WO2020008490A1 - Electric power equipment planning assistance system - Google Patents

Electric power equipment planning assistance system Download PDF

Info

Publication number
WO2020008490A1
WO2020008490A1 PCT/JP2018/024999 JP2018024999W WO2020008490A1 WO 2020008490 A1 WO2020008490 A1 WO 2020008490A1 JP 2018024999 W JP2018024999 W JP 2018024999W WO 2020008490 A1 WO2020008490 A1 WO 2020008490A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
power
equipment
power equipment
information
Prior art date
Application number
PCT/JP2018/024999
Other languages
French (fr)
Japanese (ja)
Inventor
照久 松井
鳥羽 廣次
駿介 河内
俊明 浅野
Original Assignee
株式会社東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社東芝
Priority to PCT/JP2018/024999 priority Critical patent/WO2020008490A1/en
Publication of WO2020008490A1 publication Critical patent/WO2020008490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the embodiment of the present invention relates to an electric power facility planning support system.
  • Patent Literature 1 discloses a system that calculates a probability of a transition from a current state to another state using measurement information of a power system and peripheral information related to the power system, and determines a next state to be transitioned. Is disclosed.
  • the present invention has been made in view of the above, and in planning an update plan of power equipment, a power equipment planning support capable of more accurately estimating the life or failure probability of each power equipment.
  • One of the purposes is to provide a system.
  • the power equipment planning support system includes a power equipment information acquisition unit, a maintenance history information acquisition unit, a power flow calculation unit, a system information acquisition unit, an equipment state estimation unit, and a system state change unit.
  • the power equipment information obtaining unit obtains specification information of the power equipment to be processed.
  • the maintenance history information obtaining unit obtains maintenance information of the power equipment.
  • the power flow calculation unit calculates power flow information of a power system including power equipment.
  • the system information acquisition unit acquires measurement information indicating a state of the power system measured at a preset position when the power system operates.
  • the equipment state estimation unit estimates the deterioration state of the power equipment based on the specification information, the maintenance information, the power flow information, and the measurement information.
  • the system state change unit changes the configuration state of the power system based on the estimation result estimated by the equipment state estimation unit so that a result different from the estimation result can be expected. Then, each time the configuration state is changed by the system state changing unit, the equipment state estimation unit estimates the deterioration state of the power equipment in the power system.
  • FIG. 1 is an exemplary and schematic configuration diagram of a power equipment planning support system according to an embodiment.
  • FIG. 2 is an exemplary and schematic configuration diagram illustrating details of an equipment state estimation unit in the power equipment planning support system according to the embodiment.
  • FIG. 3 is a flowchart illustrating an example of an equipment state estimation process of the power equipment planning support system according to the embodiment.
  • the power facility planning support system estimates a deterioration state (for example, failure probability) of each power facility in a power system including a plurality of power facilities.
  • the power equipment includes, for example, a transformer, a switchgear, a power cable, a transmission line, and the like.
  • the power facility planning support system changes the connection state of each power facility in the power system or changes the installation location (placement position) of each power facility in the power system to provide a failure probability of the power facility (facility life). ) To obtain information about the magnitude of the influence of the factors that influence).
  • the connection state of the power equipment by changing the connection state of the power equipment and changing the load (for example, current value and voltage value) applied to the power equipment in various ways and comparing the failure probabilities (equipment life), the power according to the connection state (load state) is obtained. Information on the influence on the failure probability (equipment life) of the equipment can be obtained. Also, for example, by comparing the failure probability (equipment life) of a power facility installed in a high temperature place with a power facility of the same type installed in a low temperature place, the failure of the power facility due to the environment of the installation location Information on the influence on the probability (equipment life) can be obtained.
  • the probability of failure of the power equipment due to the environment of the installation place (equipment life) Impact information can be obtained.
  • the probability of failure (equipment life) when installed in a place where salt damage is likely to occur (coastal area) and a place where the influence of salt damage is small (for example, in a mountainous area) it depends on the installation place (installation environment). It is possible to acquire information on the influence on the failure probability (equipment life) of the power equipment.
  • Information on the influence on the failure probability (equipment life) depending on how the electric power equipment is used, which is acquired by the electric power equipment planning support system, can be used for drafting an update plan of the electric power equipment.
  • FIG. 1 is an exemplary and schematic block diagram showing functions of the power equipment planning support system 100 according to the embodiment.
  • the power equipment planning support system 100 includes a power equipment information acquisition unit 10, a maintenance history information acquisition unit 12, a power flow calculation unit 14, a system information acquisition unit 16, an equipment state estimation unit 18, a system state change. It has a part 20 and the like.
  • each functional module is realized by the processor of the power equipment planning support system (apparatus) 100 reading and executing a program stored in a memory such as a storage unit. In another embodiment, some or all of these functional modules may be realized by dedicated hardware (circuit).
  • the power equipment information acquisition unit 10 acquires at least power equipment specification information A including at least the type of power equipment such as a transformer and a power cable used in the power grid, the rated capacity, and the number of years used in the power grid. I do.
  • the specification information A for example, information held in advance by a power company or the like can be used, and a storage device included in the power equipment planning support system 100, for example, an HDD (hard disk drive) or a flash device can be used in advance. It may be stored, or may be acquired from a database different from the power equipment planning support system 100. Further, the information acquired by the electric power equipment information acquisition unit 10 may include information on the position where the electric power equipment is installed.
  • the maintenance history information acquisition unit 12 acquires maintenance information B of the power equipment included in the power system.
  • the maintenance information B is information indicating, for example, the date and time when repair or inspection was performed for each power facility. Further, the maintenance information B may include details of the maintenance and data measured during the maintenance of each electric power facility.
  • the maintenance information B may be stored in advance in a storage device included in the power equipment planning support system 100, for example, an HDD or a flash device, or may be acquired from a database different from the power equipment planning support system 100. Good.
  • the power flow calculator 14 calculates (obtains) power flow information C indicating how much load is applied to the power equipment based on the power equipment specification information A obtained by the power equipment information obtaining unit 10 and the connection state of the power equipment. ).
  • the power flow information C is calculated, for example, as a current value flowing through the power equipment or a voltage value at each location.
  • the system information acquisition unit 16 acquires measurement information D indicating a state of the power system measured at a preset position when the power system operates.
  • the system information acquisition unit 16 acquires measurement information such as a voltage value, a current value, and a frequency from a sensor installed in the power system, for example.
  • the system information obtaining unit 16 may obtain the measurement information D directly from a wired sensor, or may obtain the measurement information D via a communication medium such as an optical line or wireless communication. Further, the measurement information D may include environmental information such as temperature and humidity of the place where the power equipment is installed, in addition to electrical information such as voltage, current, and frequency of the power system.
  • a measurement device provided in advance in power equipment, such as a switchgear with a sensor, may be used. Further, a measuring device provided afterward to monitor the state of the power equipment may be used. Further, in another embodiment, the measurement information D may be obtained (estimated) using the propagation characteristics (propagation loss characteristics) of the signal of the communication frequency used for the power line carrier communication.
  • the equipment state estimating unit 18 estimates the deterioration state of the power equipment based on the specification information A, the maintenance information B, the power flow information C, and the measurement information D. Details of the equipment state estimation unit 18 will be described later.
  • the system state change unit 20 changes the configuration state of the power system based on the estimation result estimated by the equipment state estimation unit 18 so that a result different from the estimation result can be expected.
  • the system state change unit 20 refers to the deterioration state of the power equipment estimated by the equipment state estimation unit 18 and changes the power system state (load and environment for the power equipment) to change the power equipment failure probability (equipment life).
  • the system state changing unit 20 outputs a control command E for automatically changing the connection state and the installation location of the power equipment in the power system so as to realize the proposed power system.
  • the system state changing unit 20 may present the power system proposed to the operator using an output device such as a display device.
  • the state of the power system can be changed by changing the installation location of the power facility to be estimated.
  • the installation location of the power equipment for example, the influence of the installation location on the temperature, humidity, and the like can be changed.
  • a failure probability estimation model can be made more accurate for power equipment whose temperature, humidity, and the like greatly affect the failure probability.
  • As a change of the installation location it is possible to replace the installation location for the same type of equipment, or to replace the same type of equipment provided for maintenance with another equipment of the same type.
  • the accuracy of the model for estimating the failure probability for salt damage is improved. Can be.
  • the state of the power system can be changed by switching the connection state of the power system including the power facility to be estimated.
  • the switching of the connection state of the power system can be executed by changing the combination of the ON / OFF states of the switches arranged at various points in the power system.
  • the switch for example, the average amount of current or voltage (measurement information D) flowing through the power equipment can be changed.
  • the average amount of current or voltage (measurement information D) flowing through the power equipment can be changed.
  • FIG. 2 is an exemplary and schematic configuration diagram showing details of the equipment state estimation unit 18.
  • the equipment state estimation unit 18 includes a probability model generation unit 22, a system state determination unit 24, a probability estimation unit 26, a probability storage unit 28, a system state formulation unit 30, and the like.
