JP6909054B2 - Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove - Google Patents

Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove Download PDF

Info

Publication number
JP6909054B2
JP6909054B2 JP2017107188A JP2017107188A JP6909054B2 JP 6909054 B2 JP6909054 B2 JP 6909054B2 JP 2017107188 A JP2017107188 A JP 2017107188A JP 2017107188 A JP2017107188 A JP 2017107188A JP 6909054 B2 JP6909054 B2 JP 6909054B2
Authority
JP
Japan
Prior art keywords
tube
pipe
inner spiral
spiral groove
twisted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017107188A
Other languages
Japanese (ja)
Other versions
JP2018204803A (en
Inventor
祐典 中浦
祐典 中浦
勇樹 波照間
勇樹 波照間
将之 中本
将之 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2017107188A priority Critical patent/JP6909054B2/en
Publication of JP2018204803A publication Critical patent/JP2018204803A/en
Application granted granted Critical
Publication of JP6909054B2 publication Critical patent/JP6909054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Extrusion Of Metal (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、熱交換器の伝熱管等に用いられる内面螺旋溝付多重捻り管の製造方法および製造装置に関する。 The present invention relates to a method and an apparatus for manufacturing a multi-twisted tube with an inner spiral groove used for a heat transfer tube or the like of a heat exchanger.

従来から、管内において内側流路とその周囲に配置された外側の複数の流路間で、内側と外側を流れる冷媒間で熱交換を行なう管式熱交換器が知られている。
特許文献1には、ヒートポンプ式の熱源機においてコストの増加を抑制しつつ熱交換性能の向上を図った二重管式熱交換器が開示されている。
Conventionally, there has been known a tube heat exchanger that exchanges heat between an inner flow path and a plurality of outer flow paths arranged around the inner flow path in the pipe, and between a refrigerant flowing inside and outside.
Patent Document 1 discloses a double-tube heat exchanger in which heat exchange performance is improved while suppressing an increase in cost in a heat pump type heat source machine.

特開2016−99075号公報Japanese Unexamined Patent Publication No. 2016-99075

二重管式熱交換器の課題に、高コスト化を抑制し且つ熱交換性能を高めるといった要望を満足することが挙げられる。熱交換性能向上には二重管式熱交換器の長さを長くすることで実現可能であるが、一方で熱交換器が大型化するとともに、材料費の増加でコストが高くなるといった問題がある。 One of the problems of the double-tube heat exchanger is to satisfy the demand for suppressing the cost increase and improving the heat exchange performance. It is possible to improve the heat exchange performance by increasing the length of the double-tube heat exchanger, but on the other hand, there is a problem that the heat exchanger becomes larger and the cost increases due to the increase in material cost. be.

本発明は、このような事情に鑑みてなされたもので、長手方向に溝形状および捻り角の寸法精度が高い内面螺旋溝付管を複数集合した構造が得られ、熱交換効率の優れた生産性に優れる内面螺旋溝付多重捻り管の製造方法および製造装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a structure in which a plurality of inner spiral grooved tubes having high dimensional accuracy of groove shape and twist angle in the longitudinal direction are assembled can be obtained, and production with excellent heat exchange efficiency can be obtained. It is an object of the present invention to provide a method and an apparatus for manufacturing a multi-twisted tube with an inner spiral groove having excellent properties.

本発明に係る内面螺旋溝付多重捻り管の製造方法は、内面に長さ方向に沿う複数の溝が周方向に間隔をおいて形成された径の異なる素管を複数本用意し、大径の素管の中に小径の素管を挿入して複合素管を形成し、この複合素管を巻き出し側キャプスタンにその導入側接線方向から巻き付けつつ前記複合素管を導出側接線に沿って巻き出し、前記巻き出し側キャプスタンを前記導出側接線を軸として軸回りに回転させることにより、前記巻き出し側キャプスタンから前記複合素管を前記軸回りに回転させながら前記接線の延長方向に巻き出す素管巻き出し工程と、巻き出された前記複合素管を引抜きダイスに通して縮径しながら捻りを付与して内面螺旋溝付多重捻り管とする捻り引抜き工程を備えることを特徴とする。 In the method for manufacturing a multiple twisted pipe with an inner spiral groove according to the present invention, a plurality of raw pipes having different diameters in which a plurality of grooves along the length direction are formed at intervals in the circumferential direction are prepared on the inner surface and have a large diameter. A small-diameter pipe is inserted into the pipe to form a composite pipe, and the composite pipe is wound around the unwinding side capstan from the direction of its introduction side tangent, and the composite pipe is drawn along the lead-out side tangent. unwinding Te, by rotating the unwinding side capstan axis as an axis of the discharge side tangent line, extending from the unwinding side capstan of the tangent line while rotating the composite mother tube Ri said Jikukai It is provided with a raw tube unwinding step of unwinding in a direction and a twisting and pulling step of passing the unwound composite raw tube through a drawing die to apply a twist while reducing the diameter to form a multiple twisted tube with an inner spiral groove. It is a feature.

本発明に係る内面螺旋溝付多重捻り管の製造方法は、長さ方向に沿う溝として内面に直線溝を有する素管を用いることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、長さ方向に沿う溝として内面螺旋溝を有する素管を用いることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記引抜きダイスによる縮径率を5〜40%とすることができる。
In the method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention, a bare tube having a straight groove on the inner surface can be used as a groove along the length direction.
In the method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention, a bare tube having an inner spiral groove can be used as a groove along the length direction.
In the method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention, the diameter reduction ratio by the drawing die can be set to 5 to 40%.

本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記巻出し側キャプスタンに前記複合素管を巻き始める位置と前記巻出し側キャプスタンから前記引抜きダイス側に前記複合素管を送り始める位置を前記巻出し側キャプスタンの回転軸と平行な方向にずらすことにより、前記巻出し側キャプスタンと前記引抜きダイスとの間を前記複合素管の捻り加工領域とすることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記引抜きダイスに前記複合素管を通して前記複合素管を捻りつつ縮径する際、前記複合素管に前方張力と後方張力を付加することができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記引抜きダイスを通過した前記内面螺旋溝付多重捻り管を引き抜き側キャプスタンに巻き付けることができる。
本発明に係る内面螺旋溝付多重捻り管の製造方法は、前記引き抜き側キャプスタンから巻き出した前記内面螺旋溝付多重捻り管を第2 の引抜きダイスで整形することができる。
Manufacturing method of the inner surface helical grooved multi torsion tube according to the present invention, the composite blank tube into the drawing die side from a position between the take-out-out side capstan start winding the composite element tube to the winding-out-out side capstan by shifting in a direction parallel to the rotation axis of the feed start position the take-out-out side capstan and between the winding-out-out side capstan and the drawing die to a twisting processing area of the composite base pipe Can be done.
In the method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention, when the composite element tube is passed through the drawing die and the composite element tube is twisted to reduce the diameter, forward tension and rear tension are applied to the composite element tube. be able to.
In the method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention, the multi-twisted tube with an inner spiral groove that has passed through the drawing die can be wound around a capstan on the drawing side.
In the method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention, the multi-twisted tube with an inner spiral groove unwound from the drawing-side capstan can be shaped with a second drawing die.

本発明に係る内面螺旋溝付多重捻り管の製造装置は、内面に長さ方向に沿う複数の溝が周方向に間隔をおいて形成された金属製の径の異なる複数の素管のうち、大径の素管内に小径の素管を挿入した複合素管を導入側接線方向から巻き付け自在とし、前記導入側接線と平行な導出側接線に沿って巻き出し自在とする円盤型の巻き出し側キャプスタンと、この巻き出し側キャプスタンを前記導出側接線を軸として軸回りに回転させる回転手段と、前記巻き出し側キャプスタンから巻き出される前記複合素管を通して縮径と捻りを行う引抜きダイスを備えることを特徴とする。 The apparatus for manufacturing a multi-twisted pipe with an inner spiral groove according to the present invention is made of a plurality of metal pipes having different diameters in which a plurality of grooves along the length direction are formed on the inner surface at intervals in the circumferential direction. A disk-shaped unwinding side that allows a composite base tube with a small diameter base pipe inserted into a large-diameter base pipe to be freely wound from the direction of the introduction side tangent, and to be freely unwound along the lead-out side tangent line parallel to the introduction side tangent. A drawing die that reduces the diameter and twists through the capstan, the rotating means for rotating the unwinding side capstan around the lead-out side tangent, and the composite raw pipe unwound from the unwinding side capstan. It is characterized by having.

本発明に係る内面螺旋溝付多重捻り管の製造装置は、前記巻出し側キャプスタンに前記複合素管を巻き始める位置と前記巻出し側キャプスタンから前記引抜きダイス側に前記複合素管を送り始める位置が、前記巻出し側キャプスタンの回転軸と平行な方向にずらされ、前記巻出し側キャプスタンの巻出し位置と前記引抜きダイスとの間が前記素管の捻り加工領域とされたことを特徴とする。
本発明に係る内面螺旋溝付多重捻り管の製造装置は、前記巻き出し側キャプスタンの前段側に前記複合素管に前方張力を付与する前方張力付加手段が設けられ、前記引抜きダイスの後段側に前記内面螺旋溝付多重捻り管に後方張力を付与する後方張力付加手段が設けられたことを特徴とする。
本発明に係る内面螺旋溝付多重捻り管の製造装置は、前記引抜きダイスの後段側に前記内面螺旋溝付多重捻り管を巻き付けて巻出す引き抜き側キャプスタンが設けられたことを特徴とする。
本発明に係る内面螺旋溝付多重捻り管の製造装置は、前記引き抜き側キャプスタンの後段側に前記内面螺旋溝付多重捻り管を整形する第2 の引抜きダイスが設けられたことを特徴とする。
Apparatus for producing the inner surface helical grooved multi torsion tube according to the present invention, the composite blank tube into the drawing die side from a position between the take-out-out side capstan start winding the composite element tube to the winding-out-out side capstan the start feed position is shifted in a direction parallel to the rotation axis of the take-out-out side capstan, twisting processing region of the base pipe between the unwinding position of the out side capstan-out the winding said drawing die It is characterized by being said.
The apparatus for manufacturing a multi-twisted pipe with an inner spiral groove according to the present invention is provided with a front tension applying means for applying a front tension to the composite raw pipe on the front stage side of the unwinding side capstan, and is provided on the rear stage side of the drawing die. Is provided with a rear tension applying means for applying a rear tension to the multi-twisted pipe with an inner spiral groove.
The apparatus for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention is characterized in that a pull-out side capstan for winding and unwinding the multi-twisted tube with an inner spiral groove is provided on the rear stage side of the drawing die.
The apparatus for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention is characterized in that a second drawing die for shaping the multi-twisted tube with an inner spiral groove is provided on the rear stage side of the capstan on the drawing side. ..

本発明によれば、内面に長さ方向に沿う複数の螺旋溝が周方向に間隔をおいて形成された金属製の内面螺旋溝付管を複数本、複合した構造の従来にない内面螺旋溝付多重捻り管を提供することができる。 According to the present invention, an unprecedented inner spiral groove having a structure in which a plurality of metal inner spiral grooved tubes in which a plurality of spiral grooves along the length direction are formed on the inner surface at intervals in the circumferential direction are combined. Multiple twisted tubes can be provided.

本発明に係る製造装置により得られた内面螺旋溝付多重捻り管の第一実施形態を示す横断面図。The cross-sectional view which shows the 1st Embodiment of the multi-twisted tube with an inner spiral groove obtained by the manufacturing apparatus which concerns on this invention. 同実施形態の内面螺旋溝付多重捻り管の一部を切り開いた展開図。The development view which cut open a part of the multiple twisted pipes with an inner spiral groove of the same embodiment. 同製造装置の全体構成を示す側面図。The side view which shows the whole structure of the manufacturing apparatus. 同製造装置の全体構成を示す平面図。The plan view which shows the whole structure of the manufacturing apparatus. 同製造装置の巻き出し側キャプスタンに対し素管を巻き付けて巻き出した状態を示す平面図。A plan view showing a state in which a raw pipe is wound around a capstan on the unwinding side of the manufacturing apparatus and unwound. 同製造装置に供給される素管の一例を示すもので、( a ) は断面図、( b ) は横断面図。An example of a raw pipe supplied to the manufacturing equipment is shown, where (a) is a cross-sectional view and (b) is a cross-sectional view. 大径の素管の内側に小径の素管を挿入して複合素管を構成した状態を示す断面図。A cross-sectional view showing a state in which a small-diameter raw pipe is inserted inside a large-diameter raw pipe to form a composite raw pipe. 径の異なる3 種類の内面螺旋溝付管を複合一体化した内面螺旋溝付多重捻り管の第二実施形態を示す断面図。FIG. 5 is a cross-sectional view showing a second embodiment of a multi-twisted pipe with an inner spiral groove in which three types of pipes with an inner spiral groove having different diameters are compositely integrated. 大径の内面螺旋溝付管の内部に小径の内面螺旋溝付管を3本複合して一体化した構造の内面螺旋溝付多重捻り管の第三実施形態を示す断面図。FIG. 5 is a cross-sectional view showing a third embodiment of a multi-twisted pipe with an inner spiral groove having a structure in which three small-diameter inner spiral grooved pipes are combined and integrated inside a large-diameter inner spiral grooved pipe. 同第三実施形態の内面螺旋溝付多重捻り管において小径の3本の内面螺旋溝付管を抜き出して示す斜視図。FIG. 3 is a perspective view showing three small-diameter inner spiral grooved pipes extracted from the multiple twisted pipe with inner spiral groove of the third embodiment. 実施例において製造された内面螺旋溝付多重捻り管の具体例を示すもので、(a)は断面図、(b)はその部分拡大図。A specific example of the multiple twisted pipe with an inner spiral groove manufactured in the examples is shown, (a) is a cross-sectional view, and (b) is a partially enlarged view thereof.

