WO2019013202A1 - Pipe with spirally grooved inner surface, and method for manufacturing same - Google Patents
Pipe with spirally grooved inner surface, and method for manufacturing same Download PDFInfo
- Publication number
- WO2019013202A1 WO2019013202A1 PCT/JP2018/026021 JP2018026021W WO2019013202A1 WO 2019013202 A1 WO2019013202 A1 WO 2019013202A1 JP 2018026021 W JP2018026021 W JP 2018026021W WO 2019013202 A1 WO2019013202 A1 WO 2019013202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- pipe
- fins
- raw
- spiral grooved
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- 238000005452 bending Methods 0.000 claims abstract description 58
- 230000008569 process Effects 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 230000008602 contraction Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 230000032258 transport Effects 0.000 description 14
- 230000009467 reduction Effects 0.000 description 13
- 238000000137 annealing Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000011946 reduction process Methods 0.000 description 6
- 238000005482 strain hardening Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D11/00—Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
- B21D11/14—Twisting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/02—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
- B21D53/06—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D7/00—Bending rods, profiles, or tubes
- B21D7/08—Bending rods, profiles, or tubes by passing between rollers or through a curved die
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
Definitions
- the present invention relates to an internally helical grooved tube and a method of manufacturing the same.
- a heat exchanger such as an evaporator or a condenser, which is incorporated in a refrigeration unit or an air conditioner, has a heat transfer pipe through which a refrigerant flows.
- a heat transfer tube of this type there is an internally grooved tube provided with a large number of fins projecting from the inner surface of the tube and a groove formed between the fins.
- the grooves provided on the inner surface of the tube have effects such as increasing the surface area inside the tube, stirring the refrigerant, and facilitating holding the liquid film on the inner surface of the tube by capillary action.
- the inner grooved tube can efficiently evaporate or condense the refrigerant inside the tube due to these effects.
- an inner surface spiral grooved tube made of a copper material and provided with spiral fins and grooves on the inner surface by rolling is widely used.
- the demand for internal spiral grooved tubes consisting of aluminum materials (including aluminum and aluminum alloys; the same applies hereinafter), which is low in material cost compared to copper and easy to recycle, in place of copper tubes It is getting worse.
- Patent Document 1 describes a method of manufacturing an internally helical grooved tube in which a tube having a straight groove on its inner surface is used as a base tube, and the tube is drawn on the front side of a drawing die by twisting.
- the aluminum material which comprises an element pipe flows plastically, when the pipe reduction process which reduces an outer diameter in drawing die is given. Therefore, the groove and the fin on the inner surface of the tube can be deformed in a spiral shape by utilizing the above-described plastic flow by performing the tube contraction process while rotating around the tube axis.
- Patent Literature 2 and Patent Literature 3 describe a technique for eliminating work hardening at the time of tube contraction processing by annealing the inner surface spiral grooved tube.
- Patent Documents 2 to 3 also describe a technique for increasing the twist angle of the groove by repeatedly applying the rotation to the raw pipe and the contraction process.
- the contraction process is performed, the width of the groove is narrowed according to the reduction of the outer diameter, and the height of the fin interposed between the grooves is reduced.
- the wall thickness at the bottom of the groove does not decrease in response to the reduction of the outer diameter, but rather increases by contraction.
- the overall size of the raw pipe is not uniformly reduced, and the shape of the dimensional change differs depending on the position of the raw pipe, so the cross-sectional shape of the inner spiral grooved pipe is raw pipe It changes from the cross-sectional shape. Therefore, when the application of rotation to the base tube and the contraction process are repeated, the cross-sectional shape of the finally obtained internal spiral grooved tube becomes different from the desired shape, and the heat transfer performance is deteriorated. There is a risk of
- the cross section of the raw pipe tends to be a flat shape such as an oval shape or an oval shape, which may cause an increase in manufacturing cost and an increase in the variation in quality of the internally spiral grooved tube.
- the present invention has been made in view of the above background, and an object of the present invention is to provide a method of manufacturing an inner surface spiral grooved tube capable of increasing the twist angle of the groove by a simple process.
- One aspect of the present invention is a raw tube made of an aluminum material, comprising a plurality of fins projecting from the inner surface and extending in a direction parallel to the tube axis, and grooves formed between the fins.
- Prepare The base tube is subjected to a bending process in which it is bent in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis, whereby the fin and the groove are spirally wound around the tube axis Plastically deform, A method of manufacturing an inner surface spiral grooved tube.
- a blank having a plurality of fins extending in a direction parallel to the tube axis and a groove formed between the fins is prepared, and Bending is performed in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis.
- Bending is performed in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis.
- the fins and the grooves can be plastically deformed in a spiral shape regardless of the pipe forming process. Therefore, various problems in the conventional manufacturing method involving the tube forming process such as reduction of the twist angle of the groove, change of the cross-sectional shape from the raw pipe, complication of the manufacturing process and increase of manufacturing cost are avoided and simple. According to the process, it is possible to produce an inner surface helical grooved tube having a large twist angle of the groove.
- FIG. 7 is an explanatory view of a method of manufacturing an inner surface spiral grooved tube in the first embodiment. It is an enlarged view of the 1st roll vendor in FIG.
- FIG. 10 is a cross-sectional view of a cross section perpendicular to the tube axis of the blank tube in the second embodiment.
- FIG. 16 is a cross-sectional view of a blank at the time of pipe contraction processing in Comparative Example 2.
- a base pipe which is a material of the inner surface spiral grooved pipe has a large number of fins projecting from the inner surface and a groove formed between the fins. Further, the fins and grooves in the raw tube have a linear shape extending in a direction parallel to the tube axis.
- the outer diameter of the base tube, the thickness of the bottom of the groove, the number of fins, the height and the apex angle can be set as appropriate according to the outer diameter of the internally spiral grooved tube to be obtained.
- the outer diameter of the raw pipe can be appropriately set, for example, in the range of 5 to 10 mm. Further, the thickness of the bottom of the groove can be appropriately set from the range of 0.30 to 0.70 mm.
- the cross sectional shape of the inner surface spiral grooved pipe is almost the same as the cross sectional shape of the base pipe. Therefore, in this case, the outer diameter of the blank, the thickness of the bottom of the groove, the number of fins, the height and the apex angle may be set to desired values in the internally spiral grooved tube.
- the raw pipe may be an extruded material produced by extrusion processing.
- tube can be selected from well-known aluminum and aluminum alloy according to the use and the desired characteristic of an inner surface grooved pipe.
- an aluminum material 3000 series aluminum alloys, such as a JIS A 3003 alloy, and 1000 series aluminum can be used. From the viewpoint of strength and processability, it is preferable to use a 3000 series aluminum alloy as the aluminum material.
- the base tube is bent in a direction perpendicular to the axis while applying a twisting moment about the axis.
- a twisting moment centering on the tube axis and a bending moment to bend the blank in a direction perpendicular to the tube axis are simultaneously applied to the blank during bending.
- the raw pipe can be plastically deformed with a lower twisting moment than in the case where no bending moment is applied. The reason can be described, for example, as follows.
- the inner helical grooved tube used in the heat exchanger has a relatively small outer diameter, so it is difficult to increase the twisting moment T. Also, if it is attempted to increase only the twisting moment T, the raw pipe may be locally deformed, and furthermore, the raw pipe may be buckled starting from this deformation point. On the other hand, increasing the bending moment M is easier than the twisting moment T. Therefore, by simultaneously applying the twisting moment T and the bending moment M to the blank, the stress ⁇ can be increased while suppressing the buckling of the blank. As a result, it is possible to easily plastically deform the fins and grooves of the raw tube in a helical manner, and obtain an internally helical grooved tube.
- the bending direction of the hollow tube in bending may be any direction as long as it is a direction orthogonal to the tube axis.
- the bending direction may be the left-right direction or the up-down direction.
- the number of times of bending the raw pipe may be one, or may be two or more.
- the element tube may be repeatedly bent in the same direction, or the element tube is bent in the vertical direction and then bent in the left and right direction. You can also change the direction.
- the hollow shell In the bending process, it is preferable to elastically deform the raw tube in a direction perpendicular to the tube axis.
- a bending load equal to or higher than the elastic limit of the hollow shell is applied to the hollow shell during bending, the hollow shell may be plastically deformed in the bending direction. In this case, the bending moment is rather reduced, which may lead to a reduction in shear stress applied to the blank.
- the magnitude of the bending load smaller than the elastic limit of the blank and elastically deforming the blank in the direction perpendicular to the tube axis in bending, such problems can be avoided and the fins and grooves can be efficiently spiraled. It can be plastically deformed.
- the outer diameter of the blank is OD 0 [mm]
- the thickness of the bottom of the groove in the blank is TF 0 [mm]
- the outer diameter of the internally spiral grooved tube is OD 1 [mm]
- the following formulas (1) to (2) may be satisfied. 0 ⁇ (OD 1 ⁇ OD 0 ) / OD 0 ⁇ 0.03 (1) 0 ⁇ (TF 1 ⁇ TF 0 ) / TF 0 ⁇ 0.04 (2)
- the cross-sectional shape of the inner surface helical grooved tube changes from the cross-sectional shape of the base tube by the tube contraction process, which may cause deterioration of the heat transfer performance.
- the element pipe in which the bending process was given can be used as an inner surface spiral grooved pipe as it is. Therefore, it is possible to suppress an unintended change in the cross-sectional shape at the time of the contraction process, which has occurred in the conventional manufacturing method, and to be substantially similar to the cross-sectional shape of the raw pipe as in the above formulas (1) to An internally helical grooved tube with a cross-sectional shape can be obtained. As a result, it is possible to easily avoid the deterioration of the heat transfer performance of the internally spiral grooved tube.
- annealing is usually performed to eliminate work hardening during tube reduction.
- the aluminum material of the inner surface spiral grooved tube is recrystallized, and there is a possibility that the tensile strength and the fatigue strength may be reduced as compared with the raw pipe.
- the raw pipe subjected to the bending process can be used as the inner surface spiral grooved pipe as it is, as in the above-mentioned formula (3)
- the tensile strength of the pipe can be made equal to or higher than that of the raw pipe.
- heat treatment such as stress relief annealing may be added after bending, or processing such as pipe expansion may be additionally performed.
- the inner surface spiral grooved tube obtained by the above manufacturing method has a large number of fins and grooves formed between the fins on the inner surface. Also, the fins and grooves in the internally helical grooved tube are in the form of a spiral that pivots around the tube axis.
- the twist angle of the groove in the internally helical grooved tube that is, the angle between the axial direction of the groove and the extending direction of the groove can be, for example, more than 0 degrees and not more than 30 degrees.
- the twist angle of the groove From the viewpoint of further enhancing the heat transfer performance of the inner surface helical grooved tube, it is preferable to increase the twist angle of the groove. However, if the twist angle of the groove is large, the manufacturing cost of the internally spiral grooved tube may be increased. Therefore, it is preferable to set the twist angle of the groove to 5 degrees or more and 20 degrees or less from the viewpoint of enhancing the heat transfer performance while suppressing the increase in the manufacturing cost.
- the structure of the inner surface spiral grooved tube obtained can be a recrystallized structure having an average crystal grain size of 80 ⁇ m or less.
- the tensile strength of the internally spiral grooved tube can be made 115 MPa or more
- the proof stress can be made 95 MPa or more
- the elongation can be made 20% or more.
- the internally spiral grooved tube having such characteristics is excellent in workability in machine expansion processing, for example, a cross fin type heat exchanger in which the internally spiral grooved pipe and the fins are joined by mechanical expansion processing. It can be used suitably. Further, the inner surface spiral grooved tube can be applied to uses other than the cross fin type heat exchanger.
- the average grain size of the internally spiral grooved tube can be calculated, for example, according to the cutting method defined in JIS G0551 (ASTM E 112-96, ASTM E 1382-97).
- Example 1 An embodiment of the inner surface spiral grooved tube and a method of manufacturing the same will be described with reference to FIGS. 1 and 2.
- the raw pipe 2 (see FIG. 2) made of an aluminum material is prepared.
- the raw tube 2 has a large number of fins 21 projecting from the inner surface and extending in a direction parallel to the tube axis 20 and a groove 22 formed between the fins 21. doing.
- the fins 21 and the grooves 22 are formed by bending the raw pipe 2 in a direction (arrow m) orthogonal to the pipe axis 20 while applying a twisting moment centering on the pipe axis 20.
- the manufacturing apparatus 3 of this example includes a raw tube delivery unit 4, a bender unit 5, a rotation restricting unit 6, and a winding unit 7.
- the raw pipe 2 drawn out from the raw pipe delivery section 4 is subjected to bending processing in a state where a twisting moment is applied in the bender section 5, and becomes the inner surface spiral grooved pipe 1.
- the internally spiral grooved tube 1 having passed the bender portion 5 is conveyed toward the winding portion 7 by the rotation restricting portion 6 and is wound by the winding portion 7.
- the raw pipe delivery unit 4 extends in the conveying direction 200 of the raw pipe 2 and the feed drum 41 around which the raw pipe 2 is wound, and is a drum holding portion that holds the central shaft 411 of the raw drum 41 rotatably. 42 and a frame 43 for supporting the drum holding portion 42.
- the raw pipe 2 is pulled out of the feed drum 41 according to the rotation of a conveyance belt 61 (described later) in the rotation restricting unit 6 and is guided to the bender unit 5 along the conveyance direction 200.
- the raw tube delivery unit 4 transmits the driving force of the motor 44 to the drum holding unit 42.
- the motor 44 rotates the feeding drum 41 together with the drum holding unit 42 around the conveying direction 200 of the raw tube 2.
- a belt 45 When the motor 44 is driven in the raw tube delivery unit 4, the driving force of the motor 44 is transmitted to the drum holding unit 42 via the transmission belt 45.
