成し、この腐食生成物は内面螺旋溝付多重捻り管4、34、40がフランジ部52bを通過する部分にも生成する。
この結果、内面螺旋溝付多重捻り管4、34、40がフランジ部52bを通過した部分の隙間を前記腐食生成物で埋めることができ、これによって熱交換器51の外部からフィン52の内側に前記隙間を介し侵入しようとする雨水などの侵入を防止できる。
並列されたフィン52の間に雨水などが浸入して水滴を構成し、フィン間の隙間を水滴が閉塞すると、フィン52に送風した場合の送風抵抗が増大し、熱交換器51の熱交換効率が低下する。このため、内面螺旋溝付多重捻り管4、34、40の外周面に形成した犠牲陽極層14は熱交換器51の耐食性を高めるとともに、熱交換器51の効率低下も抑制する。
The heat exchanger 51 having a high heat exchange efficiency can be provided by applying any one of the multi-twisted tubes 4, 34, and 40 with the inner surface spiral groove in the heat exchanger 51 having the structure shown in FIG.
Further, since the sacrificial anode layer 14 is formed on the outer peripheral surface of the multi-twisted tubes 4, 34, 40 with the inner spiral groove, when the heat exchanger 51 is installed in a corrosive environment, the sacrificial anode layer having a low potential is formed. 14 is preferentially corroded. As a result, a corrosion product is generated on the surface of the inner spiral grooved multiple twisted tubes 4, 34, 40, and this corrosion product is a portion where the inner spiral grooved multiple twisted tubes 4, 34, 40 pass through the flange portion 52b. Also generate.
As a result, it is possible to fill the gap where the inner spiral grooved multiple twisted tubes 4, 34, 40 pass through the flange portion 52b with the corrosion product. It is possible to prevent rainwater and the like from entering through the gap.
When rainwater or the like enters between the fins 52 arranged in parallel to form water droplets and the water droplets block the gaps between the fins, the blowing resistance when the air is blown to the fins 52 is increased, and the heat exchange efficiency of the heat exchanger 51 is increased. Decreases. For this reason, the sacrificial anode layer 14 formed on the outer peripheral surface of the multiple twisted tubes 4, 34, 40 with inner spiral grooves enhances the corrosion resistance of the heat exchanger 51 and also suppresses the efficiency reduction of the heat exchanger 51.

外径10.0mm、内径9.0mmの内面にフィン高さ0.25mm、溝数50個の直線溝が形成されたA3003合金を外管に、外径8.5mm、内径7.8mmの内面にフィン高さ0.2mm、溝数55個の直線溝が形成されたA3003を内管に使用して、図7に示す構成の複合素管Fを作製した。この複合素管Fに対し、図3〜図5に示す製造装置Aを用いて、引抜きダイス孔径φ8.5mm、引抜き速度1.0m/minの条件で捻り引抜き加工を行ない、内面螺旋溝付多重捻り管を製造した。  An A3003 alloy with an outer diameter of 10.0 mm, an inner diameter of 9.0 mm, and a fin height of 0.25 mm and a number of 50 straight grooves formed on the outer tube, an outer diameter of 8.5 mm and an inner diameter of 7.8 mm A composite element tube F having the configuration shown in FIG. 7 was prepared using A3003 having a fin height of 0.2 mm and straight grooves with 55 grooves formed on the inner tube. The composite element tube F is twisted and drawn under the conditions of a drawing die hole diameter φ8.5 mm and a drawing speed 1.0 m / min using the manufacturing apparatus A shown in FIGS. A twisted tube was manufactured.

