JP2018192875A - tire - Google Patents

tire Download PDF

Info

Publication number
JP2018192875A
JP2018192875A JP2017097053A JP2017097053A JP2018192875A JP 2018192875 A JP2018192875 A JP 2018192875A JP 2017097053 A JP2017097053 A JP 2017097053A JP 2017097053 A JP2017097053 A JP 2017097053A JP 2018192875 A JP2018192875 A JP 2018192875A
Authority
JP
Japan
Prior art keywords
tire
groove
axial direction
axial
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017097053A
Other languages
Japanese (ja)
Other versions
JP6907690B2 (en
Inventor
隆志 石橋
Takashi Ishibashi
隆志 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017097053A priority Critical patent/JP6907690B2/en
Priority to DE102018111203.3A priority patent/DE102018111203A1/en
Priority to KR1020180054096A priority patent/KR102528225B1/en
Priority to CN201810455258.9A priority patent/CN108859614B/en
Publication of JP2018192875A publication Critical patent/JP2018192875A/en
Application granted granted Critical
Publication of JP6907690B2 publication Critical patent/JP6907690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • B60C11/0323Patterns comprising isolated recesses tread comprising channels under the tread surface, e.g. for draining water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C2011/1268Depth of the sipe being different from sipe to sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C2011/1286Width of the sipe being different from sipe to sipe

Abstract

To provide a tire that can improve drainage performance while suppressing deterioration in steering stability performance.SOLUTION: A tread part of a tire in which a rotation direction R is specified is provided with a main groove 3 extending zigzag. The main groove 3 includes oblique elements 5 and shaft-directional elements 6 alternately arranged in a tire circumferential direction. The oblique elements 5 obliquely extend toward outside in a tire shaft direction, toward a last-come side in the rotation direction R. The shaft-directional elements 6 extend in a tire shaft direction from the last-come side in the rotation direction R of the oblique elements 5 so that a groove wall 8a positioned at an outer part in the tire shaft direction and at the last-come side in the rotation direction R can scrape out water in front of a tread in tire-travelling, which are formed so that the maximum width Wb of the shaft-directional elements 6 is larger than the maximum width Wa of the oblique elements 5.SELECTED DRAWING: Figure 2

Description

本発明は、トレッド部に、ジグザグ状で連続して延びる主溝が設けられタイヤに関する。   The present invention relates to a tire in which a main groove extending continuously in a zigzag shape is provided in a tread portion.

従来から、タイヤの排水性能を向上させるために、主溝の幅や深さを全体的に大きくして溝容積を大きくすることが知られている。しかしながら、溝容積を増加させると、接地面積の減少や陸部の剛性低下を招き、ドライ路面での操縦安定性能が低下するという問題があった。   Conventionally, in order to improve the drainage performance of a tire, it is known to increase the groove volume by increasing the width and depth of the main groove as a whole. However, when the groove volume is increased, there is a problem that the ground contact area is reduced and the rigidity of the land portion is reduced, and the steering stability performance on the dry road surface is lowered.

とりわけ、高速・高負荷で走行するレース用のタイヤにおいては、大きなコーナリングフォースを発生させるために、陸部の剛性を確保しつつ排水性能を向上させることが望まれていた。   In particular, in racing tires that run at high speeds and high loads, in order to generate a large cornering force, it has been desired to improve drainage performance while securing rigidity of land portions.

特開2016−97779号公報Japanese Patent Application Laid-Open No. 2006-97779

本発明は、以上のような実情に鑑み案出されたもので、操縦安定性能の低下を抑えつつ排水性能を向上し得るタイヤを提供することを主たる目的としている。   The present invention has been devised in view of the above circumstances, and a main object of the present invention is to provide a tire capable of improving drainage performance while suppressing a decrease in steering stability performance.

本発明は、回転方向が指定されたトレッド部を有するタイヤであって、前記トレッド部には、タイヤ赤道から離れた位置をタイヤ周方向にジグザグ状で連続して延びる少なくとも1本の主溝が設けられており、前記主溝は、傾斜要素と軸方向要素とをタイヤ周方向に交互に含んでおり、前記傾斜要素は、前記回転方向の後着側に向かってタイヤ軸方向外側に傾斜して延びており、前記軸方向要素は、タイヤ軸方向の外側部分かつ前記回転方向の後着側に位置する溝壁がタイヤ走行時のトレッド前方の水を掻き取るように、前記傾斜要素の前記回転方向の後着側からタイヤ軸方向に延びており、前記軸方向要素の最大幅が、前記傾斜要素の最大幅よりも大きく形成されている。   The present invention is a tire having a tread portion whose rotation direction is designated, and the tread portion has at least one main groove extending continuously in a zigzag manner in a tire circumferential direction at a position away from the tire equator. The main groove includes inclined elements and axial elements alternately in the tire circumferential direction, and the inclined elements are inclined outward in the tire axial direction toward the rear arrival side in the rotational direction. The axial element is configured so that the groove wall located on the outer portion in the tire axial direction and on the rearward side in the rotational direction scrapes off the water in front of the tread when the tire is running. It extends in the tire axial direction from the rear arrival side in the rotational direction, and the maximum width of the axial element is formed larger than the maximum width of the inclined element.

本発明に係るタイヤは、前記軸方向要素が、タイヤ軸方向に対して10°以下の角度で延びているのが望ましい。   In the tire according to the present invention, the axial element preferably extends at an angle of 10 ° or less with respect to the tire axial direction.

本発明に係るタイヤは、前記軸方向要素が、タイヤ軸方向に対して0°で延びるか、又は、タイヤ赤道側に向かって前記回転方向の先着側に傾斜しているのが望ましい。   In the tire according to the present invention, it is desirable that the axial element extends at 0 ° with respect to the tire axial direction, or is inclined toward the first arrival side in the rotational direction toward the tire equator side.

本発明に係るタイヤは、前記軸方向要素のタイヤ軸方向の内側部分が、タイヤ軸方向内側に向かって幅が漸増するのが望ましい。   In the tire according to the present invention, it is preferable that the inner portion of the axial element in the tire axial direction gradually increases in width toward the inner side in the tire axial direction.

本発明に係るタイヤは、前記トレッド部には、一端が前記軸方向要素に連なってタイヤ軸方向内側にのびる内側横溝が設けられているのが望ましい。   In the tire according to the present invention, it is desirable that the tread portion is provided with an inner lateral groove having one end connected to the axial element and extending inward in the tire axial direction.