- the feed-out drum 41 and the drum holding portion 42 rotate about the conveying direction 200 of the raw pipe 2 (FIG. 1, arrow 412).
- the raw pipe 2 drawn from the feed drum 41 can be rotated about the pipe axis 20 (FIG. 2, arrow t).
- the raw pipe 2 delivered from the raw pipe delivery unit 4 is transported along the transport direction 200 while being rotated about the tube axis 20 and is guided to the bender unit 5.
- the bender unit 5 has a first roll bender 51 located on the upstream side in the transport direction 200, that is, the raw pipe delivery unit 4 side, and a second roll bender 52 located on the downstream side, that is, the winding unit 7 side. doing.
- the first roll bender 51 includes two lower rolls 511 spaced apart in the transport direction 200 and an upper roll 512 disposed between the two lower rolls 511 in the transport direction 200. Have.
- the upper roll 512 is disposed so that the lower end thereof is located below the upper end of the lower roll 511.
- the raw pipe 2 guided to the bender unit 5 enters between the lower roll 511 and the upper roll 512 in the first roll bender 51.
- the fins 21 and the grooves 22 of the raw tube 2 have a linear shape extending in a direction parallel to the tube axis 20.
- the raw pipe 2 rotates in the direction of the arrow t about the pipe axis 20.
- the rotation of the raw pipe 2 is restricted by the rotation restricting portion 6 as described later. Therefore, when passing between the lower roll 511 and the upper roll 512, the blank tube 2 is twisted in the direction of the arrow t around the tube axis 20.
- a bending load to the lower side (arrow m) is applied to the raw tube 2 that has entered between the lower roll 511 and the upper roll 512. Further, as described above, the raw pipe 2 is twisted in the direction of the arrow t around the pipe axis 20 between the lower roll 511 and the upper roll 512.
- the raw pipe 2 when passing between the lower roll 511 and the upper roll 512, the raw pipe 2 is subjected to a bending process in which it is bent downward in a state in which a twisting moment about the pipe axis 20 is applied. Ru.
- the fins 21 and the grooves 22 of the raw tube 2 are plastically deformed in a spiral shape gradually while being moved along the transport direction 200 between the lower roll 511 and the upper roll 512 by bending.
- an inner surface spiral grooved tube provided on the inner surface with a spiral fin 11 that pivots about the tube axis 10 and a groove 12 formed between the fins 11 You can get one.
- the internally spiral grooved tube 1 having passed through the first roll bender 51 is guided to the second roll bender 52.
- the second roll bender 52 has two upper rolls 522 spaced apart in the transport direction 200 and a lower roll 521 disposed between the two upper rolls 522 in the transport direction 200. doing. Further, the lower roll 521 is disposed such that the upper end thereof is positioned above the lower end of the upper roll 522.
- the inner spiral grooved tube 1 in the second roll bender 52 is twisted in the direction of the arrow t about the pipe axis 10 in the same manner as the raw tube 2 in the first roll bender 51 There is.
- the inner spiral grooved tube 1 is bent upward by the upper roll 522 and the lower roll 521 in a state in which a twisting moment about the pipe axis 10 is applied. (Refer to FIG. 2) of the groove 12 at the outlet of the second roll bender 52, that is, the angle formed by the extending direction of the groove 12 with respect to the direction parallel to the tube axis 10 It can be greater than the twist angle ⁇ of the groove 12 at the outlet.
- the bender portion 5 of this example can perform bending on the base pipe 2 by bending in the vertical direction. Then, in the bender section 5, the base pipe 2 is subjected to bending while giving a twisting moment centering on the pipe axis 20, thereby obtaining the inner surface spiral grooved pipe 1 having a desired twist angle ⁇ of the groove 12. be able to.
- the internally spiral grooved tube 1 which has passed the bender portion 5 is transported along the transport direction 200 and guided to the rotation restricting portion 6.
- the rotation restricting portion 6 has a pair of conveying belts 61 which sandwich the inner surface spiral grooved tube 1 in the vertical direction.
- the conveyance belt 61 can press the inner surface spiral grooved tube 1 in the up and down direction, and can restrict rotation in the direction of the arrow t (see FIG. 2) about the tube axis 10. Further, the transport belt 61 pulls the raw pipe 2 out of the feeding drum 41 by its own rotation and transports it along the transport direction 200 and transports the inner surface spiral grooved tube 1 toward the winding portion 7. it can.
- the internally spiral grooved tube 1 delivered in the transport direction 200 by the rotation restricting portion 6 is wound by the winding portion 7.
- the pipe 2 is prepared, and the base pipe 2 is bent in the vertical direction orthogonal to the pipe axis 20 while applying a twisting moment centering on the pipe axis 20.
- the element tube 2 can be plastically deformed with a smaller twisting moment as compared with the case where the bending moment is not applied.
- the fins 21 and the grooves 22 can be plastically deformed in a spiral shape regardless of the pipe contraction process. Therefore, various problems in the conventional manufacturing method involving tube contraction processing, such as reduction of the twist angle ⁇ of the groove 22, change of sectional shape from the raw pipe 2, complication of manufacturing process and increase of manufacturing cost, are avoided.
- the spiral grooved tube 1 having a large twist angle ⁇ of the groove 12 can be manufactured by a simple process.
- the specific configuration for bending the raw pipe 2 is not limited to the configuration of the manufacturing apparatus 3 of this example.
- the bending process is performed on the raw pipe 2 by the two roll vendors of the first roll bender 51 and the second roll bender 52 in the bender unit 5. It may be a group, or may be three or more.
- the direction in which the raw tube 2 is bent can also be a direction other than the vertical direction such as the horizontal direction.
- the rotational speed of the feed drum 41 and the transport speed of the raw pipe 2 can be appropriately set according to the desired magnitude of the twist angle ⁇ of the groove 12.
- the amount of twist of the raw pipe 2 in the bender portion 5 can be increased by increasing the rotational speed of the feed drum 41 or decreasing the transfer speed of the raw pipe 2.
- the internally spiral grooved tube 1 having a large twist angle ⁇ of the groove 12 can be manufactured.
- Example 2 This example is an example of the inner surface spiral grooved tube 1 manufactured by the above-mentioned manufacturing method.
- the same reference numerals as those used in the previously described embodiments and comparative examples indicate the same constituent elements as those in the previously described embodiments and the like unless otherwise specified.
- the raw tube 2 As the raw tube 2, an extruded shaped material having a recrystallized structure with an average crystal grain size of 30 ⁇ m and made of A3003-H112 material was prepared. As shown in FIG. 3, the raw tube 2 of this example is formed on its inner surface between a large number of fins 21 extending in a direction parallel to the tube axis 20 (not shown) and the fins 21. And a groove 22.
- the number of fins 21 and the number of grooves 22 can be appropriately set, for example, in the range of 30 to 70. In this example, the number of fins 21 and the number of grooves 22 are 50.
- the outer diameter OD 0 of the raw pipe 2 can be appropriately set, for example, in the range of 5 to 10 mm.
- the outer diameter was slightly changed depending on the measurement position.
- the average value of the maximum value and the minimum value of the outer diameter obtained based on these measurement results was taken as the outer diameter OD 0 of the raw pipe.
- the outer diameter OD 0 of the raw pipe was 7.00 mm.
- the difference between the maximum value of the outer diameter and the minimum value of the outer diameter was calculated, and this value is described in Table 1 as an outer diameter deviation ⁇ D.
- the value of the outer diameter deviation ⁇ D was 0.25 mm.
- the fins 21 project from the inner surface of the blank 2 as shown in FIG.
- the fin 21 has a trapezoidal shape in which the width becomes narrower as it approaches the tube axis 20 in a cross section perpendicular to the tube axis 20.
- the height HF 0 of the radial fins 21 based on the bottom 221 of the groove 22 can be set as appropriate, for example, from the range of 0.10 to 0.40 mm.
- the apex angle ⁇ 0 of the fins 21, that is, the angle between the extension lines L of the side surfaces 211 of the fins 21 in a cross section perpendicular to the tube axis 20 is appropriately set from, for example, a range of more than 0 degrees and less than 20 degrees. be able to.
- the height HF 0 of the fins 21 is 0.28 mm
- the apex angle ⁇ 0 of the fins 21 is 10 degrees.
- the thickness TF 0 (see FIG. 3) at the bottom 221 of the groove 22 can be appropriately set, for example, from the range of 0.30 to 0.70 mm. In this example, the thickness TF 0 at the bottom 221 of the groove 22 is 0.40 mm.
- the base pipe 2 was subjected to bending processing by the same method as the method shown in the first embodiment, to produce the inner surface spiral grooved pipe 1 in which the twist angle ⁇ of the groove 12 is 10 degrees.
- the cross section perpendicular to the tube axis 10 is observed for the obtained internally spiral grooved tube 1, and the outer diameter OD 1 , the thickness TF 1 at the bottom of the groove 12, and the height HF of the fins 11 are the same as the raw tube 2. 1 was measured vertical angle gamma 1 fin 11 (not shown).
- the tensile test of the internally grooved grooved tube 1 was carried out by the method according to the definition of JIS Z2241, and the values of tensile strength ⁇ B1 , proof stress and elongation were measured. These results were as shown in Table 1. Further, the inner surface spiral grooved tube 1 of the present example had a recrystallized structure with an average crystal grain size of 30 ⁇ m, similarly to the raw tube 2.
- Example 3 an inner surface spiral grooved tube 1 was produced in the same manner as in Example 2 except that the twist angle ⁇ of the groove 12 was 15 degrees. Then, the value of such an outer diameter OD 1 of the obtained inner surface helical grooved tube 1 was measured in the same manner as in Example 2. These results were as shown in Table 1. Further, the inner surface spiral grooved tube 1 of the present example had a recrystallized structure with an average crystal grain size of 30 ⁇ m, similarly to the raw tube 2.
- This example is an example of a manufacturing method which applies only a twisting moment to the raw pipe 2 and does not apply a bending moment.
- the raw pipe 2 drawn out from the raw pipe delivery unit 4 is directly led to the rotation restricting unit 6 without the bender unit 5.
- the amount of twist was enlarged to the limit in the range which the raw pipe 2 does not buckle.
- An inner surface spiral grooved tube 1 was produced in the same manner as in Example 2 except for the above. Evaluation similar to Example 2 was performed about the cross-sectional shape etc. of the obtained inner surface spiral grooved tube 1. As shown in FIG. The cross-sectional shape etc. of the inner surface spiral grooved tube 1 of this example were as shown in Table 1.
- the twist angle ⁇ of the groove was 1.5 degrees. Moreover, when the twisting moment was made larger than this, the base pipe 2 was buckled, and the internal spiral grooved pipe 1 could not be manufactured.
- This example is an example of the manufacturing method of the conventional inner surface spiral grooved tube 8 with diameter reduction processing.
- the outer diameter OD 0 is 8 mm
- the thickness TF 0 at the bottom portion 221 of the groove 22 is 0.38 mm, in consideration of the reduction of the outer diameter by diameter reduction processing and the increase of the thickness at the bottom of the groove 12.
- the raw pipe 2 was used.
- the base tube 2 is introduced into the drawing die 9 while being rotated in the direction of the arrow u about the pipe axis 20, and diameter reducing processing is performed to reduce the outer diameter at the diameter reducing portion 91 of the drawing die 9. went.
- tube 2 in diameter reduction process was 2.32 N * m.
- Example 2 The same evaluation as in Example 2 was performed on the internally spiral grooved tube 8 after diameter reduction processing. As a result, as shown in Table 1, the cross-sectional shape of the inner surface spiral grooved tube 8 of this example was substantially the same as the inner surface spiral grooved tube 1 of Example 2.
- the metal structure becomes a processed structure during diameter reduction processing.
- the tensile strength ⁇ B1 and the proof stress become higher as compared with the inner surface helical grooved tube 1 of Example 2, and the elongation is lowered. Therefore, when the hairpin bending process of bending pitch 21mm was given to the inner surface spiral grooved tube 8 of this example, a crack, buckling, etc. of the inner surface spiral grooved tube 8 occurred after processing.
- the inner surface spiral grooved tube 8 of this example was stretched more than the inner surface spiral grooved tube 8 of Comparative Example 2 by annealing. Therefore, the inner surface spiral grooved tube 8 of this example can suppress the occurrence of cracking, buckling, and the like after the hairpin bending with a bending pitch of 21 mm.
- recrystallization proceeds by annealing, so that the metallographic structure becomes a recrystallized structure with an average crystal grain size of 120 ⁇ m. Further, since the work hardening was eliminated by the annealing, the tensile strength ⁇ B1 and the proof stress were reduced as compared with the inner surface spiral grooved tube 1 of the second embodiment.
- Comparative example 4 This example is an example in which a thicker base pipe 2 having an outer diameter OD 0 is used in the conventional manufacturing method.
- the inner surface spiral groove is formed by the same method as in Comparative Example 2. An attempt was made to manufacture the attached tube 8.
- the outer radially polarized difference ⁇ D raw tube 2 fed from Feeding drum 41 is larger than that in Example 2.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- Table 1 summarizes the results of these Examples and Comparative Examples.
- the internally spiral grooved tube 1 produced by the above-mentioned manufacturing method is suitable for use in a cross fin type heat exchanger.
- the comparative example 2 if it does not anneal after the tube reduction process in the conventional manufacturing method with a tube reduction process, it is difficult to improve the processability of the internally spiral grooved tube 8. As shown in Comparative Example 3, when annealing is performed after the tube contraction process, the mechanical properties of the raw pipe 2 are lost. Further, the inner surface spiral grooved tube 8 shown in Comparative Example 3 has a larger average crystal grain size and smaller tensile strength ⁇ B1 and yield strength than the inner surface spiral grooved tube 1 of Example 2, so There is a risk that the pressure resistance and fatigue strength when the refrigerant flows will be reduced.
