JP2018189493A - レーザ照射を用いた試験体の曲げ試験方法及び曲げ試験装置 - Google Patents

レーザ照射を用いた試験体の曲げ試験方法及び曲げ試験装置 Download PDF

Info

Publication number
JP2018189493A
JP2018189493A JP2017092050A JP2017092050A JP2018189493A JP 2018189493 A JP2018189493 A JP 2018189493A JP 2017092050 A JP2017092050 A JP 2017092050A JP 2017092050 A JP2017092050 A JP 2017092050A JP 2018189493 A JP2018189493 A JP 2018189493A
Authority
JP
Japan
Prior art keywords
specimen
laser
test
displacement
bending test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017092050A
Other languages
English (en)
Other versions
JP6940806B2 (ja
Inventor
幹之 市場
Mikiyuki Ichiba
幹之 市場
渡邊 憲一
Kenichi Watanabe
憲一 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2017092050A priority Critical patent/JP6940806B2/ja
Publication of JP2018189493A publication Critical patent/JP2018189493A/ja
Application granted granted Critical
Publication of JP6940806B2 publication Critical patent/JP6940806B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】本発明は、コンクリート柱や鋼管柱等の柱体(支持物)による試験体の応力に対する変位をレーザ距離計を用いて試験体の破壊荷重まで精確に計測することができる、レーザ照射を用いた試験体の曲げ試験方法及びその装置を提供する。【解決手段】本発明に係るレーザ照射を用いた試験体の曲げ試験方法は、地面に対して水平方向に設置された試験体Pの縦断面の中心線Cを含む、地面と平行な面上において単独あるいは複数のレーザ距離計3a(〜3e)を配置し、中心線Cの試験体Pの固定治具1による把持部分から離間した所定の位置で、前記レーザ距離計3a(〜3e)を設置した位置に対して試験体Pの反対側から、地面に平行の方向に引張荷重Gを発生させ、中心線Cとレーザ距離計3a〜3eの設置点を結ぶ最短距離を基準として、試験体Pの変位を計測することを特徴とする。【選択図】図1