以下、本発明に係る内面螺旋溝付多重捻り管の製造装置とそれを用いた内面螺旋溝付多重捻り管の製造方法の実施形態について図面を参照しながら説明する。
本実施形態の内面螺旋溝付多重捻り管の製造装置A(図3〜図4参照)は、内面に長さ方向に沿う複数の直線溝が周方向に間隔をおいて複数形成された径の異なる素管(図6、図7参照)を複数本、例えば2本(素管1、8)を複合した複合素管Fが適用される。
製造装置Aは、例えば、素管1に素管8を挿入して複合素管Fを構成し、これに一定の捻りを生じさせ、図1に示す内面に螺旋溝2aを有する小径の内面螺旋溝付管2と内面に螺旋溝3aを有する大径の内面螺旋溝付管3を一体化した内面螺旋溝付多重捻り管4を製造する装置である。
Hereinafter, an embodiment of an apparatus for manufacturing a multi-twisted tube with an inner spiral groove and a method for manufacturing a multi-twisted tube with an inner spiral groove according to the present invention will be described with reference to the drawings.
In the device A for manufacturing a multi-twisted tube with an inner spiral groove (see FIGS. 3 to 4) of the present embodiment, a plurality of straight grooves along the length direction are formed on the inner surface at intervals in the circumferential direction. A composite base tube F in which a plurality of different base pipes (see FIGS. 6 and 7), for example, two pipes (base pipes 1 and 8) are combined is applied.
In the manufacturing apparatus A, for example, the raw pipe 8 is inserted into the raw pipe 1 to form a composite raw pipe F, a constant twist is generated in the composite raw pipe F, and a small-diameter inner spiral having a spiral groove 2a on the inner surface shown in FIG. This is an apparatus for manufacturing a multi-twisted pipe 4 with an inner spiral groove, which integrates a grooved pipe 2 and a large-diameter inner spiral grooved pipe 3 having a spiral groove 3a on the inner surface.

本実施形態において図3は製造装置Aの全体構造の側面を示し、図4は製造装置Aの全体構造の平面を示す。
この製造装置Aは、内面に直線溝(図7参照)1aが形成された素管1に図7に示すように同等構造で小径の素管8を挿入して複合した複合素管Fを図3、図4に示すようにコイル状に巻き取った状態に保持する巻き出し側キャプスタン5と、この巻き出し側キャプスタン5から巻き出される複合素管Fを巻き出し側キャプスタン5とともに回転する回転手段6を備えている。また、製造装置Aは、巻き出し側キャプスタン5から送り出された複合素管Fを通す引抜きダイス7と、引抜きダイス7を通って捻り加工と引抜き加工がなされた内面螺旋溝付多重捻り管4を巻き付けながら送り出す引き抜き側キャプスタン9を備えている。
In the present embodiment, FIG. 3 shows a side surface of the overall structure of the manufacturing apparatus A, and FIG. 4 shows a plane of the overall structure of the manufacturing apparatus A.
As shown in FIG. 7, the manufacturing apparatus A has a composite raw pipe F in which a small diameter raw pipe 8 having an equivalent structure is inserted into a raw pipe 1 having a linear groove (see FIG. 7) 1a formed on the inner surface thereof. 3. As shown in FIG. 4, the unwinding side capstan 5 held in a coiled state and the composite raw tube F unwound from the unwinding side capstan 5 are rotated together with the unwinding side capstan 5. The rotating means 6 is provided. Further, the manufacturing apparatus A includes a drawing die 7 through which the composite element pipe F sent out from the unwinding side capstan 5 is passed, and a multi-twisted pipe 4 with an inner spiral groove that has been twisted and drawn through the drawing die 7. It is equipped with a pull-out side capstan 9 that sends out while winding.

素管1は例えば図6に示すように管本体1Aの内面に長さ方向に沿って直線溝1aが複数形成され、内周方向に隣接する直線溝1a、1aの間にフィン1bが形成されている。素管1はアルミニウムあるいはアルミニウム合金管からなり、例えば外径3〜20mm程度、より具体的には3〜12mm程度の外径に形成されている。
この素管1の内部に素管1の内径より若干小さな外径の素管8が素管1の長さ方向に沿って挿入され、複合素管Fが構成されている。素管8は素管1と同等構造で外径のみ若干小さく形成されたもので、アルミニウムあるいはアルミニウム合金管からなり、例えば外径3〜20mm程度、より具体的には3〜12mm程度の外径であって、素管1の内部に挿入可能な外径に形成されている。素管8において図8に示すように管本体8Aの内面に長さ方向に沿って複数の直線溝8aが形成され、内周方向に隣接する直線溝8a、8a間にフィン8bが形成されている構造についても素管1と同等構造とされている。
As shown in FIG. 6, for example, in the raw pipe 1, a plurality of straight grooves 1a are formed on the inner surface of the pipe body 1A along the length direction, and fins 1b are formed between the straight grooves 1a and 1a adjacent to each other in the inner peripheral direction. ing. The raw pipe 1 is made of aluminum or an aluminum alloy pipe, and is formed to have an outer diameter of, for example, about 3 to 20 mm, more specifically, about 3 to 12 mm.
A raw tube 8 having an outer diameter slightly smaller than the inner diameter of the raw tube 1 is inserted into the raw tube 1 along the length direction of the raw tube 1 to form a composite raw tube F. The raw pipe 8 has the same structure as the raw pipe 1 and is formed to have a slightly smaller outer diameter. It is made of aluminum or an aluminum alloy pipe, and has an outer diameter of, for example, about 3 to 20 mm, more specifically, about 3 to 12 mm. It is formed to have an outer diameter that can be inserted into the raw tube 1. In the raw pipe 8, as shown in FIG. 8, a plurality of straight grooves 8a are formed on the inner surface of the pipe body 8A along the length direction, and fins 8b are formed between the straight grooves 8a and 8a adjacent to each other in the inner peripheral direction. The structure is also the same as that of the raw pipe 1.

なお、この実施形態において素管1、8はアルミニウム又はアルミニウム合金からなるが、素管1、8については銅系合金あるいはステンレス鋼などの鉄系合金から形成されていてもよい。この実施形態ではアルミニウム又はアルミニウム合金からなる素管1、8を例として説明するが、本発明で目的とする内面螺旋溝付多重捻り管は引抜きダイスにより引抜きが可能な材料であれば適用可能であるので、銅系合金あるいは鉄系合金など、他の合金からなる素管を用いて本発明を実施しても良いのは勿論である。
外側の素管1と内側の素管8は同じ材料である必要は無く、素管1を銅合金製とし、素管8をアルミニウム合金製などとしても良い。また、同じアルミニウム合金であっても、素管1と素管8を組成の異なるアルミニウム合金製で構成することも可能である。また、素管1と素管8はこの例では相似形状の素管として表示されているが、それらの内面に形成されている直線溝1a、8aの幅やフィン1b、8bの幅、高さ、形成ピッチなどは内側の素管8と外側の素管1で異なっていても良い。
In this embodiment, the raw pipes 1 and 8 are made of aluminum or an aluminum alloy, but the raw pipes 1 and 8 may be made of a copper-based alloy or an iron-based alloy such as stainless steel. In this embodiment, the raw pipes 1 and 8 made of aluminum or an aluminum alloy will be described as an example, but the multiple twisted pipe with an inner spiral groove, which is the object of the present invention, can be applied as long as it is a material that can be pulled out by a drawing die. Therefore, it goes without saying that the present invention may be carried out using a raw tube made of another alloy such as a copper-based alloy or an iron-based alloy.
The outer raw pipe 1 and the inner raw pipe 8 do not have to be made of the same material, and the raw pipe 1 may be made of a copper alloy, the raw pipe 8 may be made of an aluminum alloy, or the like. Further, even if the same aluminum alloy is used, the raw pipe 1 and the raw pipe 8 can be made of aluminum alloys having different compositions. Further, although the raw pipe 1 and the raw pipe 8 are displayed as raw pipes having similar shapes in this example, the widths of the straight grooves 1a and 8a formed on their inner surfaces and the widths and heights of the fins 1b and 8b are formed. , The formation pitch and the like may be different between the inner raw pipe 8 and the outer raw pipe 1.

巻き出し側キャプスタン5は、図4に示すように離間して前後に立設された鋼材からなる支柱部材10、11の上端部に取り付けられた軸受け部12に軸回りに回転自在に水平に支持された中空軸部13に支持されている。なお、この中空軸部13の長さ方向の延長線に沿って巻き出し側キャプスタン5とダイス7と引き抜き側キャプスタン9が順次配置され、複合素管Fが中空軸部13、巻き出し側キャプスタン5、引抜きダイス7、引き抜き側キャプスタン9の順に移動されて加工される。このため、以下の説明において複合素管Fの移動方向に沿って上流側を前段側、下流側を後段側と適宜呼称しつつ説明する。 As shown in FIG. 4, the unwinding side capstan 5 is rotatably and horizontally rotatably around the bearing portion 12 attached to the upper end portion of the support column members 10 and 11 made of steel materials erected in the front-rear direction apart from each other. It is supported by the supported hollow shaft portion 13. The unwinding side capstan 5, the die 7, and the pulling out side capstan 9 are sequentially arranged along the extension line in the length direction of the hollow shaft portion 13, and the composite raw pipe F is the hollow shaft portion 13, the unwinding side. The capstan 5, the drawing die 7, and the drawing side capstan 9 are moved and processed in this order. Therefore, in the following description, the upstream side will be appropriately referred to as the front stage side and the downstream side will be referred to as the rear stage side along the moving direction of the composite pipe F.

中空軸部13は支柱部材10の上端部と支柱部材11の上端部にそれぞれ設けられている軸受け部材10a、11aに支持されて水平に設けられ、その一端13aを支柱部材10の上端部から上流側外部に突出させ、その他端13bを支柱部材11の上端部から下流側外部に突出させて水平に、かつ、軸回りに回転自在に支持されている。中空軸部13の他端側に中空軸部13に対し斜め方向に隣接して延在する一対の第1支持フレーム15が設けられ、その先端部15aによって巻き出し側キャプスタン5が支持されている。
中空軸部13の他端側には中空軸部13に対し斜め方向に延在するように第2支持フレーム16が設けられ、第2支持フレーム16の先端側に延設された延長フレーム17に錘体18が取り付けられている。第1支持フレーム15と第2支持フレーム16は中空軸部13の他端13bに対しV字型に配置されるように接続され、中空軸部13の軸回りの回転によって第1支持フレーム15と第2支持フレーム16はV字型に支持されたまま回転される。
The hollow shaft portion 13 is horizontally provided supported by bearing members 10a and 11a provided at the upper end portion of the strut member 10 and the upper end portion of the strut member 11, respectively, and one end 13a thereof is upstream from the upper end portion of the strut member 10. It is supported horizontally and rotatably around the axis by projecting the other end 13b from the upper end of the support column member 11 to the outside on the downstream side. A pair of first support frames 15 extending diagonally adjacent to the hollow shaft portion 13 are provided on the other end side of the hollow shaft portion 13, and the unwinding side capstan 5 is supported by the tip portion 15a. There is.
A second support frame 16 is provided on the other end side of the hollow shaft portion 13 so as to extend diagonally with respect to the hollow shaft portion 13, and the extension frame 17 extending to the tip end side of the second support frame 16 A weight body 18 is attached. The first support frame 15 and the second support frame 16 are connected to the other end 13b of the hollow shaft portion 13 so as to be arranged in a V shape, and are connected to the first support frame 15 by rotation of the hollow shaft portion 13 around the axis. The second support frame 16 is rotated while being supported in a V shape.

巻き出し側キャプスタン5の円盤部5aはその中心部を第1支持フレーム15とその先端部15aによって回転自在に支持されている。また、中空軸部13の中心軸の延長線を巻き出し側キャプスタン5の外周縁の接線と近似するように巻き出し側キャプスタン5が第1支持フレーム15によって支持されている。このため、中空軸部13の回転に伴い巻き出し側キャプスタン5が旋回すると、中空軸部13の中心軸の延長線の周囲を周回するように巻き出し側キャプスタン5が回転する。また、同様に中空軸部13の回転に伴い錘体18も中空軸部13の中心軸の延長線の周囲を周回するように回転する。
巻き出し側キャプスタン5において、円盤部5aの外周縁に沿って複合素管Fを巻き付けることができるように構成されている。
The central portion of the disc portion 5a of the unwinding side capstan 5 is rotatably supported by the first support frame 15 and its tip portion 15a. Further, the unwinding side capstan 5 is supported by the first support frame 15 so that the extension line of the central axis of the hollow shaft portion 13 approximates the tangent line of the outer peripheral edge of the unwinding side capstan 5. Therefore, when the unwinding side capstan 5 rotates with the rotation of the hollow shaft portion 13, the unwinding side capstan 5 rotates so as to orbit around the extension line of the central axis of the hollow shaft portion 13. Similarly, as the hollow shaft portion 13 rotates, the weight body 18 also rotates so as to orbit around the extension line of the central shaft of the hollow shaft portion 13.
The unwinding side capstan 5 is configured so that the composite raw tube F can be wound along the outer peripheral edge of the disk portion 5a.