本発明に係るタイヤは、前記内側横溝の他端が、他の溝に連通することなく終端するのが望ましい。   In the tire according to the present invention, it is desirable that the other end of the inner lateral groove terminates without communicating with another groove.

本発明に係るタイヤは、前記トレッド部が、前記主溝のタイヤ軸方向内側に陸部を有し、前記陸部は、前記傾斜要素と、前記軸方向要素のタイヤ軸方向の内側部分とで挟まれたコーナ部を有し、前記コーナ部は、前記主溝に向かって下降する斜面からなる面取り部が設けられているのが望ましい。   In the tire according to the present invention, the tread portion has a land portion on the inner side in the tire axial direction of the main groove, and the land portion includes the inclined element and an inner portion in the tire axial direction of the axial direction element. It is preferable that the corner portion has a sandwiched corner portion, and the corner portion is provided with a chamfered portion formed of an inclined surface descending toward the main groove.

本発明に係るタイヤは、前記トレッド部には、一端が前記軸方向要素に連なってタイヤ軸方向外側にのびる外側横溝が設けられているのが望ましい。   In the tire according to the present invention, it is desirable that the tread portion is provided with an outer lateral groove having one end connected to the axial element and extending outward in the tire axial direction.

本発明に係るタイヤは、前記外側横溝の深さが、前記主溝の深さよりも小さいのが望ましい。   In the tire according to the present invention, it is desirable that the depth of the outer lateral groove is smaller than the depth of the main groove.

本発明によれば、主溝の傾斜要素は、タイヤの回転を利用して、タイヤ軸方向外側ヘ排水することができる。また、主溝の軸方向要素は、その回転方向後着側の溝壁がタイヤ走行時のトレッド前方の水を掻き取って保持し、該軸方向要素が路面から離間するときにタイヤ後方へと排出する。この際、軸方向要素は、傾斜要素よりも大きい最大幅を有するので、より多くの水を貯め込んで後方へと排出することができる。これらの一連の作用は、主溝の溝容積の増大なしに実現されるため、操縦安定性能の著しい低下が抑制される。   According to the present invention, the inclined element of the main groove can be drained to the outer side in the tire axial direction by utilizing the rotation of the tire. In addition, the axial element of the main groove is configured such that the groove wall on the rear side in the rotational direction scrapes and holds water in front of the tread when the tire travels, and the rearward of the tire when the axial element is separated from the road surface. Discharge. In this case, the axial element has a larger maximum width than the inclined element, so that more water can be stored and discharged backwards. Since these series of actions are realized without increasing the groove volume of the main groove, a significant decrease in steering stability performance is suppressed.

本発明の一実施形態の空気入りタイヤのトレッド部の展開図である。It is an expanded view of the tread part of the pneumatic tire of one embodiment of the present invention. 図1の主溝の拡大図である。It is an enlarged view of the main groove of FIG. 他の実施形態のトレッド部の左半分の展開図である。It is an expanded view of the left half of the tread part of other embodiment. 他の実施形態の主溝の拡大図である。It is an enlarged view of the main groove of other embodiment.

以下、本発明の実施の一形態が図面に基づき説明される。
図1は、本発明の一実施形態を示すタイヤ1のトレッド部2の展開図である。本実施形態では、好ましい態様として、サーキット走行等に用いられるレース用の空気入りタイヤが示される。但し、本発明は、例えば、乗用車用タイヤやトラック・バスなどの重荷重用タイヤ、及び、エアレスタイヤ等、他のカテゴリーのタイヤにも適用しうるのは、言うまでもない。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a development view of a tread portion 2 of a tire 1 showing an embodiment of the present invention. In the present embodiment, as a preferable aspect, a pneumatic tire for racing used for circuit running or the like is shown. However, it goes without saying that the present invention can also be applied to tires of other categories such as heavy duty tires such as passenger car tires and trucks and buses, and airless tires.

図1に示されるように、本実施形態のタイヤ1のトレッド部2は、回転方向Rが指定された方向性パターンを具えている。回転方向Rは、例えばサイドウォール部(図示せず)に、文字等で表示される。   As shown in FIG. 1, the tread portion 2 of the tire 1 of the present embodiment has a directional pattern in which the rotation direction R is designated. The rotation direction R is displayed with characters or the like on a sidewall portion (not shown), for example.

本実施形態のトレッド部2には、タイヤ赤道Cから離れた位置をタイヤ周方向にジグザグ状で連続して延びる少なくとも1本の主溝3と、主溝3によって区分される陸部4とが設けられている。   The tread portion 2 of the present embodiment includes at least one main groove 3 continuously extending in a zigzag shape in the tire circumferential direction at a position away from the tire equator C, and a land portion 4 partitioned by the main groove 3. Is provided.

主溝3は、本実施形態では、タイヤ赤道Cの両側にそれぞれ1本設けられている。なお、主溝3は、このような態様に限定されるものではなく、例えば、タイヤ赤道Cの両側に複数本設けられる態様でも良い。本実施形態では、各主溝3、3は、ジグザグのタイヤ周方向ピッチが同じとされているが、このピッチがタイヤ周方向に位置ずれする態様でも良い。   In the present embodiment, one main groove 3 is provided on each side of the tire equator C. In addition, the main groove 3 is not limited to such an aspect, For example, the aspect provided with two or more on both sides of the tire equator C may be sufficient. In the present embodiment, the main grooves 3 and 3 have the same zigzag tire circumferential pitch, but the pitch may be shifted in the tire circumferential direction.

本実施形態の陸部4は、主溝3とトレッド端Teとの間に配されるショルダー陸部4Aと、主溝同士3、3の間に配されるクラウン陸部4Bとを含んでいる。   The land portion 4 of the present embodiment includes a shoulder land portion 4A disposed between the main groove 3 and the tread end Te, and a crown land portion 4B disposed between the main grooves 3 and 3. .

「トレッド端」Teは、正規リムにリム組みされかつ正規内圧が充填された無負荷である正規状態のタイヤ1に、正規荷重を負荷してキャンバー角0度で平面に接地させたときの最もタイヤ軸方向外側の接地位置として定められる。正規状態において、両トレッド端Te、Te間のタイヤ軸方向の距離がトレッド幅TWとして定められる。特に断りがない場合、タイヤ1の各部の寸法等は、正規状態で測定された値である。   The “tread end” Te is the most when the normal load 1 is loaded with the normal rim and is loaded with the normal internal pressure, and the normal load is applied to the flat tire with a camber angle of 0 degree. It is determined as a contact position on the outer side in the tire axial direction. In the normal state, the distance in the tire axial direction between the tread ends Te and Te is determined as the tread width TW. When there is no notice in particular, the dimension of each part of the tire 1 is a value measured in a normal state.