まず、加工域長さと巻き出し側キャプスタンの公転速度を上げて限界捻り角(座屈を生じないで捻れる最大捻り角)の関係を把握し、加工域長さを160mm、後方張力を5〜20kgとして上記の条件で作製したところ、図1に示すような断面の内面螺旋溝付多重捻り管を製造することができた。また、外管の外周面にZn溶射により厚さ15μmのZn溶射層を形成した。
図11に、上述の条件で製造した試料の断面図(図11(A)参照)と部分拡大図(図11(B)参照)を示す。
得られた内面螺旋溝付多重捻り管は、外径8.45mm肉厚0.55mm、フィン高さ0.2mm、溝数50個の内側に、外径6.95mm、肉厚0.40mm、フィン高さ0.2mm、溝数55個の内面螺旋溝付管を一体化した構造であり、外周面にZn溶射層を有する内面螺旋溝付多重捻り管であった。
First, increase the revolution length of the machining area and the revolution speed of the unwinding capstan to grasp the relationship between the limit twist angle (maximum twist angle that can be twisted without buckling), the machining area length is 160 mm, and the rear tension is 5 When it was produced under the above conditions at ˜20 kg, a multi-twisted tube with an inner surface spiral groove having a cross section as shown in FIG. 1 could be produced. A Zn sprayed layer having a thickness of 15 μm was formed on the outer peripheral surface of the outer tube by Zn spraying.
FIG. 11 shows a cross-sectional view (see FIG. 11A) and a partially enlarged view (see FIG. 11B) of a sample manufactured under the above conditions.
The obtained multi-twisted tube with an inner surface spiral groove has an outer diameter of 8.45 mm, a thickness of 0.55 mm, a fin height of 0.2 mm, an inner diameter of 50 grooves, an outer diameter of 6.95 mm, a wall thickness of 0.40 mm, The inner spiral grooved tube with a fin height of 0.2 mm and the number of grooves of 55 was integrated, and was an inner spiral grooved multiple twisted tube having a Zn sprayed layer on the outer peripheral surface.

次に、先の例と同等のアルミニウム合金からなる複合素管を構成する場合に、小径の素管と大径の素管の外径、底肉厚、フィン高さ、リード角をそれぞれ変更して内面螺旋溝付多重捻り管を複数作製した。得られた内面螺旋溝付多重捻り管の外径、底肉厚、フィン高さ、リード角の測定結果を以下の表1に示す。   Next, when configuring a composite pipe made of an aluminum alloy equivalent to the previous example, change the outer diameter, bottom wall thickness, fin height, and lead angle of the small diameter pipe and the large diameter pipe. A plurality of multiple twisted tubes with inner spiral grooves were prepared. Table 1 below shows the measurement results of the outer diameter, bottom wall thickness, fin height, and lead angle of the obtained multi-twisted tube with inner spiral grooves.

表1の実施例1〜12に示すようにアルミニウム合金製の2重管構造であり、大径側の内面螺旋溝付管の外径5〜12mmであって、小径側の内面螺旋溝付管の外径3.6〜10.6mmであり、リード角10〜20゜の内面螺旋溝付多重捻り管を製造することができた。
これら実施例1〜12に示すように外径3.6〜12mmのように極めて細径であって座屈し易いアルミニウム合金製の内面螺旋溝付管を備えた内面螺旋溝付多重捻り管を図3〜図5に示す構成の製造装置Aによって製造することができた。
As shown in Examples 1 to 12 of Table 1, it is a double pipe structure made of aluminum alloy, and has an outer diameter of 5-12 mm of the inner diameter spiral grooved tube on the large diameter side, and an inner surface spiral grooved tube on the small diameter side And an inner spiral grooved multiple twisted tube having an outer diameter of 3.6 to 10.6 mm and a lead angle of 10 to 20 ° could be manufactured.
As shown in these Examples 1 to 12, an inner spiral grooved multi-twisted tube having an inner spiral grooved tube made of an aluminum alloy that is extremely thin and easily buckled, such as an outer diameter of 3.6 to 12 mm. 3 to 5 could be manufactured by the manufacturing apparatus A having the configuration shown in FIG.