例えば、図4に示すように巻き出し側キャプスタン5が最も下方位置になるように中空軸部13を回転させた場合、巻き出し側キャプスタン5の最上部の若干上方を中空軸部13の中心軸の延長線が通過する。あるいは、巻き出し側キャプスタン5が最も上方位置になるように中空軸部13を回転させた場合、巻き出し側キャプスタン5の最下部の若干下方を中心軸部13の中心軸部の延長線が通過する。
中空軸部13の一端13a側の開口部には複合素管Fを挿入可能な大きさの入口部13cが形成され、中空軸部13の他端13b側の開口部には先の複合素管Fを引き出し可能な出口部13dが形成されている。
For example, when the hollow shaft portion 13 is rotated so that the unwinding side capstan 5 is in the lowest position as shown in FIG. 4, the hollow shaft portion 13 is slightly above the uppermost portion of the unwinding side capstan 5. An extension of the central axis passes. Alternatively, when the hollow shaft portion 13 is rotated so that the unwinding side capstan 5 is in the uppermost position, the extension line of the central shaft portion of the central shaft portion 13 is slightly below the lowermost portion of the unwinding side capstan 5. Passes.
An inlet portion 13c having a size capable of inserting the composite base pipe F is formed in the opening on the one end 13a side of the hollow shaft portion 13, and the previous composite base pipe is formed in the opening on the other end 13b side of the hollow shaft portion 13. An outlet portion 13d from which F can be pulled out is formed.

このため、中空軸部13の内部を通過させた複合素管Fを巻き出し側キャプスタン5の外周の接線に沿うように導入して巻き出し側キャプスタン5の外周に巻き掛けることができるとともに、巻き出し側キャプスタン5の外周に例えば1周分巻き付けた複合素管Fを巻き出し側キャプスタン5の外周から巻き出して引抜きダイス7側に導出することができる。
この巻き出し側キャプスタン5に対する複合素管Fの巻き付け状態と巻き出し状態の一例を図6に簡略的に示しておく。図5においてCは巻き出し側キャプスタン5に巻き付けられる前段側の複合素管Fの軸心を示し、C1は巻き出し側キャプスタン5から巻き出された複合素管Fの軸心を示している。
Therefore, the composite raw pipe F that has passed through the inside of the hollow shaft portion 13 can be introduced along the tangent line of the outer circumference of the unwinding side capstan 5 and wound around the outer circumference of the unwinding side capstan 5. , For example, a composite element tube F wound around the outer circumference of the unwinding side capstan 5 for one round can be unwound from the outer circumference of the unwinding side capstan 5 and led out to the drawing die 7.
FIG. 6 briefly shows an example of the winding state and the unwinding state of the composite raw tube F with respect to the unwinding side capstan 5. In FIG. 5, C shows the axis of the composite element tube F wound on the unwinding side capstan 5, and C1 indicates the axis of the composite element tube F unwound from the unwinding side capstan 5. There is.

中空軸部13の他端側にはV字型に第1支持フレーム15と第2支持フレーム16が延出され、それらの先端側に巻き出し側キャプスタン5と錘体18が取り付けられているが、錘体18と巻き出し側キャプスタン5の重量および取付位置は、それらが回転した場合に、重量バランスの均衡がとれる位置とされている。即ち、中空軸部13の回転により錘体18と巻き出し側キャプスタン5が旋回した場合、両者の回転モーメントのバランスが均衡し、両者の回転に伴う振動が可能な限り小さくなるように巻き出し側キャプスタン5と錘体18のそれぞれの重量と取付位置が調整されている。 The first support frame 15 and the second support frame 16 extend in a V shape on the other end side of the hollow shaft portion 13, and the unwinding side capstan 5 and the weight body 18 are attached to their tip ends. However, the weight and mounting position of the weight body 18 and the unwinding side capstan 5 are set so that the weight balance can be balanced when they rotate. That is, when the weight body 18 and the unwinding side capstan 5 are swiveled by the rotation of the hollow shaft portion 13, the unwinding is performed so that the balance of the rotational moments of both is balanced and the vibration accompanying the rotation of both is as small as possible. The weights and mounting positions of the side capstan 5 and the weight 18 are adjusted.

支柱部材10の上部と支柱部材11の上部の間に支持板20が架設され、支持板20に駆動モーター21が取り付けられ、駆動モーター21の出力軸21aに無端ベルトなどの動力伝達装置22が接続されている。この動力伝達装置22はその上方に位置する中空軸部13の一端側に接続されていて、駆動モーター21の出力軸21aの回転により中空軸部13を回転駆動することができる。
この駆動モーター21と動力伝達装置22と中空軸部13により巻き出し側キャプスタン5と錘体18を一体に回転させる構成であり、駆動モーター21と動力伝達装置22と中空軸部13により、巻き出し側キャプスタン5を回転駆動する回転手段6が構成されている。
A support plate 20 is erected between the upper part of the support plate member 10 and the upper part of the support plate member 11, the drive motor 21 is attached to the support plate 20, and the power transmission device 22 such as an endless belt is connected to the output shaft 21a of the drive motor 21. Has been done. The power transmission device 22 is connected to one end side of the hollow shaft portion 13 located above the power transmission device 22, and the hollow shaft portion 13 can be rotationally driven by the rotation of the output shaft 21a of the drive motor 21.
The drive motor 21, the power transmission device 22, and the hollow shaft portion 13 rotate the unwinding side capstan 5 and the weight body 18 integrally, and the drive motor 21, the power transmission device 22, and the hollow shaft portion 13 wind the capstan 5 and the weight body 18. A rotating means 6 for rotationally driving the output side capstan 5 is configured.

中空軸部13の出口部13dに対し下流側に巻き出し側キャプスタン5が設けられているが、その更に下流側に引抜きダイス7が支柱部材23に支持されて設けられている。引抜きダイス7の設置位置は、図4に示すように中空軸部13の出口部13dと同等の高さにダイス孔が配置され、中空軸部13の出口部13dと引抜きダイス7との中間に位置する巻き出し側キャプスタン5の外周縁上端部はパスラインが一致されている。引抜きダイス7はこの例では支柱部材23の上端部に中空の支持架台24を介し取り付けられている。また、支持架台25の上方には引抜きダイス7のダイス孔に潤滑油を供給するためのタンク26とフレキシブル供給管27が設置されている。 The unwinding side capstan 5 is provided on the downstream side of the outlet portion 13d of the hollow shaft portion 13, and the drawing die 7 is provided on the downstream side of the hollow shaft portion 13 while being supported by the support column member 23. As shown in FIG. 4, the drawing die 7 is installed so that the die hole is arranged at the same height as the outlet portion 13d of the hollow shaft portion 13 and is located between the outlet portion 13d of the hollow shaft portion 13 and the drawing die 7. The path line is aligned with the upper end of the outer peripheral edge of the unwinding side capstan 5 located. In this example, the drawing die 7 is attached to the upper end of the support column member 23 via a hollow support base 24. Further, above the support frame 25, a tank 26 and a flexible supply pipe 27 for supplying lubricating oil to the die holes of the drawing die 7 are installed.

引抜きダイス7は、複合素管Fを挿通させるダイス孔を有しており、複合素管Fの外径を減少させる空引きを行う。引抜きダイス7における縮径率はアルミニウム又はアルミニウム合金からなる素管1、8の場合、5〜40%程度に設定される。縮径率が小さ過ぎる場合は引抜きによる効果が乏しく、大きな捻り角を得ることが難しいので、5%以上とするのが好ましい。一方、縮径率が大きくなり過ぎると加工限界で複合素管Fに破断を生じ易くなるので、40%以下とするのが好ましい。
また、複合素管Fがダイス孔を通過する際、巻き出し側キャプスタン5が回転されるので、複合素管Fは引抜きダイス7のダイス孔によって縮径されると同時に捻りが付与される。このため、複合素管Fを構成する素管1、8は捻りが付加されて図1に示す内面螺旋溝付多重捻り管4に加工される。
The drawing die 7 has a die hole through which the composite raw pipe F is inserted, and performs empty drawing to reduce the outer diameter of the composite raw pipe F. The diameter reduction ratio of the drawing die 7 is set to about 5 to 40% in the case of the raw tubes 1 and 8 made of aluminum or an aluminum alloy. If the diameter reduction ratio is too small, the effect of pulling out is poor and it is difficult to obtain a large twist angle. Therefore, it is preferably 5% or more. On the other hand, if the diameter reduction ratio becomes too large, the composite raw tube F is likely to break at the processing limit, so it is preferably 40% or less.
Further, when the composite raw pipe F passes through the die hole, the unwinding side capstan 5 is rotated, so that the composite raw pipe F is reduced in diameter by the die hole of the drawing die 7 and at the same time twisted. Therefore, the raw pipes 1 and 8 constituting the composite raw pipe F are twisted and processed into the multiple twisted pipe 4 with an inner spiral groove shown in FIG.

引抜きダイス7の下流側に支柱部材23に支持されて引き抜き側キャプスタン9が設けられ、引き抜き側キャプスタン9は支柱部材23に支持された水平軸28を介し鉛直向きに設置され、回転自在に支持されている。引き抜き側キャプスタン9の最上部は引抜きダイス7のダイス孔の位置と同等高さに設置され、その外周面に沿って引抜きダイス7で加工された内面螺旋溝付多重捻り管4が巻き付けられるようになっている。
支柱部材23において引き抜き側キャプスタン9を取り付けた側と反対側に回転駆動用の駆動モーター25の出力軸25aが水平軸28に直接連結するように設置され、駆動モーター25によって引き抜き側キャプスタン9を回転駆動できるように構成されている。
The pull-out side capstan 9 is provided on the downstream side of the pull-out die 7 by being supported by the support support member 23, and the pull-out side capstan 9 is installed vertically via the horizontal shaft 28 supported by the support support member 23 and is rotatable. It is supported. The uppermost portion of the pull-out side capstan 9 is installed at the same height as the position of the die hole of the pull-out die 7, and the multiple twisted pipe 4 with an inner spiral groove machined by the pull-out die 7 is wound along the outer peripheral surface thereof. It has become.
The output shaft 25a of the drive motor 25 for rotational drive is installed so as to be directly connected to the horizontal shaft 28 on the side opposite to the side where the pull-out side capstan 9 is attached in the support column member 23, and the pull-out side capstan 9 is installed by the drive motor 25. Is configured to be rotationally driven.

「製造方法」
次に、以上説明のように構成された製造装置Aを用いて、内面螺旋溝付多重捻り管4を製造する方法について説明する。
予め、押出により、図6、図7に示すように、内面に長さ方向に沿う複数の直線溝1aが周方向に間隔をおいて形成された大径の素管1と、内面に長さ方向に沿う複数の直線溝8aが周方向に間隔をおいて形成された小径の素管8を作製する(素管押出工程)。
次に、外径の大きな素管1の内部に外径の小さな素管8を図7に示すように挿通して複合素管Fを構成する。(複合素管作製工程)
図3〜図4に示す製造装置Aに対し複合素管Fを供給するには、複合素管Fの先端側を中空軸部13の入口部13cから中空軸部13に挿通し、中空軸部13の出口部13dから複合素管Fを引き出し、巻き出し側キャプスタン5の外周に沿って図5に示すように1周分巻き付ける。この複合素管Fを巻き出し側キャプスタン5から接線方向に水平に巻き出して引抜きダイス7のダイス孔に挿通し、引抜きダイス7のダイス孔を通過させた複合素管Fを引き抜き側キャプスタン9に1周分以上巻き付け、引き抜き側キャプスタン9の下流側まで複合素管Fを引き出す。これらの操作は内面螺旋溝付多重捻り管の製造開始前の準備段階の作業となる。
"Production method"
Next, a method of manufacturing the multiple twisted pipe 4 with an inner spiral groove will be described using the manufacturing apparatus A configured as described above.
As shown in FIGS. 6 and 7, a large-diameter raw pipe 1 in which a plurality of straight grooves 1a along the length direction are formed in advance by extrusion on the inner surface at intervals in the circumferential direction, and a length on the inner surface. A small-diameter raw pipe 8 in which a plurality of straight grooves 8a along the direction are formed at intervals in the circumferential direction is produced (raw pipe extrusion step).
Next, a composite raw pipe F is formed by inserting a raw pipe 8 having a small outer diameter inside the raw pipe 1 having a large outer diameter as shown in FIG. (Composite tube manufacturing process)
In order to supply the composite base pipe F to the manufacturing apparatus A shown in FIGS. 3 to 4, the tip end side of the composite base pipe F is inserted from the inlet portion 13c of the hollow shaft portion 13 into the hollow shaft portion 13, and the hollow shaft portion is inserted. The composite raw pipe F is pulled out from the outlet portion 13d of 13, and is wound around the outer circumference of the unwinding side capstan 5 for one round as shown in FIG. This composite raw tube F is horizontally unwound from the unwinding side capstan 5 in the tangential direction, inserted into the die hole of the drawing die 7, and the composite raw tube F passed through the die hole of the drawing die 7 is passed through the drawing side capstan. Wrap it around 9 for one round or more, and pull out the composite raw pipe F to the downstream side of the capstan 9 on the pull-out side. These operations are preparatory work before the start of production of the multi-twisted tube with an inner spiral groove.