「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば "標準リム" 、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim" である。   The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based. For example, “Standard Rim” for JATMA, “Design Rim” for TRA, ETRTO Then "Measuring Rim".

「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば "最高空気圧" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" である。タイヤが乗用車用である場合、正規内圧は、180kPaである。   “Regular internal pressure” is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. “JAMATA” is the “maximum air pressure”, TRA is the table “TIRE LOAD LIMITS” The maximum value described in “AT VARIOUS COLD INFLATION PRESSURES”, “INFLATION PRESSURE” in the case of ETRTO. When the tire is for a passenger car, the normal internal pressure is 180 kPa.

「正規荷重」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば "最大負荷能力" 、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY" である。タイヤが乗用車用の場合、正規荷重は、前記荷重の88%に相当する荷重である。   “Regular load” is a load determined by each standard for each tire in the standard system including the standard on which the tire is based. “JATMA” is “maximum load capacity”, TRA is “TIRE LOAD” The maximum value described in “LIMITS AT VARIOUS COLD INFLATION PRESSURES”, “LOAD CAPACITY” in the case of ETRTO. When the tire is for a passenger car, the normal load is a load corresponding to 88% of the load.

図2は、主溝3の拡大図である。図2に示されるように、主溝3は、本実施形態では、傾斜要素5と軸方向要素6とをタイヤ周方向に交互に含んでいる。傾斜要素5は、本実施形態では、軸方向要素6よりもタイヤ軸方向に対して大きな角度α1で傾斜する溝状部である。   FIG. 2 is an enlarged view of the main groove 3. As shown in FIG. 2, the main groove 3 includes inclined elements 5 and axial elements 6 alternately in the tire circumferential direction in this embodiment. In the present embodiment, the inclination element 5 is a groove-like portion that is inclined at an angle α1 greater than the axial element 6 with respect to the tire axial direction.

傾斜要素5は、本実施形態では、タイヤ周方向にのびかつトレッド端Te側に配された外側溝壁7aと、タイヤ周方向にのびかつタイヤ赤道C側に配された内側溝壁7bとを有している。外側溝壁7a及び内側溝壁7bは、本実施形態では、タイヤ周方向に対して一方側に傾斜している。   In the present embodiment, the inclined element 5 includes an outer groove wall 7a extending in the tire circumferential direction and disposed on the tread end Te side, and an inner groove wall 7b extending in the tire circumferential direction and disposed on the tire equator C side. Have. In this embodiment, the outer groove wall 7a and the inner groove wall 7b are inclined to one side with respect to the tire circumferential direction.

軸方向要素6は、回転方向Rの後着側に位置する後着側溝壁8aと、回転方向Rの先着側に位置する先着側溝壁8bとを含んでいる。後着側溝壁8aは、本実施形態では、外側溝壁7aと連なっている。先着側溝壁8bは、本実施形態では、内側溝壁7bと連なっている。   The axial element 6 includes a rear arrival side groove wall 8a located on the rear arrival side in the rotation direction R and a first arrival side groove wall 8b located on the first arrival side in the rotation direction R. In this embodiment, the rear-end groove wall 8a is continuous with the outer groove wall 7a. In this embodiment, the first-side groove wall 8b is continuous with the inner groove wall 7b.

軸方向要素6は、本実施形態では、後着側溝壁8aを含み後着側溝壁8aをタイヤ軸方向内側に滑らかに延長させた仮想後着端9aと、先着側溝壁8bを含み先着側溝壁8bの溝縁をタイヤ軸方向外側に滑らかに延長させた仮想先着端9bとの間で区分される。   In the present embodiment, the axial element 6 includes a virtual rear landing end 9a including the rear landing groove wall 8a and smoothly extending the rear landing groove wall 8a inward in the tire axial direction, and a first landing groove wall 8b. It is divided between a virtual first arrival end 9b in which the groove edge of 8b is smoothly extended outward in the tire axial direction.

軸方向要素6は、本実施形態では、タイヤ軸方向の外側部分10aと、内側部分10bとを含んでいる。本実施形態の外側部分10aは、先着側溝壁8bを含んでいる。本実施形態の内側部分10bは、後着側溝壁8aを含んでいる。   In this embodiment, the axial element 6 includes an outer portion 10a and an inner portion 10b in the tire axial direction. The outer portion 10a of the present embodiment includes a first-side groove wall 8b. The inner portion 10b of the present embodiment includes a rear arrival side groove wall 8a.

傾斜要素5は、回転方向Rの後着側に向かってタイヤ軸方向外側に傾斜して延びている。このような傾斜要素5は、タイヤ1の回転を利用して、タイヤ軸方向外側へ路面と陸部4の踏面4aとの間の水膜を排水することができる。   The inclination element 5 extends while inclining outward in the tire axial direction toward the rear arrival side in the rotation direction R. Such a tilting element 5 can drain the water film between the road surface and the tread surface 4 a of the land portion 4 outward in the tire axial direction by utilizing the rotation of the tire 1.

軸方向要素6は、タイヤ軸方向の外側部分10aかつ後着側溝壁8aが傾斜要素5の回転方向Rの後着側からタイヤ軸方向に延びている。これにより、後着側溝壁8aがタイヤ走行時のトレッド前方の水を掻き取って保持し、該軸方向要素6が路面から離間するときにタイヤ後方へと排出する。   In the axial direction element 6, the outer portion 10 a in the tire axial direction and the rearward-side groove wall 8 a extend from the rearward side in the rotational direction R of the inclined element 5 in the tire axial direction. As a result, the rear groove wall 8a scrapes and holds the water in front of the tread when the tire is running, and discharges it toward the rear of the tire when the axial element 6 is separated from the road surface.

軸方向要素6の最大幅Wbは、傾斜要素5の最大幅Waよりも大きく形成されている。これにより、より多くの水を貯め込んで後方へと排出することができる。従って、本実施形態のタイヤ1は、排水性能が向上する。また、このような作用は、主溝3の溝容積の増大なしに実現されるため、操縦安定性能の著しい低下が抑制される。   The maximum width Wb of the axial element 6 is formed larger than the maximum width Wa of the tilting element 5. As a result, more water can be stored and discharged backward. Accordingly, the tire 1 of the present embodiment has improved drainage performance. Moreover, since such an effect | action is implement | achieved without the increase in the groove volume of the main groove 3, the remarkable fall of steering stability performance is suppressed.

