JP2018182903A - Failure rate calculation device and failure rate calculation method - Google Patents

Failure rate calculation device and failure rate calculation method Download PDF

Info

Publication number
JP2018182903A
JP2018182903A JP2017079489A JP2017079489A JP2018182903A JP 2018182903 A JP2018182903 A JP 2018182903A JP 2017079489 A JP2017079489 A JP 2017079489A JP 2017079489 A JP2017079489 A JP 2017079489A JP 2018182903 A JP2018182903 A JP 2018182903A
Authority
JP
Japan
Prior art keywords
failure rate
deterioration
degree
equipment
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017079489A
Other languages
Japanese (ja)
Other versions
JP6906349B2 (en
Inventor
容子 坂内
Yoko Sakauchi
容子 坂内
正博 戸原
Masahiro Tohara
正博 戸原
鳥羽 廣次
Koji Toba
廣次 鳥羽
照久 松井
Teruhisa Matsui
照久 松井
道彦 犬飼
Michihiko Inukai
道彦 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017079489A priority Critical patent/JP6906349B2/en
Publication of JP2018182903A publication Critical patent/JP2018182903A/en
Application granted granted Critical
Publication of JP6906349B2 publication Critical patent/JP6906349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve determination of a failure rate including actual conditions of electric power system equipment.SOLUTION: The failure rate calculation device includes an acquisition part; an actual elapsed year number calculation part; and a failure rate calculation part. The acquisition part acquires data showing the deterioration degree of equipment of a power system within a predetermined section. The actual elapsed year number calculation part calculates an actual elapsed year number which is an effective elapsed year number of the equipment corresponding to the deterioration degree shown by the acquired data, on the basis of the degradation degree of the equipment within the predetermined section and an elapsed year number after establishment of the equipment within the predetermined section. The failure rate calculation part calculates a failure rate of the equipment corresponding to the actual elapsed year calculated by the actual elapsed year number calculation part.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、故障率算出装置および故障率算出方法に関する。   Embodiments of the present invention relate to a failure rate calculation device and a failure rate calculation method.

電力系統設備を更新する際、当該電力系統設備の更新の前後および更新中における、当該電力系統設備が設置された区間における電力の供給信頼度(SAIFI:System Average Interruption Frequency Index、例えば、単位時間当たりの停電の発生率)を算出する必要がある。供給信頼度の算出には、電力系統設備の故障率が必要であるが、電力系統設備が設置されてからの経年数に応じた固定値を故障率として用いている。   When updating a power system facility, power supply reliability (SAIFI: System Average Interruption Frequency Index, for example, per unit time) in a section where the power system facility is installed before, after, and during the update of the power system facility It is necessary to calculate the incidence rate of Although calculation of the supply reliability requires a failure rate of the power system equipment, a fixed value corresponding to the number of years since the installation of the power system equipment is used as the failure rate.

特許第4550632号公報Patent No. 4550632 gazette 特許第4977064号公報Patent No. 4977064 特許第5882849号公報Patent No. 5882849 特許第5720804号公報Patent No. 5720804

しかしながら、故障率には、電力系統設備が設置されてからの経年数等の属性情報に基づいて変更した値を用いることはあるが、電力系統設備の設置環境や使用条件によって生じる劣化度による電力系統設備毎のばらつきに対応した値となっておらず、実態を反映した故障率となっていない場合がある。   However, although the failure rate may use a value changed based on attribute information such as the number of years since the installation of the power system equipment, the power due to the degree of deterioration caused by the installation environment and use conditions of the power system equipment It may not be a value corresponding to the variation of each system installation, and it may not be a failure rate reflecting the actual condition.

実施形態の故障率算出装置は、取得部と、実力経年数算出部と、故障率算出部と、を備える。取得部は、所定区間内の電力系統の設備の劣化度を示すデータを取得する。実力経年数算出部は、所定区間内の設備の劣化度と当該設備が所定区間内に設置されてからの経年数とに基づいて、取得したデータが示す劣化度に相当する設備の実効的な経年数である実力経年数を算出する。故障率算出部は、実力経年数算出部により算出された実力経年数に応じた設備の故障率を算出する。   The failure rate calculation device according to the embodiment includes an acquisition unit, an effective number-of-years calculation unit, and a failure rate calculation unit. An acquisition part acquires the data which show the degradation degree of the installation of the electric power grid in a predetermined area. Based on the degree of deterioration of the equipment in the predetermined section and the number of years since the equipment has been installed in the predetermined section, the effective number of years calculation unit effectively indicates the degree of deterioration indicated by the acquired data. Calculate the ability age which is the age. The failure rate calculation unit calculates the failure rate of the equipment according to the available power age calculated by the available power age calculation unit.

図1は、第1の実施形態にかかる故障率算出装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of the failure rate calculation device according to the first embodiment. 図2は、第1の実施形態にかかる故障率算出装置による供給信頼度の算出処理の流れの一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a flow of supply reliability calculation processing by the failure rate calculation device according to the first embodiment. 図3は、第1の実施形態にかかる故障率算出装置によって変換テーブルを作成する処理の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of processing of creating a conversion table by the failure rate calculation device according to the first embodiment. 図4は、第1の実施形態にかかる故障率算出装置によって実力経年数を算出する処理の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of a process of calculating the effective age number by the failure rate calculation device according to the first embodiment. 図5は、第2の実施形態にかかる故障率算出システムの構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of the failure rate calculation system according to the second embodiment.