  • the probability model generation unit 22 generates a probability model indicating a failure probability of each power facility based on at least one of the measurement information D and the maintenance information B, which influence the deterioration state of each power facility. Generate. For example, influencing factors (for example, temperature and humidity, etc.) and failure probabilities that affect the deterioration state of each electric power facility, the measurement information D acquired by the system information acquisition unit 16, or the maintenance information acquired by the maintenance history information acquisition unit 12 A probability model representing the relationship between B and measurement information (inspection information) acquired at the time of inspection is generated.
  • a model called a Bayesian network or a graphical model that can represent a relationship between an influencing factor and a resulting event as a graph structure and can represent the strength of the relationship as a probability can be used.
  • the stochastic model is not limited to this, and various methods can be used.
  • the system state determination unit 24 instructs the current state of the power system by the system state change unit 20. It is determined whether the state is based on the control command E. For example, a power flow state (standard power flow information C such as a current value and a voltage value of each place) in the power system according to the control command E of the system status change unit 20 can be calculated based on the specification information A. Therefore, when a failure has occurred in the power system, the measurement information D (current value or voltage value) actually measured in the power system is assumed in the power system based on the control command E of the system state changing unit 20. It may deviate from the value you are doing.
  • the reliability of the estimation is improved. Decreases. Therefore, when the system state determination unit 24 determines that the current state of the power system is not based on the control command E instructed by the system state change unit 20, the power equipment planning support system 100 Is excluded from the estimation target of the failure probability.
  • the system state determination unit 24 compares the statistical value such as the average value and the standard deviation of the measurement information D with the power flow information C, so that the current state of the power system is instructed by the system state change unit 20. It may be determined whether or not the state is based on the control command E. In this case, the value of the tide information C may have a margin. This margin may be set in advance or may be changed as appropriate. By giving a margin to the value of the power flow information C, the influence of the fluctuation of the measurement information D that fluctuates due to disturbance or the like can be reduced, and the determination by the system state determination unit 24 can be suppressed from becoming extremely severe.
  • the probability estimation unit 26 indicates that the power system including the power equipment currently being estimated is a system based on the control command E instructed by the system state change unit 20. In this case, the failure probability of the power equipment to be estimated is estimated. That is, the probability estimating unit 26 avoids executing the probability estimation using the measurement information D in an unintended system state (for example, a failure occurrence state).
  • the probability estimation unit 26 estimates the probability of the probability model created by the probability model generation unit 22 based on the measurement information D provided from the system information acquisition unit 16, the maintenance information B provided from the maintenance history information acquisition unit 12, and the like. This is performed by estimating the state of the influencing element that affects the deterioration state of the power equipment. In this case, the most probable probability distribution of the state of the influence element can be estimated using a technique such as the Markov chain Monte Carlo method. In this case, the probability estimating unit 26 may execute the estimation using only the measurement information D, or may execute the estimation using only the maintenance information B.
  • the probability estimating unit 26 performs an estimation using only the measurement information D for a power cable, an electric motor, or the like, where a sign of deterioration can be found from the electrical measurement information D (current value or voltage value). You may. On the other hand, for equipment (electric power equipment) in which signs of deterioration of the transformer mainly appear as dissolved gases in the insulating oil, it may be estimated from only the maintenance information B.
  • the probability estimation unit 26 may present the estimation result to a display device 32 such as a monitor that can be visually recognized by the operator.
  • the probability estimating unit 26 may present at least one of the specification information A, the maintenance information B, the power flow information C, and the control command E as information on the power facility to be estimated, Information such as the configuration of the system may be presented together.
  • the probability storage unit 28 stores the result of estimation of the failure probability of the probability model of each power facility estimated by the probability estimation unit 26.
  • the probability storage unit 28 may store the time at which the probability estimation unit 26 performs the estimation together with the estimation result. By storing the estimation result and the time in association with each other, it is possible to compare the estimation result with respect to the same power equipment in the past, to obtain a transition in the state of the power equipment, and to estimate the life of the power equipment. It can be carried out.
  • a configuration that can prolong the life of the power system can be designed.
  • the system state determination unit 30 considers the estimation result of the failure probability of the power equipment estimated by the probability estimation unit 26 and configures the power system such that an estimation result different from the estimation result based on the electric power system at present can be expected.
  • the system state formulation unit 30 refers to the probability storage unit 28, selects a power facility exhibiting the same degree of deterioration, and assigns the selected power facility
  • a configuration for switching to an electric power system so that different load currents flow is determined.
  • the system status determination unit 30 refers to the probability storage unit 28 and The equipment is selected, and the configuration of the power system is replaced so that the same load current flows to the selected power equipment.
  • the configuration of the power system formulated by the system state formulation unit 30 is provided to the system state change unit 20, and the system state change unit 20 performs, for example, switching of a switch interposed in various parts of the existing power system. Thereby, the change of the electric power system is realized.
  • the power system includes a system that automatically switches switches and the like in various places, the switching of the power system is performed based on a control command E from the system state changing unit 20.
  • the switching content may be presented to the operator via the display device 32 or the like, and the operator may execute the switching operation. In this case, a procedure regarding the switching operation may be presented together.
  • the power equipment planning support system 100 starts operating when the failure probability of the power equipment is estimated by the operation of the operator.
  • the system state determination unit 24 of the equipment state estimation unit 18 determines whether or not the state of the power system for which the failure probability is to be estimated is based on the control command E instructed by the system state change unit 20 at present. Is determined (S100). That is, when a failure or the like exists in the power system and the state of the power system is not based on the control command E (No in S100), that is, measurement information suitable for estimating the state of the power equipment included in the power system. If there is a possibility that D cannot be obtained, this flow is temporarily terminated, and the estimation of the failure probability of the power equipment by the probability model in the current power system is temporarily terminated.
  • the probability estimation unit 26 determines , Perform an estimation process. That is, when the power system is functioning normally without any failure or the like, the probability estimating unit 26 applies the power flow information C to the probability model generated by the probability model generating unit 22 according to a predetermined weight. Then, the failure probability estimation calculation when the probability model is operated in consideration of the measurement information D, the maintenance information B, and the like is executed (S102).
  • the probability estimating unit 26 determines whether or not the estimation calculation has converged to a valid result (S104).
  • a valid result For example, when the result of the estimation calculation of the failure probability of the power equipment to be estimated (for example, a transformer or a switch) is an extreme result such as "fails tomorrow," or "fails after 100 years.” , The initial value (initial setting) used for the calculation can be regarded as inappropriate.
  • the probability estimating unit 26 determines that the estimation calculation is not converged (No in S104), and adjusts the weight of the influence element of the probability model (adjustment of the influence probability between the influence elements), the tide information C and the measurement.
  • the value of the information D is adjusted, the process returns to S102, and the estimation calculation is performed again.
  • the reference value (threshold) for determining whether the estimation calculation is appropriate can be set in advance by a test or the like, or can be appropriately changed by referring to the result of the estimation calculation.
  • the adjustment of the weight of the influence element and the adjustment of the values of the tide information C and the measurement information D can be performed in accordance with a preset change width (change pattern).
  • the probability estimation unit 26 determines the state of deterioration of the power equipment obtained by the estimation calculation ( The failure state is compared with the current deterioration state of the power equipment, and the transition of the deterioration state is acquired. If the deterioration state of the power equipment obtained by the estimation calculation has not changed with respect to the current deterioration state of the power equipment, or if the deterioration state has progressed (Yes in S106), the power equipment deterioration state The estimation can be considered to have been made properly.
  • the probability estimating unit 26 causes the probability storing unit 28 to store the estimation result, and ends the flow once.
  • the probability estimation unit 26 may present the estimation result via the display device 32. In this case, various information used for the estimation, the configuration of the power system, and the like may be presented together with the estimation result.
  • the probability estimating unit 26 provides the estimation result to the system status determining unit 30.
  • the system state formulation unit 30 refers to the provided estimation result, and formulates the configuration of the power system so that an estimation result different from the estimation result can be expected. Then, the system state determining unit 30 provides the new power system thus determined to the system state changing unit 20, and the system state changing unit 20 changes the connection state of the power equipment or realizes a new power system. The change of the arrangement position of the power equipment is performed by a change system or an operation of an operator.
  • the probability estimating unit 26 checks whether or not the power equipment has been repaired (S108). Normally, it is unlikely that the power equipment will be improved in its deteriorated state unless repairs (repair, replacement, etc.) are performed. The probability estimation unit 26 can determine whether or not the power equipment is repaired by referring to the maintenance information B. When the power equipment is repaired (Yes in S108), the probability estimation unit 26 can determine that the estimation result indicating that the deterioration state of the power equipment has been improved is an appropriate result.
  • the probability estimating unit 26 causes the probability storage unit 28 to store the estimation result together with the maintenance information B, and ends the flow once. Then, the power equipment planning support system 100 executes the process of presenting the estimation result and the maintenance information B via the display device 32 as described above.
  • the system state formulation unit 30 performs a process of creating another power system with reference to the estimation result, and the system state change unit 20 performs a process of realizing the created power system and the like.