軸方向要素6の最大幅Wbが傾斜要素5の最大幅Waよりも過度に大きく形成されている場合、溝容積が大きくなり、ショルダー陸部4A又はクラウン陸部4Bの剛性が低下するおそれがある。このため、軸方向要素6の最大幅Wbは、傾斜要素5の最大幅Waの1.3〜2.5倍程度が望ましい。   When the maximum width Wb of the axial element 6 is formed to be excessively larger than the maximum width Wa of the inclined element 5, the groove volume becomes large, and the rigidity of the shoulder land portion 4A or the crown land portion 4B may be reduced. . For this reason, the maximum width Wb of the axial element 6 is desirably about 1.3 to 2.5 times the maximum width Wa of the tilting element 5.

このような傾斜要素5の最大幅Waは、例えば、トレッド幅TWの1.5%〜5.0%が望ましい。   The maximum width Wa of the inclined element 5 is preferably 1.5% to 5.0% of the tread width TW, for example.

傾斜要素5及び軸方向要素6は、本実施形態では、直線状かつ長手方向に沿って等しい幅でのびている。このような傾斜要素5及び軸方向要素6は、排水抵抗が小さいので、排水性を向上する。また、陸部4の剛性低下を抑制するので、操縦安定性能を高く維持する。   In this embodiment, the inclined element 5 and the axial element 6 are linear and extend with the same width along the longitudinal direction. Since the inclined element 5 and the axial element 6 have a small drainage resistance, the drainage performance is improved. Moreover, since the rigidity fall of the land part 4 is suppressed, steering stability performance is maintained highly.

傾斜要素5の角度α1は、65°以上であるのが望ましい。傾斜要素5の角度α1が65°未満の場合、傾斜要素5内の水がスムーズに除去されないおそれがある。本明細書では、傾斜要素5等の溝の角度は、溝幅の中間位置を継いで形成される溝中心線で定義される。   The angle α1 of the inclined element 5 is desirably 65 ° or more. When the angle α1 of the inclined element 5 is less than 65 °, the water in the inclined element 5 may not be removed smoothly. In the present specification, the angle of the groove of the inclined element 5 or the like is defined by a groove center line formed by joining the intermediate position of the groove width.

本実施形態では、傾斜要素5と軸方向要素6の外側部分10aとで挟まれたショルダー陸部4Aのコーナ部11Aと、傾斜要素5と軸方向要素6の内側部分10bとで挟まれたクラウン陸部4Bのコーナ部11Bとが設けられている。   In the present embodiment, the corner portion 11A of the shoulder land portion 4A sandwiched between the inclined element 5 and the outer portion 10a of the axial element 6 and the crown sandwiched between the inclined element 5 and the inner portion 10b of the axial element 6 A corner portion 11B of the land portion 4B is provided.

軸方向要素6は、タイヤ軸方向に対して10°以下の角度α2で延びているのが望ましい。軸方向要素6の角度α2がタイヤ赤道C側に向かって回転方向Rの先着側に10°を超える場合、各コーナ部11A、11Bが鋭角に形成されるので、陸部4の剛性が小さくなり操縦安定性能が低下するおそれがある。軸方向要素6の角度α2がタイヤ赤道C側に向かって回転方向Rの後着側に10°を超える場合、後着側溝壁8aで掻き取られた水が該後着側溝壁8aに沿って回転方向Rの後着側の傾斜要素5に流れてしまい、軸方向要素6で水が保持できなくなるおそれがある。   The axial element 6 preferably extends at an angle α2 of 10 ° or less with respect to the tire axial direction. When the angle α2 of the axial element 6 exceeds 10 ° on the first arrival side in the rotational direction R toward the tire equator C side, the corner portions 11A and 11B are formed at acute angles, so that the rigidity of the land portion 4 is reduced. The steering stability performance may be reduced. When the angle α2 of the axial element 6 exceeds 10 ° on the rear arrival side in the rotational direction R toward the tire equator C side, the water scraped off by the rear arrival side groove wall 8a along the rear arrival side groove wall 8a. There is a possibility that water may not be retained by the axial element 6 because it flows into the inclined element 5 on the rear arrival side in the rotational direction R.

上述の作用を効果的に発揮させるため、軸方向要素6は、タイヤ軸方向に対して0°の角度α2で延びるか、又は、タイヤ赤道C側に向かって回転方向Rの先着側に傾斜しているのが望ましい。   In order to effectively exhibit the above-described action, the axial element 6 extends at an angle α2 of 0 ° with respect to the tire axial direction, or is inclined toward the first arrival side in the rotational direction R toward the tire equator C side. It is desirable.

とりわけ望ましくは、後着側溝壁8aの溝縁のタイヤ軸方向に対する角度θ1が、0°を含み、タイヤ赤道C側に向かって回転方向Rの先着側に10°以下であるのが望ましい。   Particularly preferably, the angle θ1 of the groove edge of the rear arrival side groove wall 8a with respect to the tire axial direction includes 0 ° and is preferably 10 ° or less on the first arrival side in the rotational direction R toward the tire equator C side.

本実施形態の後着側溝壁8aは、内側溝壁7bを回転方向Rの後着側ヘ滑らかに延長させた仮想エッジ7eと交差するのが望ましい。このような後着側溝壁8aは、掻き取った水の抵抗となり、該水を、内側部分10bにスムーズに導いて保持するので、軸方向要素6のタイヤ後方への水の排出効果を向上する。   The rear arrival side groove wall 8a of the present embodiment preferably intersects with a virtual edge 7e obtained by smoothly extending the inner groove wall 7b toward the rear arrival side in the rotation direction R. Such a rear arrival side groove wall 8a becomes the resistance of the scraped water, and smoothly guides and holds the water to the inner portion 10b, so that the draining effect of the axial element 6 to the rear of the tire is improved. .

先着側溝壁8bの溝縁は、本実施形態では、後着側溝壁8aと平行にのびている。これにより先着側溝壁8bは、クラウン陸部4Bのコーナ部11Bの剛性と、軸方向要素6の水の保持力とをバランス良く維持する。なお、先着側溝壁8bの溝縁は、このような態様に限定されるものではなく、例えば、円弧状に延びる態様やタイヤ赤道C側に向かって回転方向Rの後着側に傾斜していても良いし、後着側溝壁8aよりもタイヤ軸方向に対して大きな角度で傾斜していても良い。   In this embodiment, the groove edge of the first arrival side groove wall 8b extends in parallel with the rear arrival side groove wall 8a. Accordingly, the first-side groove wall 8b maintains the rigidity of the corner portion 11B of the crown land portion 4B and the water holding force of the axial element 6 in a well-balanced manner. In addition, the groove edge of the first arrival side groove wall 8b is not limited to such an aspect. For example, the groove edge extends in an arc shape or is inclined toward the rear arrival side in the rotational direction R toward the tire equator C side. Alternatively, it may be inclined at a larger angle with respect to the tire axial direction than the rear arrival side groove wall 8a.