A…製造装置、F…複合素管、L…捻り加工領域の長さ、R1…第1の流路、R2…第2の流路、1…素管、1a…直線溝、2…内面螺旋溝付管、2a…螺旋溝、2b…螺旋フィン、3…内面螺旋溝付管、3a…螺旋溝、3b…螺旋フィン、4…内面螺旋溝付多重捻り管、5…巻き出し側キャプスタン、6…回転手段、7…引抜きダイス、8…素管、8a…直線溝、9…引き抜き側キャプスタン、10a、11a…軸受け部、12…軸受け部、13…中空軸部、13a…一端、13b…他端、14…犠牲陽極層、15…第1支持部材、16…第2支持部材、18…錘体、21…駆動モーター、22…動力伝達装置、28…水平軸、31…筒部材、31a…蝶ネジ、32…張力調整具(前方張力付加手段)、33…張力調整具(後方張力付加手段)、34…内面螺旋溝付多重捻り管、35…内面螺旋溝付管、35a…螺旋溝、35b…螺旋フィン、40…内面螺旋溝付多重捻り管、41…内面螺旋溝付管、41a…螺旋溝、41b…螺旋フィン、42…内面螺旋溝付管、42a…螺旋溝、42b…螺旋フィン。   A ... Manufacturing apparatus, F ... Composite raw pipe, L ... Length of twist processing region, R1 ... First flow path, R2 ... Second flow path, 1 ... Raw pipe, 1a ... Linear groove, 2 ... Internal spiral Grooved tube, 2a ... spiral groove, 2b ... spiral fin, 3 ... inner surface spiral groove tube, 3a ... spiral groove, 3b ... spiral fin, 4 ... inner spiral groove multiple twisted tube, 5 ... unwinding side capstan, DESCRIPTION OF SYMBOLS 6 ... Rotating means, 7 ... Drawing die, 8 ... Elementary pipe, 8a ... Straight groove, 9 ... Drawing side capstan, 10a, 11a ... Bearing part, 12 ... Bearing part, 13 ... Hollow shaft part, 13a ... One end, 13b ... the other end, 14 ... sacrificial anode layer, 15 ... first support member, 16 ... second support member, 18 ... weight body, 21 ... drive motor, 22 ... power transmission device, 28 ... horizontal shaft, 31 ... cylindrical member, 31a ... thumbscrew, 32 ... tension adjuster (forward tension applying means), 33 ... tension adjuster (rear tension applying hand) ), 34 ... Multi-twisted tube with inner spiral groove, 35 ... Tube with inner spiral groove, 35a ... Helix groove, 35b ... Helical fin, 40 ... Multi-twisted tube with inner spiral groove, 41 ... Spiral tube with inner spiral groove, 41a ... Spiral groove, 41b ... spiral fin, 42 ... pipe with inner spiral groove, 42a ... spiral groove, 42b ... spiral fin.

Claims (12)