Description

本発明は、コンクリート柱や鋼管柱等の柱体の曲げ試験において、応力に対する変位を、レーザ距離計を用いて計測するための、レーザ照射を用いた試験体の曲げ試験方法および曲げ試験装置に関するものである。
一般的に、コンクリート柱や鋼管柱のような屋外設備の支持物において、破壊荷重は、支持物の要求性能の中で重要な性能である。
そこで、従来においては、特許文献1及び特許文献2に開示されているように、電柱のたわみ量の測定として、実環境に設置されている状態での電柱のたわみ状態を、撮像機を用いて計測する方法が開示されている。
また、特許文献3に開示されているように、コンクリート柱ではないが、搬送される鋼管の3次元的な曲がり量を、鋼管を一旦静止してレーザ変位計を用いて計測する技術が開示されている。
更に、特許文献4に開示されているように、材料に関する記載はないが、ローラーに載せられた長尺材の3次元的な曲がり量を、レーザ変位計を用いて計測する技術が開示されている。この特許文献4では、レーザで非接触の測定をおこなうことにより、計測対象が〜1000℃の高温であっても計測可能であることが記されている。
また、破壊荷重の測定は、非特許文献1に開示されている「電柱の湾曲程度を測定する装置」において、「プレキャストコンクリート製品−性能試験方法通則」の円筒部材の曲げ試験に規定された方法により行われている。この非特許文献1は、曲げ試験の報告項目に規定されてはいないが、破壊荷重を測定する際、荷重に対する支持物の変位も、支持物の性能を評価する上で重要な情報となる。
また、非特許文献2に開示されている「中空長尺体湾曲測定装置」には、支持物の曲げ試験は円筒試験体の地面に埋設する部分を把持して、自由端付近に試験体に垂直、かつ地面と平行に荷重を負荷して行う。試験体の把持されていない部分は鋼製の台車に載せられているため、負荷を受けた試験体は地面を動き曲げに追従できるものとされている。
また、非特許文献3の「長尺材の曲がり測定装置」及び非特許文献4の「長尺材の曲がり測定装置及び方法」には、コンクリート柱や鋼管柱の曲げ試験時の変位量の測定は、試験中に応力負荷レベルを変えた状態で保持して設置線と試験体の距離をコンベックスなどで測定する方法、あるいは設置線上に配置して試験体と「たわみ量測定装置」をワイヤで締結して変位を測定する方法が示されている。
特開平06−094442号公報 特開2010−112904号公報 特開2000−131038号公報 特開平08−189821号公報
JIS A 5363「プレキャストコンクリート製品性能試験方法通則」 日本コンクリート工業「NC−POLE Products & Specification Manual」2016 吉田匡志、小原俊祐、多胡正章著「JR EAST Technical Review No.17、P39、2006」
ここで、本発明者は、コンクリート柱や鋼管柱のような屋外設備の支持物の破壊荷重を測定する曲げ試験時などにおいて、負荷荷重の変化に対する支持物の各位置のたわみ量となる変位を測定することを試みた。
ただ、変位は破壊荷重に達するまでに数十点以上を計測する必要があり、定期的に負荷荷重を定常状態として試験体各位置の変位を実測することは、現実的ではなかった。
上記した特許文献1及び特許文献2に示された連続写真撮影による画像解析については、膨大な画像から各位置の変位を読み取る必要があり、データ処理の負荷が大きいことが判明した。しかも、試験体の頂部は数m変位する状況に対して、画像解析では測定精度も充分ではなかった。
また、特許文献3及び特許文献5に示されたレーザ変位計を用いる方法は、負荷荷重が軽微な状態では変位を正確に計測できるが、負荷荷重に伴う変位が大きくなると計測が安定しない、あるいは計測できなくなることが判明した。
更に、特許文献6に示されたワイヤ変位計による計測は、支持物の各位置の変位を負荷荷重とリンクして連続して計測することが可能である。
しかしながら、ワイヤ変位計は、ワイヤの長さに応じて計測可能な長さに制約があり、支持物の変位がワイヤ長さの制約を超える場合、あるいは支持物が破壊に至り、ワイヤ長さの制約を超える場合には変位計が故障することが判明した。
そこで、本発明は如上のような従来存した諸事情に鑑み創出されたもので、コンクリート柱や鋼管柱等の柱体(支持物)による試験体Pを地面に対して水平方向に設置し、応力を水平方向に印加する曲げ試験において、応力に対する試験体Pの変位をレーザ距離計を用いて、柱体の破壊荷重まで精確に計測することのできる、レーザ照射を用いた試験体の曲げ試験方法および曲げ試験装置を提供することを目的とする。
本発明に係る請求項1の発明は、地面に対して水平方向に設置された試験体Pの縦断面の中心線Cを含む、地面と平行な面上において単独あるいは複数のレーザ距離計3a(〜3e)を配置し、中心線Cの試験体Pの固定治具1による把持部分から離間した所定の位置で、前記レーザ距離計3a(〜3e)を設置した位置に対して試験体Pの反対側から、地面に平行の方向に引張荷重Gを発生させ、中心線Cとレーザ距離計3a〜3eの設置点を結ぶ試験体Pの変位前の最短距離を基準として、試験体Pの曲げによる変位を計測することで、上述した課題を解決した。
この請求項1に係るレーザ照射を用いた試験体の曲げ試験方法によれば、試験体Pの元口付近を固定して試験開始前に各レーザ距離計3a(〜3e)と試験体Pの表面との距離を予め正確に計測し、これらを最短距離の基準として、試験を行うことから、複数のレーザ距離計3a(〜3e)を一列に配置する必要はなく、これにより、応力に対する試験体Pの変位を、複数のレーザ距離計3a(〜3e)を用いて試験体Pの破壊荷重まで精確に計測することができる。