以下、添付の図面を用いて、本実施形態にかかる故障率算出装置および故障率算出方法について説明する。   Hereinafter, the failure rate calculation device and the failure rate calculation method according to the present embodiment will be described using the attached drawings.

(第1の実施形態)
図1は、第1の実施形態にかかる故障率算出装置の構成の一例を示すブロック図である。図1に示すように、本実施形態にかかる故障率算出装置1は、データ取得部101と、フィールドデータベース102と、テーブル算出部103と、モデル式作成部104と、実力経年数算出部105と、故障率算出部106と、供給信頼度算出部107と、データ出力部108と、を有する。
First Embodiment
FIG. 1 is a block diagram showing an example of the configuration of the failure rate calculation device according to the first embodiment. As shown in FIG. 1, the failure rate calculation device 1 according to the present embodiment includes a data acquisition unit 101, a field database 102, a table calculation unit 103, a model formula generation unit 104, and an effective age calculation unit 105. , A failure rate calculation unit 106, a supply reliability calculation unit 107, and a data output unit 108.

フィールドデータベース102は、所定区間内の電力系統の設備(以下、電力系統設備と言う。例えば、ケーブル、変圧器、遮断器)の劣化度と、当該電力系統設備が所定区間内に設置されてからの経年数(以下、真の経年数と言う)と、を記憶する。ここで、所定区間は、発電所から需要家までの電力系統の区間のうち、予め設定された区間である。本実施形態では、所定区間は、発電所から需要家までの電力系統の区間のうち、供給信頼度(SAIFI:System Average Interruption Frequency Index、例えば、単位時間当たりの停電の発生率)を算出する区間である。   The field database 102 indicates the degree of deterioration of power system equipment (hereinafter referred to as power system equipment, for example, cables, transformers, circuit breakers) in a predetermined section, and after the power system equipment is installed in the predetermined section. And the age of the (hereinafter referred to as the true age) and. Here, the predetermined section is a section set in advance among sections of the power system from the power plant to the consumer. In the present embodiment, the predetermined section is a section for calculating supply reliability (SAIFI: System Average Interruption Frequency Index, for example, occurrence rate of power failure per unit time) among sections of the power system from the power plant to the consumer. It is.

劣化度は、電力系統設備の劣化の度合いを示す値であり、例えば、ケーブルの温度や振動や騒音、変圧器の絶縁抵抗値、遮断器の遮断回数である。また、真の経年数は、電力系統設備が所定区間内に設置されてから実際に経過した年数である。   The degree of deterioration is a value indicating the degree of deterioration of the power system installation, and is, for example, the temperature, vibration or noise of the cable, the insulation resistance value of the transformer, or the number of interruptions of the circuit breaker. Further, the true number of years is the number of years actually elapsed since the installation of the power system in the predetermined section.

テーブル算出部103は、フィールドデータベース102に記憶される劣化度および真の経年数に基づいて、電力系統設備の劣化度と、実力経年数と、を対応付けるテーブル(以下、変換テーブルと言う)を算出する。ここで、実力経年数は、電力系統設備の劣化度に相当する当該電力系統設備の実効的な経年数である。本実施形態では、実力経年数は、電力系統設備の劣化度に相当する当該電力系統設備の平均的な経年数である。本実施形態では、テーブル算出部103は、電力系統設備の劣化度の種類毎に、変換テーブルを算出する。   The table calculation unit 103 calculates a table (hereinafter referred to as a conversion table) that associates the degree of deterioration of the power system equipment with the number of years of ability based on the degree of deterioration and the true number of years stored in the field database 102. Do. Here, the effective number of years is the effective number of years of the electric power system corresponding to the degree of deterioration of the electric power system. In the present embodiment, the effective number of years is an average number of years of the electric power system corresponding to the degree of deterioration of the electric power system. In the present embodiment, the table calculation unit 103 calculates a conversion table for each type of degradation degree of the power system equipment.

データ取得部101は、所定区間内の電力系統設備の劣化度を示すデータ(以下、劣化度データと言う)を取得する。例えば、データ取得部101は、ケーブルの温度や振動や騒音、変圧器の絶縁抵抗値、遮断器の遮断回数等を劣化度としてデータを取得する。本実施形態では、データ取得部101は、電力系統設備の複数種類の劣化度を示す劣化度データを取得する。また、本実施形態では、データ取得部101は、予め設定された単位時間毎に、劣化度データを取得する。   The data acquisition unit 101 acquires data (hereinafter, referred to as deterioration degree data) indicating the deterioration degree of the power system facility in the predetermined section. For example, the data acquisition unit 101 acquires data with the temperature, vibration and noise of the cable, the insulation resistance value of the transformer, the number of times of interruption of the circuit breaker, and the like as the degree of deterioration. In the present embodiment, the data acquisition unit 101 acquires deterioration degree data indicating a plurality of types of deterioration degree of the power system equipment. Further, in the present embodiment, the data acquisition unit 101 acquires degradation degree data every preset unit time.

実力経年数算出部105は、フィールドデータベース102に記憶された、所定区間内の電力系統設備の劣化度と、当該電力系統設備の真の経年数とに基づいて、データ取得部101により取得した劣化度データが示す劣化度に相当する電力系統設備の実力経年数を算出する。本実施形態では、実力経年数算出部105は、テーブル算出部103により算出された変換テーブルにおいて、データ取得部101により取得した劣化度データが示す劣化度と対応付けられた実力経年数を、電力系統設備の実力経年数として算出する。   Based on the degree of deterioration of the power system equipment in the predetermined section and the true number of years of the power system equipment stored in the field database 102, the performance age number calculation unit 105 acquires the deterioration acquired by the data acquisition unit 101. Calculate the number of years of power system equipment that corresponds to the degree of deterioration indicated by the degree data. In the present embodiment, in the conversion table calculated by the table calculation unit 103, the power age number calculation unit 105 converts the power age number associated with the degree of deterioration indicated by the deterioration degree data acquired by the data acquisition unit 101 Calculated as the number of years of system facilities.