  • the equipment state estimating unit 18 calculates the probability that the influence factor and the deterioration state of the power equipment are related. Estimate the change. That is, the process of the flowchart in FIG. 3 for estimating the deterioration state of the power equipment in the new power system is repeated, and the estimation result is stored in the probability storage unit 28. As a result, it is possible to acquire information on the transition of deterioration (lifetime) due to the way of operating the power equipment (how to apply a load and installation location), that is, information on the strength of the factors that affect the probability of failure. The accuracy of the probability estimation model can be improved.
  • the power equipment planning support system 100 uses the influence information on the magnitude of the influence of the factor affecting the failure probability accumulated in the probability storage unit 28 based on the use state (load environment, natural environment, etc.) of the power equipment. Thus, an accurate failure probability (lifetime) can be obtained.
  • the variation width of the life narrower for example, ⁇ 0.1 years. That is, it can be assumed that the life will end at any timing between 0.9 years and 1.1 years. In this case, it is possible to formulate a renewal plan assuming that the life of the power equipment will reach a life of, for example, 0.9 years on the safe side. As a result, it is possible to formulate a renewal plan that can use the power equipment for 0.4 years longer than when the power equipment planning support system 100 is not used.
  • the life or the failure probability of each power equipment can be estimated with higher accuracy in drafting an update plan for the power equipment. Further, it is possible to diversify the equipment renewal time in accordance with the state of each electric power equipment, and it is possible to contribute to a plan for using the electric power equipment for a longer time.
  • the relationship between the usage environment of the power equipment and the failure probability (lifetime) can be accurately acquired. Therefore, for example, when the failure probability (lifetime) is estimated (verified) for a certain electric power system, it is possible to regard the similar failure probability (lifetime) in a similar environment. As a result, it is possible to apply a power system that has already been verified to a similar environment, which can contribute to improving the efficiency of drafting an update plan.
  • the power facility planning support system 100 of the present embodiment may be realized by executing a support program recorded on a computer-readable recording medium on a computer.
  • the support program may be configured to be provided in a recording medium such as a CD-ROM, a flexible disk (FD), a CD-R, and a DVD (Digital Versatile Disk) in an installable or executable file. .

Abstract

An electric power equipment planning assistance system according to the present invention is provided with an electric power equipment information acquisition unit, a maintenance history information acquisition unit, a tidal current calculation unit, a system information acquisition unit, an equipment-state estimation unit, and a system-state change unit. The electric power equipment information acquisition unit acquires information about specifications of electric power equipment. The maintenance history information acquisition unit acquires maintenance information about the electric power equipment. The tidal current calculation unit calculates tidal current information about an electric power system. The system information acquisition unit acquires measurement information indicative of a state of the electric power system. The equipment-state estimation unit estimates a deterioration state of the electric power equipment on the basis of the specification information, maintenance information, tidal current information, and measurement information. The system-state change unit changes, on the basis of an estimation result provided by the equipment-state estimation unit, the state of configuration of the electric power system such that a result different from said estimation result can be expected. In addition, the equipment-state estimation unit estimates a deterioration state of the electric power equipment in the electric power system every time the state of configuration is changed by the system-state change unit.

Description

電力設備計画支援システムPower equipment planning support system
 本発明の実施形態は、電力設備計画支援システムに関する。 The embodiment of the present invention relates to an electric power facility planning support system.
 過去のエネルギ需要の増加に合わせて導入された電力設備の高経年化が進行しており、電力設備の更新が必要になっている。その一方で、今後は、過去に比べてエネルギ需要の減少が予想されるというデータがあり、大規模な投資が必要な電力設備の更新は電力事業者の経営に大きな負担になる可能性がある。そのため、各電力設備の状態に合わせて設備更新時期の分散化などの計画を行う電力設備の資産管理技法が注目されている。この場合、電力設備の更新計画などを立案するうえで、各電力設備が故障する確率がどの程度であるかという情報が重要となる。例えば、特許文献1には、電力系統の計測情報、および電力系統と関連のある周辺情報を用いて現在の状態から他の状態へ遷移する確率を算出し、次に遷移する状態を判定するシステムが開示されている。 (4) The aging of the installed power equipment has been progressing in response to the increase in the past energy demand, and it is necessary to update the power equipment. On the other hand, there is data that energy demand is expected to decrease in the future compared to the past, and updating power equipment that requires large-scale investment may place a heavy burden on the management of power utilities . For this reason, an asset management technique for electric power equipment that performs planning such as decentralization of equipment renewal time in accordance with the state of each electric power equipment has attracted attention. In this case, in planning an update plan of the power equipment, information on the probability of failure of each power equipment is important. For example, Patent Literature 1 discloses a system that calculates a probability of a transition from a current state to another state using measurement information of a power system and peripheral information related to the power system, and determines a next state to be transitioned. Is disclosed.
特開2017-216757号公報JP-A-2017-216575
 しかしながら、特許文献1のシステムの場合、外的要因を考慮することによって状態の遷移確率の精度を向上させているものの、発生頻度の低い事象に対しては、妥当な確率関係を定義できないため状況を運用者に提示して、適宜情報を入力させる仕様になっている。電力設備の寿命、または故障確率はその設備が設置された場所の気候、使用箇所における負荷条件の履歴に依存するため、複数の故障した機器の寿命の平均が必ずしも実際の機器の寿命とは一致しない。そのため、電力設備の劣化に起因する事故が発生する場合や運用者に十分な知見が無い場合に、システムへ情報入力が不正確となる可能性があり、システムの判定結果と実際の状態の遷移との間に不整合が発生することがあった。また、このような不整合を考慮しているため、更新計画を立案する場合、寿命のばらつきにある程度の余裕を見込んで計画を立案することが一般的に行われている。そのため、電力設備の使用期間が短い更新計画が作成されてしまうことがあった。 However, in the case of the system of Patent Document 1, although the accuracy of the state transition probability is improved by considering external factors, an appropriate probability relationship cannot be defined for an event that occurs infrequently. Is presented to the operator, and information is input as appropriate. Since the life of a power facility or the probability of failure depends on the climate of the place where the facility is installed and the history of load conditions at the point of use, the average of the lives of multiple failed devices does not always match the actual life of the device do not do. Therefore, if an accident due to deterioration of the power equipment occurs or if the operator does not have sufficient knowledge, information input to the system may be inaccurate, and the judgment result of the system and the transition of the actual state Inconsistency sometimes occurred. Further, since such an inconsistency is taken into consideration, when drafting an update plan, it is common practice to draft a plan with some allowance for variation in the life. For this reason, an update plan with a short usage period of the power equipment may be created.
 本発明は、上記に鑑みてなされたものであって、電力設備の更新計画を立案するうえで、各電力設備の寿命、もしく故障確率をより高精度に推定することができる電力設備計画支援システムを提供することを目的の一つとする。 The present invention has been made in view of the above, and in planning an update plan of power equipment, a power equipment planning support capable of more accurately estimating the life or failure probability of each power equipment. One of the purposes is to provide a system.
 実施形態の電力設備計画支援システムは、電力設備情報取得部と、メンテナンス履歴情報取得部と、潮流計算部と、系統情報取得部と、設備状態推定部と、系統状態変更部と、を備える。電力設備情報取得部は、処理対象の電力設備の仕様情報を取得する。メンテナンス履歴情報取得部は、電力設備のメンテナンス情報を取得する。潮流計算部は、電力設備を含んで構成される電力系統の潮流情報を算出する。系統情報取得部は、電力系統が動作する際に予め設定された位置で計測される電力系統の状態を示す計測情報を取得する。設備状態推定部は、仕様情報とメンテナンス情報と潮流情報と計測情報とに基づき電力設備の劣化状態を推定する。系統状態変更部は、設備状態推定部の推定した推定結果に基づき、当該推定結果と異なる結果が期待できるように電力系統の構成状態を変更する。そして、設備状態推定部は、系統状態変更部により構成状態が変更されるたびに、電力系統における電力設備の劣化状態を推定する。 The power equipment planning support system according to the embodiment includes a power equipment information acquisition unit, a maintenance history information acquisition unit, a power flow calculation unit, a system information acquisition unit, an equipment state estimation unit, and a system state change unit. The power equipment information obtaining unit obtains specification information of the power equipment to be processed. The maintenance history information obtaining unit obtains maintenance information of the power equipment. The power flow calculation unit calculates power flow information of a power system including power equipment. The system information acquisition unit acquires measurement information indicating a state of the power system measured at a preset position when the power system operates. The equipment state estimation unit estimates the deterioration state of the power equipment based on the specification information, the maintenance information, the power flow information, and the measurement information. The system state change unit changes the configuration state of the power system based on the estimation result estimated by the equipment state estimation unit so that a result different from the estimation result can be expected. Then, each time the configuration state is changed by the system state changing unit, the equipment state estimation unit estimates the deterioration state of the power equipment in the power system.