また、本発明に係る請求項2の発明は、引張荷重Gをかけない状態の試験体Pの表面に照射するレーザ距離計3a(〜3e)の光の照射面の直径が1mm以上4mm以下であることで、上述した課題を解決した。
この請求項2に係るレーザ照射を用いた試験体の曲げ試験方法によれば、レーザ距離計3a(〜3e)の照射による試験体Pの表面の凹凸の影響が皆無となり、曲げ試験時の変位を正常に表示することができる。
また、本発明に係る請求項3の発明は、レーザ距離計3a(〜3e)の波長が400nm以上780nm未満であることで、上述した課題を解決した。
この請求項3に係るレーザ照射を用いた試験体の曲げ試験方法によれば、測定対象である試験体Pが常温にある金属あるいはコンクリートであったり、赤色の柱であったりしても、測定位置を目視で且つ安全に確認することができる。
また、本発明に係る請求項4の発明は、試験体Pのレーザ距離計3a(〜3e)による照射面に60°鏡面光沢度値で80以下の表面性状の反射板、あるいはシールもしくは表面処理を施すことで、上述した課題を解決した。
この請求項4に係るレーザ照射を用いた試験体の曲げ試験方法によれば、反射量の安定性が確保され、これによって、試験体Pの変位を精度よく計測することができる。
また、本発明に係る請求項5の発明は、試験体Pの引張荷重Gとレーザ距離計3a(〜3e)からの変位情報を同時にデータロガ4に収集して、得られた情報を表示装置5側に画像表示することで、上述した課題を解決した。
この請求項5に係るレーザ照射を用いた試験体の曲げ試験方法によれば、変位データを同時に多チャンネルのデータロガ4で収集することで、得られた情報を負荷荷重と試験体Pの変位の図にして画面にリアルタイムで表示でき、これにより、試験が正常に実施されているかを容易に確認することができる。
また、本発明に係る請求項6の発明は、試験体Pを一端が固定治具1によって把持された状態で地面に対して水平方向に載置させる複数の台車2と、地面と平行な面上において配置され、試験体Pの把持部分から離間した所定の位置で地面に平行の方向に引張荷重Gを発生させる巻き取り装置6と、巻き取り装置6を設置した位置に対して試験体Pの反対側で、試験体Pの引張荷重Gによる曲げ変位を計測する単独あるいは複数のレーザ距離計3a(〜3e)と、を有することで、上述した課題を解決した。
この請求項6に係るレーザ照射を用いた試験体の曲げ試験装置によれば、複数のレーザ距離計3a(〜3e)により、応力に対する試験体Pの変位を、破壊荷重まで精確に計測可能にした曲げ試験装置を安価に提供することができる。
また、本発明に係る請求項7の発明は、引張荷重Gをかけない状態の試験体Pの表面に照射するレーザ距離計3a(〜3e)の光の照射面の直径が1mm以上4mm以下であることで、上述した課題を解決した。
この請求項7に係るレーザ照射を用いた試験体の曲げ試験装置によれば、レーザ距離計3a(〜3e)の照射による試験体Pの表面の凹凸の影響を皆無として、曲げ試験時の変位を正常に表示可能にした曲げ試験装置を安価に提供することができる。
また、本発明に係る請求項8の発明は、レーザ距離計3a(〜3e)の波長が400nm以上780nm未満であることで、上述した課題を解決した。
この請求項8に係るレーザ照射を用いた試験体の曲げ試験装置によれば、測定位置を目視で且つ安全に確認可能にする曲げ試験装置を安価に提供することができる。
また、本発明に係る請求項9の発明は、試験体Pのレーザ距離計3a(〜3e)による照射面に60°鏡面光沢度値で80以下の表面性状の反射板、あるいはシールもしくは表面処理を施してなることで、上述した課題を解決した。
この請求項9に係るレーザ照射を用いた試験体の曲げ試験装置によれば、反射量の安定性が確保されることで、試験体Pの変位を精度よく計測可能にした曲げ試験装置を安価に提供することができる。
また、本発明に係る請求項10の発明は、試験体Pの引張荷重Gとレーザ距離計3a(〜3e)からの変位情報を同時に収集して、得られた情報を表示装置5側に画像表示可能にするデータロガ4を有することで、上述した課題を解決した。
この請求項10に係るレーザ照射を用いた試験体の曲げ試験装置によれば、変位データを同時に多チャンネルのデータロガ4で収集し、得られた情報を引張荷重Gと試験体Pの変位の図にして画面にリアルタイムで表示できることで、試験が正常に実施されているかを確認可能にした曲げ試験装置を安価に提供することができる。
即ち、本発明では、原理的に計測距離に制約がなく早い応答が期待できるレーザ距離計3a(〜3e)を活用した変位測定を検討し、使用するレーザの仕様と照射方法を最適化することにより試験体Pの破壊荷重までの連続的な変位の計測が可能であることを見出した。
従来の鋼管や長尺材のレーザ距離計3a(〜3e)による変位測定は、対象材を静止した状態で形状測定し、レーザ距離計3a(〜3e)の設置は多方向から1回の計測で行われている。本発明は、対象材の曲げ試験時の曲げ方向の変位を連続的に計測するため、レーザ距離計3a(〜3e)の照射光の軌跡は面上にあり、かつ中心線Cに垂直に交わることが必要となる。
一方、曲げ方向は一方向となるため、従来技術のような上下方向の計測は必要としない。ただし、試験体Pの表面は湾曲していることから、レーザ距離計3a(〜3e)の照射光の軌跡が面上、即ち曲げ試験に伴い試験体Pの中央からレーザ距離計3a(〜3e)の照射位置が外れると、照射したレーザ光がレーザ距離計3a(〜3e)に戻らなくなり変位の計測ができなくなる。