この準備作業の後、複合素管Fの先端側と後端側に図4に示すようにそれぞれ筒型の拘束具31を被せ、拘束具31の周壁に複数形成されているねじ孔に蝶ネジ31aを螺合して複合素管Fの先端側と後端側を拘束する。次に、図4に示すように複合素管Fの先端側の拘束具31に張力調整用のコイルバネを備えたバネばかり型の張力調整具32を接続し、複合素管Fの後端側の拘束具31に張力調整用のコイルバネを備えたバネばかり型の張力調整具33を接続する。 After this preparatory work, a tubular restraint 31 is placed on the front end side and the rear end side of the composite raw tube F, respectively, as shown in FIG. 31a is screwed to restrain the front end side and the rear end side of the composite raw tube F. Next, as shown in FIG. 4, a spring-scale tension adjuster 32 provided with a coil spring for tension adjustment is connected to the restraint 31 on the front end side of the composite base pipe F, and the tension adjuster 32 on the rear end side of the composite base pipe F is connected. A spring-scale tension adjuster 33 provided with a coil spring for tension adjustment is connected to the restraint 31.

この状態から複合素管Fの加工を開始する。加工開始とともに順次、複合素管Fを一定の速度で移動させて中空軸部13を通過させ、巻き出し側キャプスタン5に巻き付ける(巻き出し工程)。複合素管Fを引抜きダイス7に通すための引抜き力は駆動モーター25により回転させる引き抜き側キャプスタン9の回転力により与えられる。
巻き出し側キャプスタン5から巻き出した複合素管Fに引抜きダイス7を通過させて引き抜き側キャプスタン9に巻き付け、引き抜き側キャプスタン9から一定の速度で巻き出す。これらの動作を開始すると同時に中空軸部13を駆動モーター21により所定速度で回転させ、巻き出し側キャプスタン5と錘体18を回転駆動する(捻り引抜き工程)。
From this state, the processing of the composite raw tube F is started. Along with the start of processing, the composite raw tube F is sequentially moved at a constant speed to pass through the hollow shaft portion 13 and wound around the unwinding side capstan 5 (unwinding step). The pulling force for passing the composite raw pipe F through the pulling die 7 is given by the rotational force of the pulling side capstan 9 rotated by the drive motor 25.
The drawing die 7 is passed through the composite raw tube F unwound from the unwinding side capstan 5, wound around the pulling out side capstan 9, and unwound from the unwinding side capstan 9 at a constant speed. At the same time as starting these operations, the hollow shaft portion 13 is rotated at a predetermined speed by the drive motor 21, and the unwinding side capstan 5 and the weight body 18 are rotationally driven (twisting and pulling step).

また、張力調整具32、33の張力を監視しながら、複合素管Fが巻き出し側キャプスタン5に巻き付けられる場合の後方張力を一定になるように調整する。
更に、引き抜き側キャプスタン9から複合素管Fが引き出される場合の前方張力を一定になるように調整する。
前方張力の安定的な付加のためには、張力調整具32の下流側に巻き取りローラーやウインチ装置などの引張り装置を配置し、一定の速度で張力調整具32を牽引できるように調整することが好ましい。また、後方張力の安定的な付加のためには、張力調整具33の上流側に巻き出しローラーなどの巻き出し装置を配置し、一定の速度で張力調整具33を繰り出しできるように調整することが好ましい。
あるいは、張力調整具32、33を略してこれらの位置に巻き出し用のローラーと巻取用のローラーを配置し、これらのローラーにブレーキ機構や速度調整機構を内蔵し、引抜きダイス7より下流側の複合素管Fの先端側に所望の前方張力を付加し、引抜きダイス7より上流側の複合素管Fの後端側に所望の後方張力を付加できるように構成することが大量生産を行う上では好ましい。
Further, while monitoring the tension of the tension adjusting tools 32 and 33, the rear tension when the composite raw pipe F is wound around the unwinding side capstan 5 is adjusted to be constant.
Further, the forward tension when the composite raw pipe F is pulled out from the pull-out side capstan 9 is adjusted to be constant.
In order to stably apply the forward tension, a tensioning device such as a take-up roller or a winch device is arranged on the downstream side of the tension adjusting tool 32, and the tension adjusting tool 32 is adjusted so that it can be towed at a constant speed. Is preferable. Further, in order to stably apply the rear tension, an unwinding device such as an unwinding roller is arranged on the upstream side of the tension adjusting tool 33, and the tension adjusting tool 33 is adjusted so that the tension adjusting tool 33 can be unwound at a constant speed. Is preferable.
Alternatively, the tension adjusters 32 and 33 are abbreviated, and a winding roller and a winding roller are arranged at these positions, and a brake mechanism and a speed adjusting mechanism are built in these rollers on the downstream side of the drawing die 7. Mass production is carried out by applying a desired forward tension to the tip end side of the composite body tube F and applying a desired rearward tension to the rear end side of the composite body tube F on the upstream side of the drawing die 7. Above is preferred.

引抜きダイス7を中心として下流側の複合素管Fに適切な後方張力を付加しつつ上流側の複合素管Fに適切な後方張力を付加しながら巻き出し側キャプスタン5から引抜きダイス7のダイス孔に複合素管Fを通過させると同時に、巻き出し側キャプスタン5を回転させることで引抜きダイスのダイス孔を通過する複合素管Fに引抜きと捻りを同時に作用させる。
通常、3〜20mm程度、あるいは3〜12mm程度などの外径のアルミニウムあるいはアルミニウム合金からなる薄肉の素管1、8に対し、捻り力のみを作用させると容易に座屈するか破断する。この製造装置Aでは捻り力の作用と同時に引抜き力を作用させて捻りによる破断を抑制しながら引き抜くので、上述のサイズの細径のアルミニウム又はアルミニウム合金製の素管1と素管8からなる複合素管Fであっても、破断させることなく捻りを付加できる。
The die of the drawing die 7 from the unwinding side capstan 5 while applying an appropriate rear tension to the composite body pipe F on the downstream side centering on the drawing die 7 and applying an appropriate rear tension to the composite body pipe F on the upstream side. At the same time that the composite raw pipe F is passed through the hole, the unwinding side capstan 5 is rotated so that the composite raw pipe F passing through the die hole of the drawing die is simultaneously pulled out and twisted.
Usually, when only a twisting force is applied to thin-walled raw tubes 1 and 8 made of aluminum or an aluminum alloy having an outer diameter of about 3 to 20 mm or about 3 to 12 mm, they easily buckle or break. In this manufacturing apparatus A, a pulling force is applied at the same time as the action of the twisting force to pull out while suppressing breakage due to twisting. Even if the raw tube F is used, twisting can be added without breaking it.

この場合、捻りにより複合素管Fには円周接線方向にせん断応力が作用し、捻り角(リード角)が付与されるが、せん断力が座屈応力を超えた場合に座屈が生じる。しかし、引抜き加工による素管束長手方向への引張り応力により、せん断応力を低減できるため、複合素管Fの座屈の発生を抑制できる。このため上述のサイズの複合素管Fに対し5゜〜80゜程度の大きな捻り角を付与しても複合素管Fを座屈あるいは破断させることなく捻り加工することができる。 In this case, a shear stress acts on the composite base tube F in the circumferential tangential direction due to twisting to give a torsion angle (lead angle), but buckling occurs when the shear force exceeds the buckling stress. However, since the shear stress can be reduced by the tensile stress in the longitudinal direction of the raw pipe bundle due to the drawing process, the occurrence of buckling of the composite raw pipe F can be suppressed. Therefore, even if a large twist angle of about 5 ° to 80 ° is applied to the composite raw pipe F having the above-mentioned size, the composite raw pipe F can be twisted without buckling or breaking.

図3に示すように巻き出し側キャプスタン5の頂上位置と引抜きダイス7の出口部分との間の長さLの領域が複合素管Fの捻り加工領域とされる。製造装置Aにあってはこの捻り加工領域の長さLを極力短くしているので、大きな捻り角を複合素管Fに与えても、素管1、8に破断を生じることなく5゜〜80゜程度まで捻りを付与することができる。 As shown in FIG. 3, a region having a length L between the top position of the unwinding side capstan 5 and the outlet portion of the drawing die 7 is defined as a twisting region of the composite raw pipe F. In the manufacturing apparatus A, the length L of this twisting region is made as short as possible, so even if a large twisting angle is given to the composite raw pipe F, the raw pipes 1 and 8 are not broken and are 5 ° to 5 °. Twisting can be applied up to about 80 °.

複合素管Fは巻き出し側キャプスタン5に1周分巻き付けられることにより、図5に示すように巻き始め側の軸心Cから巻き出し側キャプスタン5の外周に沿って若干ずれた軸心C1に沿って送り出される。
引抜きダイス7のダイス孔を複合素管Fが通過する場合、複合素管Fの中心とダイス孔の中心の位置合わせを行い、複合素管Fに余計な応力が作用しないようにするためには、巻き出し側キャプスタン5から巻き出された側の軸心C1を回転中心として軸心C1の周回りに巻き出し側キャプスタン5が回転するように、中空軸部13の位置関係と第1支持フレーム15の位置関係と巻き出し側キャプスタン5の位置関係を合わせることが好ましい。
複合素管Fの中心とダイス孔の中心の位置合わせを行っていることにより、ダイス孔7を通過する複合素管Fに大きな捻りを付加し、捻り角の大きな加工を施しても複合素管Fを破断させることなく捻り加工できる。
As shown in FIG. 5, the composite raw tube F is wound around the unwinding side capstan 5 for one round, so that the axial center is slightly deviated from the unwinding side axis C along the outer circumference of the unwinding side capstan 5. It is sent out along C1.
When the composite element tube F passes through the die hole of the drawing die 7, the center of the composite element tube F and the center of the die hole should be aligned so that extra stress does not act on the composite element tube F. , The positional relationship of the hollow shaft portion 13 and the first It is preferable to match the positional relationship of the support frame 15 with the positional relationship of the unwinding side capstan 5.
By aligning the center of the composite raw pipe F with the center of the die hole, a large twist is added to the composite raw pipe F passing through the die hole 7, and the composite raw pipe is processed with a large twist angle. It can be twisted without breaking F.

なお、巻き出し側キャプスタン5を回転させるための回転中心は中空軸部13の軸心と一致するが、この軸心は引抜きダイス7のダイス孔の中心と位置合わせされ、この軸心に沿って複合素管Fの中心が移動する必要がある。このため、巻き出し側キャプスタン5に巻き掛けられる前の複合素管Fは前記軸心から若干ずれた位置にあって回転する。このため、巻き出し側キャプスタン5に巻き付けられる前の複合素管Fは中空軸部13の内部において偏心回転することとなるが、中空軸部13の内径はこの偏心回転を吸収するだけの値に設定されているので、複合素管Fの回転に支障はない。 The center of rotation for rotating the unwinding side capstan 5 coincides with the center of the hollow shaft portion 13, but this center of rotation is aligned with the center of the die hole of the drawing die 7 and is aligned with the center of the die. It is necessary to move the center of the composite body tube F. Therefore, the composite raw tube F before being wound around the unwinding side capstan 5 rotates at a position slightly deviated from the axial center. Therefore, the composite raw tube F before being wound around the unwinding side capstan 5 is eccentrically rotated inside the hollow shaft portion 13, but the inner diameter of the hollow shaft portion 13 is a value that only absorbs this eccentric rotation. Since it is set to, there is no problem in the rotation of the composite raw tube F.

以上説明した捻り引抜き加工を行うことで引抜きダイス7を通過する複合素管Fに大きな捻りを付与することができる結果、素管1、8をそれぞれ螺旋状に捻り、内面に螺旋溝2aを有する内面螺旋溝付管2と内面に螺旋溝3aを有する内面螺旋溝付管3を一体化した図1に示す構造の内面螺旋溝付多重捻り管4を製造することができる。
この内面螺旋溝付多重捻り管4において、所定の捻り周期(捻りピッチ)で内面螺旋溝付管2と内面螺旋溝付管3が螺旋状に加工されている。このため、内面螺旋溝付管2の内面に形成された内面螺旋溝2aと内面螺旋溝付管3の内面に形成された内面螺旋溝3aの捻り周期はほぼ同一に形成されている。
As a result of being able to give a large twist to the composite raw tube F passing through the drawing die 7 by performing the twist pulling process described above, the raw pipes 1 and 8 are twisted in a spiral shape, respectively, and have a spiral groove 2a on the inner surface. It is possible to manufacture a multi-twisted tube 4 with an inner spiral groove having a structure shown in FIG. 1 in which an inner spiral grooved tube 2 and an inner spiral grooved tube 3 having a spiral groove 3a on the inner surface are integrated.
In the multiple twisted pipe 4 with an inner spiral groove, the inner spiral grooved pipe 2 and the inner spiral grooved pipe 3 are spirally processed at a predetermined twist period (twisting pitch). Therefore, the twist period of the inner spiral groove 2a formed on the inner surface of the inner spiral grooved tube 2 and the inner spiral groove 3a formed on the inner surface of the inner spiral grooved tube 3 are formed to be substantially the same.