図1に示されるように、主溝3のジグザグの振幅中心線3cとタイヤ赤道Cとのタイヤ軸方向距離Laは、トレッド幅TWの10%以上が望ましく、15%以上がさらに望ましく、また、30%以下が望ましく、25%以下がさらに望ましい。主溝3をこのような位置に配することにより、ショルダー陸部4Aのタイヤ軸方向剛性を高めて、大きなコーナリングフォースを発生させることができるので、優れた操縦安定性能が維持される。また、相対的に排水され難いタイヤ赤道C側において、路面と陸部4の踏面4aとの間の水膜を効果的に除去できる。   As shown in FIG. 1, the tire axial direction distance La between the zigzag amplitude center line 3c of the main groove 3 and the tire equator C is preferably 10% or more of the tread width TW, more preferably 15% or more, 30% or less is desirable and 25% or less is more desirable. By arranging the main groove 3 in such a position, the tire land direction portion 4A can be increased in rigidity in the tire axial direction and a large cornering force can be generated, so that excellent steering stability performance is maintained. Further, the water film between the road surface and the tread surface 4a of the land portion 4 can be effectively removed on the tire equator C side, which is relatively difficult to drain.

主溝3の溝深さ(図示省略)は、例えば、4〜10mmが望ましい。また、特に限定されるものではないが、傾斜要素5の溝深さは、軸方向要素6の溝深さの80%〜125%であるのが望ましく、本実施形態では、傾斜要素5の溝深さと軸方向要素6の溝深さとは同じで形成されている。   The groove depth (not shown) of the main groove 3 is preferably 4 to 10 mm, for example. Although not particularly limited, it is desirable that the groove depth of the inclined element 5 is 80% to 125% of the groove depth of the axial element 6. In this embodiment, the groove of the inclined element 5 is The depth and the groove depth of the axial element 6 are the same.

図3は、本発明の他の実施形態のトレッド部2の左半分の展開図である。図1及び図2に示された構成と同じ構成については、同じ符号が付されその説明が省略される。図3に示されるように、この実施形態のトレッド部2には、一端が軸方向要素6に連なってタイヤ軸方向内側にのびる内側横溝12が設けられている。このような内側横溝12は、排水性能を高める。   FIG. 3 is a developed view of the left half of the tread portion 2 according to another embodiment of the present invention. The same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 3, the tread portion 2 of this embodiment is provided with an inner lateral groove 12 having one end connected to the axial element 6 and extending inward in the tire axial direction. Such inner lateral grooves 12 enhance drainage performance.

内側横溝12の他端は、他の溝に連通することなく終端している。これにより、大きな接地圧の作用するクラウン陸部4Bの剛性の低下が抑制されるので、操縦安定性能の低下が抑制される。内側横溝12は、この実施形態では、タイヤ赤道Cに達することなく終端しているので、上述の作用が効果的に発揮される。   The other end of the inner lateral groove 12 terminates without communicating with other grooves. Thereby, since the fall of the rigidity of the crown land part 4B to which a big ground pressure acts is suppressed, the fall of steering stability performance is suppressed. In this embodiment, since the inner lateral groove 12 terminates without reaching the tire equator C, the above-described action is effectively exhibited.

特に限定されるものではないが、内側横溝12の溝幅W1は、軸方向要素6の最大幅Wbの80%〜125%程度が望ましい。また、内側横溝12の溝深さは、主溝3の溝深さの80%〜125%程度が望ましい。さらに、内側横溝12のタイヤ軸方向の長さLcは、傾斜要素5の最大幅Waの80%〜125%程度が望ましい。   Although not particularly limited, the groove width W1 of the inner lateral groove 12 is preferably about 80% to 125% of the maximum width Wb of the axial element 6. The groove depth of the inner lateral groove 12 is desirably about 80% to 125% of the groove depth of the main groove 3. Furthermore, the length Lc of the inner lateral groove 12 in the tire axial direction is desirably about 80% to 125% of the maximum width Wa of the inclined element 5.

また、この実施形態では、軸方向要素6が、タイヤ軸方向内側に向かって幅W2が漸増している内側部分10bを含んでいる。このような軸方向要素6には、さらに、多くの水を貯め込むことができる。本明細書では、以下、このような幅W2が漸増する内側部分10bを漸増部13という。   Further, in this embodiment, the axial element 6 includes an inner portion 10b whose width W2 gradually increases toward the inner side in the tire axial direction. Such an axial element 6 can further store more water. In the present specification, the inner portion 10b in which the width W2 gradually increases will be referred to as a gradually increasing portion 13 hereinafter.

さらに、この実施形態では、クラウン陸部4Bのコーナ部11Bには、主溝3に向かって下降する斜面14aからなる面取り部14が設けられている。このような面取り部14は、軸方向要素6の水の保持能力を高めるとともに、コーナ部11Bの陸部剛性の低下を抑制するので、排水性能と操縦安定性能とをバランス良く向上し得る。面取り部14は、本実施形態では、平面視、三角形状に形成されている。   Furthermore, in this embodiment, the corner portion 11B of the crown land portion 4B is provided with a chamfered portion 14 including a slope 14a that descends toward the main groove 3. Such a chamfered portion 14 increases the water holding capacity of the axial element 6 and suppresses the decrease in the rigidity of the land portion of the corner portion 11B, so that the drainage performance and the steering stability performance can be improved in a balanced manner. In the present embodiment, the chamfered portion 14 is formed in a triangular shape in plan view.

また、この実施形態では、一端が軸方向要素6に連なってタイヤ軸方向外側にのびる外側横溝16が設けられている。これにより、排水性能が向上する。外側横溝16は、本実施形態では、トレッド端Teに連なっている。   Moreover, in this embodiment, the outer side lateral groove | channel 16 which one end is continued to the axial direction element 6 and extends in the tire axial direction outer side is provided. Thereby, drainage performance improves. In the present embodiment, the outer lateral groove 16 continues to the tread end Te.