本発明は、従来技術のように搬送される試験体を静止して測定するものではなく、試験体の元口付近を固定して試験開始前に各レーザ距離計3a(〜3e)と試験体P表面の距離を予め正確に計測して試験を行うことから、複数のレーザ距離計3a(〜3e)を一列に配置する必要はない。
また、試験体Pの表面形状は、荒れたコンクリートから塗装まで様々である。表面の凹凸が顕著なコンクリート柱では、レーザ光の直径が負荷荷重をかけない初期状態で1mm未満では、曲げ試験によりレーザ距離計3a(〜3e)と試験体P表面の距離が離れると表面の凹凸の影響が顕著となり、曲げ試験時に変位が正常に表示されなくなる現象がみられた。
レーザ光の直径を拡大すると変位の安定した計測が可能になったが、直径が4mmを超えると反射されるレーザ光の強度が低下するため、曲げ試験時に変位が計測できなくなった。
例えば、レーザ光の強度がクラス1では、光沢のある塗装鋼管に対しては、変位の計測が可能であった。一方、表面の荒れたコンクリート柱や無光沢の塗装表面では、反射されるレーザ光の強度が低下するため、曲げ試験時に変位が計測できなくなった。
また、クラス2以上のレーザ光の強度では、試験体Pの破壊時まで変位の計測が可能であった。クラス2を超える強度のレーザ光は、作業者の安全上の問題から好ましくない。
使用するレーザの波長は、400nm以上780nm未満が望ましい。測定位置は目視で確認可能であることが望ましいことから、レーザ光の波長は視認可能な780nm未満が望ましい。
例えば、安価で視認可能な600〜700nmのレーザ光を用いることが望ましい。また、紫外領域の400nm以上の短波長側の青色レーザ光も適用可能であるが、測定対象が常温にある金属あるいはコンクリートのため、高価な青色レーザ光を用いるメリットは小さい。計測対象が赤色の柱においては、青色レーザ光を用いると照射位置の視認性でメリットがある。
試験体Pの表面塗装に高い光沢があり、曲げ試験時の振動でレーザ光のレーザ距離計3a(〜3e)への反射量が振動する、あるいは表面の凹凸が激しく充分なレーザ距離計3a(〜3e)への反射量が確保できず、変位が安定して計測できない場合は、レーザ照射面に60°鏡面光沢度値で80以下20以上の表面性状の反射板、シールあるいは表面処理を施すことが望ましい。
例えば、鏡面光沢度値で80を超えると、反射量が不安定となり変位が安定して計測できない場合がみられ、鏡面光沢度値が20未満では反射量が低下し、変位が安定して計測できない場合がみられた。
曲げ試験時の計測システムの構成として、ロードセルなどからの負荷荷重のデータとレーザ変位計から変位データは、同時に多チャンネルのデータロガ4で収集可能であり、得られた情報を引張荷重Gと試験体Pの変位の図にして画面にリアルタイムで表示することにより、試験が正常に実施されているかを確認することができる。
本発明に係るレーザ照射を用いた試験体の曲げ試験方法及び曲げ試験装置により、コンクリート柱や鋼管柱等の柱体(支持物)による試験体Pを地面に対して水平方向に設置し、応力を水平方向に印加する曲げ試験において、応力に対する試験体Pの変位を、レーザ距離計3a(〜3e)を用いて試験体Pの破壊荷重まで正確に計測することができる。
また、レーザ距離計3a(〜3e)の照射による試験体Pの表面の凹凸の影響が皆無となり、曲げ試験時の変位を正常に表示することができる。
更に、測定対象である試験体Pが常温にある金属あるいはコンクリートであったり、赤色の柱であったりしても、測定位置を目視で且つ安全に確認することができる。
また、反射量の安定性が確保されることによって、試験体Pの変位を精度よく計測することができる。
加えて、変位データを同時に多チャンネルのデータロガ4で収集することで、得られた情報を引張荷重Gと試験体Pの変位の図にして、画面にリアルタイムで表示でき、これにより、試験が正常に実施されているかを容易に確認することができる。
本発明に係る曲げ試験装置の使用状態の概略を示す斜視図である。 同じく曲げ試験装置において試験体に引張荷重をかけて曲げた状態を示す斜視図である。 曲げ試験装置の使用状態の概略を示す背面図である。 曲げ試験装置のデータロガの使用状態を示す平面図である。 曲げ試験装置のデータロガの使用において試験体に引張荷重をかけて曲げた状態を示す平面図である。 試験体の負荷荷重に対する変位の関係をグラフで示す説明図である。 本発明の実施例における比較例を表で示す説明図である。 本発明による評価の一例を表で示す説明図である。
<実施の形態>
以下に、図面を参照して、本発明の一実施の形態について説明する。
本実施形態におけるレーザ照射を用いた試験体の曲げ試験方法は、例えばコンクリート製の電柱や鋼管柱等の柱体(支持物)による試験体Pを、地面に対して水平方向に設置し、試験体Pの縦断面(長さ方向に直交する面)の中心線Cを含む、地面と平行な面上において単独あるいは複数のレーザ距離計3a(〜3e)を配置する。
そして、中心線Cの試験体Pの固定治具1による把持部分から離間した所定の位置である、例えば試験体Pの先端で、前記レーザ距離計3a(〜3e)を設置した位置に対して試験体Pの反対側から、地面に平行の方向に引張荷重Gを発生させ、中心線Cとレーザ距離計3a〜3eの設置点を結ぶ試験体Pの変位前の最短距離を基準として、試験体Pの曲げによる変位を計測する。