図2に内面螺旋溝3aが形成されている内面螺旋溝付管3の内部構造の一例を示す。内面螺旋溝付管3の内周部において内周方向に隣接する内面螺旋溝3aが形成され、その間に螺旋フィン3bが形成されている。
この例の内面螺旋溝3aと螺旋フィン3bの捻り角θは巻き出し側キャプスタン5の回転速度に応じて例えば5゜〜80゜程度まで製造可能となる。
図2に示す構造の内面螺旋溝付管3においてその周壁を切り開いて平面状に展開した場合、管の内周長さaに対し、内面螺旋溝3aあるいは螺旋フィン3bの1周期分の長さbとした場合、a、bを2辺とする直角三角形の1つの頂角が示すように捻り角θが規定される。
一例として、外径8.5mmのアルミニウム合金製の内面螺旋溝付管3の場合、図1に示す底肉厚W1:0.58mm、フィン高さ:0.28mm、条数:50個、リード角:20゜に形成することができ、外径6.5mmのアルミニウム合金製の内面螺旋溝付管2の場合、底肉厚W2:0.35mm、フィン高さ:0.16mm、条数:50個、リード角:17゜に形成できる。
FIG. 2 shows an example of the internal structure of the inner spiral grooved tube 3 in which the inner spiral groove 3a is formed. An inner spiral groove 3a adjacent to the inner peripheral direction is formed in the inner peripheral portion of the inner spiral grooved tube 3, and a spiral fin 3b is formed between them.
The twist angle θ of the inner spiral groove 3a and the spiral fin 3b in this example can be manufactured to, for example, about 5 ° to 80 ° depending on the rotation speed of the unwinding side capstan 5.
When the peripheral wall of the inner spiral grooved pipe 3 having the structure shown in FIG. 2 is cut open and developed in a plane, the length of one cycle of the inner spiral groove 3a or the spiral fin 3b is relative to the inner peripheral length a of the pipe. In the case of b, the twist angle θ is defined as indicated by one apex angle of a right triangle having a and b as two sides.
As an example, in the case of an aluminum alloy inner spiral grooved tube 3 having an outer diameter of 8.5 mm, the bottom wall thickness W1: 0.58 mm, fin height: 0.28 mm, number of threads: 50, leads shown in FIG. In the case of an aluminum alloy inner spiral grooved tube 2 having an outer diameter of 6.5 mm, which can be formed at an angle of 20 °, the bottom wall thickness W2: 0.35 mm, fin height: 0.16 mm, number of threads: 50 pieces can be formed with a lead angle of 17 °.

図1に示す構造の内面螺旋溝付多重捻り管4において、内面螺旋溝付管3の内面側の螺旋フィン3bはそれらの先端部を径の小さな内面螺旋溝付管2の外周面に食い込ませた状態とされ、内面螺旋溝付管2と内面螺旋溝付管3が一体化されている。これは、図7に示すように径の大きな素管1の内部に径の小さい素管8を挿入し、全体を引抜きダイス7に通して引き抜きつつ縮径しながら回転させて捻るため、径の大きな素管1が縮径される際に素管内面側の直線状のフィン1bが螺旋状に加工されながら径の小さな素管8の外周面に食い込みつつ塑性変形される結果である。従って、螺旋フィン3bの先端部は内面螺旋溝付管2の外周面に食い込まされた食い込み部とされている。
以上説明の構成により、内面螺旋溝付管2と内面螺旋溝付管3との間に内面螺旋溝付管2の外周面と内面螺旋溝付管3の螺旋溝3aと螺旋フィン3bによって囲まれた複数の流路が形成される。このため、内面螺旋溝付多重捻り管4においては、内面螺旋溝付管2の内部側に第1の流路R1が形成され、内面螺旋溝付管2と内面螺旋溝付管3との間に第2の流路R2が複数形成される。なお、図1に示す断面のように第2の流路R2は複数の小さな流路の集合体となるが、この第2の流路R2の断面積を大きくするためには内面螺旋溝付管3の螺旋フィン3bの高さを図1の構造より大きく設定し、螺旋フィン3bの条数を少なくすることにより対応できる。
In the multi-twisted tube 4 with an inner spiral groove having the structure shown in FIG. 1, the spiral fins 3b on the inner surface side of the inner spiral grooved tube 3 have their tips bite into the outer peripheral surface of the inner spiral grooved tube 2 having a small diameter. The inner spiral grooved pipe 2 and the inner spiral grooved pipe 3 are integrated. This is because, as shown in FIG. 7, a small-diameter raw tube 8 is inserted inside a large-diameter raw tube 1, and the entire raw tube 8 is pulled out through a drawing die 7 while being rotated and twisted while reducing the diameter. This is a result of plastic deformation while the linear fins 1b on the inner surface side of the raw pipe are spirally processed and bite into the outer peripheral surface of the small raw pipe 8 when the diameter of the large raw pipe 1 is reduced. Therefore, the tip end portion of the spiral fin 3b is a bite portion that is bitten into the outer peripheral surface of the inner spiral grooved tube 2.
According to the configuration described above, the inner surface spiral grooved tube 2 and the inner surface spiral grooved tube 3 are surrounded by the outer peripheral surface of the inner surface spiral grooved tube 2 and the spiral groove 3a and the spiral fin 3b of the inner surface spiral grooved tube 3. A plurality of flow paths are formed. Therefore, in the multiple twisted pipe 4 with an inner spiral groove, a first flow path R1 is formed on the inner side of the inner spiral grooved pipe 2, and between the inner spiral grooved pipe 2 and the inner spiral grooved pipe 3. A plurality of second flow paths R2 are formed in the water. As shown in the cross section shown in FIG. 1, the second flow path R2 is an aggregate of a plurality of small flow paths. In order to increase the cross-sectional area of the second flow path R2, an inner spiral grooved tube is used. It can be dealt with by setting the height of the spiral fin 3b of No. 3 to be larger than the structure of FIG. 1 and reducing the number of threads of the spiral fin 3b.

内面螺旋溝付多重捻り管4において、内面螺旋溝付管2の外側に内面螺旋溝付管3が配置されているので、内面螺旋溝付管2の螺旋溝2aのリード角より、内面螺旋溝付管3の螺旋溝3aのリード角が若干大きく形成される。換言すると、内面螺旋溝付管2の螺旋フィン2bのリード角より、内面螺旋溝付管3の螺旋フィン3bのリード角が若干大きく形成される。
内面螺旋溝付管2の螺旋溝2aのリード角と内面螺旋溝付管3の螺旋溝3aのリード角の大小関係は、一例として後述する実施例において示す。
In the multiple twisted pipe 4 with an inner spiral groove, since the inner spiral grooved pipe 3 is arranged on the outside of the inner spiral grooved pipe 2, the inner spiral groove is formed from the lead angle of the spiral groove 2a of the inner spiral grooved pipe 2. The lead angle of the spiral groove 3a of the attached pipe 3 is formed to be slightly large. In other words, the lead angle of the spiral fin 3b of the inner spiral grooved tube 3 is formed to be slightly larger than the lead angle of the spiral fin 2b of the inner spiral grooved tube 2.
The magnitude relationship between the lead angle of the spiral groove 2a of the inner spiral grooved tube 2 and the lead angle of the spiral groove 3a of the inner spiral grooved tube 3 will be shown in Examples described later as an example.

また、上述の製造方法によれば、アルミニウム又はアルミニウム合金製の内面螺旋溝付管2の螺旋溝2aの捻り角と内面螺旋溝付管3の螺旋溝3aの捻り角は、5゜〜40゜程度まで製造可能となる。内面螺旋溝付管2、3のピッチについては、複合素管Fが引抜きダイス7を通過する際の引抜き速度と巻き出し側キャプスタン5の回転数との相対により決定される。従って、複合素管Fの引抜き速度と巻き出し側キャプスタン5の回転数を一定にしておけば、長さ方向に沿って一定の捻り角で一定のピッチを有する内面螺旋溝付多重捻り管4を得ることができる。
また、複合素管Fの引抜き速度と回転数の関係を周期的に変更するならば、長さ方向にピッチと捻り角が周期的に変化する内面螺旋溝付多重捻り管4を得ることができる。
Further, according to the above-mentioned manufacturing method, the twist angle of the spiral groove 2a of the inner spiral grooved tube 2 made of aluminum or an aluminum alloy and the twist angle of the spiral groove 3a of the inner spiral grooved tube 3 are 5 ° to 40 °. It can be manufactured to the extent. The pitch of the inner spiral grooved pipes 2 and 3 is determined by the relative ratio between the pulling speed when the composite raw pipe F passes through the pulling die 7 and the rotation speed of the unwinding side capstan 5. Therefore, if the pull-out speed of the composite raw tube F and the rotation speed of the unwinding side capstan 5 are kept constant, the multi-twisted tube 4 with an inner spiral groove having a constant twist angle and a constant pitch along the length direction. Can be obtained.
Further, if the relationship between the pull-out speed and the rotation speed of the composite raw tube F is periodically changed, it is possible to obtain a multiple twisted tube 4 with an inner spiral groove whose pitch and twist angle change periodically in the length direction. ..

以上説明の如く製造された図1に示す構成の内面螺旋溝付多重捻り管4であるならば、内面螺旋溝付管2の内部の第1の流路R1に加え、内面螺旋溝付管2と内面螺旋溝付管3の間の第2の流路R2に異なる温度の冷媒あるいは熱媒を流した場合、異なる温度の冷媒どうしあるいは熱媒どうし、または、冷媒と熱媒との間で熱交換ができる。
この場合、冷媒や熱媒は内面螺旋溝2a、3aの存在により冷媒や熱媒と内面螺旋溝付管2、3との間で効率の良い熱交換がなされる。
このため、例えば、本実施形態の内面螺旋溝付多重捻り管4を自動車用コンデンサとエバポレータを接続する伝熱管に適用するならば、効率の良い熱交換機能を備えた伝熱管構造を実現できる。自動車用コンデンサとエバポレータを接続する伝熱管は通常の場合2本必要であるが、図1の内面螺旋溝付多重捻り管4であれば、第1の流路R1と第2の流路R2を備えているので、1本の内面螺旋溝付多重捻り管4で両者を接続することができる。
この場合、コンデンサとエバポレータの間で行き来する冷媒または熱媒の流量を等しくするには第1の流路R1と第2の流路R2の流路断面積を同等にすれば良く、それには大径側の内面螺旋溝付管3の螺旋フィン3bの高さと幅を大きくして条数を少なくすればよい。
In the case of the multi-twisted pipe 4 with an inner spiral groove having the configuration shown in FIG. 1 manufactured as described above, in addition to the first flow path R1 inside the inner spiral grooved pipe 2, the inner spiral grooved pipe 2 When a refrigerant or a heat medium having a different temperature is passed through the second flow path R2 between the pipe 3 and the inner spiral grooved pipe 3, heat is generated between the refrigerants or the heat mediums having different temperatures, or between the refrigerant and the heat medium. Can be exchanged.
In this case, the refrigerant or heat medium efficiently exchanges heat between the refrigerant or heat medium and the inner spiral grooved pipes 2 and 3 due to the presence of the inner spiral grooves 2a and 3a.
Therefore, for example, if the multiple twisted tube 4 with an inner spiral groove of the present embodiment is applied to a heat transfer tube that connects an automobile capacitor and an evaporator, a heat transfer tube structure having an efficient heat exchange function can be realized. Normally, two heat transfer tubes are required to connect the capacitor for automobiles and the evaporator, but in the case of the multiple twisted tube 4 with an inner spiral groove in FIG. 1, the first flow path R1 and the second flow path R2 are used. Since it is provided, both can be connected by one multi-twisted pipe 4 with an inner spiral groove.
In this case, in order to equalize the flow rates of the refrigerant or heat medium flowing back and forth between the condenser and the evaporator, it is sufficient to make the flow path cross-sectional areas of the first flow path R1 and the second flow path R2 equal, which is large. The height and width of the spiral fins 3b of the inner spiral grooved tube 3 on the diameter side may be increased to reduce the number of threads.

本実施形態の製造装置Aにおいて、中空軸部13の前段側に複合素管Fの真円度を向上させるための整形を行う予備整形用のダイスを設けても良い。
また、本実施形態の製造装置Aにおいて、複合素管Fを構成する素管1、8を予め内面螺旋溝付管としておき、これらの内面螺旋溝付管を複合して引抜きダイス7に通過させて縮径と捻りを同時に付与し、内面螺旋溝付多重捻り管を構成しても良い。
In the manufacturing apparatus A of the present embodiment, a pre-shaping die for shaping to improve the roundness of the composite raw tube F may be provided on the front stage side of the hollow shaft portion 13.
Further, in the manufacturing apparatus A of the present embodiment, the raw pipes 1 and 8 constituting the composite raw pipe F are previously set as inner spiral grooved pipes, and these inner spiral grooved pipes are combined and passed through the drawing die 7. The diameter and twist may be applied at the same time to form a multiple twisted tube with an inner spiral groove.