本実施形態では、実力経年数算出部105は、取得された劣化度データが複数種類の劣化度を示す場合、当該複数種類の劣化度それぞれについて実力経年数を算出し、算出した複数の実力経年数のうち、最も長い実力経年数を、電力系統設備の実力経年数とする。本実施形態では、実力経年数算出部105は、取得された劣化度データが複数種類の劣化度を示す場合、テーブル算出部103により算出された変換テーブルのうち劣化度データが示す劣化度の各種類に対応する変換テーブルにおいて、当該各種類の劣化度と対応付けられた実力経年数を特定する。そして、実力経年数算出部105は、各種類の劣化度について算出した実力経年数のうち、最も長い実力経年数を、電力系統設備の実力経年数として算出する。   In the present embodiment, when the acquired deterioration degree data indicates a plurality of types of deterioration degrees, the ability age-number calculation unit 105 calculates a plurality of ability aging numbers for each of the plurality of types of deterioration degrees, Among the numbers, let the longest power age be the power age of the power system equipment. In the present embodiment, when the acquired deterioration degree data indicates a plurality of types of deterioration degrees, each of the available years of age calculation unit 105 indicates each of the deterioration degrees indicated by the deterioration degree data in the conversion table calculated by the table calculation unit 103. In the conversion table corresponding to the type, the number of effective years associated with the degree of deterioration of each type is specified. Then, the available power age calculation unit 105 calculates the longest available power age among the available power ages calculated for each type of degree of deterioration as the available power age of the power system facility.

モデル式作成部104は、フィールドデータベース102に記憶される劣化度および真の経年数を用いて、電力系統設備の故障率と、電力系統設備の経年数との関係を示すモデル式を作成する。本実施形態では、モデル式作成部104は、電力系統設備の種類毎にモデル式を作成する。具体的には、モデル式作成部104は、フィールドデータベース102に記憶される電力系統設備の種類毎の稼働および故障の実績に基づいて、当該電力系統設備の種類毎の故障の原因を特定するハザード分析を行う。次いで、モデル式作成部104は、電力系統設備の故障の原因に基づいて、ワイブル分布等の統計分析によって、電力系統設備の故障率と実力経年数との関係を表すモデル式を作成する。   The model formula creation unit 104 creates a model formula indicating the relationship between the failure rate of the power system facility and the age of the power system facility using the degree of deterioration and the true age stored in the field database 102. In the present embodiment, the model formula creation unit 104 creates a model formula for each type of power system equipment. Specifically, the model formula creation unit 104 identifies the cause of the failure for each type of power system equipment based on the performance of each type of power system equipment stored in the field database 102 and the result of the failure. Perform an analysis. Next, the model formula creation unit 104 creates a model formula representing the relationship between the failure rate of the power system and the effective number of years by statistical analysis such as the Weibull distribution based on the cause of the failure of the power system.

例えば、モデル式作成部104は、ワイブル分布によって下記の式(1)に示すモデル式を作成する。式(1)において、λは電力系統設備の故障率であり、tは実力経年数であり、mは形状パラメータであり、ηは尺度パラメータである。

Figure 2018182903
For example, the model formula creation unit 104 creates a model formula shown in the following formula (1) by Weibull distribution. In equation (1), λ is the failure rate of the power system installation, t is the power age, m is the shape parameter, and η is the scale parameter.
Figure 2018182903

故障率算出部106は、実力経年数算出部105により算出される電力系統設備の実力経年数に応じた電力系統設備の故障率を算出する。これにより、電力系統設備の設置環境や使用条件によって生じる電力系統設備の劣化度のばらつきに対応した電力系統設備の経年数に応じた故障率を算出できるので、電力系統設備の実態を反映した故障率を求めることができる。本実施形態では、故障率算出部106は、モデル式作成部104により作成されたモデル式を用いて、実力経年数算出部105により算出される電力系統設備の経年数に応じた電力系統設備の故障率を算出する。また、本実施形態では、故障率算出部106は、予め設定された単位時間毎に、電力系統設備の故障率を算出する。   The failure rate calculator 106 calculates the failure rate of the power system according to the power age of the power system calculated by the power age calculator 105. As a result, the failure rate according to the age of the power system can be calculated according to the variation in the degree of deterioration of the power system due to the installation environment and use conditions of the power system, so the failure reflecting the actual condition of the power system You can determine the rate. In the present embodiment, the failure rate calculation unit 106 uses the model formula created by the model formula creation unit 104 to calculate the power system facility according to the age of the power system facility calculated by the available power age facility calculation unit 105. Calculate the failure rate. Further, in the present embodiment, the failure rate calculation unit 106 calculates the failure rate of the power system equipment for each unit time set in advance.