本実施形態におけるレーザ照射を用いた試験体の曲げ試験装置は、図1乃至図3に示すように、例えばコンクリート製の電柱や鋼管柱等の柱体(支持物)による試験体Pを横向きにして、その縦断面(長さ方向に直交する面)の中心線C上の一端(基端部)を、左右一対の挟持ブラケット状の固定治具1によって把持した状態で、地面に対して水平方向に載置させる、例えば3個の台車2を備える。
また、中心線Cの試験体Pの固定治具1による把持部分から離間した所定の位置、例えば電柱のように先細ロッド状の試験体Pの先端(自由端)において、地面に平行の方向にワイヤW1によって引張荷重Gを発生させるよう、地面と平行な中心線Cを含む面上に配置された巻き取り装置6を備える。
更に、巻き取り装置6を設置した位置に対して試験体Pの反対側で、巻き取り装置6による試験体Pの引張荷重Gに伴う曲げ変位を計測するための、例えば5個のレーザ距離計3a(〜3e)を備える。
尚、本実施形態では、5個のレーザ距離計3a(〜3e)を使用しているが、これに限らず、レーザ距離計を単独で使用したり、あるいは2個、3個、4個、又は6個以上のレーザ距離計を使用しても良い。
また、本実施形態では、引張荷重Gをかけない状態の試験体Pの表面に照射するレーザ距離計3a(〜3e)の光の照射面の直径は、1mm以上4mm以下とし、更に、レーザ距離計3a(〜3e)の波長は、400nm以上780nm未満とする。
また、本実施形態では、試験体Pのレーザ距離計3a(〜3e)による照射面に、60°鏡面光沢度値で80以下の表面性状の反射板(図示省略)、あるいはシール(図示省略)もしくは表面処理を施している。
図4及び図5に示すように、試験体Pの引張荷重Gと、レーザ距離計3a(〜3e)からの変位の計測情報と、を同時に収集し、得られた収集情報を、例えばパソコン等の荷重−変位の表示装置5側に、画像(例えば3次元による画像データ)として表示可能にするデータロガ4を有する。
即ち、曲げ試験時の計測システムの構成として、不図示のロードセルなどからの引張荷重G(負荷荷重)のデータと、レーザ距離計3a(〜3e)からの変位データは、同時に多チャンネルのデータロガ4で収集可能であり、得られた情報を引張荷重Gと試験体Pの変位の図にして、例えばパソコン等の表示装置5の画面にリアルタイムで表示する。
以下、本発明を実施例および比較例を用いて具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。
(実施例1)
試験体Pとして、長さ14m、ひび割れ試験荷重5kN、元口直径約38cm、末口直径約19cmのコンクリート柱1を用いている。表面状態は、無塗装である。コンクリート柱による試験体Pに対して、「JIS A 5363」に定める円筒部材の曲げ試験を、破壊荷重まで実施した。
既存の曲げによる変位の比較対象とする計測方法として、ワイヤ変位計Wを用いた。曲げ試験を必要時に一時停止し、コンベックスで人が変位を直接計測する方法は、試験時の計測回数が数回であれば対応可能である。
しかし、試験体Pの曲げ試験時の力学的な挙動の測定など、測定回数が数十回以上になると、人手による直接計測は時間的に対応が難しい。ワイヤ変位計Wの測定原理は、人手による直接計測と同一である。
評価は、以下の方法で行った。即ち、図8に示すように、評価1では、設計された引張荷重Gまでの曲げ試験において、ワイヤ変位計Wに対する測定誤差が、±5mm以内を「〇」、超えるものを「×」とする。
評価2では、破壊荷重までの曲げ試験時に、破壊直前までレーザ距離計3a(〜3e)の測定が正常に行われているものを「〇」、全く関係の無い測定値を出力するなど、破壊直前まで測定が行われていないものを「×」とする。
評価3では、破壊荷重までの曲げ試験時に、レーザ距離計3a(〜3e)が損傷する、あるいは試験に支障をきたす不具合を生じないものを「〇」、生じるものを「×」とする。
基本の曲げ試験条件は、図3に示すように、レーザ距離計3a(〜3e)は試験体Pの引張荷重Gによる荷重負荷方向と反対側の面上に配置した。レーザ光は試験体Pの中心線Cに垂直に照射し、波長660nmのクラス2の赤色光を用いた。また、試験開始前の照射位置は、試験体Pの側面の中央表面で、レーザ光の直径は約2mmに調整した。
データは、図4及び図5に示すように、レーザ距離計3a(〜3e)で計測される距離データと、試験体Pであるコンクリート柱の負荷荷重データをデータロガ4に取り込み、パソコン等の表示装置5上に変位‐荷重データを表示した。データの取り込みは、パソコンからの制御により手動で連続して実施した。距離データは荷重負荷の前計測データからの増加分とした。
試験体Pであるコンクリート柱に沿った3か所にレーザ距離計L(上記レーザ距離計3a〜3eのいずれか3個)を配置し、同箇所にワイヤ変位計Wを配置して試験を行った。
レーザ距離計Lによる曲げ試験結果(縦軸に負荷荷重(kN)、横軸に変位(mm)を示す)を、図6に示す。設計荷重までの試験において、3か所のレーザ距離計Lの測定結果は、いずれも同箇所に設置したワイヤ変位計Wの測定結果と良い一致を示した。
ここで、変位1は地際、変位2は柱の中断、変位3は柱の頂部、Lはレーザ距離計、Wはワイヤ変位計を示す。本実施形態での基本条件下におけるレーザ距離計Lによる計測は、試験体Pであるコンクリート柱の破壊に至るまでの、荷重−変位を記録できることが解る。
ワイヤ変位計Wは、試験体Pであるコンクリート柱が折損すると故障することから、曲げ試験の途中でワイヤW1をコンクリート柱から取り外す必要がある。取り外しは人手で行う必要があり、取り外し時にコンクリート柱が折損すると安全面の問題生じることから、取り外しは図6に示すようにコンクリート柱が破壊しない設計荷重内にとどまる。