図1は、実施形態の電力設備計画支援システムの例示的かつ模式的な構成図である。FIG. 1 is an exemplary and schematic configuration diagram of a power equipment planning support system according to an embodiment. 図2は、実施形態の電力設備計画支援システムにおける設備状態推定部の詳細を示す例示的かつ模式的な構成図である。FIG. 2 is an exemplary and schematic configuration diagram illustrating details of an equipment state estimation unit in the power equipment planning support system according to the embodiment. 図3は、実施形態の電力設備計画支援システムの設備状態の推定処理の一例を説明するフローチャートである。FIG. 3 is a flowchart illustrating an example of an equipment state estimation process of the power equipment planning support system according to the embodiment.
 以下、実施形態を図面に基づいて説明する。以下に記載する実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、あくまで一例であって、以下の記載内容に限られるものではない。 Hereinafter, embodiments will be described with reference to the drawings. A configuration of the embodiment described below, and an operation and a result (effect) provided by the configuration are merely examples, and are not limited to the following description.
 実施形態にかかる電力設備計画支援システムは、複数の電力設備を含んで構成される電力系統における各電力設備の劣化状態(例えば、故障確率)を推定する。電力設備としては、例えば、変圧器や開閉装置、電力ケーブル、送電線等が含まれる。電力設備計画支援システムは、電力系統における各電力設備の接続状態を変化させたり、電力系統における各電力設備の設置場所(配置位置)を変化させたりすることで、電力設備の故障確率(設備寿命)に影響する要因の影響力の大きさに関する情報を取得する。 The power facility planning support system according to the embodiment estimates a deterioration state (for example, failure probability) of each power facility in a power system including a plurality of power facilities. The power equipment includes, for example, a transformer, a switchgear, a power cable, a transmission line, and the like. The power facility planning support system changes the connection state of each power facility in the power system or changes the installation location (placement position) of each power facility in the power system to provide a failure probability of the power facility (facility life). ) To obtain information about the magnitude of the influence of the factors that influence).
 例えば、電力設備の接続状態を変更して電力設備にかかる負荷(例えば、電流値や電圧値)を種々変化させて故障確率(設備寿命)を比較することで、接続状態(負荷状態)による電力設備の故障確率(設備寿命)に対する影響情報を取得できる。また、例えば、気温の高い場所に設置された電力設備と気温の低い場所に設置された同種類の電力設備の故障確率(設備寿命)を比較することで、設置場所の環境による電力設備の故障確率(設備寿命)に対する影響情報を取得できる。同様に、湿気の多い場所と少ない場所に設置した場合の比較、降雪地帯と非降雪地帯に設置した場合の比較等を行うことで、設置場所の環境による電力設備の故障確率(設備寿命)に対する影響情報を取得できる。また、塩害が発生し易い場所(沿岸部)と塩害の影響が少ない場所(例えば、山間部等)に設置した場合の故障確率(設備寿命)を比較することで、設置場所(設置環境)による電力設備の故障確率(設備寿命)に対する影響情報を取得することできる。電力設備計画支援システムにより取得された、電力設備の使われ方による故障確率(設備寿命)に対する影響情報等は、電力設備の更新計画等の立案に利用することができる。 For example, by changing the connection state of the power equipment and changing the load (for example, current value and voltage value) applied to the power equipment in various ways and comparing the failure probabilities (equipment life), the power according to the connection state (load state) is obtained. Information on the influence on the failure probability (equipment life) of the equipment can be obtained. Also, for example, by comparing the failure probability (equipment life) of a power facility installed in a high temperature place with a power facility of the same type installed in a low temperature place, the failure of the power facility due to the environment of the installation location Information on the influence on the probability (equipment life) can be obtained. Similarly, by comparing the case of installation in a place with high humidity and the place with low humidity, and comparing the case of installation in a snowfall area and a non-snowfall area, etc., the probability of failure of the power equipment due to the environment of the installation place (equipment life) Impact information can be obtained. In addition, by comparing the probability of failure (equipment life) when installed in a place where salt damage is likely to occur (coastal area) and a place where the influence of salt damage is small (for example, in a mountainous area), it depends on the installation place (installation environment). It is possible to acquire information on the influence on the failure probability (equipment life) of the power equipment. Information on the influence on the failure probability (equipment life) depending on how the electric power equipment is used, which is acquired by the electric power equipment planning support system, can be used for drafting an update plan of the electric power equipment.
 図1は、実施形態にかかる電力設備計画支援システム100の機能を示した例示的かつ模式的なブロック図である。図1に示されるように、電力設備計画支援システム100は、電力設備情報取得部10、メンテナンス履歴情報取得部12、潮流計算部14、系統情報取得部16、設備状態推定部18、系統状態変更部20等を有している。 FIG. 1 is an exemplary and schematic block diagram showing functions of the power equipment planning support system 100 according to the embodiment. As shown in FIG. 1, the power equipment planning support system 100 includes a power equipment information acquisition unit 10, a maintenance history information acquisition unit 12, a power flow calculation unit 14, a system information acquisition unit 16, an equipment state estimation unit 18, a system state change. It has a part 20 and the like.
 電力設備情報取得部10、メンテナンス履歴情報取得部12、潮流計算部14、系統情報取得部16、設備状態推定部18、系統状態変更部20といった機能モジュールの一部または全部は、ハードウェアとソフトウェアとの協働によって実現される。より具体的には、電力設備計画支援システム(装置)100のプロセッサが記憶部等のメモリに記憶されたプログラムを読み出して実行することによって各機能モジュールは実現される。なお、他の実施形態では、これらの機能モジュール群の一部または全部が、専用のハードウェア(回路)によって実現されてもよい。 Some or all of the functional modules such as the power equipment information acquiring unit 10, the maintenance history information acquiring unit 12, the power flow calculating unit 14, the system information acquiring unit 16, the facility state estimating unit 18, and the system state changing unit 20 are hardware and software. It is realized by cooperation with. More specifically, each functional module is realized by the processor of the power equipment planning support system (apparatus) 100 reading and executing a program stored in a memory such as a storage unit. In another embodiment, some or all of these functional modules may be realized by dedicated hardware (circuit).
 電力設備情報取得部10は、少なくとも、電力系統で使用される変圧器や電力ケーブル等の電力設備の種別、定格容量、電力系統で使用された経年数を含む、電力設備の仕様情報Aを取得する。仕様情報Aは、例えば、電力会社等が予め保持している情報を用いることが可能で、電力設備計画支援システム100に含まれる記憶デバイス、例えば、HDD(hard disk drive)やフラッシュデバイス等に予め記憶されていてもよいし、電力設備計画支援システム100とは別のデータベースから取得してもよい。また、電力設備情報取得部10が取得する情報として電力設備が設置された位置情報が含まれていてもよい。 The power equipment information acquisition unit 10 acquires at least power equipment specification information A including at least the type of power equipment such as a transformer and a power cable used in the power grid, the rated capacity, and the number of years used in the power grid. I do. As the specification information A, for example, information held in advance by a power company or the like can be used, and a storage device included in the power equipment planning support system 100, for example, an HDD (hard disk drive) or a flash device can be used in advance. It may be stored, or may be acquired from a database different from the power equipment planning support system 100. Further, the information acquired by the electric power equipment information acquisition unit 10 may include information on the position where the electric power equipment is installed.
 メンテナンス履歴情報取得部12は、電力系統に含まれる電力設備のメンテナンス情報Bを取得する。メンテナンス情報Bは、電力設備ごとに、例えば、補修や点検が行われた日時を示す情報である。また、メンテナンス情報Bには、メンテナンスの内容や各電力設備のメンテナンスの際に測定したデータを含んでもよい。メンテナンス情報Bは、電力設備計画支援システム100に含まれる記憶デバイス、例えば、HDDやフラッシュデバイス等に予め記憶されていてもよいし、電力設備計画支援システム100とは別のデータベースから取得してもよい。 The maintenance history information acquisition unit 12 acquires maintenance information B of the power equipment included in the power system. The maintenance information B is information indicating, for example, the date and time when repair or inspection was performed for each power facility. Further, the maintenance information B may include details of the maintenance and data measured during the maintenance of each electric power facility. The maintenance information B may be stored in advance in a storage device included in the power equipment planning support system 100, for example, an HDD or a flash device, or may be acquired from a database different from the power equipment planning support system 100. Good.
 潮流計算部14は、電力設備情報取得部10が取得した電力設備の仕様情報Aや電力設備の接続状態等に基づき、電力設備にどれ位の負荷がかかるかを示す潮流情報Cを算出(取得)する。潮流情報Cは、例えば、電力設備に流れる電流値や各箇所の電圧値として算出される。 The power flow calculator 14 calculates (obtains) power flow information C indicating how much load is applied to the power equipment based on the power equipment specification information A obtained by the power equipment information obtaining unit 10 and the connection state of the power equipment. ). The power flow information C is calculated, for example, as a current value flowing through the power equipment or a voltage value at each location.