供給信頼度算出部107は、故障率算出部106により算出される故障率に基づいて、所定区間の電力系統の供給信頼度を算出する。本実施形態では、供給信頼度算出部107は、故障率算出部106により算出される故障率に基づいて、単位時間当たりの供給信頼度を算出する。また、本実施形態では、供給信頼度算出部107は、下記の式(2)を用いて、供給信頼度を算出する。式(2)において、λは単位時間当たりの故障率であり、nは電力系統設備の故障によって所定区間において停電が発生する需要家の数であり、nallは所定区間内の需要家の総数である。データ出力部108は、供給信頼度算出部107により算出される供給信頼度を外部の装置に出力する。

Figure 2018182903
The supply reliability calculation unit 107 calculates the supply reliability of the power system of the predetermined section based on the failure rate calculated by the failure rate calculation unit 106. In the present embodiment, the supply reliability calculation unit 107 calculates the supply reliability per unit time based on the failure rate calculated by the failure rate calculation unit 106. Furthermore, in the present embodiment, the supply reliability calculation unit 107 calculates the supply reliability using the following equation (2). In equation (2), λ is the failure rate per unit time, n is the number of customers whose power outages occur in a given section due to a failure of power system equipment, and n all is the total number of customers in the given section It is. The data output unit 108 outputs the supply reliability calculated by the supply reliability calculation unit 107 to an external device.
Figure 2018182903

本実施形態では、故障率算出部106により算出される故障率に基づいて、供給信頼度を算出する例について説明したが、これに限定するものではなく、例えば、故障率算出部106により算出される故障率に基づいて、予備の電力系統設備(例えば、変圧器)をどれくらい用意するかなど、電力系統設備の更新計画を作成しても良い。   In the present embodiment, although the example of calculating the supply reliability based on the failure rate calculated by the failure rate calculation unit 106 has been described, the present invention is not limited to this. For example, the failure rate calculation unit 106 calculates Based on the failure rate, a plan for updating the power system facility may be made, such as how many spare power system facilities (eg, transformers) should be prepared.

次に、図2を用いて、本実施形態にかかる故障率算出装置1による供給信頼度の算出処理の流れの一例について説明する。図2は、第1の実施形態にかかる故障率算出装置による供給信頼度の算出処理の流れの一例を示すフローチャートである。   Next, an example of the flow of the calculation process of the supply reliability by the failure rate calculation device 1 according to the present embodiment will be described using FIG. 2. FIG. 2 is a flowchart showing an example of a flow of supply reliability calculation processing by the failure rate calculation device according to the first embodiment.

本実施形態では、データ取得部101は、所定区間内の電力系統設備(以下、対象設備と言う)の劣化度を示す劣化度データを取得する劣化診断処理を実行する(ステップS201)。例えば、データ取得部101は、対象設備の一例であるケーブルの劣化診断処理を実行する場合、ケーブルの温度上昇や振動や騒音や絶縁抵抗値を、当該ケーブルの劣化度を示す劣化度データとして取得する。また、データ取得部101は、対象設備の一例である変圧器の劣化診断処理を実行する場合、変圧器の絶縁抵抗値を、当該変圧器の劣化度を示す劣化度データとして取得する。また、データ取得部101は、対象設備の一例である遮断器の劣化診断処理を実行する場合、遮断器の遮断回数を、当該遮断器の劣化度を示す劣化度データとして取得する。   In the present embodiment, the data acquisition unit 101 executes the deterioration diagnosis process for acquiring deterioration degree data indicating the deterioration degree of the power system (hereinafter referred to as target installation) in the predetermined section (step S201). For example, when the deterioration acquiring process of the cable which is an example of the target equipment is performed, the data acquiring unit 101 acquires the temperature rise, vibration, noise, and insulation resistance of the cable as the deterioration degree data indicating the deterioration degree of the cable. Do. Moreover, the data acquisition part 101 acquires the insulation resistance value of a transformer as degradation degree data which show the degradation degree of the said transformer, when performing degradation diagnostic processing of the transformer which is an example of object installation. Moreover, the data acquisition part 101 acquires the frequency | count of interruption | blocking of a circuit breaker as deterioration degree data which show the deterioration degree of the said circuit breaker, when performing the deterioration diagnostic process of the circuit breaker which is an example of object installation.

次いで、テーブル算出部103は、フィールドデータベース102に記憶される劣化度および真の経年数に基づいて、電力系統設備の種類毎に、当該電力系統設備の劣化度と実力経年数とを対応付ける変換テーブルを算出する(ステップS202)。本実施形態では、テーブル算出部103は、電力系統設備の劣化度に相当する当該電力系統設備の平均的な経年数を実力経年数とする。   Next, the table calculation unit 103 is a conversion table that associates the degree of deterioration of the power system facility with the age of the power system facility for each type of power system facility based on the degree of degradation and the true age stored in the field database 102. Is calculated (step S202). In the present embodiment, the table calculation unit 103 sets the average number of years of the electric power system corresponding to the degree of deterioration of the electric power system as the effective number of years.

次に、実力経年数算出部105は、テーブル算出部103により電力系統設備の種類毎に算出されたテーブルのうち、対象設備の変換テーブルにおいて、当該対象設備の劣化度データが示す劣化度と対応付けられる実力経年数を、対象設備の実力経年数として算出する(ステップS203)。そして、故障率算出部106は、モデル式作成部104により電力系統設備の種類毎に作成されたモデル式(例えば、式(1))のうち対象設備のモデル式に対して、算出した対象設備の経年数を代入することによって、対象設備の故障率を算出する(ステップS204)。さらに、供給信頼度算出部107は、対象設備の故障率に基づいて、所定区間の電力系統の供給信頼度を算出する(ステップS205)。   Next, in the conversion table of the target equipment among the tables calculated for each type of power system equipment by the table calculation unit 103, the effective age number calculation unit 105 corresponds to the degree of deterioration indicated by the deterioration degree data of the target equipment. The capability aged number to be attached is calculated as the capability aged number of the target equipment (step S203). Then, the failure rate calculation unit 106 calculates the target facility calculated with respect to the model equation of the target facility among the model equations (for example, equation (1)) created for each type of power system facility by the model equation creation unit 104. The failure rate of the target equipment is calculated by substituting the number of years elapsed for (step S204). Furthermore, the supply reliability calculation unit 107 calculates the supply reliability of the power system of the predetermined section based on the failure rate of the target equipment (step S205).