本実施形態の製造装置Aは、複合素管Fを加工することができるが、1本の素管1あるいは1本の素管8を捻り加工することもできる。例えば、製造装置Aを用いて1本の素管1に対し縮径加工と捻り加工を同時に付与することで、内面螺旋溝2aを備えた内面螺旋溝付管2を単独で得ることができる。 The manufacturing apparatus A of the present embodiment can process the composite raw pipe F, but can also twist one raw pipe 1 or one raw pipe 8. For example, by simultaneously applying the diameter reduction processing and the twisting processing to one raw pipe 1 by using the manufacturing apparatus A, the inner surface spiral grooved pipe 2 provided with the inner surface spiral groove 2a can be obtained independently.

製造装置Aは1本の内面螺旋溝付管を製造することができるので、径の異なる内面螺旋溝付管を2本複合して複合素管を構成し、更に上述のように引抜きダイス7を通過させて捻り引抜き加工を施し、内面螺旋溝付多重捻り管を製造しても良い。
引抜きダイス7のダイス孔を通過する場合に引抜きと捻りを精密に加えつつ加工することで5゜〜40゜程度の捻り角の内面螺旋溝付多重捻り管を製造できるが、素管1、8を構成するアルミニウム合金の組成によっては伸びが低く、破断する恐れが高い材料であることも考えられる。このような場合は、目的の大きな捻り角に1回の捻り引抜き加工で加工するのではなく、2回や3回に分けて徐々に加工することもできる。このように複数回の加工に分けることで破断のおそれを低くしながら、大きな捻り角の内面螺旋溝付多重捻り管4を加工することができる。
Since the manufacturing apparatus A can manufacture one inner spiral grooved pipe, two inner spiral grooved pipes having different diameters are combined to form a composite raw pipe, and the drawing die 7 is further formed as described above. A multi-twisted tube with an inner spiral groove may be manufactured by passing it through and performing a twist-pulling process.
A multi-twisted tube with an inner spiral groove with a twist angle of about 5 ° to 40 ° can be manufactured by processing while precisely applying drawing and twisting when passing through the die hole of the drawing die 7. Depending on the composition of the aluminum alloy constituting the material, it is considered that the material has a low elongation and a high risk of breaking. In such a case, it is possible to gradually process the target large twist angle by dividing it into two or three times instead of processing it by one twisting and pulling process. By dividing into a plurality of times of processing in this way, it is possible to process the multiple twisted pipe 4 with an inner spiral groove having a large twist angle while reducing the risk of breakage.

また、1本の大径の素管にある程度の捻り引抜き加工を施して内面螺旋溝付管に加工した後、直線溝を有する小径の素管と複合して2回目の捻り引抜き加工しても良い。
この場合、最初の捻り引抜き加工で10゜のリード角を付与したとして、2回目の捻り引抜き加工で更に10゜のリード角を付与するような捻り引抜き加工を施した場合、大径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を20゜、小径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を10゜とした内面螺旋溝付多重捻り管を製造することができる。
また、1本の小径の素管にある程度の捻り引抜き加工を施して内面螺旋溝付管に加工した後、直線溝を有する大径の素管と複合して2回目の捻り引抜き加工を行えば、小径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を20゜、大径側の内面螺旋溝付管に形成される螺旋フィン(螺旋溝)のリード角を10゜とした内面螺旋溝付多重捻り管を製造することができる。
Further, even if one large-diameter raw pipe is subjected to a certain amount of torsional drawing to form an inner spiral grooved pipe, and then combined with a small-diameter raw pipe having a straight groove, a second torsional drawing is performed. good.
In this case, if a lead angle of 10 ° is given in the first twist-drawing process and a lead angle of 10 ° is further given in the second twist-pulling process, the inner surface on the large diameter side is subjected to the twist-pulling process. The lead angle of the spiral fin (spiral groove) formed in the spiral grooved pipe is 20 °, and the lead angle of the spiral fin (spiral groove) formed in the inner spiral grooved pipe on the small diameter side is 10 °. Multiple twisted pipes can be manufactured.
In addition, if one small-diameter raw pipe is subjected to a certain amount of twist-pulling processing to form an inner spiral grooved pipe, and then combined with a large-diameter raw pipe having a straight groove, a second twist-pulling process is performed. , The lead angle of the spiral fin (spiral groove) formed in the inner spiral grooved pipe on the small diameter side is 20 °, and the lead angle of the spiral fin (spiral groove) formed in the inner spiral grooved pipe on the large diameter side is 10. A multi-twisted tube with an inner spiral groove can be manufactured.

このように上述の製造装置Aを用いて素管の溝の状態を調整しつつ内面螺旋溝付多重捻り管を製造するならば、大径側の螺旋フィン(螺旋溝)のリード角と小径側の螺旋フィン(螺旋溝)のリード角の大小関係を自由に調節した構造の内面螺旋溝付多重捻り管を製造することができる。
また、引き抜き側キャプスタン9の下流側に更に整形用の引抜きダイスを設けて内面螺旋溝付多重捻り管4の真円度を高めるための仕上げ引抜きを行っても良い。
仕上げ引抜き用の引抜きダイスを設けるには、図3に示す支柱部材23と同等形状の支柱部材を支柱部材23の下流側に設け、その支柱部材上部に支持架台25と同等形状の支持架台を別途設けてその支持架台に仕上げ成形用の引抜きダイスを設けると良い。
引き抜き側キャプスタン9を通過した後の内面螺旋溝付多重捻り管を仕上げ成形用の引抜きダイスに通すことで最終的に得られる内面螺旋溝付多重捻り管の真円度を向上し、形状の整った内面螺旋溝付多重捻り管を提供できる。
In this way, if a multi-twisted pipe with an inner spiral groove is manufactured while adjusting the state of the groove of the raw pipe using the above-mentioned manufacturing apparatus A, the lead angle and the small diameter side of the spiral fin (spiral groove) on the large diameter side are produced. It is possible to manufacture a multi-twisted tube with an inner spiral groove having a structure in which the magnitude relationship of the lead angle of the spiral fin (spiral groove) is freely adjusted.
Further, a drawing die for shaping may be further provided on the downstream side of the drawing-side capstan 9, and finish drawing may be performed to increase the roundness of the multi-twisted pipe 4 with an inner spiral groove.
In order to provide a drawing die for finish drawing, a support member having the same shape as the support member 23 shown in FIG. 3 is provided on the downstream side of the support member 23, and a support frame having the same shape as the support frame 25 is separately provided above the support frame member 23. It is advisable to provide a drawing die for finish molding on the support frame.
By passing the multi-twisted tube with inner spiral groove after passing through the capstan 9 on the drawing side through a drawing die for finish molding, the roundness of the multi-twisted tube with inner spiral groove finally obtained is improved, and the shape of the multi-twisted tube is improved. A well-ordered multi-twisted tube with an internal spiral groove can be provided.

「第二実施形態」
先の実施形態においては素管1、8を複合して一体化し、捻り加工と引抜き加工を施して内面螺旋溝付多重捻り管4を得たが、素管を一体化する場合の適用本数は任意の数を選択できる
例えば、径の異なる3本の素管を挿通して3重管を構成し、この3重管を製造装置Aにより捻りを付加しながら引抜き加工することで図8に示す3重管構造の内面螺旋溝付多重捻り管34を製造することができる。
図8に示す第二実施形態の内面螺旋溝付多重捻り管34は、図1に示す構造の内面螺旋溝付多重捻り管4の外側に更に径の大きな素管を1本複合して捻り加工と引抜き加工を施して製造された構造である。
"Second embodiment"
In the above embodiment, the raw pipes 1 and 8 are combined and integrated, and twisting and drawing are performed to obtain a multiple twisted pipe 4 with an inner spiral groove. An arbitrary number can be selected. For example, three raw pipes having different diameters are inserted to form a triple pipe, and the triple pipe is drawn out while being twisted by the manufacturing apparatus A, as shown in FIG. A multi-twisted tube 34 with an inner spiral groove having a triple tube structure can be manufactured.
The multiple twisted pipe 34 with an inner spiral groove shown in FIG. 8 is twisted by combining one raw pipe having a larger diameter on the outside of the multiple twisted pipe 4 with an inner spiral groove having the structure shown in FIG. It is a structure manufactured by performing a drawing process.

図8に示す構造において最も径の大きな内面螺旋溝付管35は内面螺旋溝35aと螺旋フィン35bを有し、螺旋フィン35bは内面螺旋溝付管3の外周面に食い込まされている。内面螺旋溝付管3と内面螺旋溝付管35の間には、内面螺旋溝付管3の外周面と隣接する螺旋フィン35bに囲まれる形状の第3の流路R3が複数形成されている。
図8に示す構造では第1の流路R1と第2の流路R2に加え、第3の流路R3を設けているので、3種類の冷媒または熱媒に対応する構造を提供できる。
なお、3重管構造の内面螺旋溝付多重捻り管34を製造する場合、図7に示す素管1、8の複合素管Fに対し素管1より小径の素管を複合してから製造装置Aを用いて捻り加工と引抜き加工を施しても良い。
In the structure shown in FIG. 8, the inner spiral grooved tube 35 having the largest diameter has an inner spiral groove 35a and a spiral fin 35b, and the spiral fin 35b is bitten into the outer peripheral surface of the inner spiral grooved tube 3. A plurality of third flow paths R3 having a shape surrounded by spiral fins 35b adjacent to the outer peripheral surface of the inner surface spiral grooved pipe 3 are formed between the inner surface spiral grooved pipe 3 and the inner surface spiral grooved pipe 35. ..
In the structure shown in FIG. 8, since the third flow path R3 is provided in addition to the first flow path R1 and the second flow path R2, it is possible to provide a structure corresponding to three types of refrigerants or heat media.
When manufacturing a multiple twisted pipe 34 with an inner spiral groove having a triple pipe structure, the composite raw pipe F of the raw pipes 1 and 8 shown in FIG. 7 is combined with a raw pipe having a diameter smaller than that of the raw pipe 1 before being manufactured. The twisting process and the drawing process may be performed using the device A.

また、先に説明した如く用いる素管として直線溝を有する素管と内面螺旋溝を有する素管のどちらを用いても良いので、例えば、螺旋フィン2bのリード角と螺旋フィン3bのリード角と螺旋フィン35bのリード角を順次異なる角度に制御することもできる。
例えば、最も径の小さな素管として直線溝を有する素管を用い、2番目に大きな素管としてリード角度10゜の内面螺旋溝付管を用い、1番大きな素管としてリード角20゜の内面螺旋溝付管を用い、製造装置Aを用いて10゜のリード角を付与する条件で捻り加工と引抜き加工を施す。
このように製造することにより、最も小さな内面螺旋溝付管のリード角を10゜、2番目に大きな内面螺旋溝付管のリード角を20゜、1番大きな内面螺旋溝付管のリード角を30゜とした3重管構造の内面螺旋溝付多重捻り管を得ることができる。
Further, as the raw tube to be used as described above, either a raw tube having a straight groove or a raw tube having an inner spiral groove may be used. Therefore, for example, the lead angle of the spiral fin 2b and the lead angle of the spiral fin 3b It is also possible to sequentially control the lead angle of the spiral fin 35b to a different angle.
For example, a raw pipe having a straight groove is used as the smallest raw pipe, an inner spiral grooved pipe having a lead angle of 10 ° is used as the second largest raw pipe, and an inner surface having a lead angle of 20 ° is used as the largest raw pipe. A spiral grooved tube is used, and a twisting process and a drawing process are performed using the manufacturing apparatus A under the condition that a lead angle of 10 ° is imparted.
By manufacturing in this way, the lead angle of the smallest inner spiral grooved tube is 10 °, the lead angle of the second largest inner spiral grooved tube is 20 °, and the lead angle of the largest inner spiral grooved tube is 20 °. A multi-twisted tube with an inner spiral groove having a triple tube structure of 30 ° can be obtained.

「第三実施形態」
先の実施形態においては、素管1の内部に1本の素管8を挿通して引抜き加工と捻り加工を付加したが、素管1の内部に複数の素管8を挿通した複合素管を用いて製造装置Aにより内面螺旋溝付多重捻り管を製造することも可能である。
例えば、1本の素管1の内部にそれより小径の複数本(例えば3本)の素管を挿入して複合素管を作製し、この複合素管の全体に引抜き加工と捻り加工を施して内面螺旋溝付多重捻り管を製造することができる。
"Third embodiment"
In the above embodiment, one raw pipe 8 is inserted into the raw pipe 1 to add drawing and twisting, but a composite raw pipe in which a plurality of raw pipes 8 are inserted inside the raw pipe 1 is added. It is also possible to manufacture a multi-twisted tube with an inner spiral groove by the manufacturing apparatus A using the above.
For example, a plurality of (for example, three) pipes having a smaller diameter are inserted into one pipe 1 to prepare a composite pipe, and the entire composite pipe is drawn and twisted. It is possible to manufacture a multi-twisted tube with an inner spiral groove.