- the conventional manufacturing method has a limitation in the shape of the raw pipe 2 that can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Provided is a method for manufacturing a pipe (1) with a spirally grooved inner surface, the method enabling an increase in the helix angle of grooves through a simple process. When a pipe (1) with a spirally grooved inner surface is manufactured, first, a pipe blank (2) which is provided with a number of fins (21) protruding from an inner surface and extending in a direction parallel with a pipe axis (20), and with grooves (22) formed between the fins (21) is prepared. Then, the pipe blank (2) is subjected to a bending process for bending in a direction perpendicular to the pipe axis (20), while providing the pipe blank (2) with a torsional moment centered about the pipe axis (20), thereby plastically deforming the fins (21) and the grooves (22) in a helical shape revolving around the pipe axis (20). In this way, it is possible to obtain a pipe (1) with spirally grooved inner surface, the pipe (1) having the helical-shaped fins (11) and grooves (12) revolving around the pipe axis (10).
Description
本発明は、内面螺旋溝付管及びその製造方法に関する。
The present invention relates to an internally helical grooved tube and a method of manufacturing the same.
冷凍機器や空調機器等に組み込まれる蒸発器や凝縮器等の熱交換器は、内部に冷媒を流通させる伝熱管を有している。この種の伝熱管として、管の内表面から突出している多数のフィンと、フィン同士の間に形成された溝とを備えた内面溝付管がある。管の内表面に設けられた溝は、管内部の表面積を増加させる、冷媒を攪拌する、毛細管現象により管の内表面に液膜を保持しやすくする等の効果を奏する。内面溝付管は、これらの効果により、管内部の冷媒を効率よく蒸発または凝縮させることができる。
A heat exchanger such as an evaporator or a condenser, which is incorporated in a refrigeration unit or an air conditioner, has a heat transfer pipe through which a refrigerant flows. As a heat transfer tube of this type, there is an internally grooved tube provided with a large number of fins projecting from the inner surface of the tube and a groove formed between the fins. The grooves provided on the inner surface of the tube have effects such as increasing the surface area inside the tube, stirring the refrigerant, and facilitating holding the liquid film on the inner surface of the tube by capillary action. The inner grooved tube can efficiently evaporate or condense the refrigerant inside the tube due to these effects.
従来、内面溝付管としては、銅材からなり、転造加工によって内表面にらせん状のフィン及び溝が設けられた内面螺旋溝付管が多用されている。しかし、近年では、銅管に替えて、素材コストが銅に比べて低く、リサイクルが容易なアルミニウム材(アルミニウム及びアルミニウム合金を含む。以下同じ。)からなる内面螺旋溝付管の需要が増加しつつある。
Conventionally, as the inner grooved tube, an inner surface spiral grooved tube made of a copper material and provided with spiral fins and grooves on the inner surface by rolling is widely used. However, in recent years, the demand for internal spiral grooved tubes consisting of aluminum materials (including aluminum and aluminum alloys; the same applies hereinafter), which is low in material cost compared to copper and easy to recycle, in place of copper tubes It is getting worse.
アルミニウム材からなる管は、銅管に比べて転造加工性が低いため、転造加工により管の内面にらせん状の溝及びフィンを形成することが難しい。そのため、管軸に平行な方向に延設された直線状の溝及びフィンを有する素管を準備し、この素管に管軸を中心とするねじり加工を施すことにより、管の内面の溝及びフィンをらせん状に変形させる技術が提案されている。
It is difficult to form a spiral groove and a fin on the inner surface of the tube by rolling because the tube made of aluminum material has lower rolling formability than a copper tube. Therefore, a base pipe having straight grooves and fins extending in a direction parallel to the pipe axis is prepared, and the base pipe is subjected to a twisting process centering on the pipe axis to form grooves in the inner surface of the pipe and Techniques have been proposed to deform the fins in a spiral.
例えば、特許文献1には、内面に直線溝を有する管を素管とし、引抜きダイスの手前側でねじって引抜きを行う内面螺旋溝付管の製造方法が記載されている。素管を構成するアルミニウム材は、引抜きダイスにおいて外径を縮小する縮管加工が施される際に塑性流動する。そのため、管軸を中心として回転させながら素管に縮管加工を施すことにより、上記の塑性流動を利用して管の内面の溝及びフィンをらせん状に変形させることができる。
For example, Patent Document 1 describes a method of manufacturing an internally helical grooved tube in which a tube having a straight groove on its inner surface is used as a base tube, and the tube is drawn on the front side of a drawing die by twisting. The aluminum material which comprises an element pipe flows plastically, when the pipe reduction process which reduces an outer diameter in drawing die is given. Therefore, the groove and the fin on the inner surface of the tube can be deformed in a spiral shape by utilizing the above-described plastic flow by performing the tube contraction process while rotating around the tube axis.
しかし、素管に縮管加工を施す場合、加工硬化により内面螺旋溝付管の硬度が素管に比べて高くなる。特許文献2及び特許文献3には、内面螺旋溝付管を焼き鈍しすることにより、縮管加工時の加工硬化を解消する技術が記載されている。
However, in the case of subjecting an element pipe to a contraction process, the hardness of the internally spiral grooved pipe is higher than that of the element pipe due to work hardening. Patent Literature 2 and Patent Literature 3 describe a technique for eliminating work hardening at the time of tube contraction processing by annealing the inner surface spiral grooved tube.
特許文献1~3の製造方法では、上述したように、引抜きダイス内でのアルミニウム材の塑性流動を利用し、引抜きダイスの入口側において素管の内面の溝及びフィンをらせん状に変形させている。これらの方法において、引抜きダイスを通過した内面螺旋溝付管は、素管よりも外径が縮小された分、素管に比べて管軸方向に引き伸ばされている。そのため、内面螺旋溝付管における溝のねじれ角は、引抜きダイスの入口側における溝のねじれ角よりも小さくなる。このように、特許文献1~3のような縮管加工を伴うねじり加工は、縮管加工の際に溝のねじれ角が減少するため、本質的に加工効率が低いという問題がある。
In the manufacturing methods of Patent Documents 1 to 3, as described above, the plastic flow of the aluminum material in the drawing die is utilized, and the grooves and fins on the inner surface of the blank are helically deformed at the inlet side of the drawing die. There is. In these methods, the inner surface helical grooved tube which has passed through the drawing die is stretched in the axial direction of the tube compared to the blank tube by the reduction of the outer diameter compared to the blank tube. Therefore, the twist angle of the groove in the internally helical grooved tube is smaller than the twist angle of the groove on the inlet side of the drawing die. As described above, the twisting process accompanied with the tube reduction process as in Patent Documents 1 to 3 has a problem that the process efficiency is essentially low because the twist angle of the groove is reduced during the tube reduction process.
また、特許文献2~3には、素管への回転の付与と縮管加工とを繰り返し行うことにより、溝のねじれ角を大きくする技術も記載されている。縮管加工が施されると、外径の縮小に応じて溝の幅が狭くなるとともに、溝同士の間に介在するフィンの高さが低くなる。その反面、溝の底部における肉厚は、外径の縮小に対応して減少せず、かえって縮管加工によって増大する。
Further, Patent Documents 2 to 3 also describe a technique for increasing the twist angle of the groove by repeatedly applying the rotation to the raw pipe and the contraction process. When the contraction process is performed, the width of the groove is narrowed according to the reduction of the outer diameter, and the height of the fin interposed between the grooves is reduced. On the other hand, the wall thickness at the bottom of the groove does not decrease in response to the reduction of the outer diameter, but rather increases by contraction.
このように、縮管加工においては、素管全体の寸法が一様に縮小するわけではなく、素管の位置によって寸法変化の態様が異なるため、内面螺旋溝付管の断面形状が素管の断面形状から変化する。そのため、素管への回転の付与と縮管加工とを繰り返し行う場合には、最終的に得られる内面螺旋溝付管の断面形状が所望の形状とは異なる形状となり、伝熱性能の悪化を招くおそれがある。
As described above, in the contraction process, the overall size of the raw pipe is not uniformly reduced, and the shape of the dimensional change differs depending on the position of the raw pipe, so the cross-sectional shape of the inner spiral grooved pipe is raw pipe It changes from the cross-sectional shape. Therefore, when the application of rotation to the base tube and the contraction process are repeated, the cross-sectional shape of the finally obtained internal spiral grooved tube becomes different from the desired shape, and the heat transfer performance is deteriorated. There is a risk of
また、例えば内面螺旋溝付管において、溝の底部の肉厚を薄くしようとする場合には、素管における溝の底部の肉厚を内面螺旋溝付管よりも更に薄くする必要がある。この場合には、素管の断面が楕円状や長円状等の偏平な形状になりやすく、製造コストの増大や内面螺旋溝付管の品質のバラつきの増大を招くおそれもある。
In addition, for example, in the case of an inner surface spiral grooved tube, in order to reduce the thickness of the bottom portion of the groove, it is necessary to make the thickness of the bottom portion of the groove in the base tube thinner than that of the inner surface spiral grooved tube. In this case, the cross section of the raw pipe tends to be a flat shape such as an oval shape or an oval shape, which may cause an increase in manufacturing cost and an increase in the variation in quality of the internally spiral grooved tube.
更に、素管への回転の付与と縮管加工とを繰り返し行う場合には、縮管加工が完了する度に焼き鈍しを行って加工硬化を解消する必要があるため、工程数の増大及び製造設備の複雑化を招くおそれがある。また、製造設備の複雑化に伴い、設備コスト及びランニングコストの増大等の問題を生じるおそれもある。
Furthermore, in the case of repeatedly applying the rotation to the raw pipe and the contraction process, it is necessary to perform annealing at every completion of the contraction process to eliminate work hardening, so the number of processes increases and manufacturing equipment Could lead to the complexity of In addition, with the complication of manufacturing facilities, problems such as increases in facility costs and running costs may occur.
本発明は、かかる背景に鑑みてなされたものであり、簡素な工程により溝のねじれ角を大きくすることができる内面螺旋溝付管の製造方法を提供しようとするものである。
The present invention has been made in view of the above background, and an object of the present invention is to provide a method of manufacturing an inner surface spiral grooved tube capable of increasing the twist angle of the groove by a simple process.
本発明の一態様は、内表面から突出し、管軸に平行な方向に延設された多数のフィンと、前記フィン同士の間に形成された溝と、を備え、アルミニウム材からなる素管を準備し、
前記素管に、前記管軸を中心とするねじりモーメントを付与しながら前記管軸に直交する方向へ曲げる曲げ加工を施すことにより、前記フィン及び前記溝を前記管軸の周囲を旋回するらせん状に塑性変形させる、
内面螺旋溝付管の製造方法にある。 One aspect of the present invention is a raw tube made of an aluminum material, comprising a plurality of fins projecting from the inner surface and extending in a direction parallel to the tube axis, and grooves formed between the fins. Prepare
The base tube is subjected to a bending process in which it is bent in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis, whereby the fin and the groove are spirally wound around the tube axis Plastically deform,
A method of manufacturing an inner surface spiral grooved tube.
前記素管に、前記管軸を中心とするねじりモーメントを付与しながら前記管軸に直交する方向へ曲げる曲げ加工を施すことにより、前記フィン及び前記溝を前記管軸の周囲を旋回するらせん状に塑性変形させる、
内面螺旋溝付管の製造方法にある。 One aspect of the present invention is a raw tube made of an aluminum material, comprising a plurality of fins projecting from the inner surface and extending in a direction parallel to the tube axis, and grooves formed between the fins. Prepare
The base tube is subjected to a bending process in which it is bent in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis, whereby the fin and the groove are spirally wound around the tube axis Plastically deform,
A method of manufacturing an inner surface spiral grooved tube.
前記内面螺旋溝付管の製造方法においては、管軸に平行な方向に延設された多数のフィンと、フィン同士の間に形成された溝とを有する素管を準備し、この素管に、管軸を中心とするねじりモーメントを付与しながら管軸に直交する方向へ曲げる曲げ加工を施す。このように、曲げ加工において、素管にねじりモーメントと曲げモーメントとを同時に付与することにより、曲げモーメントを付与しない場合に比べて小さいねじりモーメントで素管を塑性変形させることができる。その結果、素管の内表面に設けられた直線状のフィン及び溝を管軸の周りを旋回するらせん状に塑性変形させ、内面螺旋溝付管を得ることができる。
In the method of manufacturing the inner surface spiral grooved tube, a blank having a plurality of fins extending in a direction parallel to the tube axis and a groove formed between the fins is prepared, and Bending is performed in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis. As described above, by simultaneously applying a twisting moment and a bending moment to the blank in bending, the blank can be plastically deformed with a smaller twisting moment than when no bending moment is applied. As a result, it is possible to plastically deform the straight fins and the grooves provided on the inner surface of the blank into a spiral that turns around the tube axis, to obtain an internally spiral grooved tube.
前記製造方法は、縮管加工によらずにフィン及び溝をらせん状に塑性変形させることができる。そのため、溝のねじれ角の減少、素管からの断面形状の変化、製造工程の複雑化及び製造コストの増加等の、縮管加工を伴う従来の製造方法における種々の問題を回避し、簡素な工程により溝のねじれ角が大きい内面螺旋溝付管を作製することができる。
According to the manufacturing method, the fins and the grooves can be plastically deformed in a spiral shape regardless of the pipe forming process. Therefore, various problems in the conventional manufacturing method involving the tube forming process such as reduction of the twist angle of the groove, change of the cross-sectional shape from the raw pipe, complication of the manufacturing process and increase of manufacturing cost are avoided and simple. According to the process, it is possible to produce an inner surface helical grooved tube having a large twist angle of the groove.