内面に長さ方向に沿う複数の螺旋溝が周方向に間隔をおいて形成され、隣接する前記螺旋溝間に螺旋フィンが形成された金属製の複数の径の異なる内面螺旋溝付管を備え、大径の内面螺旋溝付管の内側に小径の内面螺旋溝付管が挿入されて一体化され、前記大径の内面螺旋溝付管の外周に犠牲陽極層が形成されたことを特徴とする内面螺旋溝付多重捻り管。   A plurality of metal inner surface spiral grooved pipes having different diameters are formed, in which a plurality of spiral grooves along the length direction are formed on the inner surface at intervals in the circumferential direction, and spiral fins are formed between the adjacent spiral grooves. A small-diameter inner surface spiral groove tube is inserted and integrated inside the large-diameter inner surface spiral groove tube, and a sacrificial anode layer is formed on the outer periphery of the large-diameter inner surface spiral groove tube. Multi-twisted tube with inner spiral groove. 前記大径の内面螺旋溝付管内面の前記螺旋フィンがその内側の内面螺旋溝付管の外周面に食い込まされ、前記小径の内面螺旋溝付管の内側に第1の流路が形成され、前記小径の内面螺旋溝付管と前記大径の内面螺旋溝付管との間に第2の流路が形成されたことを特徴とする請求項1に記載の内面螺旋溝付多重捻り管。   The spiral fin on the inner surface of the large-diameter inner surface spiral groove tube is bitten into the outer peripheral surface of the inner surface inner spiral groove tube, and a first flow path is formed inside the small-diameter inner surface spiral groove tube, The multiple twisted tube with an inner surface spiral groove according to claim 1, wherein a second flow path is formed between the small diameter inner surface spiral grooved tube and the large diameter inner surface spiral grooved tube. 前記個々の内面螺旋溝付管の螺旋溝が一定の捻り周期を有することを特徴とする請求項1または請求項2に記載の内面螺旋溝付多重捻り管。   The multi-twisted tube with inner spiral grooves according to claim 1 or 2, wherein the spiral grooves of the individual inner spiral groove tubes have a constant twist cycle. 前記犠牲陽極層がZnを0.2質量%以上含み、厚さ80μm以上であることを特徴とする請求項1〜請求項3のいずれか一項に記載の内面螺旋溝付多重捻り管。   The multi-twisted tube with an inner surface spiral groove according to any one of claims 1 to 3, wherein the sacrificial anode layer includes 0.2 mass% or more of Zn and has a thickness of 80 µm or more. 前記個々の内面螺旋溝付管の内面に形成されている螺旋溝の捻り角が個々の内面螺旋溝付管の中心軸線に対し5〜80゜に設定されたことを特徴とする請求項1〜請求項4のいずれか一項に記載の内面螺旋溝付多重捻り管。   2. The twist angle of the spiral groove formed on the inner surface of each individual inner surface spiral groove tube is set to 5 to 80 degrees with respect to the central axis of each inner surface spiral groove tube. The multi-twisted tube with an inner surface spiral groove according to claim 4. 内面に長さ方向に沿う複数の溝が周方向に間隔をおいて形成された径の異なる素管を複数本用意し、大径の素管の中に小径の素管を挿入して複合素管を形成し、この複合素管を巻き出し側キャプスタンにその導入側接線方向から巻き付けつつ前記複合素管を導出側接線に沿って巻き出し、前記巻き出し側キャプスタンを前記導出側接線を軸として軸回りに回転させることにより、前記巻き出し側キャプスタンから前記複合素管を前記軸心回りに回転させながら前記接線の延長方向に巻き出す素管巻き出し工程と、巻き出された前記複合素管を引抜きダイスに通して縮径しながら捻りを付与して内面螺旋溝付多重捻り管とする捻り引抜き工程と、前記内面螺旋溝付多重捻り管の表面に犠牲陽極層を設ける工程を具備することを特徴とする内面螺旋溝付多重捻り管の製造方法。   Prepare multiple pipes with different diameters with multiple grooves along the length direction on the inner surface spaced in the circumferential direction, and insert the small diameter pipe into the large diameter pipe Forming a pipe, winding the composite element pipe along the derivation side tangent while winding the composite element pipe around the unwinding side capstan from the introduction side tangential direction, and unwinding the unwinding side capstan with the derivation side tangent An unwinding step of unwinding the unwound tube in the extending direction of the tangential line while rotating the composite union tube around the axis from the unwinding side capstan by rotating around the shaft as an axis. Twisting and pulling a composite element tube through a drawing die to give a twist while reducing the diameter to form a multiple twisted tube with an inner surface spiral groove, and a step of providing a sacrificial anode layer on the surface of the inner surface spiral grooved multiple twist tube Internal screw characterized by comprising Method for manufacturing a grooved multi torsion tube. 長さ方向に沿う溝として内面に直線溝を有する素管を用いることを特徴とする請求項6に記載の内面螺旋溝付多重捻り管の製造方法。   The method of manufacturing a multi-twisted tube with an inner surface spiral groove according to claim 6, wherein a raw tube having a linear groove on the inner surface is used as the groove along the length direction. 長さ方向に沿う溝として内面螺旋溝を有する素管を用いることを特徴とする請求項6に記載の内面螺旋溝付多重捻り管の製造方法。   The method of manufacturing a multi-twisted tube with an inner surface spiral groove according to claim 6, wherein an element tube having an inner surface spiral groove is used as the groove along the length direction. 前記引抜きダイスによる縮径率を5〜40%とすることを特徴とする請求項6〜請求項8のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。   The method for producing a multi-twisted tube with an inner surface spiral groove according to any one of claims 6 to 8, wherein the diameter reduction rate by the drawing die is 5 to 40%. Znを0.2質量%以上含み、厚さ80μm以上の犠牲陽極層を形成することを特徴とする請求項6〜請求項9のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。   10. The multi-twisted tube with inner spiral grooves according to claim 6, wherein a sacrificial anode layer containing 0.2 mass% or more Zn and having a thickness of 80 μm or more is formed. Method. 前記巻出し側キャプスタンに前記複合素管を巻き始める位置と前記巻出し側キャプスタンから前記引抜きダイス側に前記複合素管を送り始める位置を前記巻出し側キャプスタンの回転軸と平行な方向にずらすことにより、前記巻出し側キャプスタンと前記引抜きダイスとの間を前記複合素管の捻り加工領域とすることを特徴とする請求項6〜請求項10のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。   A position parallel to the rotation axis of the unwinding side capstan is a position at which the composite union tube starts to be wound around the unwinding side capstan and a position at which the composite union tube starts to be fed from the unwinding side capstan to the drawing die side. The inner surface according to any one of claims 6 to 10, wherein a region between the unwinding side capstan and the drawing die is used as a twist processing region of the composite element pipe by shifting to the inner side. A method of manufacturing a multi-twisted tube with spiral grooves. 前記引抜きダイスに前記複合素管を通して前記複合素管を捻りつつ縮径する際、前記複合素管に前方張力と後方張力を付加することを特徴とする請求項6〜請求項11のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。   The front tension and the rear tension are added to the composite pipe when the diameter of the composite pipe is reduced by twisting the composite pipe through the drawing die. The manufacturing method of the multi-twisted pipe | tube with an internal spiral groove as described in claim | item.
JP2017106957A 2017-05-30 2017-05-30 Multiple twisted pipe with inner spiral groove and its manufacturing method Active JP6902930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106957A JP6902930B2 (en) 2017-05-30 2017-05-30 Multiple twisted pipe with inner spiral groove and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106957A JP6902930B2 (en) 2017-05-30 2017-05-30 Multiple twisted pipe with inner spiral groove and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018202425A true JP2018202425A (en) 2018-12-27
JP6902930B2 JP6902930B2 (en) 2021-07-14