外側横溝16の深さ(図示省略)は、主溝3の深さよりも小さいのが望ましい。これにより、ショルダー陸部4Aの剛性低下が抑制されるので、操縦安定性能が高く維持される。また、外側横溝16と軸方向要素6との間に段差状の溝底(図示省略)が形成されるので、この段差状の溝底が、軸方向要素6の水の保持効果の低減を抑制する。   It is desirable that the depth (not shown) of the outer lateral groove 16 is smaller than the depth of the main groove 3. Thereby, since the rigidity fall of 4 A of shoulder land parts is suppressed, steering stability performance is maintained highly. Further, since a step-shaped groove bottom (not shown) is formed between the outer lateral groove 16 and the axial element 6, this step-shaped groove bottom suppresses the reduction of the water retaining effect of the axial element 6. To do.

上述の作用を効果的に発揮させるため、外側横溝16の溝深さは、主溝3の溝深さの20%以上が望ましく、また、60%以下が望ましい。   In order to effectively exhibit the above-described action, the groove depth of the outer lateral groove 16 is desirably 20% or more of the groove depth of the main groove 3 and desirably 60% or less.

図3には、内側横溝12、漸増部13、面取り部14、及び、外側横溝16の全てを含んだパターンが示されている。しかしながら、本発明は、このような態様に限定されるものではない。本発明は、図1の基本パターンに、内側横溝12、漸増部13、面取り部14、及び、外側横溝16のいずれか1つ、又は、これらから選択された複数が付加されたパターンでも良い。   FIG. 3 shows a pattern including all of the inner lateral grooves 12, the gradually increasing portions 13, the chamfered portions 14, and the outer lateral grooves 16. However, the present invention is not limited to such an embodiment. The present invention may be a pattern in which any one of the inner lateral groove 12, the gradually increasing portion 13, the chamfered portion 14, and the outer lateral groove 16 or a plurality selected from these is added to the basic pattern of FIG.

図4は、本発明の他の実施形態の主溝3が示される。図1及び図2に示された構成と同じ構成については、同じ符号が付され、その説明が省略される。図4に示されるように、この実施形態では、傾斜要素5Aがタイヤ軸方向の一方側、例えば、タイヤ赤道C側に向かって凸の円弧状で形成されている。このような傾斜要素5Aは、直線状にのびる傾斜要素5に比して、溝容積が大きくなるので、多くの水を貯めることができるため、排水性能を高める。   FIG. 4 shows a main groove 3 according to another embodiment of the present invention. The same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 4, in this embodiment, the inclined element 5 </ b> A is formed in an arc shape that is convex toward one side in the tire axial direction, for example, toward the tire equator C side. Such an inclined element 5A has a larger groove volume than the inclined element 5 extending linearly, and therefore can store a large amount of water, thus improving drainage performance.

本実施形態の傾斜要素5Aは、回転方向Rの先着側から後着側に向かって、タイヤ軸方向に対する角度α1が漸減している。このような傾斜要素5Aは、回転方向Rの後着側へ向かって、その内部を流れる水の速さを遅くするので、軸方向要素6内への水の保持をさらに容易にする。従って、この実施形態のタイヤ1は、優れた排水性能を有する。   In the inclined element 5A of the present embodiment, the angle α1 with respect to the tire axial direction gradually decreases from the first arrival side to the rear arrival side in the rotation direction R. Such an inclination element 5A decreases the speed of the water flowing through the inside toward the rear arrival side in the rotation direction R, so that the holding of the water in the axial element 6 is further facilitated. Therefore, the tire 1 of this embodiment has excellent drainage performance.

以上、本発明の実施形態について、詳述したが、本発明は例示の実施形態に限定されるものではなく、種々の態様に変形して実施し得るのは言うまでもない。   As mentioned above, although embodiment of this invention was explained in full detail, it cannot be overemphasized that this invention is not limited to exemplary embodiment, and can be deform | transformed and implemented in a various aspect.

図1の基本パターンを有するサイズ245/40R18の空気入りタイヤが、表1の仕様に基づき試作され、各試供タイヤの操縦安定性能及び排水性能がテストされた。各試供タイヤの主な共通仕様やテスト方法は、以下の通りである。
主溝(傾斜要素及び軸方向要素)の溝深さ:6mm
傾斜要素の最大幅Wa:10mm(トレッド幅の3.2%)
傾斜要素の角度θ1:80°
表1中の「後着側溝壁と平行」は、先着側溝壁の溝縁が後着側溝壁の溝縁と平行にのびる意味
表1中の「後着側溝壁と逆向き」は、先着側溝壁の溝縁がタイヤ赤道C側に向かって回転方向Rの後着側に傾斜する意味
表1中の「α1」の数値は、タイヤ赤道側に向かって回転方向の先着側を「正」、同回転方向の後着側「負」として表記している。
実施例1、10、11の軸方向要素の溝容積は等しい。
A pneumatic tire of size 245 / 40R18 having the basic pattern of FIG. 1 was prototyped based on the specifications in Table 1, and the steering stability performance and drainage performance of each sample tire were tested. The main common specifications and test methods for each sample tire are as follows.
Groove depth of main groove (inclined element and axial element): 6mm
Maximum width of the inclined element Wa: 10 mm (3.2% of the tread width)
Tilting element angle θ1: 80 °
“Parallel to the rear-side groove wall” in Table 1 means that the groove edge of the first-side groove wall extends parallel to the groove edge of the rear-side groove wall. Meaning that the groove edge of the wall is inclined toward the rear arrival side of the rotational direction R toward the tire equator C side The numerical value “α1” in Table 1 indicates that the first arrival side of the rotational direction toward the tire equator side is “positive”. It is indicated as “negative” on the arrival side in the same rotation direction.
The groove volumes of the axial elements of Examples 1, 10, and 11 are equal.