前記製造方法において、内面螺旋溝付管の素材となる素管は、内表面から突出している多数のフィンと、フィン同士の間に形成された溝とを有している。また、素管におけるフィン及び溝は、管軸に平行な方向に延設された直線状を呈している。素管の外径、溝の底部の肉厚、フィンの条数、高さ及び頂角は、得ようとする内面螺旋溝付管の外径等に応じて適宜設定することができる。
In the above-mentioned manufacturing method, a base pipe which is a material of the inner surface spiral grooved pipe has a large number of fins projecting from the inner surface and a groove formed between the fins. Further, the fins and grooves in the raw tube have a linear shape extending in a direction parallel to the tube axis. The outer diameter of the base tube, the thickness of the bottom of the groove, the number of fins, the height and the apex angle can be set as appropriate according to the outer diameter of the internally spiral grooved tube to be obtained.
具体的には、素管の外径は、例えば5~10mmの範囲から適宜設定することができる。また、溝の底部の肉厚は、0.30~0.70mmの範囲から適宜設定することができる。
Specifically, the outer diameter of the raw pipe can be appropriately set, for example, in the range of 5 to 10 mm. Further, the thickness of the bottom of the groove can be appropriately set from the range of 0.30 to 0.70 mm.
また、前記曲げ加工が施された素管をそのまま内面螺旋溝付管とする場合には、内面螺旋溝付管の断面形状は、素管の断面形状とほとんど同一の形状となる。それ故、この場合には、素管の外径、溝の底部の肉厚、フィンの条数、高さ及び頂角を、内面螺旋溝付管において所望する値に設定すればよい。
Further, when the base pipe subjected to the bending process is used as the inner surface spiral grooved pipe as it is, the cross sectional shape of the inner surface spiral grooved pipe is almost the same as the cross sectional shape of the base pipe. Therefore, in this case, the outer diameter of the blank, the thickness of the bottom of the groove, the number of fins, the height and the apex angle may be set to desired values in the internally spiral grooved tube.
素管は、押出加工により製造された押出材であってもよい。また、素管を構成するアルミニウム材の化学成分は、内面溝付管の用途や所望する特性に応じて公知のアルミニウム及びアルミニウム合金から選択することができる。例えば、アルミニウム材としては、JIS A3003合金等の3000系アルミニウム合金や、1000系アルミニウムを使用することができる。強度及び加工性の観点からは、アルミニウム材として3000系アルミニウム合金を採用することが好ましい。
The raw pipe may be an extruded material produced by extrusion processing. Moreover, the chemical composition of the aluminum material which comprises an element pipe | tube can be selected from well-known aluminum and aluminum alloy according to the use and the desired characteristic of an inner surface grooved pipe. For example, as an aluminum material, 3000 series aluminum alloys, such as a JIS A 3003 alloy, and 1000 series aluminum can be used. From the viewpoint of strength and processability, it is preferable to use a 3000 series aluminum alloy as the aluminum material.
素管のフィン及び溝をらせん状に塑性変形させるに当たっては、前述したように、素管に、管軸を中心とするねじりモーメントを付与しながら管軸に直交する方向へ曲げる曲げ加工を施す。曲げ加工中の素管には、管軸を中心とするねじりモーメントと、管軸に直交する方向へ素管を曲げる曲げモーメントとが同時に付与される。これにより、曲げモーメントを付与しない場合に比べて低いねじりモーメントで素管を塑性変形させることができる。この理由は、例えば、以下のようにして説明することができる。
In order to plastically deform the fins and grooves of the base tube in a helical manner, as described above, the base tube is bent in a direction perpendicular to the axis while applying a twisting moment about the axis. A twisting moment centering on the tube axis and a bending moment to bend the blank in a direction perpendicular to the tube axis are simultaneously applied to the blank during bending. As a result, the raw pipe can be plastically deformed with a lower twisting moment than in the case where no bending moment is applied. The reason can be described, for example, as follows.
素管にねじりモーメントを付与して塑性変形させようとする場合には、素管の降伏点よりも大きなせん断応力を与える必要がある。最大せん断応力説によれば、せん断応力τ[N・m]は、素管の断面係数をZ、ねじりモーメントの大きさをT[N・m]、曲げモーメントの大きさをM[N・m]とした場合に、以下の式により表される。
τ=(T2+M2)0.5/2Z In the case of applying plastic deformation by applying a twisting moment to the blank, it is necessary to apply a shear stress larger than the yield point of the blank. According to the maximum shear stress theory, the shear stress τ [N · m] is Z for the section coefficient of the raw tube, T [N · m] for the magnitude of the twisting moment, and M [N · m] for the bending moment ], It is represented by the following formula.
τ = (T 2 + M 2 ) 0.5 / 2Z
τ=(T2+M2)0.5/2Z In the case of applying plastic deformation by applying a twisting moment to the blank, it is necessary to apply a shear stress larger than the yield point of the blank. According to the maximum shear stress theory, the shear stress τ [N · m] is Z for the section coefficient of the raw tube, T [N · m] for the magnitude of the twisting moment, and M [N · m] for the bending moment ], It is represented by the following formula.
τ = (T 2 + M 2 ) 0.5 / 2Z
熱交換器に用いられる内面螺旋溝付管は、比較的外径が細いため、ねじりモーメントTを大きくすることが難しい。また、ねじりモーメントTのみを大きくしようとすると、素管が局所的に変形し、更にはこの変形点を起点として素管が座屈するおそれがある。これに対し、曲げモーメントMを大きくすることは、ねじりモーメントTに比べて容易である。それ故、ねじりモーメントTと曲げモーメントMとを同時に素管に付与することにより、素管の座屈を抑制しつつ、応力τを大きくすることができる。その結果、素管のフィン及び溝を容易にらせん状に塑性変形させ、内面螺旋溝付管を得ることができる。
The inner helical grooved tube used in the heat exchanger has a relatively small outer diameter, so it is difficult to increase the twisting moment T. Also, if it is attempted to increase only the twisting moment T, the raw pipe may be locally deformed, and furthermore, the raw pipe may be buckled starting from this deformation point. On the other hand, increasing the bending moment M is easier than the twisting moment T. Therefore, by simultaneously applying the twisting moment T and the bending moment M to the blank, the stress τ can be increased while suppressing the buckling of the blank. As a result, it is possible to easily plastically deform the fins and grooves of the raw tube in a helical manner, and obtain an internally helical grooved tube.
前述の曲げ加工において、素管にねじりモーメントを付与する方法としては、例えば、曲げ加工機に対して上流側及び下流側のいずれか一方側において素管に管軸を中心とする回転を付与し、他方側において素管の回転を規制する方法がある。また、曲げ加工における素管の曲げ方向は、管軸に直交する方向であれば、いずれの方向であってもよい。例えば、素管の管軸方向を前後方向とした場合に、曲げの方向は、左右方向であってもよいし、上下方向であってもよい。また、左右方向又は上下方向に対して傾いた方向に素管を曲げることもできる。
In the above-mentioned bending process, as a method of applying a twisting moment to the raw pipe, for example, rotation of the raw pipe about the pipe axis is given to either the upstream side or the downstream side of the bending machine. There is a method of regulating the rotation of the raw pipe on the other side. In addition, the bending direction of the hollow tube in bending may be any direction as long as it is a direction orthogonal to the tube axis. For example, in the case where the tube axis direction of the raw tube is the front-rear direction, the bending direction may be the left-right direction or the up-down direction. In addition, it is also possible to bend the raw tube in a direction inclined to the left-right direction or the up-down direction.
また、素管を曲げる回数は、1回であってもよいし、2回以上であってもよい。素管を曲げる回数を2回以上とする場合には、例えば、同一の方向へ繰り返し素管を曲げてもよいし、上下方向へ素管を曲げた後に左右方向へ素管を曲げる等、曲げる方向を変更することもできる。
Moreover, the number of times of bending the raw pipe may be one, or may be two or more. In the case where the number of times the element tube is bent is two or more, for example, the element tube may be repeatedly bent in the same direction, or the element tube is bent in the vertical direction and then bent in the left and right direction. You can also change the direction.
前記曲げ加工においては、素管を管軸に直交する方向へ弾性変形させることが好ましい。曲げ加工の際に、素管の弾性限度以上の曲げ荷重を素管に印加すると、素管が曲げ方向に塑性変形するおそれがある。この場合には、かえって曲げモーメントが小さくなり、素管に付与されるせん断応力の低下を招くおそれがある。曲げ荷重の大きさを素管の弾性限度よりも小さくし、曲げ加工において素管を管軸に直交する方向へ弾性変形させることにより、かかる問題を回避し、フィン及び溝を効率よくらせん状に塑性変形させることができる。
In the bending process, it is preferable to elastically deform the raw tube in a direction perpendicular to the tube axis. When a bending load equal to or higher than the elastic limit of the hollow shell is applied to the hollow shell during bending, the hollow shell may be plastically deformed in the bending direction. In this case, the bending moment is rather reduced, which may lead to a reduction in shear stress applied to the blank. By making the magnitude of the bending load smaller than the elastic limit of the blank and elastically deforming the blank in the direction perpendicular to the tube axis in bending, such problems can be avoided and the fins and grooves can be efficiently spiraled. It can be plastically deformed.
前記曲げ加工の前後においては、素管の外径をOD0[mm]、素管における溝の底部の肉厚をTF0[mm]とし、内面螺旋溝付管の外径をOD1[mm]、内面螺旋溝付管における溝の底部の肉厚をTF1[mm]とした場合に、下記式(1)~式(2)を満たしていてもよい。
0<(OD1-OD0)/OD0<0.03 ・・・(1)
0≦(TF1-TF0)/TF0<0.04 ・・・(2) Before and after the bending process, the outer diameter of the blank is OD 0 [mm], the thickness of the bottom of the groove in the blank is TF 0 [mm], and the outer diameter of the internally spiral grooved tube is OD 1 [mm] When the thickness of the bottom of the groove in the internally helical grooved tube is TF 1 [mm], the following formulas (1) to (2) may be satisfied.
0 <(OD 1 −OD 0 ) / OD 0 <0.03 (1)
0 ≦ (TF 1 −TF 0 ) / TF 0 <0.04 (2)
0<(OD1-OD0)/OD0<0.03 ・・・(1)
0≦(TF1-TF0)/TF0<0.04 ・・・(2) Before and after the bending process, the outer diameter of the blank is OD 0 [mm], the thickness of the bottom of the groove in the blank is TF 0 [mm], and the outer diameter of the internally spiral grooved tube is OD 1 [mm] When the thickness of the bottom of the groove in the internally helical grooved tube is TF 1 [mm], the following formulas (1) to (2) may be satisfied.
0 <(OD 1 −OD 0 ) / OD 0 <0.03 (1)
0 ≦ (TF 1 −TF 0 ) / TF 0 <0.04 (2)
前述したように、縮管加工を伴う従来の製造方法では、内面螺旋溝付管の断面形状が縮管加工によって素管の断面形状から変化し、伝熱性能の悪化を招くおそれがあるという問題があった。これに対し、前記製造方法によれば、曲げ加工が施された素管をそのまま内面螺旋溝付管とすることができる。そのため、従来の製造方法において生じていた縮管加工時の意図しない断面形状の変化を抑制し、前記式(1)~式(2)のように、素管の断面形状と概ね相似形となる断面形状を備えた内面螺旋溝付管を得ることができる。その結果、内面螺旋溝付管の伝熱性能の悪化を容易に回避することができる。
As described above, in the conventional manufacturing method involving the tube contraction process, the cross-sectional shape of the inner surface helical grooved tube changes from the cross-sectional shape of the base tube by the tube contraction process, which may cause deterioration of the heat transfer performance. was there. On the other hand, according to the said manufacturing method, the element pipe in which the bending process was given can be used as an inner surface spiral grooved pipe as it is. Therefore, it is possible to suppress an unintended change in the cross-sectional shape at the time of the contraction process, which has occurred in the conventional manufacturing method, and to be substantially similar to the cross-sectional shape of the raw pipe as in the above formulas (1) to An internally helical grooved tube with a cross-sectional shape can be obtained. As a result, it is possible to easily avoid the deterioration of the heat transfer performance of the internally spiral grooved tube.
また、前記製造方法においては、素管の引張強さをσB0[MPa]、内面螺旋溝付管の引張強さをσB1[MPa]とした場合に、下記式(3)を満たしていてもよい。
0.02<(σB1-σB0)/σB0<0.10 ・・・(3) In the above manufacturing method, when the tensile strength of the raw pipe is σ B0 [MPa] and the tensile strength of the inner surface spiral grooved pipe is σ B1 [MPa], the following formula (3) is satisfied. It is also good.
0.02 <(σ B1 -σ B0 ) / σ B0 <0.10 (3)
0.02<(σB1-σB0)/σB0<0.10 ・・・(3) In the above manufacturing method, when the tensile strength of the raw pipe is σ B0 [MPa] and the tensile strength of the inner surface spiral grooved pipe is σ B1 [MPa], the following formula (3) is satisfied. It is also good.
0.02 <(σ B1 -σ B0 ) / σ B0 <0.10 (3)
前述したように、縮管加工を伴う従来の製造方法では、通常、縮管加工時の加工硬化を解消するための焼き鈍しが行われている。しかし、焼き鈍しを行う場合には、内面螺旋溝付管のアルミニウム材が再結晶し、素管に比べて引張強さ及び疲労強度が低下するおそれがある。
As described above, in the conventional manufacturing method that involves tube contraction, annealing is usually performed to eliminate work hardening during tube reduction. However, when annealing is performed, the aluminum material of the inner surface spiral grooved tube is recrystallized, and there is a possibility that the tensile strength and the fatigue strength may be reduced as compared with the raw pipe.