Family

ID=64954749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106957A Active JP6902930B2 (en) 2017-05-30 2017-05-30 Multiple twisted pipe with inner spiral groove and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6902930B2 (en)

Also Published As

Publication number Publication date
JP6902930B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
KR102377596B1 (en) Heat transfer tube, heat exchanger and manufacturing method of heat transfer tube
WO2016010113A1 (en) Production method and production device for pipe with spirally grooved inner surface
JP6909054B2 (en) Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove
JP6584027B2 (en) Twisted tube with internal spiral groove and heat exchanger
JP2018202425A (en) Multiple torsion pipe with spiral groove on inner surface, and method of manufacturing the same
JP2019086180A (en) Double pipe and manufacturing method thereof
JP7334262B2 (en) Inner spiral grooved tube with excellent heat transfer and heat exchanger
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP6986942B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP6902932B2 (en) Multiple twisted pipe with inner spiral groove and its manufacturing method and manufacturing equipment
JP4511797B2 (en) Internal grooved tube, manufacturing apparatus thereof, and manufacturing method thereof
JP6355039B2 (en) Internal spiral groove manufacturing equipment
JP2018091599A (en) Pipe type heat exchanger and manufacturing method of the same
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP7116868B2 (en) Heat transfer tubes and heat exchangers with excellent expandability and thermal properties
JP6964498B2 (en) Manufacturing method of inner spiral grooved tube, heat exchanger and inner spiral grooved tube
JP6964497B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
WO2019013202A1 (en) Pipe with spirally grooved inner surface, and method for manufacturing same
JP6925170B2 (en) Tube heat exchanger and its manufacturing method and heat exchanger
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP6960836B2 (en) Winding control device and winding control method equipped with dancer rollers
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
JP6846182B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP2018089681A (en) Pipe type heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6902930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250