 系統情報取得部16は、電力系統が動作する際に予め設定された位置で計測される電力系統の状態を示す計測情報Dを取得する。系統情報取得部16は、例えば、電力系統に設置されたセンサから電圧値、電流値、周波数等の計測情報を取得する。系統情報取得部16は、計測情報Dを有線接続されたセンサから直接取得するようにしてもよいし、光回線や無線通信等の通信媒体を介して取得するようにしてもよい。また、計測情報Dは、電力系統の電圧、電流、周波数等の電気的情報に加え、電力設備が設置されている場所の気温や湿度等の環境情報を含んでもよい。なお、計測情報Dを取得するセンサとして、センサ付き開閉装置等のように、電力設備に予め備え付けられている計測装置を用いてもよい。また、電力設備の状態を監視するために後付けで設けられた計測装置を用いてもよい。また、別の実施形態では、電力線搬送通信に使用される通信周波数の信号の伝搬特性(伝搬損出特性)を用いて計測情報Dの取得(推定)を行うようにしてもよい。 The system information acquisition unit 16 acquires measurement information D indicating a state of the power system measured at a preset position when the power system operates. The system information acquisition unit 16 acquires measurement information such as a voltage value, a current value, and a frequency from a sensor installed in the power system, for example. The system information obtaining unit 16 may obtain the measurement information D directly from a wired sensor, or may obtain the measurement information D via a communication medium such as an optical line or wireless communication. Further, the measurement information D may include environmental information such as temperature and humidity of the place where the power equipment is installed, in addition to electrical information such as voltage, current, and frequency of the power system. Note that, as a sensor for acquiring the measurement information D, a measurement device provided in advance in power equipment, such as a switchgear with a sensor, may be used. Further, a measuring device provided afterward to monitor the state of the power equipment may be used. Further, in another embodiment, the measurement information D may be obtained (estimated) using the propagation characteristics (propagation loss characteristics) of the signal of the communication frequency used for the power line carrier communication.
 設備状態推定部18は、仕様情報Aとメンテナンス情報Bと潮流情報Cと計測情報Dとに基づき電力設備の劣化状態を推定する。設備状態推定部18の詳細については後述する。 The equipment state estimating unit 18 estimates the deterioration state of the power equipment based on the specification information A, the maintenance information B, the power flow information C, and the measurement information D. Details of the equipment state estimation unit 18 will be described later.
 系統状態変更部20は、設備状態推定部18の推定した推定結果に基づき、当該推定結果と異なる結果が期待できるように電力系統の構成状態を変更する。系統状態変更部20は、設備状態推定部18の推定した電力設備の劣化状態を参照し、電力系統状態(電力設備に対する負荷や環境)を変化させて、電力設備の故障確率(設備寿命)に影響する要因(影響因子)の影響力の大きさを変化させるような、電力系統を提案する。系統状態変更部20は、提案された電力系統を実現するように、電力系統における電力設備の接続状態や設置場所等を自動的に変更するような制御指令Eを出力する。また、別の実施形態では、系統状態変更部20は、運用者に提案する電力系統を表示装置等の出力装置を用いて提示するようにしてもよい。 The system state change unit 20 changes the configuration state of the power system based on the estimation result estimated by the equipment state estimation unit 18 so that a result different from the estimation result can be expected. The system state change unit 20 refers to the deterioration state of the power equipment estimated by the equipment state estimation unit 18 and changes the power system state (load and environment for the power equipment) to change the power equipment failure probability (equipment life). We propose a power system that changes the magnitude of the influence of the influencing factors (influencing factors). The system state changing unit 20 outputs a control command E for automatically changing the connection state and the installation location of the power equipment in the power system so as to realize the proposed power system. In another embodiment, the system state changing unit 20 may present the power system proposed to the operator using an output device such as a display device.
 系統状態変更部20が実行する電力系統の状態の変更の一例として、推定対象の電力設備の設置場所を変更することで電力系統の状態の変更ができる。この場合、電力設備の設置場所を変更することで、例えば、気温や湿度等に関して設置場所の影響を変化させることができる。その結果、気温や湿度等が故障確率に大きな影響を与える電力設備に対して、故障確率の推定モデルをより高精度なものとすることができる。設置場所の変更として、同一種別の設備に対して、設置場所を交換することも可能であるし、保守用に用意されている同一種の別設備と入れ替えることも可能である。また、設置場所の変更例としては、例えば、塩害を受けやすい沿岸地域に設置された電力設備を塩害の影響を受けにくい山間領域に変更することで、塩害に対する故障確率の推定モデルの高精度化ができる。 As an example of the change of the state of the power system performed by the system state changing unit 20, the state of the power system can be changed by changing the installation location of the power facility to be estimated. In this case, by changing the installation location of the power equipment, for example, the influence of the installation location on the temperature, humidity, and the like can be changed. As a result, a failure probability estimation model can be made more accurate for power equipment whose temperature, humidity, and the like greatly affect the failure probability. As a change of the installation location, it is possible to replace the installation location for the same type of equipment, or to replace the same type of equipment provided for maintenance with another equipment of the same type. In addition, as an example of changing the installation location, for example, by changing the power equipment installed in the coastal area susceptible to salt damage to a mountain area that is less susceptible to salt damage, the accuracy of the model for estimating the failure probability for salt damage is improved. Can be.
 系統状態変更部20が実行する電力系統の状態の変更の他の例として、推定対象の電力設備が含まれる電力系統の接続状態を切り替えることで電力系統の状態の変更ができる。電力系統の接続状態の切り替えは、電力系統の各所に配置されたスイッチのON/OFF状態の組合せを変化させることで実行することができる。この場合、スイッチの切り替えにより、例えば、電力設備に流れる平均的な電流量や電圧(計測情報D)を変化させることができる。その結果、故障確率(設備寿命)に対して電圧や電流が与える影響を詳細に調べることが可能となる。 As another example of the change of the state of the power system performed by the system state changing unit 20, the state of the power system can be changed by switching the connection state of the power system including the power facility to be estimated. The switching of the connection state of the power system can be executed by changing the combination of the ON / OFF states of the switches arranged at various points in the power system. In this case, by switching the switch, for example, the average amount of current or voltage (measurement information D) flowing through the power equipment can be changed. As a result, it is possible to examine in detail the effect of voltage and current on the failure probability (equipment life).
 図2は、設備状態推定部18の詳細を示す例示的かつ模式的な構成図である。設備状態推定部18は、確率モデル生成部22、系統状態判定部24、確率推定部26、確率記憶部28、系統状態策定部30等を含む。 FIG. 2 is an exemplary and schematic configuration diagram showing details of the equipment state estimation unit 18. The equipment state estimation unit 18 includes a probability model generation unit 22, a system state determination unit 24, a probability estimation unit 26, a probability storage unit 28, a system state formulation unit 30, and the like.
 確率モデル生成部22は、それぞれの電力設備の劣化状態に影響を与える影響因子と計測情報Dとメンテナンス情報Bとの少なくともいずれか一つに基づき、それぞれの電力設備の故障確率を示す確率モデルを生成する。例えば、各電力設備の劣化状態に影響を与える影響因子(例えば、温度や湿度等)と故障確率、系統情報取得部16が取得する計測情報D、またはメンテナンス履歴情報取得部12が取得するメンテナンス情報B、および点検時に取得した計測情報(点検情報)等の関係を表す確率モデルを生成する。確率モデルとして、例えば、ベイジアンネットワークやグラフィカルモデルと呼ばれる、影響因子と結果として現れる事象の関係をグラフ構造として表し、関係の強度が確率として表すことができるモデルを用いることができる。確率モデルは、これに限定されることなく、種々の手法が利用可能である。 The probability model generation unit 22 generates a probability model indicating a failure probability of each power facility based on at least one of the measurement information D and the maintenance information B, which influence the deterioration state of each power facility. Generate. For example, influencing factors (for example, temperature and humidity, etc.) and failure probabilities that affect the deterioration state of each electric power facility, the measurement information D acquired by the system information acquisition unit 16, or the maintenance information acquired by the maintenance history information acquisition unit 12 A probability model representing the relationship between B and measurement information (inspection information) acquired at the time of inspection is generated. As the probabilistic model, for example, a model called a Bayesian network or a graphical model that can represent a relationship between an influencing factor and a resulting event as a graph structure and can represent the strength of the relationship as a probability can be used. The stochastic model is not limited to this, and various methods can be used.