図8の比較例11に示すように、ワイヤ変位計Wでは、破壊荷重までのデータを得ることはできない。レーザ距離計Lの設置位置は、図3に示すように、コンクリート柱表面の引張応力側にする。
図8の比較例12に示すように、レーザ距離計Lをコンクリート柱表面の圧縮応力側に設置すると、柱の破壊時にレーザ距離計Lを損傷する場合がある。
使用するレーザ光は、後述の実施例2に示すように波長405nmでも計測可能であるが、実施例1の赤色レーザ光に比較して変位計が高価格となる。
図8の比較例13に示すように、レーザ光の波長が780nmでは、試験開始前のレーザ光の照射位置の確認時に暗赤色となり、視認が難しく調整に時間がかかる。
図8の比較例14に示すように、レーザ光の軌跡が面内から外れる場合は、変位が大きくなるに従い、柱表面の照射位置が上方あるいは下方にずれ、レーザ距離計Lへの反射量が急速に低下して変位を測定できなくなった。
図8の比較例15に示すように、レーザ光の軌跡と中心線Cの交角が90°から外れて80°となした場合は、変位が大きくなるに従い、照射位置が柱表面の附属物やボルト穴などと重なり、あるいはワイヤ変位計Wとの乖離が大きくなり、変位を測定できなくなった。
図8の比較例16に示すように、試験体Pに負荷荷重をかけない初期状態で、レーザ光の直径が0.5mm以下では、レーザ距離計Lと試験体P表面の距離が離れると表面の凹凸の影響が顕著となり、変位が変動して安定して表示されなくなる現象がみられた。
図8の本発明1のように、試験体Pに負荷荷重をかけない初期状態において、試験体P表面のレーザ光の直径が1mmでは、曲げ試験終了まで安定して変位を計測することができたが、図8の比較例17に示すように、レーザ光の直径が4mmを超えると、レーザ距離計Lと試験体P表面の距離が離れるにつれ、変位が正常に表示されなくなる現象がみられた。
図8の比較例18に示すように、レーザ光の強度がクラス1では、レーザ距離計Lと試験体P表面の距離が離れると、変位が正常に表示されなくなる現象がみられた。実施例1に示すように、クラス2のレーザ光の強度では、試験体の破壊時まで変位の計測が可能であった。図8の本発明1及び2では、いずれも曲げ試験時の変位の計測が可能であった。
(実施例2)
試験体Pとして、本発明1で使用したコンクリート柱の表面を塗装したものを用いた。塗膜表面の光沢度は60°光沢度で91を示した。このコンクリート柱に対して、「JIS A 5363」に定める円筒部材の曲げ試験を、破壊荷重まで実施した。
試験体Pに負荷荷重をかけない、初期状態の試験体P表面のレーザ光の直径が1mmの条件では、図7の本発明3に示すように、柱の頂部から3m以上離れた計測位置では、曲げ試験終了まで安定して変位を計測することができた。一方、柱の頂部から3m未満の計測位置では、曲げ試験時に変位が正常に表示されなくなる現象がみられた。
図7の本発明4では、柱の頂部から2.5mの試験体P表面の計測位置に、無彩色で60°鏡面光沢度値で72の白色樹脂板(10cm×10cm)を、面に垂直に、かつ試験体P表面に接するように貼付した。白色樹脂板をレーザ光の照射面として曲げ試験を実施したところ、曲げ試験時に変位を破壊荷重まで正常に測定できた。
図7の本発明5に示すように、コンクリート柱は、白色樹脂板を取り付けることにより、レーザ光の強度がクラス1でも、曲げ試験時に変位を正常に表測定することができた。
(実施例3)
試験体Pとして、実施例1で使用したコンクリート柱と同形状の経年劣化したものを用いた。このコンクリート柱の表面は、骨材が露出しており、部分的にコンクリートの剥離もみられた。このコンクリート柱に対して、「JIS A 5363」に定める円筒部材の曲げ試験を、破壊荷重まで実施した。
図7の本発明6に示すように、試験体Pに負荷荷重をかけない、初期状態の試験体表面のレーザ光の直径が1mmの条件で、骨材の露出が少ない部分では、曲げ試験終了まで安定して変位を計測することができた。一方、骨材が全面にわたって露出した部分や、局所的にコンクリートが剥離した部分では、曲げ試験時に変位が正常に表示されなくなる現象がみられた。
図7の本発明7に示すように、骨材露出が目立つ部位や、コンクリートが剥離した部分に、無彩色で60°鏡面光沢度値で72の白色樹脂板(10cm×10cm)を面に垂直に、かつ試験体P表面に接するように貼付した。コンクリートが剥離した部分に、不図示の白色樹脂板を貼付してレーザ光の照射面としたことにより、曲げ試験時に変位を正常に測定できた。
図7の本発明8に示すように、コンクリート柱は、不図示の白色樹脂板を取り付けることにより、レーザ光の強度がクラス1でも、曲げ試験時に変位を正常に測定することができた。
以上説明したように、コンクリート柱や鋼管柱等の柱体(支持物)による試験体Pを地面に対して水平方向に設置し、応力を水平方向に印加する曲げ試験において、応力に対する試験体Pの変位を、複数のレーザ距離計Lを用いて、試験体Pの破壊荷重まで正確に計測することができる。
また、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
本発明は、様々な長尺形状の支持構造による試験体Pの曲げ応力による変位を検出するためのレーザ照射を用いた曲げ試験方法として、種々の作業現場において、幅広く利用されるものである。
P…試験体(電柱)
G…引張荷重
C…中心線
W1…ワイヤ
W…ワイヤ変位計
1…固定治具
2…台車
L(3a〜3e)…レーザ距離計
4…データロガ
5…表示装置
6…巻き取り装置