図9は径の大きな1本の内面溝付素管の内部に径の小さな3本の内面溝付素管を挿入し、先の製造装置Aを用いて全体に引抜き加工と捻り加工を施して得られた内面螺旋溝付多重捻り管の一実施形態を示す。
この実施形態の内面螺旋溝付多重捻り管40は、最外層に大径の内面螺旋溝付管41が設けられ、その内側に3本の撚線化された小径の内面螺旋溝付管42が設けられている。
大径の内面螺旋溝付管41の内面には長さ方向に所定のピッチで複数の螺旋溝41aと螺旋フィン41bが設けられている。3本の小径の内面螺旋溝付管42の内面にはそれぞれ長さ方向に所定のピッチで複数の螺旋溝42aと螺旋フィン42bが設けられ、小径の内面螺旋溝付管42はそれぞれ略三角形型に形成されている。
In FIG. 9, three small-diameter inner-grooved raw pipes are inserted into one large-diameter inner-grooved raw pipe, and the entire surface is drawn and twisted using the above-mentioned manufacturing apparatus A. An embodiment of the obtained multiple twisted tube with an inner spiral groove is shown.
In the multiple twisted pipe 40 with an inner spiral groove of this embodiment, a large-diameter inner spiral grooved pipe 41 is provided on the outermost layer, and three stranded small-diameter inner spiral grooved pipes 42 are provided inside the large-diameter inner spiral grooved pipe 41. It is provided.
A plurality of spiral grooves 41a and spiral fins 41b are provided on the inner surface of the large-diameter inner surface spiral grooved tube 41 at a predetermined pitch in the length direction. A plurality of spiral grooves 42a and spiral fins 42b are provided on the inner surface of each of the three small-diameter inner spiral grooved pipes 42 at a predetermined pitch in the length direction, and each of the small-diameter inner spiral grooved pipes 42 has a substantially triangular shape. Is formed in.

図10は最外層の内面螺旋溝付管41を除去し、その内部に収容されている撚線化された構造の3本の内面螺旋溝付管42を取り出した状態を示す斜視図である。3本の内面螺旋溝付管42は図10に示すように所定の周期で撚線化されている。
この実施形態の内面螺旋溝付多重捻り管40において、最外層の内面螺旋溝付管41の内面に形成されている螺旋溝42aの周期(撚線ピッチ)とその内側で撚線化されている3本の内面螺旋溝付管42の周期(撚線ピッチ)が略同一周期とされている。
これは、径の大きな1本の内面溝付素管の内部に径の小さな3本の内面溝付素管を挿入し、製造装置Aを用いて全体に引抜き加工と捻り加工を施して得られたためである。小径の内面螺旋溝付管42の内側には第1の流路R1が形成され、大径の内面螺旋溝付管41の内側であって小径の内面螺旋溝付管42の外側には第2の流路R2が形成されている。
FIG. 10 is a perspective view showing a state in which the inner spiral grooved tube 41 of the outermost layer is removed, and three inner spiral grooved tubes 42 having a stranded structure housed therein are taken out. As shown in FIG. 10, the three inner spiral grooved tubes 42 are twisted at a predetermined cycle.
In the multiple twisted pipe 40 with an inner surface spiral groove of this embodiment, the period (twisted wire pitch) of the spiral groove 42a formed on the inner surface of the inner surface spiral grooved pipe 41 of the outermost layer and the twisted wire are formed inside the spiral groove 42a. The cycles (twisted wire pitches) of the three inner spiral grooved tubes 42 are substantially the same.
This is obtained by inserting three small-diameter inner-grooved raw pipes into one large-diameter inner-grooved raw pipe, and drawing and twisting the entire surface using the manufacturing apparatus A. This is because of the fact. A first flow path R1 is formed inside the small-diameter inner spiral grooved pipe 42, and a second flow path R1 is formed inside the large-diameter inner spiral grooved pipe 41 and outside the small-diameter inner spiral grooved pipe 42. Flow path R2 is formed.

図9、図10に示す構造の内面螺旋溝付多重捻り管40を自動車用コンデンサとエバポレータを接続する伝熱管に適用することができる。3つの第1の流路R1と第2の流路R2を個別に用いて、効率の良い熱交換機能を備えた伝熱管を備えた構造を実現できる。
自動車用コンデンサとエバポレータを接続する伝熱管は通常の場合2本必要であるが、図9、図10に示す内面螺旋溝付多重捻り管40であれば、第1の流路R1と第2の流路R2をそれぞれ使い分けて、1本の内面螺旋溝付多重捻り管40で両者を接続することができる。
その場合に第1の流路R1を流れる冷媒又は熱媒は第2の流路R2を流れる冷媒または熱媒と効率良く熱交換できるので、伝熱管として熱交換性能の高い接続ができる。
The multi-twisted tube 40 with an inner spiral groove having the structure shown in FIGS. 9 and 10 can be applied to a heat transfer tube for connecting an automobile capacitor and an evaporator. By individually using the three first flow paths R1 and the second flow path R2, it is possible to realize a structure provided with a heat transfer tube having an efficient heat exchange function.
Normally, two heat transfer tubes are required to connect the capacitor for automobiles and the evaporator, but in the case of the multiple twisted tube 40 with an inner spiral groove shown in FIGS. 9 and 10, the first flow path R1 and the second flow path R1 and the second The flow paths R2 can be used properly, and both can be connected by one multi-twisted pipe 40 with an inner spiral groove.
In that case, the refrigerant or heat medium flowing through the first flow path R1 can efficiently exchange heat with the refrigerant or heat medium flowing through the second flow path R2, so that the heat transfer tube can be connected with high heat exchange performance.

また、図9、図10に示す内面螺旋溝付管42の内部に形成されている螺旋溝42aの周期と内面螺旋溝付管42の撚線ピッチは同等で無くとも良い。
先に説明したように内面に直線溝を有する素管と内面に螺旋溝を有する素管を組み合わせて製造装置Aに適用できるので、予め異なる内面螺旋溝を形成した3本の素管を大径素管に挿入し、製造装置Aを用いて引抜き加工と捻り加工を加えることで、撚線ピッチと異なる周期の螺旋溝を有する内面螺旋溝付管を3本備えた内面螺旋溝付多重捻り管を得ることができる。
Further, the period of the spiral groove 42a formed inside the inner spiral grooved pipe 42 shown in FIGS. 9 and 10 and the stranded wire pitch of the inner spiral grooved pipe 42 do not have to be the same.
As described above, since the raw pipe having a straight groove on the inner surface and the raw pipe having a spiral groove on the inner surface can be combined and applied to the manufacturing apparatus A, three raw pipes having different inner spiral grooves formed in advance have a large diameter. A multi-twisted tube with an inner spiral groove provided with three inner spiral grooved tubes having a spiral groove with a period different from the stranded wire pitch by inserting into the raw tube and applying drawing and twisting using the manufacturing device A. Can be obtained.

外径10.0mm、内径9.0mmの内面にフィン高さ0.25mm、溝数50個の直線溝が形成されたA3003合金を外周管に、外径8.5mm、内径7.8mmの内面にフィン高さ0.2mm、溝数55個の直線溝が形成されたA3003を内周管に使用して、図7に示す構成の複合素管Fを作製した。この複合素管Fに対し、図3〜図4に示す製造装置Aを用いて、引抜きダイス孔径φ8.5mm、引抜き速度1.0m/minの条件で捻り引抜き加工を行ない、内面螺旋溝付多重捻り管を製造した。 An A3003 alloy with a fin height of 0.25 mm and straight grooves with 50 grooves formed on the inner surface with an outer diameter of 10.0 mm and an inner diameter of 9.0 mm is used as an outer tube, and an inner surface with an outer diameter of 8.5 mm and an inner diameter of 7.8 mm. A3003 having a fin height of 0.2 mm and a straight groove having 55 grooves was used for the inner peripheral tube to prepare a composite raw tube F having the configuration shown in FIG. The composite raw tube F is subjected to a torsional drawing process under the conditions of a drawing die hole diameter of φ8.5 mm and a drawing speed of 1.0 m / min using the manufacturing apparatus A shown in FIGS. Manufactured a twisted tube.

まず、加工域長さと巻き出し側キャプスタンの公転速度を上げて限界捻り角(座屈を生じないで捻れる最大捻り角)の関係を把握し、加工域長さを160mm、後方張力を5〜20kgとして上記の条件で作製したところ、図1に示すような断面の内面螺旋溝付多重捻り管を製造することができた。
図11に、上述の条件で製造した試料の断面図(図11(A)参照)と部分拡大図(図11(B)参照)を示す。
得られた内面螺旋溝付多重捻り管は、外径8.45mm肉厚0.55mm、フィン高さ0.2mm、溝数50個の内側に、外径6.95mm、肉厚0.40mm、フィン高さ0.2mm、溝数55個の内面螺旋溝付管を一体化した構造の内面螺旋溝付多重捻り管であった。
First, the relationship between the machining area length and the limit twist angle (maximum twist angle that twists without buckling) is increased by increasing the revolution speed of the unwinding side capstan, and the machining area length is 160 mm and the rear tension is 5. When it was manufactured under the above conditions with a weight of about 20 kg, it was possible to manufacture a multi-twisted tube with an inner spiral groove having a cross section as shown in FIG.
FIG. 11 shows a cross-sectional view (see FIG. 11 (A)) and a partially enlarged view (see FIG. 11 (B)) of the sample produced under the above conditions.
The obtained multi-twisted tube with an inner spiral groove has an outer diameter of 8.45 mm, a wall thickness of 0.55 mm, a fin height of 0.2 mm, and an outer diameter of 6.95 mm and a wall thickness of 0.40 mm inside 50 grooves. It was a multi-twisted tube with an inner spiral groove having a structure in which a tube with an inner spiral groove having a fin height of 0.2 mm and 55 grooves was integrated.

次に、先の例と同等のアルミニウム合金からなる複合素管を構成する場合に、小径の素管と大径の素管の外径、底肉厚、フィン高さ、リード角をそれぞれ変更して内面螺旋溝付多重捻り管を複数作製した。得られた内面螺旋溝付多重捻り管の外径、底肉厚、フィン高さ、リード角の測定結果を以下の表1に示す。 Next, when constructing a composite raw pipe made of an aluminum alloy equivalent to the previous example, the outer diameter, bottom wall thickness, fin height, and lead angle of the small diameter raw pipe and the large diameter raw pipe are changed respectively. Multiple twisted tubes with inner spiral grooves were prepared. Table 1 below shows the measurement results of the outer diameter, bottom wall thickness, fin height, and lead angle of the obtained multi-twisted tube with an inner spiral groove.

Figure 0006909054
Figure 0006909054

表1の実施例1〜12はアルミニウム合金製の2重管構造であり、大径側の内面螺旋溝付管は外径5〜12mmであって、小径側の内面螺旋溝付管は外径3.6〜10.6mmであり、リード角10〜20゜の内面螺旋溝付多重捻り管を製造することができた。
これら実施例1〜12に示すように外径3.6〜12mmのように極めて細径であって座屈し易いアルミニウム合金製の内面螺旋溝付管を備えた内面螺旋溝付多重捻り管を図3〜図5に示す構成の製造装置Aによって製造することができた。
Examples 1 to 12 in Table 1 have a double pipe structure made of an aluminum alloy, the inner diameter spiral grooved pipe on the large diameter side has an outer diameter of 5 to 12 mm, and the inner diameter spiral grooved pipe on the small diameter side has an outer diameter. It was possible to manufacture a multi-twisted tube with an inner spiral groove having a lead angle of 10 to 20 ° and a diameter of 3.6 to 10.6 mm.
As shown in Examples 1 to 12, a multi-twisted tube with an inner spiral groove provided with an aluminum alloy inner spiral grooved tube having an extremely small diameter such as an outer diameter of 3.6 to 12 mm and easily buckling. It could be manufactured by the manufacturing apparatus A having the configuration shown in FIGS. 3 to 5.