これに対し、前記製造方法においては、前述したように、曲げ加工が施された素管をそのまま内面螺旋溝付管とすることができるため、前記式(3)のように、内面螺旋溝付管における引張強さを素管と同等以上にすることができる。このように、前記製造方法によれば、焼き鈍しによる引張強さ等の低下を回避し、従来の製造方法による内面螺旋溝付管に比べて高い強度特性を備えた内面螺旋溝付管を得ることができる。
On the other hand, in the above-mentioned manufacturing method, as described above, since the raw pipe subjected to the bending process can be used as the inner surface spiral grooved pipe as it is, as in the above-mentioned formula (3) The tensile strength of the pipe can be made equal to or higher than that of the raw pipe. As described above, according to the manufacturing method, it is possible to obtain an inner surface spiral grooved tube having high strength characteristics as compared with the inner surface spiral grooved tube according to the conventional manufacturing method while avoiding a decrease in tensile strength and the like due to annealing. Can.
なお、前記製造方法においては、必要に応じて、曲げ加工の後に応力除去焼鈍等の熱処理や、拡管加工等の加工を追加して行うこともできる。
In the production method, if necessary, heat treatment such as stress relief annealing may be added after bending, or processing such as pipe expansion may be additionally performed.
前記製造方法により得られる内面螺旋溝付管は、内表面に、多数のフィンと、フィン同士の間に形成された溝と、を有している。また、内面螺旋溝付管におけるフィン及び溝は、管軸の周囲を旋回するらせん状を呈している。内面螺旋溝付管における溝のねじれ角、即ち、管軸方向と溝の延設方向とのなす角度は、例えば、0度超え30度以下とすることができる。
The inner surface spiral grooved tube obtained by the above manufacturing method has a large number of fins and grooves formed between the fins on the inner surface. Also, the fins and grooves in the internally helical grooved tube are in the form of a spiral that pivots around the tube axis. The twist angle of the groove in the internally helical grooved tube, that is, the angle between the axial direction of the groove and the extending direction of the groove can be, for example, more than 0 degrees and not more than 30 degrees.
内面螺旋溝付管の伝熱性能をより高める観点からは、溝のねじれ角を大きくすることが好ましい。しかし、溝のねじれ角が大きくなると、内面螺旋溝付管の製造コストの増大を招くおそれがある。従って、製造コストの増大を抑制しつつ伝熱性能をより高める観点から、溝のねじれ角を5度以上20度以下とすることが好ましい。
From the viewpoint of further enhancing the heat transfer performance of the inner surface helical grooved tube, it is preferable to increase the twist angle of the groove. However, if the twist angle of the groove is large, the manufacturing cost of the internally spiral grooved tube may be increased. Therefore, it is preferable to set the twist angle of the groove to 5 degrees or more and 20 degrees or less from the viewpoint of enhancing the heat transfer performance while suppressing the increase in the manufacturing cost.
前記製造方法において、曲げ加工を施した素管をそのまま内面螺旋溝付管とする場合には、素管の金属組織とほとんど同一の金属組織を備えた内面螺旋溝付管を得ることができる。例えば、A3003合金等の3000系アルミニウム合金からなる素管を使用する場合には、得られる内面螺旋溝付管の組織を、平均結晶粒径80μm以下の再結晶組織とすることができる。また、この場合には、内面螺旋溝付管の引張強さを115MPa以上、耐力を95MPa以上、伸びを20%以上とすることができる。
In the above manufacturing method, when the base pipe subjected to the bending process is used as the inner surface spiral grooved pipe as it is, it is possible to obtain an inner surface spiral grooved pipe provided with almost the same metal structure as the metal structure of the base pipe. For example, in the case of using an element tube made of a 3000 series aluminum alloy such as an A3003 alloy, the structure of the inner surface spiral grooved tube obtained can be a recrystallized structure having an average crystal grain size of 80 μm or less. Moreover, in this case, the tensile strength of the internally spiral grooved tube can be made 115 MPa or more, the proof stress can be made 95 MPa or more, and the elongation can be made 20% or more.
かかる特性を備えた内面螺旋溝付管は、機械拡管加工における加工性に優れているため、例えば、内面螺旋溝付管とフィンとが機械拡管加工によって接合されてなるクロスフィン型熱交換器に好適に使用することができる。また、前記内面螺旋溝付管は、クロスフィン型熱交換器以外の用途にも適用することができる。なお、内面螺旋溝付管の平均結晶粒径は、例えば、JIS G0551(ASTM E 112-96、ASTM E 1382-97)に規定された切断法に準じて算出することができる。
Since the internally spiral grooved tube having such characteristics is excellent in workability in machine expansion processing, for example, a cross fin type heat exchanger in which the internally spiral grooved pipe and the fins are joined by mechanical expansion processing. It can be used suitably. Further, the inner surface spiral grooved tube can be applied to uses other than the cross fin type heat exchanger. The average grain size of the internally spiral grooved tube can be calculated, for example, according to the cutting method defined in JIS G0551 (ASTM E 112-96, ASTM E 1382-97).
(実施例1)
前記内面螺旋溝付管及びその製造方法の実施例を、図1及び図2を用いて説明する。本例の内面螺旋溝付管の製造方法においては、まず、アルミニウム材からなる素管2(図2参照)を準備する。素管2は、図2に示すように、内表面から突出し、管軸20に平行な方向に延設された多数のフィン21と、フィン21同士の間に形成された溝22と、を有している。 Example 1
An embodiment of the inner surface spiral grooved tube and a method of manufacturing the same will be described with reference to FIGS. 1 and 2. In the method of manufacturing the internally spiral grooved tube according to the present embodiment, first, the raw pipe 2 (see FIG. 2) made of an aluminum material is prepared. As shown in FIG. 2, theraw tube 2 has a large number of fins 21 projecting from the inner surface and extending in a direction parallel to the tube axis 20 and a groove 22 formed between the fins 21. doing.
前記内面螺旋溝付管及びその製造方法の実施例を、図1及び図2を用いて説明する。本例の内面螺旋溝付管の製造方法においては、まず、アルミニウム材からなる素管2(図2参照)を準備する。素管2は、図2に示すように、内表面から突出し、管軸20に平行な方向に延設された多数のフィン21と、フィン21同士の間に形成された溝22と、を有している。 Example 1
An embodiment of the inner surface spiral grooved tube and a method of manufacturing the same will be described with reference to FIGS. 1 and 2. In the method of manufacturing the internally spiral grooved tube according to the present embodiment, first, the raw pipe 2 (see FIG. 2) made of an aluminum material is prepared. As shown in FIG. 2, the
図2に示すように、この素管2に管軸20を中心とするねじりモーメントを付与しながら管軸20に直交する方向(矢印m)へ曲げる曲げ加工を施すことにより、フィン21及び溝22を、管軸20の周囲を旋回するらせん状に塑性変形させる。以上により、管軸10の周囲を旋回するらせん状のフィン11及び溝12を備えた内面螺旋溝付管1を得ることができる。
As shown in FIG. 2, the fins 21 and the grooves 22 are formed by bending the raw pipe 2 in a direction (arrow m) orthogonal to the pipe axis 20 while applying a twisting moment centering on the pipe axis 20. Are plastically deformed in a spiral shape which turns around the tube axis 20. By the above, it is possible to obtain the inner surface spiral grooved tube 1 provided with the spiral fin 11 and the groove 12 which are turned around the tube axis 10.
以下、本例において使用した内面螺旋溝付管1の製造装置3の構成を説明しつつ、前記製造方法をより具体的に説明する。本例の製造装置3は、図1に示すように、素管送出部4と、ベンダー部5と、回転規制部6と、巻き取り部7とを有している。素管送出部4から引き出された素管2は、ベンダー部5においてねじりモーメントが付与された状態で曲げ加工が施され、内面螺旋溝付管1となる。ベンダー部5を通過した内面螺旋溝付管1は、回転規制部6によって巻き取り部7へ向かって搬送され、巻き取り部7により巻き取られる。
Hereinafter, the said manufacturing method is demonstrated more concretely, demonstrating the structure of the manufacturing apparatus 3 of the inner surface spiral grooved pipe 1 used in this example. As shown in FIG. 1, the manufacturing apparatus 3 of this example includes a raw tube delivery unit 4, a bender unit 5, a rotation restricting unit 6, and a winding unit 7. The raw pipe 2 drawn out from the raw pipe delivery section 4 is subjected to bending processing in a state where a twisting moment is applied in the bender section 5, and becomes the inner surface spiral grooved pipe 1. The internally spiral grooved tube 1 having passed the bender portion 5 is conveyed toward the winding portion 7 by the rotation restricting portion 6 and is wound by the winding portion 7.
素管送出部4は、素管2が巻回された操出ドラム41と、素管2の搬送方向200に延設され、操出ドラム41の中心軸411を回転可能に保持するドラム保持部42と、ドラム保持部42を支持するフレーム43と、を有している。素管2は、回転規制部6における搬送ベルト61(後述)の回転に従って操出ドラム41から引き出され、搬送方向200に沿ってベンダー部5へ導かれる。
The raw pipe delivery unit 4 extends in the conveying direction 200 of the raw pipe 2 and the feed drum 41 around which the raw pipe 2 is wound, and is a drum holding portion that holds the central shaft 411 of the raw drum 41 rotatably. 42 and a frame 43 for supporting the drum holding portion 42. The raw pipe 2 is pulled out of the feed drum 41 according to the rotation of a conveyance belt 61 (described later) in the rotation restricting unit 6 and is guided to the bender unit 5 along the conveyance direction 200.
また、素管送出部4は、操出ドラム41をドラム保持部42ごと素管2の搬送方向200を中心として回動させるモータ44と、モータ44の駆動力をドラム保持部42に伝達する伝達ベルト45とを有している。素管送出部4においてモータ44を駆動させた場合、モータ44の駆動力が伝達ベルト45を介してドラム保持部42に伝達される。これにより、操出ドラム41がドラム保持部42とともに素管2の搬送方向200を中心として回動する(図1、矢印412)。その結果、操出ドラム41から引き出された素管2を、図2に示すように管軸20を中心として回転させることができる(図2、矢印t)。
In addition, the raw tube delivery unit 4 transmits the driving force of the motor 44 to the drum holding unit 42. The motor 44 rotates the feeding drum 41 together with the drum holding unit 42 around the conveying direction 200 of the raw tube 2. And a belt 45. When the motor 44 is driven in the raw tube delivery unit 4, the driving force of the motor 44 is transmitted to the drum holding unit 42 via the transmission belt 45. As a result, the feed-out drum 41 and the drum holding portion 42 rotate about the conveying direction 200 of the raw pipe 2 (FIG. 1, arrow 412). As a result, as shown in FIG. 2, the raw pipe 2 drawn from the feed drum 41 can be rotated about the pipe axis 20 (FIG. 2, arrow t).
素管送出部4から送り出された素管2は、管軸20を中心として回転しながら搬送方向200に沿って搬送され、ベンダー部5へ導かれる。
The raw pipe 2 delivered from the raw pipe delivery unit 4 is transported along the transport direction 200 while being rotated about the tube axis 20 and is guided to the bender unit 5.
ベンダー部5は、搬送方向200における上流側、即ち素管送出部4側に位置する第1ロールベンダー51と、下流側、即ち巻き取り部7側に位置する第2ロールベンダー52と、を有している。第1ロールベンダー51は、搬送方向200に間隔を開けて配置された2本の下側ロール511と、搬送方向200において2本の下側ロール511の間に配置された上側ロール512と、を有している。上側ロール512は、その下端が下側ロール511の上端よりも下方に位置するように配置されている。
The bender unit 5 has a first roll bender 51 located on the upstream side in the transport direction 200, that is, the raw pipe delivery unit 4 side, and a second roll bender 52 located on the downstream side, that is, the winding unit 7 side. doing. The first roll bender 51 includes two lower rolls 511 spaced apart in the transport direction 200 and an upper roll 512 disposed between the two lower rolls 511 in the transport direction 200. Have. The upper roll 512 is disposed so that the lower end thereof is located below the upper end of the lower roll 511.
ベンダー部5に導かれた素管2は、第1ロールベンダー51における下側ロール511と上側ロール512との間に進入する。図2に示すように、第1ロールベンダー51の入口において、素管2のフィン21及び溝22は管軸20に平行な方向に延設された直線状を呈している。また、第1ロールベンダー51の入口において、素管2は、管軸20を中心として矢印tの方向に回転している。この素管2の回転は、後述するように回転規制部6によって規制されている。そのため、下側ロール511と上側ロール512との間を通過する際、素管2は管軸20を中心として矢印tの方向にねじられている。
The raw pipe 2 guided to the bender unit 5 enters between the lower roll 511 and the upper roll 512 in the first roll bender 51. As shown in FIG. 2, at the inlet of the first roll bender 51, the fins 21 and the grooves 22 of the raw tube 2 have a linear shape extending in a direction parallel to the tube axis 20. In addition, at the inlet of the first roll bender 51, the raw pipe 2 rotates in the direction of the arrow t about the pipe axis 20. The rotation of the raw pipe 2 is restricted by the rotation restricting portion 6 as described later. Therefore, when passing between the lower roll 511 and the upper roll 512, the blank tube 2 is twisted in the direction of the arrow t around the tube axis 20.
下側ロール511と上側ロール512との間に進入した素管2には、下方(矢印m)への曲げ荷重が印加される。また、前述したように、素管2は、下側ロール511と上側ロール512との間において、管軸20を中心として矢印tの方向にねじられている。
A bending load to the lower side (arrow m) is applied to the raw tube 2 that has entered between the lower roll 511 and the upper roll 512. Further, as described above, the raw pipe 2 is twisted in the direction of the arrow t around the pipe axis 20 between the lower roll 511 and the upper roll 512.