 系統状態判定部24は、潮流計算部14で計算された潮流情報Cと系統情報取得部16で取得された計測情報Dとに基づき、現在の電力系統の状態が系統状態変更部20により指令された制御指令Eに基づく状態であるかを判定する。例えば、系統状態変更部20の制御指令Eにしたがう電力系統における潮流状態(各所の電流値や電圧値等の標準的な潮流情報C)は、仕様情報Aに基づき算出可能である。したがって、電力系統内で故障が発生していた場合、その電力系統で実際に計測される計測情報D(電流値や電圧値)が、系統状態変更部20の制御指令Eに基づく電力系統で想定している値と乖離する可能性がある。この場合、系統情報取得部16で取得した計測情報D(故障等が原因の異常値)を用いて、確率モデル生成部22で生成した確率モデルの故障確率の推定を実行すると、推定の信頼性が低下する。したがって、系統状態判定部24によって現在の電力系統の状態が系統状態変更部20により指令された制御指令Eに基づく状態ではないと判定された場合、電力設備計画支援システム100は、現在の電力系統を故障確率の推定対象から除外するようにする。 Based on the power flow information C calculated by the power flow calculation unit 14 and the measurement information D acquired by the system information acquisition unit 16, the system state determination unit 24 instructs the current state of the power system by the system state change unit 20. It is determined whether the state is based on the control command E. For example, a power flow state (standard power flow information C such as a current value and a voltage value of each place) in the power system according to the control command E of the system status change unit 20 can be calculated based on the specification information A. Therefore, when a failure has occurred in the power system, the measurement information D (current value or voltage value) actually measured in the power system is assumed in the power system based on the control command E of the system state changing unit 20. It may deviate from the value you are doing. In this case, if the estimation of the failure probability of the probability model generated by the probability model generation unit 22 is performed using the measurement information D (an abnormal value caused by a failure or the like) acquired by the system information acquisition unit 16, the reliability of the estimation is improved. Decreases. Therefore, when the system state determination unit 24 determines that the current state of the power system is not based on the control command E instructed by the system state change unit 20, the power equipment planning support system 100 Is excluded from the estimation target of the failure probability.
 なお、系統状態判定部24は、計測情報Dの平均値や標準偏差などの統計値と、潮流情報Cとを比較することによって、現在の電力系統の状態が系統状態変更部20により指令された制御指令Eに基づく状態であるか否かを判定してもよい。この場合、潮流情報Cの値にマージンを持たせてもよい。このマージンは予め設定してもよいし、適宜設定変更できるようにしてもよい。潮流情報Cの値にマージンを持たせることで、外乱等により変動する計測情報Dの変動の影響を小さくし、系統状態判定部24による判定が極端に厳しくなることを抑制することができる。 The system state determination unit 24 compares the statistical value such as the average value and the standard deviation of the measurement information D with the power flow information C, so that the current state of the power system is instructed by the system state change unit 20. It may be determined whether or not the state is based on the control command E. In this case, the value of the tide information C may have a margin. This margin may be set in advance or may be changed as appropriate. By giving a margin to the value of the power flow information C, the influence of the fluctuation of the measurement information D that fluctuates due to disturbance or the like can be reduced, and the determination by the system state determination unit 24 can be suppressed from becoming extremely severe.
 確率推定部26は、系統状態判定部24の判定した結果として、現在推定対象としている電力設備が含まれる電力系統が系統状態変更部20により指令された制御指令Eに基づく系統であることが示される場合、推定対象の電力設備の故障確率の推定を行う。つまり、確率推定部26は、意図していない系統状態(例えば、故障発生状態)における計測情報Dを用いた確率推定が実行されることを回避する。 As a result of the determination by the system state determination unit 24, the probability estimation unit 26 indicates that the power system including the power equipment currently being estimated is a system based on the control command E instructed by the system state change unit 20. In this case, the failure probability of the power equipment to be estimated is estimated. That is, the probability estimating unit 26 avoids executing the probability estimation using the measurement information D in an unintended system state (for example, a failure occurrence state).
 確率推定部26は、確率モデル生成部22で作成した確率モデルの確率推定を、系統情報取得部16から提供される計測情報Dやメンテナンス履歴情報取得部12から提供されるメンテナンス情報B等に基づき、電力設備の劣化状態に影響を与える影響要素の状態を推定することで実行する。この場合、マルコフ連鎖モンテカルロ法などの手法を用いて、影響要素の状態について最も確からしい確率分布を推定することができる。なお、この場合、確率推定部26は、計測情報Dのみを用いて推定を実行してもよいし、メンテナンス情報Bのみを用いて推定を実行してもよい。例えば、確率推定部26は、電気的な計測情報D(電流値や電圧値)により劣化の兆候が発見しうる、電力ケーブルや電動機などについては計測情報Dのみを用いて推定を実行するようにしてもよい。一方、変圧器の劣化の兆候が主に絶縁油中の溶存ガスとして表れる機器(電力設備)については、メンテナンス情報Bのみから推定するようにしてもよい。 The probability estimation unit 26 estimates the probability of the probability model created by the probability model generation unit 22 based on the measurement information D provided from the system information acquisition unit 16, the maintenance information B provided from the maintenance history information acquisition unit 12, and the like. This is performed by estimating the state of the influencing element that affects the deterioration state of the power equipment. In this case, the most probable probability distribution of the state of the influence element can be estimated using a technique such as the Markov chain Monte Carlo method. In this case, the probability estimating unit 26 may execute the estimation using only the measurement information D, or may execute the estimation using only the maintenance information B. For example, the probability estimating unit 26 performs an estimation using only the measurement information D for a power cable, an electric motor, or the like, where a sign of deterioration can be found from the electrical measurement information D (current value or voltage value). You may. On the other hand, for equipment (electric power equipment) in which signs of deterioration of the transformer mainly appear as dissolved gases in the insulating oil, it may be estimated from only the maintenance information B.
 確率推定部26は、推定結果を運用者が視認し得るモニタ等の表示装置32に提示してもよい。この場合、確率推定部26は、推定対象の電力設備に関する情報として、仕様情報A、メンテナンス情報B、潮流情報C、制御指令Eのうち少なくとも一つの情報を併せて提示してもよいし、電力系統の構成等の情報を併せて提示してもよい。推定結果と共に、各種の付随的な情報が表示装置32に提示されることにより、運用者に推定対象の電力設備の状態を迅速かつ適切に理解させやすくすることができる。 The probability estimation unit 26 may present the estimation result to a display device 32 such as a monitor that can be visually recognized by the operator. In this case, the probability estimating unit 26 may present at least one of the specification information A, the maintenance information B, the power flow information C, and the control command E as information on the power facility to be estimated, Information such as the configuration of the system may be presented together. By presenting various kinds of additional information on the display device 32 together with the estimation result, it is possible to make it easier for the operator to quickly and appropriately understand the state of the power equipment to be estimated.
 確率記憶部28は、確率推定部26で推定した各電力設備の確率モデルの故障確率の推定結果を記憶する。確率記憶部28は、推定結果と共に確率推定部26が推定を行った時刻を記憶してもよい。推定結果と時刻を関連付けて記憶することにより、過去の同じ電力設備に関する推定結果と比較することが可能になり、電力設備の状態の推移を取得することが可能になり、電力設備の寿命推定を行うことができる。また、確率記憶部28に記憶された各電力設備に関する複数の推定結果を参照することで、電力系統としての最も延命できる構成を立案することができる。 The probability storage unit 28 stores the result of estimation of the failure probability of the probability model of each power facility estimated by the probability estimation unit 26. The probability storage unit 28 may store the time at which the probability estimation unit 26 performs the estimation together with the estimation result. By storing the estimation result and the time in association with each other, it is possible to compare the estimation result with respect to the same power equipment in the past, to obtain a transition in the state of the power equipment, and to estimate the life of the power equipment. It can be carried out. In addition, by referring to a plurality of estimation results for each power facility stored in the probability storage unit 28, a configuration that can prolong the life of the power system can be designed.
 系統状態策定部30は、確率推定部26で推定された電力設備の故障確率の推定結果を考慮して、現状に電力系統に基づく推定結果とは異なる推定結果が期待できるような電力系統の構成を策定する。例えば、負荷電流による影響と故障確率との関係を得たい場合、系統状態策定部30は、確率記憶部28を参照し、同程度の劣化状態を示す電力設備を選択し、選択した電力設備に対して程度の異なる負荷電流が流れるように電力系統に切り替える構成の策定を実行する。同様に、系統状態策定部30は、例えば、電力設備の設置場所と故障確率との関係を得たい場合、確率記憶部28を参照し、同程度の劣化状態で他の設置位置に存在する電力設備を選択し、選択した電力設備に対して同程度の負荷電流が流れるように電力系統の設置替えを行う構成の策定を実行する。 The system state determination unit 30 considers the estimation result of the failure probability of the power equipment estimated by the probability estimation unit 26 and configures the power system such that an estimation result different from the estimation result based on the electric power system at present can be expected. Formulate. For example, when it is desired to obtain the relationship between the effect of the load current and the failure probability, the system state formulation unit 30 refers to the probability storage unit 28, selects a power facility exhibiting the same degree of deterioration, and assigns the selected power facility On the other hand, a configuration for switching to an electric power system so that different load currents flow is determined. Similarly, for example, when it is desired to obtain the relationship between the installation location of the power equipment and the failure probability, the system status determination unit 30 refers to the probability storage unit 28 and The equipment is selected, and the configuration of the power system is replaced so that the same load current flows to the selected power equipment.