次に、図3を用いて、本実施形態にかかる故障率算出装置1により変換テーブルを作成する処理の一例について説明する。図3は、第1の実施形態にかかる故障率算出装置によって変換テーブルを作成する処理の一例を説明するための図である。図3において、縦軸は電力系統設備の劣化度を表し、横軸は電力系統設備の経年数を表す。   Next, an example of processing of creating a conversion table by the failure rate calculation device 1 according to the present embodiment will be described using FIG. 3. FIG. 3 is a diagram for explaining an example of processing of creating a conversion table by the failure rate calculation device according to the first embodiment. In FIG. 3, the vertical axis represents the degree of deterioration of the power system installation, and the horizontal axis represents the age of the power system installation.

上述したように、本実施形態にかかる故障率算出装置1は、実力経年数算出部105によって、電力系統設備に対する外的要因(例えば、設置環境や使用条件)による劣化度のばらつきを考慮して実力経年数を算出する。そのため、故障率算出装置1は、テーブル算出部103によって、電力系統設備の劣化度と実力経年数とを対応付ける変換テーブルを予め作成しておく必要がある。変換テーブルは、電力系統設備の種類(例えば、ケーブル径または電極径が異なるケーブル)毎に異なる。   As described above, in the failure rate calculation device 1 according to the present embodiment, the available power age calculation unit 105 takes into consideration the variation in the degree of deterioration due to external factors (for example, installation environment and use conditions) for the power system facility. Calculate the ability age. Therefore, it is necessary for the failure rate calculation device 1 to create in advance a conversion table that correlates the degree of deterioration of the power system equipment with the actual number of aged by the table calculation unit 103. The conversion table is different for each type of power system equipment (e.g., a cable having a different diameter or a different electrode diameter).

そこで、フィールドデータベース102は、図3に示すように、電力系統設備の種類毎に、経年数が異なる電力系統設備の劣化度を蓄積する。そして、テーブル算出部103は、フィールドデータベース102に蓄積される、経年数が異なる電力系統設備の劣化度(図3の丸印で示す)を用いて、電力系統設備の劣化度毎の電力系統設備の平均的な経年数を実力経年数として統計的に算出する。次に、テーブル算出部103は、電力系統設備の経年数(実力経年数)と、当該実力経年数の電力系統設備の劣化度と、を対応付ける変換テーブル(図3の実線で示す)を作成する。   Therefore, as shown in FIG. 3, the field database 102 accumulates the degree of deterioration of the power grid equipment with different numbers of aging for each type of power grid equipment. Then, the table calculation unit 103 uses the degree of deterioration of the power system equipment with different numbers of aging (shown by the circle in FIG. 3) stored in the field database 102, and determines the power system equipment for each degree of deterioration of the power system equipment. The average age of is statistically calculated as the ability age. Next, the table calculation unit 103 creates a conversion table (indicated by a solid line in FIG. 3) that associates the number of years of power system equipment (the number of years of ability) with the degree of deterioration of the power system equipment of the number of years of ability. .

次に、図4を用いて、本実施形態にかかる故障率算出装置1によって実力経年数を算出する処理の一例について説明する。図4は、第1の実施形態にかかる故障率度算出装置によって実力経年数を算出する処理の一例を説明するための図である。図4において、縦軸は電力系統設備の劣化度を表し、横軸は電力系統設備の経年数を表す。また、図4において、符号T1で示す線は、悪環境に設置されて劣化が早い電力系統設備(例えば、使用頻度が高く酷使されている電力系統設備)の真の経年数と当該電力系統設備の劣化度との関係を表す。また、図4において、符号T2で示す線は、電力系統設備の実力経年数と当該電力系統設備の劣化度との関係を表す。また、図4において、符号T3で示す線は、良環境に設置されて劣化が遅い電力系統設備(例えば、使用頻度が少ない電力系統設備)の真の経年数と当該電力系統設備の劣化度との関係を表す。   Next, with reference to FIG. 4, an example of processing for calculating the effective number of years by the failure rate calculation device 1 according to the present embodiment will be described. FIG. 4 is a diagram for explaining an example of a process of calculating the effective age number by the failure rate degree calculating device according to the first embodiment. In FIG. 4, the vertical axis represents the degree of deterioration of the power system facility, and the horizontal axis represents the age of the power system facility. Further, in FIG. 4, the line indicated by reference numeral T1 is the true number of aged power system facilities installed in a hostile environment (for example, power system facilities that are frequently used and overused) and the power system facility Represents the relationship between the degree of deterioration of Moreover, in FIG. 4, the line shown by code | symbol T2 represents the relationship between the effective number of years of power system installation, and the degradation degree of the said power system installation. Further, in FIG. 4, the line indicated by the code T3 is the true number of aged power system facilities installed in a good environment and slow deterioration (for example, power system facilities with low frequency of use) and the degree of degradation of the power system facilities Represents the relationship of