Claims (10)

  1. 地面に対して水平方向に設置された試験体の縦断面の中心線を含む、地面と平行な面上において単独あるいは複数のレーザ距離計を配置し、中心線の試験体の固定治具による把持部分から離間した所定の位置で、前記レーザ距離計を設置した位置に対して試験体の反対側から、地面に平行の方向に引張荷重を発生させ、中心線とレーザ距離計の設置点を結ぶ試験体の変位前の最短距離を基準として、試験体の曲げによる変位を計測することを特徴とするレーザ照射を用いた試験体の曲げ試験方法。
  2. 引張荷重をかけない状態の試験体の表面に照射するレーザ距離計の光の照射面の直径が1mm以上4mm以下である請求項1記載のレーザ照射を用いた試験体の曲げ試験方法。
  3. レーザ距離計の波長が400nm以上780nm未満である請求項1又は2に記載のレーザ照射を用いた試験体の曲げ試験方法。
  4. 試験体のレーザ距離計による照射面に60°鏡面光沢度値で80以下の表面性状の反射板、あるいはシールもしくは表面処理を施す請求項1乃至3のいずれかに記載のレーザ照射を用いた試験体の曲げ試験方法。
  5. 試験体の引張荷重とレーザ距離計からの変位情報を同時にデータロガに収集して、得られた情報を表示装置側に画像表示する請求項1乃至4のいずれかに記載のレーザ照射を用いた試験体の曲げ試験方法。
  6. 試験体を一端が固定治具によって把持された状態で地面に対して水平方向に載置させる複数の台車と、地面と平行な面上において配置され、試験体の把持部分から離間した所定の位置で地面に平行の方向に引張荷重を発生させる巻き取り装置と、巻き取り装置を設置した位置に対して試験体の反対側で、試験体の引張荷重による曲げ変位を計測する単独あるいは複数のレーザ距離計と、を有することを特徴としたレーザ照射を用いた試験体の曲げ試験装置。
  7. 引張荷重をかけない状態の試験体の表面に照射するレーザ距離計の光の照射面の直径が1mm以上4mm以下である請求項7記載のレーザ照射を用いた試験体の曲げ試験装置。
  8. レーザ距離計の波長が400nm以上780nm未満である請求項7又は8に記載のレーザ照射を用いた試験体の曲げ試験装置。
  9. 試験体のレーザ距離計による照射面に60°鏡面光沢度値で80以下の表面性状の反射板、あるいはシールもしくは表面処理を施してなる請求項6乃至8のいずれかに記載のレーザ照射を用いた試験体の曲げ試験装置。
  10. 試験体の引張荷重とレーザ距離計からの変位情報を同時に収集して、得られた情報を表示装置側に画像表示可能にするデータロガを有する請求項6乃至9のいずれかに記載のレーザ照射を用いた試験体の曲げ試験装置。
JP2017092050A 2017-05-04 2017-05-04 レーザ距離計を用いたコンクリート柱の曲げ試験方法および曲げ試験装置 Active JP6940806B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017092050A JP6940806B2 (ja) 2017-05-04 2017-05-04 レーザ距離計を用いたコンクリート柱の曲げ試験方法および曲げ試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017092050A JP6940806B2 (ja) 2017-05-04 2017-05-04 レーザ距離計を用いたコンクリート柱の曲げ試験方法および曲げ試験装置