これらの結果、下側ロール511と上側ロール512との間を通過する際に、素管2には、管軸20を中心とするねじりモーメントが付与された状態で下方に曲げる曲げ加工が施される。素管2のフィン21及び溝22は、曲げ加工により、下側ロール511と上側ロール512との間を搬送方向200に沿って移動しながら徐々にらせん状に塑性変形する。これにより、第1ロールベンダー51の出口において、管軸10を中心として旋回するらせん状のフィン11と、フィン11同士の間に形成された溝12とを内表面に備えた内面螺旋溝付管1を得ることができる。
As a result, when passing between the lower roll 511 and the upper roll 512, the raw pipe 2 is subjected to a bending process in which it is bent downward in a state in which a twisting moment about the pipe axis 20 is applied. Ru. The fins 21 and the grooves 22 of the raw tube 2 are plastically deformed in a spiral shape gradually while being moved along the transport direction 200 between the lower roll 511 and the upper roll 512 by bending. As a result, at the outlet of the first roll bender 51, an inner surface spiral grooved tube provided on the inner surface with a spiral fin 11 that pivots about the tube axis 10 and a groove 12 formed between the fins 11 You can get one.
第1ロールベンダー51を通過した内面螺旋溝付管1は、第2ロールベンダー52へ導かれる。第2ロールベンダー52は、搬送方向200に間隔を開けて配置された2本の上側ロール522と、搬送方向200において2本の上側ロール522の間に配置された下側ロール521と、を有している。また、下側ロール521は、その上端が上側ロール522の下端よりも上方に位置するように配置されている。
The internally spiral grooved tube 1 having passed through the first roll bender 51 is guided to the second roll bender 52. The second roll bender 52 has two upper rolls 522 spaced apart in the transport direction 200 and a lower roll 521 disposed between the two upper rolls 522 in the transport direction 200. doing. Further, the lower roll 521 is disposed such that the upper end thereof is positioned above the lower end of the upper roll 522.
図には示さないが、第2ロールベンダー52内の内面螺旋溝付管1は、第1ロールベンダー51内の素管2と同様に、管軸10を中心として矢印tの方向にねじられている。また、内面螺旋溝付管1には、管軸10を中心とするねじりモーメントが付与された状態で上側ロール522及び下側ロール521によって上方へ曲げる曲げ加工が施される。これにより、第2ロールベンダー52の出口における溝12のねじれ角α(図2参照)、即ち、管軸10に平行な方向に対する溝12の延設方向のなす角度を、第1ロールベンダー51の出口における溝12のねじれ角αよりも大きくすることができる。
Although not shown in the figure, the inner spiral grooved tube 1 in the second roll bender 52 is twisted in the direction of the arrow t about the pipe axis 10 in the same manner as the raw tube 2 in the first roll bender 51 There is. The inner spiral grooved tube 1 is bent upward by the upper roll 522 and the lower roll 521 in a state in which a twisting moment about the pipe axis 10 is applied. (Refer to FIG. 2) of the groove 12 at the outlet of the second roll bender 52, that is, the angle formed by the extending direction of the groove 12 with respect to the direction parallel to the tube axis 10 It can be greater than the twist angle α of the groove 12 at the outlet.
以上のように、本例のベンダー部5は、上下方向に曲げる曲げ加工を素管2に施すことができる。そして、ベンダー部5において、管軸20を中心とするねじりモーメントを付与しながら素管2に曲げ加工を施すことにより、所望する溝12のねじれ角αを備えた内面螺旋溝付管1を得ることができる。ベンダー部5を通過した内面螺旋溝付管1は、搬送方向200に沿って搬送され、回転規制部6へ導かれる。
As described above, the bender portion 5 of this example can perform bending on the base pipe 2 by bending in the vertical direction. Then, in the bender section 5, the base pipe 2 is subjected to bending while giving a twisting moment centering on the pipe axis 20, thereby obtaining the inner surface spiral grooved pipe 1 having a desired twist angle α of the groove 12. be able to. The internally spiral grooved tube 1 which has passed the bender portion 5 is transported along the transport direction 200 and guided to the rotation restricting portion 6.
図1に示すように、回転規制部6は、内面螺旋溝付管1を上下方向から挟持する一対の搬送ベルト61を有している。搬送ベルト61は、内面螺旋溝付管1を上下方向から押圧し、管軸10を中心とする矢印t(図2参照)の方向への回転を規制することができる。また、搬送ベルト61は、自身の回転によって素管2を操出ドラム41から引き出して搬送方向200に沿って搬送するとともに、内面螺旋溝付管1を巻き取り部7へ向けて搬送することができる。
As shown in FIG. 1, the rotation restricting portion 6 has a pair of conveying belts 61 which sandwich the inner surface spiral grooved tube 1 in the vertical direction. The conveyance belt 61 can press the inner surface spiral grooved tube 1 in the up and down direction, and can restrict rotation in the direction of the arrow t (see FIG. 2) about the tube axis 10. Further, the transport belt 61 pulls the raw pipe 2 out of the feeding drum 41 by its own rotation and transports it along the transport direction 200 and transports the inner surface spiral grooved tube 1 toward the winding portion 7. it can.
回転規制部6によって搬送方向200へ送り出された内面螺旋溝付管1は、巻き取り部7によって巻き取られる。
The internally spiral grooved tube 1 delivered in the transport direction 200 by the rotation restricting portion 6 is wound by the winding portion 7.
次に、本例の内面螺旋溝付管1の製造方法の作用効果を説明する。図1及び図2に示すように、本例の製造方法においては、管軸20に平行な方向に延設された多数のフィン21と、フィン同士の間に形成された溝22とを有する素管2を準備し、この素管2に、管軸20を中心とするねじりモーメントを付与しながら管軸20に直交する上下方向へ曲げる曲げ加工を施す。このように、素管2にねじりモーメントと曲げモーメントとを同時に付与することにより、曲げモーメントを付与しない場合に比べて小さいねじりモーメントで素管2を塑性変形させることができる。その結果、素管2の内表面に設けられた直線状のフィン21及び溝22をらせん状に塑性変形させ、内面螺旋溝付管1を得ることができる。
Next, the operation and effect of the method of manufacturing the internally spiral grooved tube 1 of the present embodiment will be described. As shown in FIGS. 1 and 2, in the manufacturing method of this embodiment, a raw material having a large number of fins 21 extending in a direction parallel to the tube axis 20 and grooves 22 formed between the fins. The pipe 2 is prepared, and the base pipe 2 is bent in the vertical direction orthogonal to the pipe axis 20 while applying a twisting moment centering on the pipe axis 20. As described above, by simultaneously applying the twisting moment and the bending moment to the element tube 2, the element tube 2 can be plastically deformed with a smaller twisting moment as compared with the case where the bending moment is not applied. As a result, it is possible to plastically deform the straight fins 21 and the grooves 22 provided on the inner surface of the raw pipe 2 in a helical manner, and obtain the internally spiral grooved pipe 1.
本例の製造方法は、縮管加工によらずにフィン21及び溝22をらせん状に塑性変形させることができる。そのため、溝22のねじれ角αの減少、素管2からの断面形状の変化、製造工程の複雑化及び製造コストの増加等の、縮管加工を伴う従来の製造方法における種々の問題を回避し、簡素な工程により溝12のねじれ角αが大きい内面螺旋溝付管1を作製することができる。
According to the manufacturing method of this example, the fins 21 and the grooves 22 can be plastically deformed in a spiral shape regardless of the pipe contraction process. Therefore, various problems in the conventional manufacturing method involving tube contraction processing, such as reduction of the twist angle α of the groove 22, change of sectional shape from the raw pipe 2, complication of manufacturing process and increase of manufacturing cost, are avoided. The spiral grooved tube 1 having a large twist angle α of the groove 12 can be manufactured by a simple process.
素管2に曲げ加工を施すための具体的な構成は、本例の製造装置3の構成に限定されるものではない。例えば本例の製造装置3では、ベンダー部5において、第1ロールベンダー51及び第2ロールベンダー52の2基のロールベンダーにより素管2に曲げ加工を施したが、ロールベンダーの数は、1基であってもよいし、3基以上であってもよい。また、素管2を曲げる方向についても、左右方向等の上下方向以外の方向とすることができる。更に、ロールベンダー以外の曲げ加工機等を使用して素管2を曲げることも可能である。
The specific configuration for bending the raw pipe 2 is not limited to the configuration of the manufacturing apparatus 3 of this example. For example, in the manufacturing apparatus 3 of this example, the bending process is performed on the raw pipe 2 by the two roll vendors of the first roll bender 51 and the second roll bender 52 in the bender unit 5. It may be a group, or may be three or more. Further, the direction in which the raw tube 2 is bent can also be a direction other than the vertical direction such as the horizontal direction. Furthermore, it is also possible to bend the raw pipe 2 using a bending machine or the like other than the roll bender.
本例の製造方法において、操出ドラム41の回動速度及び素管2の搬送速度は、所望する溝12のねじれ角αの大きさに応じて適宜設定することができる。例えば、操出ドラム41の回動速度を速くする、あるいは、素管2の搬送速度を遅くすることにより、ベンダー部5における素管2のねじり量を大きくすることができる。その結果、溝12のねじれ角αの大きな内面螺旋溝付管1を作製することができる。
In the manufacturing method of this embodiment, the rotational speed of the feed drum 41 and the transport speed of the raw pipe 2 can be appropriately set according to the desired magnitude of the twist angle α of the groove 12. For example, the amount of twist of the raw pipe 2 in the bender portion 5 can be increased by increasing the rotational speed of the feed drum 41 or decreasing the transfer speed of the raw pipe 2. As a result, the internally spiral grooved tube 1 having a large twist angle α of the groove 12 can be manufactured.
(実施例2)
本例は、前記製造方法により作製された内面螺旋溝付管1の例である。なお、本例以降において使用する符号のうち、既出の実施例及び比較例で使用した符号と同一のものは、特に説明のない限り、既出の実施例等における構成要素等と同様の構成要素等を示す。 (Example 2)
This example is an example of the inner surface spiral groovedtube 1 manufactured by the above-mentioned manufacturing method. Of the reference numerals used in the present and subsequent embodiments, the same reference numerals as those used in the previously described embodiments and comparative examples indicate the same constituent elements as those in the previously described embodiments and the like unless otherwise specified. Indicates
本例は、前記製造方法により作製された内面螺旋溝付管1の例である。なお、本例以降において使用する符号のうち、既出の実施例及び比較例で使用した符号と同一のものは、特に説明のない限り、既出の実施例等における構成要素等と同様の構成要素等を示す。 (Example 2)
This example is an example of the inner surface spiral grooved
本例では、素管2として、平均結晶粒径30μmの再結晶組織を備え、A3003-H112材からなる押出形材を準備した。本例の素管2は、図3に示すように、その内表面に、管軸20(図示略)に平行な方向に延設された多数のフィン21と、フィン21同士の間に形成された溝22とを有している。フィン21の本数及び溝22の本数は、例えば、30~70本の範囲から適宜設定することができる。本例においては、フィン21の本数及び溝22の本数を50本とした。
In this example, as the raw tube 2, an extruded shaped material having a recrystallized structure with an average crystal grain size of 30 μm and made of A3003-H112 material was prepared. As shown in FIG. 3, the raw tube 2 of this example is formed on its inner surface between a large number of fins 21 extending in a direction parallel to the tube axis 20 (not shown) and the fins 21. And a groove 22. The number of fins 21 and the number of grooves 22 can be appropriately set, for example, in the range of 30 to 70. In this example, the number of fins 21 and the number of grooves 22 are 50.
素管2の外径OD0は、例えば、5~10mmの範囲から適宜設定することができる。本例の素管2を操出ドラム41から引き出し、種々の位置における素管2の外径を測定したところ、測定位置によって外径がわずかに変化していた。本例においては、これらの測定結果に基づいて得られた外径の最大値と最小値との平均値を素管の外径OD0とした。素管の外径OD0は、具体的には7.00mmであった。また、外径の測定結果に基づいて、外径の最大値と外径の最小値との差を算出し、この値を外径偏差ΔDとして表1に記載した。外径偏差ΔDの値は、具体的には0.25mmであった。
The outer diameter OD 0 of the raw pipe 2 can be appropriately set, for example, in the range of 5 to 10 mm. When the raw pipe 2 of this example was pulled out from the feed drum 41 and the outer diameter of the raw pipe 2 at various positions was measured, the outer diameter was slightly changed depending on the measurement position. In the present example, the average value of the maximum value and the minimum value of the outer diameter obtained based on these measurement results was taken as the outer diameter OD 0 of the raw pipe. Specifically, the outer diameter OD 0 of the raw pipe was 7.00 mm. Moreover, based on the measurement result of the outer diameter, the difference between the maximum value of the outer diameter and the minimum value of the outer diameter was calculated, and this value is described in Table 1 as an outer diameter deviation ΔD. Specifically, the value of the outer diameter deviation ΔD was 0.25 mm.