図4に示すように、電力系統設備の劣化度が同一である場合でも、その電力系統設備の設置環境や使用条件によって、電力系統設備の真の経年数が異なる。例えば、悪環境に設置された電力系統設備は、劣化度が1400である場合でも、真の経年数が25年である(符号T1で示す、真の経年数と劣化度との関係を参照)。これに対して、良環境に設置された電力系統設備は、劣化度が1400である場合、真の経年数が47年である(符号T3で示す、真の経年数と劣化度との関係を参照)。   As shown in FIG. 4, even when the degree of deterioration of the power system is the same, the true age number of the power system varies depending on the installation environment and use conditions of the power system. For example, a power system installed in a hostile environment has a true age of 25 years even if the degree of degradation is 1400 (refer to the relationship between the true age and the degree of degradation indicated by a symbol T1). . On the other hand, the power grid equipment installed in a good environment has a true age of 47 years when the degree of degradation is 1400 (the relationship between the true age and the degree of degradation shown by symbol T3 reference).

そのため、本実施形態では、実力経年数算出部105は、電力系統設備の実力経年数と、電力系統設備の平均的な劣化度とを対応付けた変換テーブル(符号T2で示す、実力経年数と劣化度との関係を参照)を用いて、取得した劣化度データが示す劣化度に対応する実力経年数を、電力系統設備の実力経年数として算出する。例えば、実力経年数算出部105は、取得した劣化度データが示す劣化度が1400である場合、37年を実力経年数として算出する。また、実力経年数算出部105は、取得した劣化度データが示す劣化度が1000である場合、31年を実力経年数として算出する。   Therefore, in the present embodiment, the actual age number calculation unit 105 is a conversion table in which the actual age number of the power system equipment is associated with the average degree of deterioration of the power system Using the relationship of the degree of deterioration), the number of years of ability corresponding to the degree of deterioration indicated by the acquired degree of deterioration data is calculated as the number of years of ability of the power system facility. For example, if the degree of deterioration indicated by the acquired degree of deterioration data is 1,400, the available age number calculating unit 105 calculates 37 years as the available age number. Further, if the degree of deterioration indicated by the acquired degree of deterioration data is 1000, the available age number calculation unit 105 calculates 31 years as the available age number.

このように、第1の実施形態にかかる故障率算出装置1によれば、電力系統設備の設置環境や使用条件によって生じる劣化度による電力系統設備のばらつきに対応した電力系統設備の実力経年数に応じた故障率を算出できるので、電力系統設備の実態を反映した故障率を求めることができる。   As described above, according to the failure rate calculation device 1 according to the first embodiment, the effective number of years of the power system facility corresponding to the variation of the power system facility due to the degree of deterioration caused by the installation environment or use condition of the power system facility Since it is possible to calculate the failure rate according to the situation, it is possible to obtain the failure rate reflecting the actual condition of the power system equipment.

(第2の実施形態)
本実施形態は、電力系統設備の故障率の算出と、所定区間の電力系統設備の供給信頼度の算出とを、別々の装置で行う故障率算出システムの例である。以下の説明では、第1の実施形態と同様の構成については説明を省略する。
Second Embodiment
The present embodiment is an example of a failure rate calculation system in which calculation of a failure rate of power system equipment and calculation of supply reliability of power system equipment in a predetermined section are performed by different devices. In the following description, the description of the same configuration as that of the first embodiment is omitted.

図5は、第2の実施形態にかかる故障率算出システムの構成の一例を示すブロック図である。図5に示すように、本実施形態にかかる故障率算出システムは、故障率算出装置501と、供給信頼度算出装置502と、を有する。そして、故障率算出装置501は、データ取得部101と、フィールドデータベース102と、テーブル算出部103と、モデル式算出部104と、実力経年数算出部105と、故障率算出部106と、を有する。また、供給信頼度算出装置502は、供給信頼度算出部107と、データ出力部108と、を有する。すなわち、本実施形態にかかる故障率算出システムでは、電力系統設備の故障率の算出と、所定区間内の電力系統設備の供給信頼度の算出とを、別々の装置(故障率算出装置501および供給信頼度算出装置502)で実行する。   FIG. 5 is a block diagram showing an example of the configuration of the failure rate calculation system according to the second embodiment. As shown in FIG. 5, the failure rate calculation system according to the present embodiment includes a failure rate calculation device 501 and a supply reliability calculation device 502. Then, the failure rate calculation device 501 includes a data acquisition unit 101, a field database 102, a table calculation unit 103, a model formula calculation unit 104, an effective age calculation unit 105, and a failure rate calculation unit 106. . Further, the supply reliability calculation device 502 includes a supply reliability calculation unit 107 and a data output unit 108. That is, in the failure rate calculation system according to the present embodiment, the calculation of the failure rate of the power system facility and the calculation of the supply reliability of the power system facility in the predetermined section are separately performed on the different devices (the failure rate calculating device 501 and the supply It is executed by the reliability calculation device 502).

そして、第2の実施形態にかかる故障率算出システムによれば、電力系統設備の故障率の算出と、所定区間内の電力系統設備の供給信頼度の算出とを、別々の装置で実行した場合でも、第1の実施形態と同様に、電力系統設備の設置環境や使用条件によって生じる劣化度による電力系統設備のばらつきに対応した電力系統設備の経年数に応じた故障率を算出できるので、電力系統設備の実態を反映した故障率を求めることができる。   Then, according to the failure rate calculation system according to the second embodiment, the calculation of the failure rate of the power system facility and the calculation of the supply reliability of the power system facility in the predetermined section are performed by different devices. However, as in the first embodiment, since it is possible to calculate the failure rate according to the age of the power system equipment corresponding to the variation of the power system equipment due to the degree of deterioration caused by the installation environment and use conditions of the power system equipment It is possible to obtain a failure rate that reflects the actual conditions of the grid facilities.