 系統状態策定部30が策定した電力系統の構成は、系統状態変更部20に提供され、系統状態変更部20は、例えば、既存の電力系統の各所に介在させているスイッチの切り替えを実行させることにより、電力系統の変更を実現する。電力系統の変更は、当該電力系統が、各所のスイッチ等を自動的に切り替えるシステムを含んでいる場合、系統状態変更部20からの制御指令Eに基づいて、切替制御が実行される。また、自動切替システムを備えない場合、例えば、表示装置32等を介して、切替内容を運用者に提示し、運用者が切替操作を実行するようにしてもよい。なお、この場合、切替操作に関する手順を併せて提示するようにしてもよい。 The configuration of the power system formulated by the system state formulation unit 30 is provided to the system state change unit 20, and the system state change unit 20 performs, for example, switching of a switch interposed in various parts of the existing power system. Thereby, the change of the electric power system is realized. When the power system includes a system that automatically switches switches and the like in various places, the switching of the power system is performed based on a control command E from the system state changing unit 20. When the automatic switching system is not provided, for example, the switching content may be presented to the operator via the display device 32 or the like, and the operator may execute the switching operation. In this case, a procedure regarding the switching operation may be presented together.
 このように構成される電力設備計画支援システム100により実行される電力設備の故障確率の推定処理の一例を、図3のフローチャートを用いて説明する。なお、図3に示すフローチャートは、一回の推定処理について示しているが、系統状態策定部30により新たな電力系統が策定される度に図3に示される処理が実行されるものとする。 An example of the power equipment failure probability estimation processing executed by the power equipment planning support system 100 configured as described above will be described with reference to the flowchart in FIG. Although the flowchart illustrated in FIG. 3 illustrates one estimation process, it is assumed that the process illustrated in FIG. 3 is executed each time a new power system is determined by the system state determination unit 30.
 電力設備計画支援システム100は、運用者の操作により電力設備の故障確率の推定を実施する場合に動作を開始する。まず、設備状態推定部18の系統状態判定部24は、現在、故障確率の推定を実行しようとする電力系統の状態が系統状態変更部20により指令された制御指令Eに基づく状態であるか否か判定する(S100)。すなわち、電力系統において故障等が存在し、電力系統の状態が制御指令Eに基づく状態でない場合(S100のNo)、つまり、電力系統に含まれる電力設備の状態を推定するために適した計測情報Dが取得できない可能性がある場合、このフローを一旦終了し、現在の電力系統における確率モデルによる電力設備の故障確率の推定を一旦終了する。 The power equipment planning support system 100 starts operating when the failure probability of the power equipment is estimated by the operation of the operator. First, the system state determination unit 24 of the equipment state estimation unit 18 determines whether or not the state of the power system for which the failure probability is to be estimated is based on the control command E instructed by the system state change unit 20 at present. Is determined (S100). That is, when a failure or the like exists in the power system and the state of the power system is not based on the control command E (No in S100), that is, measurement information suitable for estimating the state of the power equipment included in the power system. If there is a possibility that D cannot be obtained, this flow is temporarily terminated, and the estimation of the failure probability of the power equipment by the probability model in the current power system is temporarily terminated.
 S100において、系統状態判定部24は、現在、故障確率の推定を実行しようとする電力系統の状態が制御指令Eに基づく状態であると判定された場合(S100のYes)、確率推定部26は、推定処理を実行する。すなわち、故障等が存在せずに電力系統が正常に機能している場合、確率推定部26は、確率モデル生成部22で生成された確率モデルに対して、予め定めた重み付けにしたがい潮流情報C、計測情報D、メンテナンス情報B等を考慮して確率モデルを動作させたときの故障確率の推定計算を実行する(S102)。 In S100, when it is determined that the state of the power system for which the failure probability is to be estimated is currently based on the control command E (Yes in S100), the probability estimation unit 26 determines , Perform an estimation process. That is, when the power system is functioning normally without any failure or the like, the probability estimating unit 26 applies the power flow information C to the probability model generated by the probability model generating unit 22 according to a predetermined weight. Then, the failure probability estimation calculation when the probability model is operated in consideration of the measurement information D, the maintenance information B, and the like is executed (S102).
 続いて、確率推定部26は、推定計算が妥当な結果に収束したか否か判定する(S104)。すなわち、推定対象の電力設備(例えば、変圧器や開閉器等)の故障確率の推定計算の結果が、「明日、故障する」とか、「100年後に故障する」とか等の極端な結果の場合、計算に用いた初期値(初期設定)が不適切であったとみなすことができる。この場合、確率推定部26は、推定計算が非収束であると判定し(S104のNo)、確率モデルの影響要素の重み付けの調整(影響要素間の影響確率の調整)や潮流情報Cや計測情報Dの値の調整を実施し、S102に戻り、推定計算をやり直す。なお、推定計算が妥当か否かを判定する基準値(閾値)は、試験等により予め設定したり、推定計算の結果を参照し適宜変更できるようにしたりすることができる。また、影響要素の重み付けの調整や潮流情報Cや計測情報Dの値の調整は、予め設定した変更幅(変更パターン)にしたがって実施するようにすることができる。 Subsequently, the probability estimating unit 26 determines whether or not the estimation calculation has converged to a valid result (S104). In other words, when the result of the estimation calculation of the failure probability of the power equipment to be estimated (for example, a transformer or a switch) is an extreme result such as "fails tomorrow," or "fails after 100 years." , The initial value (initial setting) used for the calculation can be regarded as inappropriate. In this case, the probability estimating unit 26 determines that the estimation calculation is not converged (No in S104), and adjusts the weight of the influence element of the probability model (adjustment of the influence probability between the influence elements), the tide information C and the measurement. The value of the information D is adjusted, the process returns to S102, and the estimation calculation is performed again. The reference value (threshold) for determining whether the estimation calculation is appropriate can be set in advance by a test or the like, or can be appropriately changed by referring to the result of the estimation calculation. The adjustment of the weight of the influence element and the adjustment of the values of the tide information C and the measurement information D can be performed in accordance with a preset change width (change pattern).
 S104において、確率推定部26が推定計算の結果は妥当であり、計算結果が収束したと判定した場合(S104のYes)、確率推定部26は、推定計算により求められた電力設備の劣化状態(故障確率)と現在の電力設備の劣化状態とを比較し、劣化状態の推移を取得する。もし、推定計算により求められた電力設備の劣化状態が、現在の電力設備の劣化状態に対して変化していない場合、または劣化状態が進展した場合(S106のYes)、電力設備の劣化状態の推定は適切に行われたと見なすことがでる。この場合、確率推定部26は、確率記憶部28に推定結果を記憶させて、このフローを一旦終了する。この場合、確率推定部26は、表示装置32を介して推定結果を提示してもよい。また、この場合、推定結果と共に、推定に用いた各種情報や電力系統の構成等を併せて提示してもよい。 In S104, when the probability estimation unit 26 determines that the result of the estimation calculation is valid and the calculation result has converged (Yes in S104), the probability estimation unit 26 determines the state of deterioration of the power equipment obtained by the estimation calculation ( The failure state is compared with the current deterioration state of the power equipment, and the transition of the deterioration state is acquired. If the deterioration state of the power equipment obtained by the estimation calculation has not changed with respect to the current deterioration state of the power equipment, or if the deterioration state has progressed (Yes in S106), the power equipment deterioration state The estimation can be considered to have been made properly. In this case, the probability estimating unit 26 causes the probability storing unit 28 to store the estimation result, and ends the flow once. In this case, the probability estimation unit 26 may present the estimation result via the display device 32. In this case, various information used for the estimation, the configuration of the power system, and the like may be presented together with the estimation result.
 確率推定部26は、推定結果を系統状態策定部30に提供する。系統状態策定部30は、提供された推定結果を参照し、この推定結果と異なる推定結果が期待できるように電力系統の構成を策定する。そして、系統状態策定部30は、策定した新たな電力系統を系統状態変更部20に提供し、系統状態変更部20は、新たな電力系統を実現するように、電力設備の接続状態の変更や電力設備の配置位置の変更を、変更システムや運用者の作業により実行させる。 The probability estimating unit 26 provides the estimation result to the system status determining unit 30. The system state formulation unit 30 refers to the provided estimation result, and formulates the configuration of the power system so that an estimation result different from the estimation result can be expected. Then, the system state determining unit 30 provides the new power system thus determined to the system state changing unit 20, and the system state changing unit 20 changes the connection state of the power equipment or realizes a new power system. The change of the arrangement position of the power equipment is performed by a change system or an operation of an operator.