Publications (2)

Publication Number Publication Date
JP2018189493A true JP2018189493A (ja) 2018-11-29
JP6940806B2 JP6940806B2 (ja) 2021-09-29

Family

ID=64478348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017092050A Active JP6940806B2 (ja) 2017-05-04 2017-05-04 レーザ距離計を用いたコンクリート柱の曲げ試験方法および曲げ試験装置

Country Status (1)

Country Link
JP (1) JP6940806B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031332A (zh) * 2019-04-29 2019-07-19 西南大学 一种织物硬挺度的测试方法
CN112268785A (zh) * 2020-10-30 2021-01-26 中国石油天然气集团有限公司 一种石油管弯曲试验用弯曲度测量仪及测量方法
CN113218754A (zh) * 2021-04-23 2021-08-06 河海大学 一种测试预制裂缝混凝土试件挠度的装置及方法
CN113579024A (zh) * 2021-06-30 2021-11-02 北京卫星制造厂有限公司 一种基于激光诱导的氨轴向槽道热管弯曲成形的方法
CN113865987A (zh) * 2021-08-27 2021-12-31 北京工业大学 一种利用激光测距仪非接触检测实时高温岩体传播系数的装置
CN114252331A (zh) * 2021-11-19 2022-03-29 中国建筑第八工程局有限公司 压杆试验弯曲挠度的测量方法
WO2022134796A1 (zh) * 2020-12-24 2022-06-30 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变监测控制系统及方法
CN115372170A (zh) * 2022-10-24 2022-11-22 西南石油大学 一种外管壁缺损的钢混悬浮隧道管节弯扭试验装置及方法
WO2022259340A1 (ja) * 2021-06-07 2022-12-15 日本電信電話株式会社 測定装置、測定システム、測定方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189821A (ja) * 1995-01-10 1996-07-23 Nippon Steel Corp 長尺材の曲がり測定装置及び方法
US6307545B1 (en) * 1993-06-11 2001-10-23 Apple Computer, Inc. Computer system with graphical user interface including spring-loaded enclosures
JP2012098182A (ja) * 2010-11-02 2012-05-24 Tokyo Electric Power Co Inc:The 架空設備用支持物の負荷応力推定方法及び柱状構造物の形状測定方法
JP2018173359A (ja) * 2017-03-31 2018-11-08 日鐵住金建材株式会社 金属管柱の曲げ試験装置及び方法、金属管柱の自由振動試験装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307545B1 (en) * 1993-06-11 2001-10-23 Apple Computer, Inc. Computer system with graphical user interface including spring-loaded enclosures
JPH08189821A (ja) * 1995-01-10 1996-07-23 Nippon Steel Corp 長尺材の曲がり測定装置及び方法
JP2012098182A (ja) * 2010-11-02 2012-05-24 Tokyo Electric Power Co Inc:The 架空設備用支持物の負荷応力推定方法及び柱状構造物の形状測定方法
JP2018173359A (ja) * 2017-03-31 2018-11-08 日鐵住金建材株式会社 金属管柱の曲げ試験装置及び方法、金属管柱の自由振動試験装置及び方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031332A (zh) * 2019-04-29 2019-07-19 西南大学 一种织物硬挺度的测试方法
CN112268785A (zh) * 2020-10-30 2021-01-26 中国石油天然气集团有限公司 一种石油管弯曲试验用弯曲度测量仪及测量方法
WO2022134796A1 (zh) * 2020-12-24 2022-06-30 西安向阳航天材料股份有限公司 一种双金属复合管水压复合在线应变监测控制系统及方法
CN113218754A (zh) * 2021-04-23 2021-08-06 河海大学 一种测试预制裂缝混凝土试件挠度的装置及方法
WO2022259340A1 (ja) * 2021-06-07 2022-12-15 日本電信電話株式会社 測定装置、測定システム、測定方法及びプログラム
CN113579024A (zh) * 2021-06-30 2021-11-02 北京卫星制造厂有限公司 一种基于激光诱导的氨轴向槽道热管弯曲成形的方法
CN113579024B (zh) * 2021-06-30 2024-02-09 北京卫星制造厂有限公司 一种基于激光诱导的氨轴向槽道热管弯曲成形的方法
CN113865987A (zh) * 2021-08-27 2021-12-31 北京工业大学 一种利用激光测距仪非接触检测实时高温岩体传播系数的装置
CN113865987B (zh) * 2021-08-27 2023-12-08 北京工业大学 一种利用激光测距仪非接触检测实时高温岩体传播系数的装置
CN114252331A (zh) * 2021-11-19 2022-03-29 中国建筑第八工程局有限公司 压杆试验弯曲挠度的测量方法
CN115372170A (zh) * 2022-10-24 2022-11-22 西南石油大学 一种外管壁缺损的钢混悬浮隧道管节弯扭试验装置及方法

Also Published As

Publication number Publication date
JP6940806B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
JP2018189493A (ja) レーザ照射を用いた試験体の曲げ試験方法及び曲げ試験装置
Peng et al. Residual stress measurement combining blind-hole drilling and digital image correlation approach
US11275002B2 (en) Method for detecting mechanoresponse of mechanical component by organic mechanoresponsive luminogen
DE50211146D1 (de) Verfahren und vorrichtung zum messen einer probe mit hilfe eines rastersondenmikroskops
Zhao et al. Development of a laser-speckle imaging device to determine the transfer length in pretensioned concrete members.
ATE484729T1 (de) Vorrichtung und verfahren zur beurteilung der relativen raumlage zweier gegenstände
JP2018173359A (ja) 金属管柱の曲げ試験装置及び方法、金属管柱の自由振動試験装置及び方法
DE602006005733D1 (de) Verfahren zur Erfassung von Probendeformationen
KR101815223B1 (ko) 파이프라인 외관 검사 장치 및 방법
US7461463B1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
Al-Salih et al. Evaluation of a digital image correlation bridge inspection methodology on complex distortion-induced fatigue cracking
CN104596430A (zh) 测径仪
CN207789007U (zh) 一种机械手工作位置偏移的检测机构
Masláková et al. Applications of the strain gauge for determination of residual stresses using Ring-core method
JP6429756B2 (ja) 渦流探傷装置とその使用方法
EP3299130A1 (en) Inspection tool and method for non-destructive inspection of a lug
KR101337954B1 (ko) 금속 재료의 이축 인장 변형량 측정 장치 및 방법
JP2004077234A (ja) アンカーボルト腐食診断方法及びその装置
Friedrich et al. Crack monitoring in resonance fatigue testing of welded specimens using digital image correlation
JPH10288605A (ja) 磁気探傷装置及び方法
KR101858032B1 (ko) 파이프라인 외관 검사 장치, 방법, 시스템 및 프로그램
CN204943046U (zh) 一种智能可视化管道缺陷诊断仪
RU2178049C2 (ru) Способ мониторинга трещин в строительных конструкциях
KR101815224B1 (ko) 파이프라인 외관 검사 장치 및 방법
JP6607178B2 (ja) 管材の応力腐食割れ試験方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210817

R150 Certificate of patent or registration of utility model

Ref document number: 6940806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150