以上説明したとおり、第1,2の実施形態によれば、電力系統設備の実態を反映した故障率を求めることができる。   As described above, according to the first and second embodiments, it is possible to obtain a failure rate reflecting the actual state of the power system equipment.

なお、本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムは、ROM(Read Only Memory)等に予め組み込まれて提供される。本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成しても良い。   The programs executed by the failure rate calculation device 1, 501 and the supply reliability calculation device 502 according to the present embodiment are provided by being incorporated in advance in a ROM (Read Only Memory) or the like. Programs executed by the failure rate calculation device 1, 501 and the supply reliability calculation device 502 according to the present embodiment are files in an installable format or an executable format, such as a CD-ROM, a flexible disk (FD), and a CD-R. It may be configured to be recorded and provided in a computer readable recording medium such as a DVD (Digital Versatile Disk).

さらに、本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。   Furthermore, the programs executed by the failure rate calculation device 1, 501 and the supply reliability calculation device 502 of the present embodiment are stored on a computer connected to a network such as the Internet and provided by downloading via the network. It may be configured as follows. Further, the programs executed by the failure rate calculation device 1, 501 and the supply reliability calculation device 502 of this embodiment may be provided or distributed via a network such as the Internet.

本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムは、上述した各部(データ取得部101、テーブル算出部103、モデル式算出部104、実力経年数算出部105、故障率算出部106、供給信頼度算出部107、およびデータ出力部108)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(Central Processing Unit)が上記ROMからプログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、データ取得部101、テーブル算出部103、モデル式算出部104、実力経年数算出部105、故障率算出部106、供給信頼度算出部107、およびデータ出力部108、が主記憶装置上に生成されるようになっている。   The programs executed by the failure rate calculation device 1, 501 and the supply reliability calculation device 502 according to the present embodiment are the respective units described above (the data acquisition unit 101, the table calculation unit 103, the model formula calculation unit 104, the effective number of years calculation unit 105), a failure rate calculation unit 106, a supply reliability calculation unit 107, and a data output unit 108), and as an actual hardware, a CPU (Central Processing Unit) reads a program from the ROM. The above units are loaded on the main storage device by executing the data acquisition unit 101, the table calculation unit 103, the model formula calculation unit 104, the capability age calculation unit 105, the failure rate calculation unit 106, and the supply reliability calculation unit 107. And a data output unit 108 are generated on the main storage device.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.

101 データ取得部
102 フィールドデータベース
103 テーブル算出部
104 モデル式作成部
105 実力経年数算出部
106 故障率算出部
107 供給信頼度算出部
108 データ出力部
101 data acquisition unit 102 field database 103 table calculation unit 104 model formula creation unit 105 ability age calculation unit 106 failure rate calculation unit 107 supply reliability calculation unit 108 data output unit

Claims (8)

所定区間内の電力系統の設備の劣化度を示すデータを取得する取得部と、
前記所定区間内の前記設備の劣化度と当該設備が前記所定区間内に設置されてからの経年数とに基づいて、取得した前記データが示す劣化度に相当する前記設備の実効的な経年数である実力経年数を算出する実力経年数算出部と、
前記実力経年数算出部により算出された前記実力経年数に応じた前記設備の故障率を算出する故障率算出部と、
を備える故障率算出装置。
An acquisition unit configured to acquire data indicating a degree of deterioration of an installation of a power system in a predetermined section;
The effective number of years of the equipment corresponding to the degree of deterioration indicated by the acquired data, based on the degree of deterioration of the equipment in the predetermined section and the number of years since the equipment was installed in the predetermined section Ability age calculation part which calculates the ability age which is
A failure rate calculation unit that calculates a failure rate of the equipment according to the real power age calculated by the real power age calculation unit;
Failure rate calculation device comprising:
前記所定区間内の前記設備の劣化度と、当該劣化度に相当する前記設備の前記実力経年数とを対応付けるテーブルを算出するテーブル算出部をさらに備え、
前記実力経年数算出部は、前記テーブルにおいて、取得した前記データが示す前記設備の劣化度と対応付けられた前記実力経年数を、前記設備の前記実力経年数として算出する請求項1に記載の故障率算出装置。
The apparatus further comprises a table calculation unit that calculates a table that associates the degree of deterioration of the facility in the predetermined section with the actual number of aged of the facility corresponding to the degree of deterioration;
The effective ability number calculation unit calculates the effective ability number associated with the degree of deterioration of the equipment indicated by the acquired data in the table as the effective ability number of the equipment. Failure rate calculation device.
前記故障率に基づいて、前記所定区間の電力系統の供給信頼度を算出する供給信頼度算出部をさらに備えた請求項1または2に記載の故障率算出装置。   The failure rate calculation device according to claim 1, further comprising: a supply reliability calculation unit configured to calculate supply reliability of the power system of the predetermined section based on the failure rate. 前記取得部は、前記設備の複数種類の劣化度を示す前記データを取得し、
前記実力経年数算出部は、前記データが示す複数種類の劣化度それぞれについて、前記実力経年数を算出し、算出した複数の前記実力経年数のうち、最も長い前記実力経年数を、前記設備の前記実力経年数とする請求項1から3のいずれか一に記載の故障率算出装置。
The acquisition unit acquires the data indicating a plurality of types of deterioration degrees of the facility,
The capability aged number calculating unit calculates the capability aged number for each of a plurality of types of deterioration degrees indicated by the data, and the longest capability aged number among the calculated capability aged numbers is calculated for the equipment. The failure rate calculation device according to any one of claims 1 to 3, wherein the effective number of years is used.
前記実力経年数は、前記設備の劣化度に相当する前記設備の平均的な経年数である請求項1から4のいずれか一に記載の故障率算出装置。   The failure rate calculation device according to any one of claims 1 to 4, wherein the effective number of years is an average number of years of the equipment corresponding to the degree of deterioration of the equipment. 前記故障率算出部は、予め設定された単位時間毎の前記故障率を算出する請求項1から5のいずれか一に記載の故障率算出装置。   The failure rate calculation device according to any one of claims 1 to 5, wherein the failure rate calculation unit calculates the failure rate for each preset unit time. 前記供給信頼度算出部は、前記故障率に基づいて、単位時間当たりの前記供給信頼度を算出する請求項2に記載の故障率算出装置。   The failure rate calculation device according to claim 2, wherein the supply reliability calculation unit calculates the supply reliability per unit time based on the failure rate. 所定区間内の電力系統の設備の劣化度を示すデータを取得し、
前記所定区間内の前記設備の劣化度と当該設備が前記所定区間内に設置されてからの経年数とに基づいて、取得した前記データが示す劣化度に相当する前記設備の実効的な経年数である実力経年数を算出し、
算出された前記実力経年数に応じた前記設備の故障率を算出する、
ことを含む故障率算出方法。
To obtain data indicating the degree of deterioration of the facilities of the power system in a predetermined section,
The effective number of years of the equipment corresponding to the degree of deterioration indicated by the acquired data, based on the degree of deterioration of the equipment in the predetermined section and the number of years since the equipment was installed in the predetermined section Calculate the number of years of ability to be
Calculate the failure rate of the equipment according to the calculated performance age number,
Failure rate calculation method including that.
JP2017079489A 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method Active JP6906349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017079489A JP6906349B2 (en) 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079489A JP6906349B2 (en) 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method