<操縦安定性能>
各試供タイヤが、下記の条件で、排気量2000ccのレース用の四輪駆動車の全輪に装着された。そして、テストドライバーが、乾燥アスファルト路面のテストコースを走行させ、このときのハンドル応答性、剛性感、グリップ等を含む操縦安定性能を官能により評価した。結果は、比較例1を100とする評点で表示されている。数値が大きいほど良好である。
リム:18×8.5J
内圧:200kPa
<Steering stability performance>
Each sample tire was mounted on all wheels of a four-wheel drive vehicle for racing with a displacement of 2000 cc under the following conditions. Then, the test driver drove the test course on the dry asphalt road surface, and the steering stability performance including steering response, rigidity, grip and the like at this time was evaluated by sensory evaluation. The results are displayed with a score of Comparative Example 1 being 100. The larger the value, the better.
Rim: 18 × 8.5J
Internal pressure: 200kPa

<排水性能>
上記車両を用い、水深2mmの水たまりが設けられた、半径100mのアスファルト路面のテストコースを走行させたときの前輪に作用する横加速度(横G)が計測された。結果は、車両の速度が50〜80km/hのときの平均横G(ラテラル・ハイドロプレーニングテスト)を用いて、比較例1の値を100とする指数で表示されている。数値が大きいほど良好である。
テストの結果などが表1に示される。
<Drainage performance>
The lateral acceleration (lateral G) acting on the front wheels when running on a test course on an asphalt road surface with a radius of 100 m provided with a puddle with a water depth of 2 mm was measured using the above vehicle. The result is displayed as an index with the value of Comparative Example 1 as 100, using an average lateral G (lateral hydroplaning test) when the vehicle speed is 50 to 80 km / h. The larger the value, the better.
Table 1 shows the test results.

Figure 2018192875
Figure 2018192875
Figure 2018192875
Figure 2018192875

テストの結果、実施例のタイヤは、比較例のタイヤに比べて、操縦安定性能の低下が抑えられつつ、排水性能が向上していることが確認できた。   As a result of the test, it was confirmed that the drainage performance of the tire of the example was improved while the deterioration of the steering stability performance was suppressed compared to the tire of the comparative example.

1 タイヤ
2 トレッド部
3 主溝
5 傾斜要素
6 軸方向要素
8a 溝壁
R 回転方向
Wa 傾斜要素の最大幅
Wb 軸方向要素の最大幅
DESCRIPTION OF SYMBOLS 1 Tire 2 Tread part 3 Main groove 5 Inclination element 6 Axial element 8a Groove wall R Rotation direction Wa Maximum width Wb of inclination element Maximum width of axial element

Claims (9)

回転方向が指定されたトレッド部を有するタイヤであって、
前記トレッド部には、タイヤ赤道から離れた位置をタイヤ周方向にジグザグ状で連続して延びる少なくとも1本の主溝が設けられており、
前記主溝は、傾斜要素と軸方向要素とをタイヤ周方向に交互に含んでおり、
前記傾斜要素は、前記回転方向の後着側に向かってタイヤ軸方向外側に傾斜して延びており、
前記軸方向要素は、タイヤ軸方向の外側部分かつ前記回転方向の後着側に位置する溝壁がタイヤ走行時のトレッド前方の水を掻き取るように、前記傾斜要素の前記回転方向の後着側からタイヤ軸方向に延びており、
前記軸方向要素の最大幅が、前記傾斜要素の最大幅よりも大きく形成されている、
タイヤ。
A tire having a tread portion in which a rotation direction is specified,
The tread portion is provided with at least one main groove extending continuously in a zigzag shape in the tire circumferential direction at a position away from the tire equator,
The main groove includes inclined elements and axial elements alternately in the tire circumferential direction,
The inclined element extends inclined toward the outer side in the tire axial direction toward the rear arrival side in the rotational direction,
The axial direction element is arranged such that a groove wall located on an outer portion in the tire axial direction and on the rear arrival side in the rotational direction scrapes off water in front of the tread during running of the tire in the rotational direction in the rotational direction. Extending in the tire axial direction from the side,
The maximum width of the axial element is formed to be greater than the maximum width of the inclined element;
tire.
前記軸方向要素は、タイヤ軸方向に対して10°以下の角度で延びている請求項1記載のタイヤ。   The tire according to claim 1, wherein the axial element extends at an angle of 10 ° or less with respect to the tire axial direction. 前記軸方向要素は、タイヤ軸方向に対して0°で延びるか、又は、タイヤ赤道側に向かって前記回転方向の先着側に傾斜している請求項1記載のタイヤ。   2. The tire according to claim 1, wherein the axial element extends at 0 ° with respect to the tire axial direction, or is inclined toward the first arrival side in the rotational direction toward the tire equator side. 前記軸方向要素のタイヤ軸方向の内側部分は、タイヤ軸方向内側に向かって幅が漸増する請求項1ないし3のいずれかに記載のタイヤ。   The tire according to any one of claims 1 to 3, wherein a width of an inner portion in the tire axial direction of the axial element gradually increases toward an inner side in the tire axial direction. 前記トレッド部には、一端が前記軸方向要素に連なってタイヤ軸方向内側にのびる内側横溝が設けられている請求項1ないし4のいずれかに記載のタイヤ。   The tire according to any one of claims 1 to 4, wherein the tread portion is provided with an inner lateral groove having one end connected to the axial element and extending inward in the tire axial direction. 前記内側横溝の他端は、他の溝に連通することなく終端する請求項5記載のタイヤ。   The tire according to claim 5, wherein the other end of the inner lateral groove terminates without communicating with another groove. 前記トレッド部は、前記主溝のタイヤ軸方向内側に陸部を有し、
前記陸部は、前記傾斜要素と、前記軸方向要素のタイヤ軸方向の内側部分とで挟まれたコーナ部を有し、
前記コーナ部は、前記主溝に向かって下降する斜面からなる面取り部が設けられている請求項1ないし6のいずれかに記載のタイヤ。
The tread portion has a land portion on the inner side in the tire axial direction of the main groove,
The land portion has a corner portion sandwiched between the inclined element and an inner portion in the tire axial direction of the axial element,
The tire according to any one of claims 1 to 6, wherein the corner portion is provided with a chamfered portion including an inclined surface descending toward the main groove.
前記トレッド部には、一端が前記軸方向要素に連なってタイヤ軸方向外側にのびる外側横溝が設けられている請求項1ないし7のいずれかに記載のタイヤ。   The tire according to any one of claims 1 to 7, wherein the tread portion is provided with an outer lateral groove having one end connected to the axial element and extending outward in the tire axial direction. 前記外側横溝の深さは、前記主溝の深さよりも小さい請求項8記載のタイヤ。   The tire according to claim 8, wherein a depth of the outer lateral groove is smaller than a depth of the main groove.
JP2017097053A 2017-05-16 2017-05-16 tire Active JP6907690B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017097053A JP6907690B2 (en) 2017-05-16 2017-05-16 tire
DE102018111203.3A DE102018111203A1 (en) 2017-05-16 2018-05-09 tires
KR1020180054096A KR102528225B1 (en) 2017-05-16 2018-05-11 Tire
CN201810455258.9A CN108859614B (en) 2017-05-16 2018-05-14 Tyre for vehicle wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097053A JP6907690B2 (en) 2017-05-16 2017-05-16 tire