フィン21は、図3に示すように、素管2の内表面から突出している。また、フィン21は、管軸20に垂直な断面において、管軸20に近いほど幅が狭くなる台形状を呈している。溝22の底部221を基準とした場合の径方向のフィン21の高さHF0は、例えば、0.10~0.40mmの範囲から適宜設定することができる。また、フィン21の頂角γ0、即ち、管軸20に垂直な断面における、フィン21の側面211の延長線L同士のなす角度は、例えば、0度超え20度未満の範囲から適宜設定することができる。本例においては、フィン21の高さHF0は0.28mm、フィン21の頂角γ0は10度とした。
The fins 21 project from the inner surface of the blank 2 as shown in FIG. In addition, the fin 21 has a trapezoidal shape in which the width becomes narrower as it approaches the tube axis 20 in a cross section perpendicular to the tube axis 20. The height HF 0 of the radial fins 21 based on the bottom 221 of the groove 22 can be set as appropriate, for example, from the range of 0.10 to 0.40 mm. In addition, the apex angle γ 0 of the fins 21, that is, the angle between the extension lines L of the side surfaces 211 of the fins 21 in a cross section perpendicular to the tube axis 20 is appropriately set from, for example, a range of more than 0 degrees and less than 20 degrees. be able to. In this example, the height HF 0 of the fins 21 is 0.28 mm, and the apex angle γ 0 of the fins 21 is 10 degrees.
溝22の底部221における肉厚TF0(図3参照)は、例えば、0.30~0.70mmの範囲から適宜設定することができる。本例においては、溝22の底部221における肉厚TF0は0.40mmとした。
The thickness TF 0 (see FIG. 3) at the bottom 221 of the groove 22 can be appropriately set, for example, from the range of 0.30 to 0.70 mm. In this example, the thickness TF 0 at the bottom 221 of the groove 22 is 0.40 mm.
かかる構成を有する素管2について、JIS Z2241の規定に準じた方法により引張試験を実施し、引張強さσB0、耐力及び伸びの値を測定した。これらの結果は、表1に示した通りであった。
With respect to the raw pipe 2 having such a configuration, a tensile test was carried out by a method according to the definition of JIS Z2241, and values of tensile strength σ B0 , proof stress and elongation were measured. These results were as shown in Table 1.
また、素管2に、実施例1に示した方法と同様の方法によって曲げ加工を施し、溝12のねじれ角αが10度である内面螺旋溝付管1を作製した。得られた内面螺旋溝付管1について管軸10に垂直な断面を観察し、素管2と同様の方法により外径OD1、溝12の底部における肉厚TF1、フィン11の高さHF1、フィン11の頂角γ1を測定した(図示略)。更に、JIS Z2241の規定に準じた方法により内面螺旋溝付管1の引張試験を実施し、引張強さσB1、耐力及び伸びの値を測定した。これらの結果は、表1に示した通りであった。また、本例の内面螺旋溝付管1は、素管2と同様に、平均結晶粒径30μmの再結晶組織を有していた。
In addition, the base pipe 2 was subjected to bending processing by the same method as the method shown in the first embodiment, to produce the inner surface spiral grooved pipe 1 in which the twist angle α of the groove 12 is 10 degrees. The cross section perpendicular to the tube axis 10 is observed for the obtained internally spiral grooved tube 1, and the outer diameter OD 1 , the thickness TF 1 at the bottom of the groove 12, and the height HF of the fins 11 are the same as the raw tube 2. 1 was measured vertical angle gamma 1 fin 11 (not shown). Furthermore, the tensile test of the internally grooved grooved tube 1 was carried out by the method according to the definition of JIS Z2241, and the values of tensile strength σ B1 , proof stress and elongation were measured. These results were as shown in Table 1. Further, the inner surface spiral grooved tube 1 of the present example had a recrystallized structure with an average crystal grain size of 30 μm, similarly to the raw tube 2.
本例の内面螺旋溝付管1に曲げピッチ21mmのヘアピン曲げ加工を施したところ、加工後の割れや座屈等は発生しなかった。
When a hairpin bending process with a bending pitch of 21 mm was performed on the inner surface spiral grooved tube 1 of this example, no cracking or buckling occurred after the process.
(実施例3)
本例においては、溝12のねじれ角αを15度にした以外は、実施例2と同様の方法により内面螺旋溝付管1を作製した。そして、得られた内面螺旋溝付管1の外径OD1等の値を実施例2と同様の方法により測定した。これらの結果は、表1に示した通りであった。また、本例の内面螺旋溝付管1は、素管2と同様に、平均結晶粒径30μmの再結晶組織を有していた。 (Example 3)
In the present example, an inner surface spiral groovedtube 1 was produced in the same manner as in Example 2 except that the twist angle α of the groove 12 was 15 degrees. Then, the value of such an outer diameter OD 1 of the obtained inner surface helical grooved tube 1 was measured in the same manner as in Example 2. These results were as shown in Table 1. Further, the inner surface spiral grooved tube 1 of the present example had a recrystallized structure with an average crystal grain size of 30 μm, similarly to the raw tube 2.
本例においては、溝12のねじれ角αを15度にした以外は、実施例2と同様の方法により内面螺旋溝付管1を作製した。そして、得られた内面螺旋溝付管1の外径OD1等の値を実施例2と同様の方法により測定した。これらの結果は、表1に示した通りであった。また、本例の内面螺旋溝付管1は、素管2と同様に、平均結晶粒径30μmの再結晶組織を有していた。 (Example 3)
In the present example, an inner surface spiral grooved
本例の内面螺旋溝付管1に曲げピッチ21mmのヘアピン曲げ加工を施したところ、加工後の割れや座屈等は発生しなかった。
When a hairpin bending process with a bending pitch of 21 mm was performed on the inner surface spiral grooved tube 1 of this example, no cracking or buckling occurred after the process.
(比較例1)
本例は、素管2にねじりモーメントのみを付与し、曲げモーメントを付与しない製造方法の例である。本例においては、素管送出部4から引き出された素管2を、ベンダー部5を介さずに直接回転規制部6へ導いた。また、本例では、素管2が座屈しない範囲でねじり量を限界まで大きくした。これら以外は、実施例2と同様の方法により内面螺旋溝付管1を作製した。得られた内面螺旋溝付管1の断面形状等について実施例2と同様の評価を行った。本例の内面螺旋溝付管1の断面形状等は、表1に示した通りであった。 (Comparative example 1)
This example is an example of a manufacturing method which applies only a twisting moment to theraw pipe 2 and does not apply a bending moment. In this example, the raw pipe 2 drawn out from the raw pipe delivery unit 4 is directly led to the rotation restricting unit 6 without the bender unit 5. Moreover, in this example, the amount of twist was enlarged to the limit in the range which the raw pipe 2 does not buckle. An inner surface spiral grooved tube 1 was produced in the same manner as in Example 2 except for the above. Evaluation similar to Example 2 was performed about the cross-sectional shape etc. of the obtained inner surface spiral grooved tube 1. As shown in FIG. The cross-sectional shape etc. of the inner surface spiral grooved tube 1 of this example were as shown in Table 1.
本例は、素管2にねじりモーメントのみを付与し、曲げモーメントを付与しない製造方法の例である。本例においては、素管送出部4から引き出された素管2を、ベンダー部5を介さずに直接回転規制部6へ導いた。また、本例では、素管2が座屈しない範囲でねじり量を限界まで大きくした。これら以外は、実施例2と同様の方法により内面螺旋溝付管1を作製した。得られた内面螺旋溝付管1の断面形状等について実施例2と同様の評価を行った。本例の内面螺旋溝付管1の断面形状等は、表1に示した通りであった。 (Comparative example 1)
This example is an example of a manufacturing method which applies only a twisting moment to the
表1に示したように、本例の内面螺旋溝付管は、溝のねじれ角αが1.5度となった。また、これ以上ねじりモーメントを大きくした場合には、素管2が座屈し、内面螺旋溝付管1を作製することができなかった。
As shown in Table 1, in the internally helical grooved tube of this example, the twist angle α of the groove was 1.5 degrees. Moreover, when the twisting moment was made larger than this, the base pipe 2 was buckled, and the internal spiral grooved pipe 1 could not be manufactured.
(比較例2)
本例は、縮径加工を伴う従来の内面螺旋溝付管8の製造方法の例である。本例においては、縮径加工による外径の縮小及び溝12の底部における肉厚の増加を考慮し、外径OD0が8mm、溝22の底部221における肉厚TF0が0.38mmである素管2を使用した。図4に示すように、管軸20を中心として矢印uの方向に回転させながら素管2を引抜きダイス9に導入し、引抜きダイス9の縮径部91において外径を縮小させる縮径加工を行った。縮径加工の際に素管2に付与するねじりモーメントの大きさは、2.32N・mとした。 (Comparative example 2)
This example is an example of the manufacturing method of the conventional inner surface spiral groovedtube 8 with diameter reduction processing. In this example, the outer diameter OD 0 is 8 mm, and the thickness TF 0 at the bottom portion 221 of the groove 22 is 0.38 mm, in consideration of the reduction of the outer diameter by diameter reduction processing and the increase of the thickness at the bottom of the groove 12. The raw pipe 2 was used. As shown in FIG. 4, the base tube 2 is introduced into the drawing die 9 while being rotated in the direction of the arrow u about the pipe axis 20, and diameter reducing processing is performed to reduce the outer diameter at the diameter reducing portion 91 of the drawing die 9. went. The magnitude | size of the twisting moment given to the element pipe | tube 2 in diameter reduction process was 2.32 N * m.
本例は、縮径加工を伴う従来の内面螺旋溝付管8の製造方法の例である。本例においては、縮径加工による外径の縮小及び溝12の底部における肉厚の増加を考慮し、外径OD0が8mm、溝22の底部221における肉厚TF0が0.38mmである素管2を使用した。図4に示すように、管軸20を中心として矢印uの方向に回転させながら素管2を引抜きダイス9に導入し、引抜きダイス9の縮径部91において外径を縮小させる縮径加工を行った。縮径加工の際に素管2に付与するねじりモーメントの大きさは、2.32N・mとした。 (Comparative example 2)
This example is an example of the manufacturing method of the conventional inner surface spiral grooved
縮径加工後の内面螺旋溝付管8について、実施例2と同様の評価を行った。その結果、本例の内面螺旋溝付管8の断面形状は、表1に示すように、実施例2の内面螺旋溝付管1と概ね同一となった。
The same evaluation as in Example 2 was performed on the internally spiral grooved tube 8 after diameter reduction processing. As a result, as shown in Table 1, the cross-sectional shape of the inner surface spiral grooved tube 8 of this example was substantially the same as the inner surface spiral grooved tube 1 of Example 2.
しかし、本例の内面螺旋溝付管8は、縮径加工の際に金属組織が加工組織となった。また、加工硬化により、実施例2の内面螺旋溝付管1に比べて引張強さσB1及び耐力が高くなるとともに、伸びが低下した。そのため、本例の内面螺旋溝付管8に曲げピッチ21mmのヘアピン曲げ加工を施したところ、加工後に内面螺旋溝付管8の割れや座屈等が発生した。
However, in the case of the internally spiral grooved tube 8 of this example, the metal structure becomes a processed structure during diameter reduction processing. Further, as a result of work hardening, the tensile strength σ B1 and the proof stress become higher as compared with the inner surface helical grooved tube 1 of Example 2, and the elongation is lowered. Therefore, when the hairpin bending process of bending pitch 21mm was given to the inner surface spiral grooved tube 8 of this example, a crack, buckling, etc. of the inner surface spiral grooved tube 8 occurred after processing.
(比較例3)
本例は、比較例2の内面螺旋溝付管8の加工性を向上させるため、縮径加工後に焼き鈍しを行った例である。本例においては、比較例2と同様の方法により内面螺旋溝付管8を作製した後、内面螺旋溝付管8を420℃で1時間加熱して焼き鈍しを行った。そして、得られた内面螺旋溝付管8について実施例2と同様の評価を行った。 (Comparative example 3)
In this example, in order to improve the processability of the inner surface helicalgrooved tube 8 of Comparative Example 2, annealing is performed after diameter reduction processing. In this example, after producing the inner surface spiral grooved tube 8 by the same method as Comparative Example 2, the inner surface spiral grooved tube 8 was annealed by heating at 420 ° C. for 1 hour. And evaluation similar to Example 2 was performed about the obtained inner surface spiral grooved tube 8. FIG.
本例は、比較例2の内面螺旋溝付管8の加工性を向上させるため、縮径加工後に焼き鈍しを行った例である。本例においては、比較例2と同様の方法により内面螺旋溝付管8を作製した後、内面螺旋溝付管8を420℃で1時間加熱して焼き鈍しを行った。そして、得られた内面螺旋溝付管8について実施例2と同様の評価を行った。 (Comparative example 3)
In this example, in order to improve the processability of the inner surface helical
表1に示したように、本例の内面螺旋溝付管8は、焼き鈍しにより比較例2の内面螺旋溝付管8に比べて伸びが高くなった。そのため、本例の内面螺旋溝付管8は、曲げピッチ21mmのヘアピン曲げ加工を施した後の割れや座屈等の発生を抑制することができた。
As shown in Table 1, the inner surface spiral grooved tube 8 of this example was stretched more than the inner surface spiral grooved tube 8 of Comparative Example 2 by annealing. Therefore, the inner surface spiral grooved tube 8 of this example can suppress the occurrence of cracking, buckling, and the like after the hairpin bending with a bending pitch of 21 mm.
しかし、本例の内面螺旋溝付管8は、焼き鈍しによって再結晶が進行したため、金属組織が平均結晶粒径120μmの再結晶組織となった。また、焼き鈍しによって加工硬化が解消されたため、実施例2の内面螺旋溝付管1に比べて引張強さσB1及び耐力が低下した。
However, in the inner surface spiral grooved tube 8 of this example, recrystallization proceeds by annealing, so that the metallographic structure becomes a recrystallized structure with an average crystal grain size of 120 μm. Further, since the work hardening was eliminated by the annealing, the tensile strength σ B1 and the proof stress were reduced as compared with the inner surface spiral grooved tube 1 of the second embodiment.