A…製造装置、F…複合素管、L…捻り加工領域の長さ、R1…第1の流路、R2…第2の流路、1…素管、1A…管本体、1a…直線溝、1b…フィン、2…内面螺旋溝付管、2a…螺旋溝、2b…螺旋フィン、3…内面螺旋溝付管、3a…螺旋溝、3b…螺旋フィン、4…内面螺旋溝付多重捻り管、5…巻き出し側キャプスタン、5a…円盤部、6…回転手段、7…引抜きダイス、8…素管、8a…直線溝、8b…フィン、9…引き抜き側キャプスタン、10a、11a…軸受け部、12…軸受け部、13…中空軸部、13a…一端、13b…他端、13c…入口部、13d…出口部、15…第1支持フレーム、15a…先端部、16…第2支持フレーム、17…延長フレーム、18…錘体、20…支持板、21、25…駆動モーター、21a、25a…出力軸、22…動力伝達装置、23…支柱部材、24…支持架台、26…タンク、27…フレキシブル供給管、28…水平軸、31…筒部材、31a…蝶ネジ、32…張力調整具(前方張力付加手段)、33…張力調整具(後方張力付加手段)、34…内面螺旋溝付多重捻り管、35…内面螺旋溝付管、35a…螺旋溝、35b…螺旋フィン、40…内面螺旋溝付多重捻り管、41…内面螺旋溝付管、41a…螺旋溝、41b…螺旋フィン、42…内面螺旋溝付管、42a…螺旋溝、42b…螺旋フィン。 A ... Manufacturing equipment, F ... Composite element pipe, L ... Length of twisting region, R1 ... First flow path, R2 ... Second flow path, 1 ... Elementary tube, 1A ... Tube body, 1a ... Straight groove 1, 1b ... fins, 2 ... inner spiral grooved pipes, 2a ... spiral grooves, 2b ... spiral fins, 3 ... inner spiral grooved pipes, 3a ... spiral grooves, 3b ... spiral fins, 4 ... inner spiral grooved multiple twisted pipes 5, ... Unwinding side capstan, 5a ... Disk part, 6 ... Rotating means, 7 ... Pulling die, 8 ... Helix, 8a ... Straight groove, 8b ... Fin, 9 ... Pulling side capstan, 10a, 11a ... Bearing Part, 12 ... bearing part, 13 ... hollow shaft part, 13a ... one end, 13b ... other end, 13c ... inlet part, 13d ... exit part, 15 ... first support frame, 15a ... tip part, 16 ... second support frame , 17 ... extension frame, 18 ... weight, 20 ... support plate, 21, 25 ... drive motor, 21a, 25a ... output shaft, 22 ... power transmission device, 23 ... strut member, 24 ... support mount, 26 ... tank, 27 ... Flexible supply pipe, 28 ... Horizontal axis, 31 ... Cylinder member, 31a ... Thumbscrew, 32 ... Tension adjuster (front tension applying means), 33 ... Tension adjusting tool (rear tension applying means), 34 ... Inner surface spiral groove With multiple twisted pipes, 35 ... inner spiral grooved pipes, 35a ... spiral grooves, 35b ... spiral fins, 40 ... multiple twisted pipes with inner spiral grooves, 41 ... inner spiral grooved pipes, 41a ... spiral grooves, 41b ... spiral fins , 42 ... Inner surface spiral grooved tube, 42a ... Spiral groove, 42b ... Spiral fin.

Claims (13)

内面に長さ方向に沿う複数の溝が周方向に間隔をおいて形成された径の異なる素管を複数本用意し、大径の素管の中に小径の素管を挿入して複合素管を形成し、この複合素管を巻き出し側キャプスタンにその導入側接線方向から巻き付けつつ前記複合素管を導出側接線に沿って巻き出し、前記巻き出し側キャプスタンを前記導出側接線を軸として軸回りに回転させることにより、前記巻き出し側キャプスタンから前記複合素管を前記軸回りに回転させながら前記接線の延長方向に巻き出す素管巻き出し工程と、巻き出された前記複合素管を引抜きダイスに通して縮径しながら捻りを付与して内面螺旋溝付多重捻り管とする捻り引抜き工程を備えることを特徴とする内面螺旋溝付多重捻り管の製造方法。 Prepare a plurality of raw pipes with different diameters in which multiple grooves along the length direction are formed on the inner surface at intervals in the circumferential direction, and insert a small diameter raw pipe into the large diameter raw pipe to make a composite element. A pipe is formed, the composite raw pipe is wound around the unwinding side capstan from the direction of its introduction side tangent, the composite raw pipe is unwound along the lead-out side tangent, and the unwind-side capstan is wound on the lead-out side tangent. by rotating around the axis as an axis, the steps of the composite blank tube from the unwinding side capstan unwinding base pipe unwound in the extending direction of the tangent line while rotating the Ri said Jikukai, unwound the A method for manufacturing a multi-twisted tube with an inner spiral groove, which comprises a twist-pulling step of passing a composite raw tube through a drawing die to apply twist while reducing the diameter to obtain a multi-twisted tube with an inner spiral groove. 長さ方向に沿う溝として内面に直線溝を有する素管を用いることを特徴とする請求項に記載の内面螺旋溝付多重捻り管の製造方法。 The method for manufacturing a multi-twisted pipe with an inner spiral groove according to claim 1 , wherein a raw pipe having a straight groove on the inner surface is used as a groove along the length direction. 長さ方向に沿う溝として内面螺旋溝を有する素管を用いることを特徴とする請求項に記載の内面螺旋溝付多重捻り管の製造方法。 The method for manufacturing a multi-twisted tube with an inner spiral groove according to claim 1 , wherein a raw tube having an inner spiral groove is used as the groove along the length direction. 前記引抜きダイスによる縮径率を5〜40%とすることを特徴とする請求項〜請求項のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。 Manufacturing method of the inner surface helical grooved multiple torsion tube according to any one of claims 1 to 3, characterized in that 5 to 40% of radial contraction rate by the drawing die. 前記巻出し側キャプスタンに前記複合素管を巻き始める位置と前記巻出し側キャプスタンから前記引抜きダイス側に前記複合素管を送り始める位置を前記巻出し側キャプスタンの回転軸と平行な方向にずらすことにより、前記巻出し側キャプスタンと前記引抜きダイスとの間を前記複合素管の捻り加工領域とすることを特徴とする請求項〜請求項のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。 The position to start sending the composite blank tube into the drawing die side from a position between the take-out-out side capstan start winding the composite element tube to the winding-out-out side capstan and the rotating shaft of the take-out-out side capstan by shifting in a direction parallel to any one of claims 1 to 4, characterized in that between the drawing die and the take-out-out side capstan and twist processing area of the composite base pipe The method for manufacturing a multi-twisted tube with an inner spiral groove according to the above. 前記引抜きダイスに前記複合素管を通して前記複合素管を捻りつつ縮径する際、前記複合素管に前方張力と後方張力を付加することを特徴とする請求項〜請求項のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。 Wherein when diameter reduction while twisting the composite base pipe through said composite mother tube drawing die, any one of claims 1 to 5, characterized in that the addition of forward tension and backward tension to the composite base pipe The method for manufacturing a multi-twisted tube with an inner spiral groove according to the item. 前記引抜きダイスを通過した前記内面螺旋溝付多重捻り管を引き抜き側キャプスタンに巻き付けることを特徴とする請求項〜請求項のいずれか一項に記載の内面螺旋溝付多重捻り管の製造方法。 Production of the inner surface helical grooved multiple torsion tube according to any one of claims 1 to 6, characterized in that winding on the inner surface helical pull side capstan multiple torsion tube grooved passed through the drawing die Method. 前記引き抜き側キャプスタンから巻き出した前記内面螺旋溝付多重捻り管を第2の引抜きダイスで整形することを特徴とする請求項7に記載の内面螺旋溝付多重捻り管の製造方法。 The method for manufacturing a multi-twisted tube with an inner spiral groove according to claim 7, wherein the multi-twisted tube with an inner spiral groove unwound from the pull-out side capstan is shaped by a second drawing die. 内面に長さ方向に沿う複数の溝が周方向に間隔をおいて形成された金属製の径の異なる複数の素管のうち、大径の素管内に小径の素管を挿入した複合素管を導入側接線方向から巻き付け自在とし、前記導入側接線と平行な導出側接線に沿って巻き出し自在とする円盤型の巻き出し側キャプスタンと、この巻き出し側キャプスタンを前記導出側接線を軸として軸回りに回転させる回転手段と、前記巻き出し側キャプスタンから巻き出される前記複合素管を通して縮径と捻りを行う引抜きダイスを備えることを特徴とする内面螺旋溝付多重捻り管の製造装置。 Among a plurality of metal pipes having different diameters in which a plurality of grooves along the length direction are formed on the inner surface at intervals in the circumferential direction, a composite pipe in which a small diameter pipe is inserted into a large diameter pipe is used. Is freely wound from the direction of the introduction side tangent, and is freely unwound along the lead-out side tangent line parallel to the introduction side tangent line. Manufacture of a multi-twisted tube with an inner spiral groove, which comprises a rotating means for rotating around an axis as an axis and a drawing die for reducing the diameter and twisting through the composite element tube unwound from the unwinding side capstan. Device. 前記巻出し側キャプスタンに前記複合素管を巻き始める位置と前記巻出し側キャプスタンから前記引抜きダイス側に前記複合素管を送り始める位置が、前記巻出し側キャプスタンの回転軸と平行な方向にずらされ、前記巻出し側キャプスタンの巻出し位置と前記引抜きダイスとの間が前記素管の捻り加工領域とされたことを特徴とする請求項に記載の内面螺旋溝付多重捻り管の製造装置。 The composite begin sending raw tube position from the position and the winding-out-out side capstan start winding the composite element tube to the winding-out-out side capstan to the drawing die side, the axis of rotation of the take-out-out side capstan and is offset in a direction parallel to, the inner surface helical according to claim 9 in which between the unwinding position of the out side capstan-out the winding and the drawing die is characterized in that it is a twisting processing area of the base pipe Grooved multiple twisted pipe manufacturing equipment. 前記巻き出し側キャプスタンの前段側に前記複合素管に前方張力を付与する前方張力付加手段が設けられ、前記引抜きダイスの後段側に前記内面螺旋溝付多重捻り管に後方張力を付与する後方張力付加手段が設けられたことを特徴とする請求項または請求項10に記載の内面螺旋溝付多重捻り管の製造装置。 A front tension applying means for applying a front tension to the composite raw pipe is provided on the front stage side of the unwinding side capstan, and a rear stage for applying a rear tension to the multi-twisted pipe with an inner spiral groove on the rear stage side of the drawing die. The apparatus for manufacturing a multi-twisted tube with an inner spiral groove according to claim 9 or 10 , wherein the tension applying means is provided. 前記引抜きダイスの後段側に前記内面螺旋溝付多重捻り管を巻き付けて巻出す引き抜き側キャプスタンが設けられたことを特徴とする請求項〜請求項11のいずれか一項に記載の内面螺旋溝付多重捻り管の製造装置。 The inner spiral according to any one of claims 9 to 11 , wherein a pull-out side capstan for winding and unwinding the multi-twisted tube with an inner spiral groove is provided on the rear side of the pull-out die. Grooved multi-twisted pipe manufacturing equipment. 前記引き抜き側キャプスタンの後段側に前記内面螺旋溝付多重捻り管を整形する第2の引抜きダイスが設けられたことを特徴とする請求項12に記載の内面螺旋溝付多重捻り管の製造装置。 The apparatus for manufacturing a multi-twisted tube with an inner spiral groove according to claim 12, wherein a second drawing die for shaping the multi-twisted tube with an inner spiral groove is provided on the rear side of the capstan on the pull-out side. ..
JP2017107188A 2017-05-30 2017-05-30 Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove Active JP6909054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107188A JP6909054B2 (en) 2017-05-30 2017-05-30 Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107188A JP6909054B2 (en) 2017-05-30 2017-05-30 Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove

Publications (2)

Publication Number Publication Date
JP2018204803A JP2018204803A (en) 2018-12-27
JP6909054B2 true JP6909054B2 (en) 2021-07-28

Family

ID=64956891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107188A Active JP6909054B2 (en) 2017-05-30 2017-05-30 Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove

Country Status (1)

Country Link
JP (1) JP6909054B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110862851A (en) * 2019-12-16 2020-03-06 北京化工大学 Method for preparing gas hydrate
JP7486128B2 (en) * 2021-09-29 2024-05-17 セントラル・エンジニアリング株式会社 Heat removal device, heat removal method, power generation device, and power generation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003028A (en) * 2004-06-18 2006-01-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same
JP2008190858A (en) * 2007-01-10 2008-08-21 Kobelco & Materials Copper Tube Inc Leakage detecting tube

Also Published As

Publication number Publication date
JP2018204803A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6169538B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP6909054B2 (en) Manufacturing method and manufacturing equipment for multiple twisted pipes with inner spiral groove
JP6836887B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP6902932B2 (en) Multiple twisted pipe with inner spiral groove and its manufacturing method and manufacturing equipment
JP6967876B2 (en) Tube heat exchanger and its manufacturing method
JP6902930B2 (en) Multiple twisted pipe with inner spiral groove and its manufacturing method
KR101852828B1 (en) A manufacturing method of a tube having an inner helical groove and a manufacturing apparatus of a tube having an inner helical groove
JP7334262B2 (en) Inner spiral grooved tube with excellent heat transfer and heat exchanger
JP6986942B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP2021119018A (en) Pipe with spiral groove on inner surface
JP7116868B2 (en) Heat transfer tubes and heat exchangers with excellent expandability and thermal properties
JP6355039B2 (en) Internal spiral groove manufacturing equipment
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP6964497B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP6886864B2 (en) Tube heat exchanger and its manufacturing method
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP6964498B2 (en) Manufacturing method of inner spiral grooved tube, heat exchanger and inner spiral grooved tube
JP6925170B2 (en) Tube heat exchanger and its manufacturing method and heat exchanger
JP2018202426A (en) Multiple twisted tube with spirally grooved inner surface
JP6316697B2 (en) Internal spiral grooved tube and manufacturing method thereof
JP6846182B2 (en) Manufacturing method of heat transfer tube, heat exchanger and heat transfer tube
JP2018089640A (en) Inner-spiral grooved tube having excellent tube expansive property and method for manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210702

R150 Certificate of patent or registration of utility model

Ref document number: 6909054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250