Publications (2)

Publication Number Publication Date
JP2018192875A true JP2018192875A (en) 2018-12-06
JP6907690B2 JP6907690B2 (en) 2021-07-21

Family

ID=64279306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097053A Active JP6907690B2 (en) 2017-05-16 2017-05-16 tire

Country Status (4)

Country Link
JP (1) JP6907690B2 (en)
KR (1) KR102528225B1 (en)
CN (1) CN108859614B (en)
DE (1) DE102018111203A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220324262A1 (en) * 2021-04-07 2022-10-13 Toyo Tire Corporation Pneumatic tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219014A (en) * 1999-02-01 2000-08-08 Bridgestone Corp Pneumatic tire
JP2001071709A (en) * 1999-09-08 2001-03-21 Bridgestone Corp Pneumatic tire having directional pattern
JP2003054221A (en) * 2001-06-06 2003-02-26 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012188080A (en) * 2011-03-14 2012-10-04 Bridgestone Corp Pneumatic tire
JP2013063740A (en) * 2011-09-20 2013-04-11 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2013184666A (en) * 2012-03-09 2013-09-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2017001616A (en) * 2015-06-15 2017-01-05 株式会社ブリヂストン Pneumatic tire
WO2018117009A1 (en) * 2016-12-19 2018-06-28 Compagnie Generale Des Etablissements Michelin A tread for improving aerodynamic

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000008290A (en) * 1998-07-11 2000-02-07 홍건희 Air-injected tire with improved drain function
JP2000108615A (en) * 1998-10-07 2000-04-18 Bridgestone Corp Passenger car pneumatic radial tire with directional inclined groove
JP2000247111A (en) * 1999-02-26 2000-09-12 Bridgestone Corp Pneumatic tire
KR100492249B1 (en) * 2002-09-27 2005-05-30 한국타이어 주식회사 Pneumatic Tire having Improved Soil and Water Exhaust Properties
JP4420623B2 (en) * 2003-05-28 2010-02-24 株式会社ブリヂストン Pneumatic tire
JP4397956B1 (en) * 2008-07-02 2010-01-13 横浜ゴム株式会社 Pneumatic tire
JP4677027B2 (en) 2008-12-24 2011-04-27 住友ゴム工業株式会社 Pneumatic tire and spike tire
JP4471031B1 (en) * 2009-02-16 2010-06-02 横浜ゴム株式会社 Pneumatic tire
JP5320427B2 (en) * 2011-04-12 2013-10-23 住友ゴム工業株式会社 Pneumatic tire
JP5480868B2 (en) * 2011-10-07 2014-04-23 住友ゴム工業株式会社 Pneumatic tire
DE102011055913A1 (en) * 2011-12-01 2013-06-06 Continental Reifen Deutschland Gmbh Vehicle tires
EP2927024B1 (en) * 2012-11-30 2018-04-11 Bridgestone Corporation Pneumatic tire
US9688105B2 (en) * 2012-11-30 2017-06-27 Bridgestone Corporation Pneumatic tire
JP6046471B2 (en) * 2012-12-07 2016-12-14 株式会社ブリヂストン Pneumatic tire
JP5913201B2 (en) 2013-05-14 2016-04-27 住友ゴム工業株式会社 Pneumatic tire
US9757991B2 (en) * 2013-02-19 2017-09-12 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP5898640B2 (en) * 2013-04-23 2016-04-06 住友ゴム工業株式会社 Pneumatic tire
CN104015570A (en) * 2014-06-24 2014-09-03 中国化工橡胶桂林有限公司 Tire tread patterns for all-wheel tire of motor lorry
JP6130822B2 (en) 2014-11-20 2017-05-17 住友ゴム工業株式会社 Pneumatic tire
RU2703006C2 (en) * 2015-04-03 2019-10-15 Сумитомо Раббер Индастриз, Лтд. Pneumatic tire
JP6348868B2 (en) * 2015-04-09 2018-06-27 住友ゴム工業株式会社 Pneumatic tire
CN106183648A (en) * 2016-09-27 2016-12-07 安徽和鼎轮胎科技股份有限公司 All-terrain baby off-the-highway tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219014A (en) * 1999-02-01 2000-08-08 Bridgestone Corp Pneumatic tire
JP2001071709A (en) * 1999-09-08 2001-03-21 Bridgestone Corp Pneumatic tire having directional pattern
JP2003054221A (en) * 2001-06-06 2003-02-26 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012188080A (en) * 2011-03-14 2012-10-04 Bridgestone Corp Pneumatic tire
JP2013063740A (en) * 2011-09-20 2013-04-11 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2013184666A (en) * 2012-03-09 2013-09-19 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2017001616A (en) * 2015-06-15 2017-01-05 株式会社ブリヂストン Pneumatic tire
WO2018117009A1 (en) * 2016-12-19 2018-06-28 Compagnie Generale Des Etablissements Michelin A tread for improving aerodynamic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220324262A1 (en) * 2021-04-07 2022-10-13 Toyo Tire Corporation Pneumatic tire

Also Published As

Publication number Publication date
KR102528225B1 (en) 2023-05-02
DE102018111203A1 (en) 2018-12-06
CN108859614A (en) 2018-11-23
CN108859614B (en) 2021-12-14
JP6907690B2 (en) 2021-07-21
KR20180125891A (en) 2018-11-26

Similar Documents

Publication Publication Date Title
JP6450221B2 (en) Pneumatic tire
JP6006772B2 (en) Pneumatic tire
JP5993406B2 (en) Pneumatic tire
JP5503622B2 (en) Pneumatic tire
JP6724451B2 (en) Pneumatic tire
JP6393216B2 (en) Pneumatic tire
JP6699270B2 (en) Pneumatic tire
JP6776620B2 (en) tire
JP6055521B1 (en) Pneumatic tire
CN105452018B (en) Pneumatic tire
JP6374819B2 (en) Pneumatic tire
KR102569782B1 (en) Tire
JP2018176930A (en) Pneumatic tire
JP6286079B2 (en) Pneumatic tire
JP6097261B2 (en) Pneumatic tire
JP5841558B2 (en) Pneumatic tire
JP6496208B2 (en) Pneumatic tire
JP2018176881A (en) Tire
JP2020117151A (en) tire
JP6575660B2 (en) Pneumatic tire
JP2018030444A (en) tire
JP5926714B2 (en) Pneumatic tire
KR102528225B1 (en) Tire
JP6417226B2 (en) Pneumatic tire
JP7409062B2 (en) tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6907690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150