Publications (2)

Publication Number Publication Date
JP2018182903A true JP2018182903A (en) 2018-11-15
JP6906349B2 JP6906349B2 (en) 2021-07-21

Family

ID=64276370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079489A Active JP6906349B2 (en) 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method

Country Status (1)

Country Link
JP (1) JP6906349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956447A (en) * 2019-11-27 2020-04-03 云南电网有限责任公司电力科学研究院 Method and system for determining suspected familial defect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242411A (en) * 2003-02-05 2004-08-26 Tokyo Electric Power Co Inc:The Method for evaluating degree of supply reliability of power system, and device for the method
JP2008236867A (en) * 2007-03-19 2008-10-02 Kansai Electric Power Co Inc:The Voltage adjuster with life span management function
JP2010152803A (en) * 2008-12-26 2010-07-08 Chugoku Electric Power Co Inc:The System and method for evaluating risk of facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242411A (en) * 2003-02-05 2004-08-26 Tokyo Electric Power Co Inc:The Method for evaluating degree of supply reliability of power system, and device for the method
JP2008236867A (en) * 2007-03-19 2008-10-02 Kansai Electric Power Co Inc:The Voltage adjuster with life span management function
JP2010152803A (en) * 2008-12-26 2010-07-08 Chugoku Electric Power Co Inc:The System and method for evaluating risk of facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956447A (en) * 2019-11-27 2020-04-03 云南电网有限责任公司电力科学研究院 Method and system for determining suspected familial defect

Also Published As

Publication number Publication date
JP6906349B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
CN108880931B (en) Method and apparatus for outputting information
JP6467186B2 (en) System and method for detecting, correcting, and inspecting bad data in a data stream
CN106294120B (en) Method, apparatus and computer program product for testing code
WO2013111560A1 (en) Operation management device, operation management method, and program
JP5765336B2 (en) Fault analysis apparatus, fault analysis method and program
Zhou et al. Data requisites for transformer statistical lifetime modelling—Part II: Combination of random and aging-related failures
JP2014527214A5 (en)
JP2018169760A5 (en)
CN117906991A (en) Machine health monitoring of rotating machinery
JP2018195266A (en) State analyzer, state analysis method, and program
JP2018182903A (en) Failure rate calculation device and failure rate calculation method
JP5971395B2 (en) System analysis apparatus and system analysis method
JP7001462B2 (en) Seismic evaluation method and equipment for equipment
JP6728830B2 (en) Information processing device, information processing method, and program
KR101541150B1 (en) Common cause failure parameter evaluation system and method for nuclear power plant equipment
WO2020008490A1 (en) Electric power equipment planning assistance system
JP7212259B2 (en) Device for Extracting Equipment Required for Lightning Countermeasures, Method for Extracting Equipment Required for Lightning Countermeasures, and Program for Extracting Equipment Required for Lightning Countermeasures
JP2010135370A (en) Inspection position determination method, inspection information management system, and inspection method
JP7173292B2 (en) Accident point location device, accident point location system, accident point location method and program
CN115372752A (en) Fault detection method, device, electronic equipment and storage medium
JP5513546B2 (en) Distribution estimation apparatus, method, and program
JP6835702B2 (en) Anomaly estimation device, anomaly estimation method and program
JP5513348B2 (en) Lightning strike prediction apparatus, method and program
KR102211438B1 (en) Apparatus and method for deciding similarity of time series signals using cosine similarity
JP2014235675A (en) Data processing apparatus and data processing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150