(比較例4)
本例は、従来の製造方法において、より外径OD0の太い素管2を使用した例である。本例においては、外径OD0が9.52mmであり、溝22の底部221における肉厚TF0が0.36mmである素管2を使用し、比較例2と同様の方法により内面螺旋溝付管8の作製を試みた。 (Comparative example 4)
This example is an example in which athicker base pipe 2 having an outer diameter OD 0 is used in the conventional manufacturing method. In this example, using the raw tube 2 having an outer diameter OD 0 of 9.52 mm and a thickness TF 0 at the bottom 221 of the groove 22 of 0.36 mm, the inner surface spiral groove is formed by the same method as in Comparative Example 2. An attempt was made to manufacture the attached tube 8.
本例は、従来の製造方法において、より外径OD0の太い素管2を使用した例である。本例においては、外径OD0が9.52mmであり、溝22の底部221における肉厚TF0が0.36mmである素管2を使用し、比較例2と同様の方法により内面螺旋溝付管8の作製を試みた。 (Comparative example 4)
This example is an example in which a
しかし、本例では、溝22の底部221における肉厚TF0が薄いため、操出ドラム41から送り出された素管2の外径偏差ΔDが実施例2に比べて大きくなった。その結果、引抜きダイス9の入口において素管2に座屈が発生した。それ故、本例においては、内面螺旋溝付管8を作製することができなかった。
However, in this embodiment, since the thin wall thickness TF 0 at the bottom 221 of the groove 22, the outer radially polarized difference ΔD raw tube 2 fed from Feeding drum 41 is larger than that in Example 2. As a result, buckling occurred in the raw pipe 2 at the inlet of the drawing die 9. Therefore, in the present example, the inner surface spiral grooved tube 8 could not be manufactured.
表1に、これらの実施例及び比較例の結果をまとめて示す。表1から理解できるように、素管2に、管軸を中心とするねじりモーメントを付与しながら管軸と直交する方向に曲げる曲げ加工を施すことにより、溝12のねじれ角αの大きな内面螺旋溝付管1を容易に作製することができる。また、かかる方法によれば、内面螺旋溝付管1の断面形状の意図しない変化を抑制し、伝熱性能の悪化を回避することができる。さらに、前記製造方法によれば、内面螺旋溝付管1の機械的特性の悪化を回避することができるため、ヘアピン曲げ加工等の種々の加工性に優れた内面螺旋溝付管1を作製することができる。
Table 1 summarizes the results of these Examples and Comparative Examples. As can be understood from Table 1, by subjecting the raw tube 2 to a bending process in which it is bent in a direction orthogonal to the tube axis while applying a twisting moment centering on the tube axis, an internal spiral with a large twist angle α of the groove 12 The grooved tube 1 can be easily manufactured. Moreover, according to such a method, it is possible to suppress an unintended change in the cross-sectional shape of the inner surface spiral grooved tube 1 and to avoid the deterioration of the heat transfer performance. Furthermore, according to the manufacturing method, the deterioration of the mechanical properties of the inner surface spiral grooved tube 1 can be avoided, so the inner surface spiral grooved tube 1 excellent in various workability such as hairpin bending is manufactured. be able to.
このように、前記製造方法により作製された内面螺旋溝付管1は、クロスフィン型熱交換器用として好適である。
Thus, the internally spiral grooved tube 1 produced by the above-mentioned manufacturing method is suitable for use in a cross fin type heat exchanger.
一方、比較例1に示したように、ねじりモーメントのみを付与して素管2のフィン21及び溝22をらせん状に塑性変形させようとする場合には、溝12のねじれ角αを大きくすることが困難である。
On the other hand, as shown in Comparative Example 1, when it is intended to plastically deform the fins 21 and the grooves 22 of the raw pipe 2 in a helical manner by applying only a twisting moment, the twist angle α of the grooves 12 is increased. It is difficult.
また、比較例2に示したように、縮管加工を伴う従来の製造方法では、縮管加工後に焼き鈍しを行わなければ、内面螺旋溝付管8の加工性を向上させることが困難である。
比較例3に示したように、縮管加工後に焼き鈍しを行う場合、素管2の機械的特性が損なわれる。また、比較例3に示した内面螺旋溝付管8は、実施例2の内面螺旋溝付管1に比べて平均結晶粒径が大きく、かつ、引張強さσB1及び耐力が小さいため、管内に冷媒を流通させた際の耐圧強度や疲労強度が低下するおそれがある。 Moreover, as shown to the comparative example 2, if it does not anneal after the tube reduction process in the conventional manufacturing method with a tube reduction process, it is difficult to improve the processability of the internally spiral groovedtube 8.
As shown in Comparative Example 3, when annealing is performed after the tube contraction process, the mechanical properties of theraw pipe 2 are lost. Further, the inner surface spiral grooved tube 8 shown in Comparative Example 3 has a larger average crystal grain size and smaller tensile strength σ B1 and yield strength than the inner surface spiral grooved tube 1 of Example 2, so There is a risk that the pressure resistance and fatigue strength when the refrigerant flows will be reduced.
比較例3に示したように、縮管加工後に焼き鈍しを行う場合、素管2の機械的特性が損なわれる。また、比較例3に示した内面螺旋溝付管8は、実施例2の内面螺旋溝付管1に比べて平均結晶粒径が大きく、かつ、引張強さσB1及び耐力が小さいため、管内に冷媒を流通させた際の耐圧強度や疲労強度が低下するおそれがある。 Moreover, as shown to the comparative example 2, if it does not anneal after the tube reduction process in the conventional manufacturing method with a tube reduction process, it is difficult to improve the processability of the internally spiral grooved
As shown in Comparative Example 3, when annealing is performed after the tube contraction process, the mechanical properties of the
また、従来の製造方法は、比較例4に示したように、使用可能な素管2の形状に制限がある。
Further, as shown in Comparative Example 4, the conventional manufacturing method has a limitation in the shape of the raw pipe 2 that can be used.
Claims (5)
- 内表面から突出し、管軸に平行な方向に延設された多数のフィンと、前記フィン同士の間に形成された溝と、を備え、アルミニウム材からなる素管を準備し、
前記素管に、前記管軸を中心とするねじりモーメントを付与しながら前記管軸に直交する方向へ曲げる曲げ加工を施すことにより、前記フィン及び前記溝を前記管軸の周囲を旋回するらせん状に塑性変形させる、
内面螺旋溝付管の製造方法。 Preparing a raw tube made of an aluminum material, comprising: a plurality of fins projecting from the inner surface and extending in a direction parallel to the tube axis; and a groove formed between the fins;
The base tube is subjected to a bending process in which it is bent in a direction perpendicular to the tube axis while applying a twisting moment around the tube axis, whereby the fin and the groove are spirally wound around the tube axis Plastically deform,
The manufacturing method of the inner surface spiral grooved tube. - 前記素管の外径をOD0[mm]、前記素管における溝の底部の肉厚をTF0[mm]とし、前記内面螺旋溝付管の外径をOD1[mm]、前記内面螺旋溝付管における溝の底部の肉厚をTF1[mm]とした場合に、下記式(1)~式(2)を満たす、請求項1に記載の内面螺旋溝付管の製造方法。
0<(OD1-OD0)/OD0<0.03 ・・・(1)
0≦(TF1-TF0)/TF0<0.04 ・・・(2) The outer diameter of the raw tube is OD 0 [mm], the thickness of the bottom of the groove in the raw tube is TF 0 [mm], the outer diameter of the inner spiral grooved tube is OD 1 [mm], the inner spiral The method for producing an internally helical grooved tube according to claim 1, wherein the following formulas (1) to (2) are satisfied, where the thickness of the bottom of the groove in the grooved tube is TF 1 [mm].
0 <(OD 1 −OD 0 ) / OD 0 <0.03 (1)
0 ≦ (TF 1 −TF 0 ) / TF 0 <0.04 (2) - 前記素管の引張強さをσB0[MPa]、前記内面螺旋溝付管の引張強さをσB1[MPa]とした場合に、下記式(3)を満たす、請求項1または2に記載の内面螺旋溝付管の製造方法。
0.02<(σB1-σB0)/σB0<0.10 ・・・(3) When the tensile strength of the raw pipe is σ B0 [MPa] and the tensile strength of the inner surface helical grooved pipe is σ B1 [MPa], the following formula (3) is satisfied: Of the inner surface spiral grooved tube.
0.02 <(σ B1 -σ B0 ) / σ B0 <0.10 (3) - 3000系アルミニウム合金からなる内面螺旋溝付管であって、
平均結晶粒径80μm以下の再結晶組織から構成されており、
内表面から突出し、管軸の周囲を旋回するらせん状を呈する多数のフィンと、
前記フィン同士の間に形成された溝と、を有している、
内面螺旋溝付管。 An internally helical grooved tube made of a 3000 series aluminum alloy, wherein
It consists of a recrystallized structure with an average grain size of 80 μm or less,
A number of fins projecting from the inner surface and presenting a spiral that pivots around the tube axis;
And a groove formed between the fins.
Internal spiral grooved tube. - 引張強さが115MPa以上であり、耐力が95MPa以上であり、伸びが20%以上である、請求項4に記載の内面螺旋溝付管。 The internally spiral grooved tube according to claim 4, wherein the tensile strength is 115 MPa or more, the proof stress is 95 MPa or more, and the elongation is 20% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017138183A JP6966884B2 (en) | 2017-07-14 | 2017-07-14 | Manufacturing method of inner spiral grooved tube |
JP2017-138183 | 2017-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019013202A1 true WO2019013202A1 (en) | 2019-01-17 |
Family
ID=65001688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026021 WO2019013202A1 (en) | 2017-07-14 | 2018-07-10 | Pipe with spirally grooved inner surface, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6966884B2 (en) |
WO (1) | WO2019013202A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111672949A (en) * | 2020-06-17 | 2020-09-18 | 阎勇 | Aluminum profile cold bending forming machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58167030A (en) * | 1982-03-26 | 1983-10-03 | Hamana Tekko Kk | Continuous manufacturing method and device for circular tube with internal spiral grooves |
JPS59209430A (en) * | 1983-05-11 | 1984-11-28 | Kobe Steel Ltd | Manufacture of spiral grooved tube |
JP2014140896A (en) * | 2012-12-27 | 2014-08-07 | Mitsubishi Alum Co Ltd | Tube with spiral groove on inner surface, manufacturing method therefor, and heat exchanger |
JP2014142174A (en) * | 2012-12-27 | 2014-08-07 | Mitsubishi Alum Co Ltd | Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger |
-
2017
- 2017-07-14 JP JP2017138183A patent/JP6966884B2/en active Active
-
2018
- 2018-07-10 WO PCT/JP2018/026021 patent/WO2019013202A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58167030A (en) * | 1982-03-26 | 1983-10-03 | Hamana Tekko Kk | Continuous manufacturing method and device for circular tube with internal spiral grooves |
JPS59209430A (en) * | 1983-05-11 | 1984-11-28 | Kobe Steel Ltd | Manufacture of spiral grooved tube |
JP2014140896A (en) * | 2012-12-27 | 2014-08-07 | Mitsubishi Alum Co Ltd | Tube with spiral groove on inner surface, manufacturing method therefor, and heat exchanger |
JP2014142174A (en) * | 2012-12-27 | 2014-08-07 | Mitsubishi Alum Co Ltd | Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111672949A (en) * | 2020-06-17 | 2020-09-18 | 阎勇 | Aluminum profile cold bending forming machine |
Also Published As
Publication number | Publication date |
---|---|
JP2019018224A (en) | 2019-02-07 |
JP6966884B2 (en) | 2021-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6169538B2 (en) | Manufacturing method and manufacturing apparatus of internally spiral grooved tube | |
JP6432614B2 (en) | Cold rolling method and manufacturing method of metal tube | |
WO2019013202A1 (en) | Pipe with spirally grooved inner surface, and method for manufacturing same | |
JP6388398B2 (en) | Internal grooved tube for heat exchanger and its manufacturing method | |
JP2014140896A (en) | Tube with spiral groove on inner surface, manufacturing method therefor, and heat exchanger | |
JP6584027B2 (en) | Twisted tube with internal spiral groove and heat exchanger | |
JP5404139B2 (en) | Copper alloy tube for heat exchanger | |
JP6316698B2 (en) | Internal spiral grooved tube, manufacturing method thereof and heat exchanger | |
JP6986942B2 (en) | Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube | |
JP4511797B2 (en) | Internal grooved tube, manufacturing apparatus thereof, and manufacturing method thereof | |
JP6355039B2 (en) | Internal spiral groove manufacturing equipment | |
JP6244213B2 (en) | Copper tube for heat exchanger | |
CN103415643B (en) | Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger | |
JP6391139B2 (en) | Manufacturing method of internally spiral grooved tube | |
JP6316696B2 (en) | Internal spiral grooved tube, manufacturing method thereof and heat exchanger | |
JP5227771B2 (en) | Internal grooved tube and manufacturing method thereof | |
JP5336802B2 (en) | Seamless aluminum alloy tube manufacturing method | |
JP6358720B2 (en) | Manufacturing method and manufacturing apparatus of internally spiral grooved tube | |
JP6316697B2 (en) | Internal spiral grooved tube and manufacturing method thereof | |
CN103765152A (en) | Seamless pipe, level wound coil, cross fin tube-type heat exchanger, and method for producing cross fin tube-type heat exchanger | |
JPH06285546A (en) | Manufacture of cold drawn steel tube improved inductility | |
JP6846182B2 (en) | Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube | |
JP6101969B2 (en) | Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger | |
JP2023134349A (en) | Rolling method of metal tube, manufacturing method of metal tube, rolling equipment and metal tube | |
CN104428430A (en) | Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18831557 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18831557 Country of ref document: EP Kind code of ref document: A1 |