 S106において、推定計算により求められた電力設備の劣化状態が、現在の電力設備の劣化状態に対して変化しない、または進展するものではない場合(S106のNo)、つまり、電力設備の劣化状態が改善された場合、確率推定部26は、電力設備が補修されたか否かを確認する(S108)。通常、電力設備は、補修(修理や交換等)が実施されない限り、劣化状態が改善されることは考えにくい。確率推定部26は、電力設備が補修されているか否かをメンテナンス情報Bを参照することによって判定することができる。確率推定部26は、電力設備が修繕されている場合(S108のYes)、当該電力設備の劣化状態が改善されたことを示す推定結果は、妥当な結果である判定することができる。この場合、確率推定部26は、確率記憶部28にメンテナンス情報Bと共に推定結果を記憶させて、このフローを一旦終了する。そして、電力設備計画支援システム100は、上述したように、表示装置32を介した推定結果とメンテナンス情報B等を提示する処理を実行する。また、系統状態策定部30は、推定結果を参照した他の電力系統の策定処理を実行し、系統状態変更部20は、策定された電力系統の実現処理等を実行する。 In S106, when the deterioration state of the power equipment obtained by the estimation calculation does not change or does not progress with respect to the current deterioration state of the power equipment (No in S106), that is, the deterioration state of the power equipment is When the power is improved, the probability estimating unit 26 checks whether or not the power equipment has been repaired (S108). Normally, it is unlikely that the power equipment will be improved in its deteriorated state unless repairs (repair, replacement, etc.) are performed. The probability estimation unit 26 can determine whether or not the power equipment is repaired by referring to the maintenance information B. When the power equipment is repaired (Yes in S108), the probability estimation unit 26 can determine that the estimation result indicating that the deterioration state of the power equipment has been improved is an appropriate result. In this case, the probability estimating unit 26 causes the probability storage unit 28 to store the estimation result together with the maintenance information B, and ends the flow once. Then, the power equipment planning support system 100 executes the process of presenting the estimation result and the maintenance information B via the display device 32 as described above. In addition, the system state formulation unit 30 performs a process of creating another power system with reference to the estimation result, and the system state change unit 20 performs a process of realizing the created power system and the like.
 一方、S108において、確率推定部26は、メンテナンス情報Bを参照した結果、電力設備の修繕が行われていないと判定した場合(S108のNo)、劣化状態が改善された推定結果は、妥当でないと判定する。この場合、確率モデルの影響要素の重み付けの調整(影響要素間の影響確率の調整)や潮流情報Cや計測情報Dの値の調整を実施し、S102に戻り、推定計算をやり直す。 On the other hand, in S108, when the probability estimating unit 26 determines that the power equipment has not been repaired as a result of referring to the maintenance information B (No in S108), the estimation result in which the deterioration state has been improved is not appropriate. Is determined. In this case, the adjustment of the weight of the influence element of the probability model (adjustment of the influence probability between the influence elements) and the adjustment of the values of the power flow information C and the measurement information D are performed, and the process returns to S102 to perform the estimation calculation again.
 設備状態推定部18は、系統状態変更部20によって新たな電力系統が提案される度に、つまり、電力系統の構成が変更される度に、影響因子と電力設備の劣化状態が関連する確率の変化を推定する。つまり、新たな電力系統における電力設備の劣化状態を推定する図3のフローチャートの処理を繰り返し、推定結果を確率記憶部28に蓄積する。その結果、電力設備の運用の仕方(負荷のかけ方や設置場所)による劣化(寿命)の推移情報、つまり、故障確率に影響を与える要因の影響の強さについての情報が取得可能となり、故障確率の推定モデルの精度を向上させることができる。例えば、従来、ある電力設備の平均的な寿命が1年であるとすると、寿命のばらつきを例えば±0.5年と見込む場合、0.5年から1.5年の間のいずれかのタイミングで寿命を迎えることになる。この場合、この電力設備は、安全側の0.5年で寿命を迎えると想定して更新計画を立案することになる。一方、電力設備計画支援システム100は、確率記憶部28に蓄積した故障確率に影響を与える要因の影響の強さについての影響情報に基づき、電力設備の使用状態(負荷環境や自然環境等)ごとにより正確な故障確率(寿命)が取得可能となる。その結果、寿命のばらつき幅をより狭くした、例えば±0.1年と見込むことが可能になる。つまり、0.9年から1.1年の間のいずれかのタイミングで寿命を迎えると想定することができる。この場合、この電力設備は、例えば安全側の0.9年で寿命を迎えると想定して更新計画を立案することができる。その結果、電力設備計画支援システム100を用いない場合に比べ、0.4年長く電量設備を利用できる更新計画を立案することができる。 Each time a new power system is proposed by the system state changing unit 20, that is, every time the configuration of the power system is changed, the equipment state estimating unit 18 calculates the probability that the influence factor and the deterioration state of the power equipment are related. Estimate the change. That is, the process of the flowchart in FIG. 3 for estimating the deterioration state of the power equipment in the new power system is repeated, and the estimation result is stored in the probability storage unit 28. As a result, it is possible to acquire information on the transition of deterioration (lifetime) due to the way of operating the power equipment (how to apply a load and installation location), that is, information on the strength of the factors that affect the probability of failure. The accuracy of the probability estimation model can be improved. For example, conventionally, if the average life of a certain power facility is one year, and if the variation in the life is expected to be ± 0.5 years, for example, any timing between 0.5 years and 1.5 years Will end its life. In this case, a renewal plan is to be made on the assumption that the life of the power equipment will reach a life of 0.5 years on the safe side. On the other hand, the power equipment planning support system 100 uses the influence information on the magnitude of the influence of the factor affecting the failure probability accumulated in the probability storage unit 28 based on the use state (load environment, natural environment, etc.) of the power equipment. Thus, an accurate failure probability (lifetime) can be obtained. As a result, it is possible to make the variation width of the life narrower, for example, ± 0.1 years. That is, it can be assumed that the life will end at any timing between 0.9 years and 1.1 years. In this case, it is possible to formulate a renewal plan assuming that the life of the power equipment will reach a life of, for example, 0.9 years on the safe side. As a result, it is possible to formulate a renewal plan that can use the power equipment for 0.4 years longer than when the power equipment planning support system 100 is not used.
 このように、本実施形態の電力設備計画支援システム100によれば、電力設備の更新計画を立案するうえで、各電力設備の寿命、もしく故障確率をより高精度に推定することができる。また、各電力設備の状態に合わせた設備更新時期の分散化を可能にし、電力設備をより長く利用するような計画立案に寄与することができる。なお、電力設備計画支援システム100によれば、電力設備の利用環境と故障確率(寿命)との関連性を精度よく取得できる。そこで、例えば、ある電力系統に対して故障確率(寿命)の推定(検証)を行った場合、類似する環境であれば、同様な故障確率(寿命)である見なすことが可能になる。その結果、既に検証済みの電力系統を類似する環境に適用することも可能であり、更新計画の立案効率を向上に寄与することができる。 As described above, according to the power equipment planning support system 100 of the present embodiment, the life or the failure probability of each power equipment can be estimated with higher accuracy in drafting an update plan for the power equipment. Further, it is possible to diversify the equipment renewal time in accordance with the state of each electric power equipment, and it is possible to contribute to a plan for using the electric power equipment for a longer time. According to the power equipment planning support system 100, the relationship between the usage environment of the power equipment and the failure probability (lifetime) can be accurately acquired. Therefore, for example, when the failure probability (lifetime) is estimated (verified) for a certain electric power system, it is possible to regard the similar failure probability (lifetime) in a similar environment. As a result, it is possible to apply a power system that has already been verified to a similar environment, which can contribute to improving the efficiency of drafting an update plan.
 本実施形態の電力設備計画支援システム100は、コンピュータで読み取り可能な記録媒体に記録された支援プログラムをコンピュータ上で実行することにより実現してもよい。支援プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等の記録媒体で提供するように構成してもよい。 The power facility planning support system 100 of the present embodiment may be realized by executing a support program recorded on a computer-readable recording medium on a computer. The support program may be configured to be provided in a recording medium such as a CD-ROM, a flexible disk (FD), a CD-R, and a DVD (Digital Versatile Disk) in an installable or executable file. .
 以上、本発明の実施形態を例示したが、上記実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。上記実施形態は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, the above embodiment is merely an example, and is not intended to limit the scope of the invention. The above embodiment can be implemented in other various forms, and various omissions, replacements, combinations, and changes can be made without departing from the spirit of the invention. The above embodiments are included in the scope and the gist of the invention, and are also included in the invention described in the claims and the scope equivalent thereto.

Claims (5)

  1.  処理対象の電力設備の仕様情報を取得する電力設備情報取得部と、
     前記電力設備のメンテナンス情報を取得するメンテナンス履歴情報取得部と、
     前記電力設備を含んで構成される電力系統の潮流情報を算出する潮流計算部と、
     前記電力系統が動作する際に予め設定された位置で計測される前記電力系統の状態を示す計測情報を取得する系統情報取得部と、
     前記仕様情報と前記メンテナンス情報と前記潮流情報と前記計測情報とに基づき前記電力設備の劣化状態を推定する設備状態推定部と、
     前記設備状態推定部の推定した推定結果に基づき、当該推定結果と異なる結果が期待できるように前記電力系統の構成状態を変更する系統状態変更部と、
     を備え、
     前記設備状態推定部は、前記系統状態変更部により構成状態が変更されるたびに、前記電力系統における前記電力設備の劣化状態を推定する、電力設備計画支援システム。
    A power equipment information acquisition unit that acquires specification information of the power equipment to be processed;
    A maintenance history information acquisition unit for acquiring maintenance information of the power equipment,
    A power flow calculation unit that calculates power flow information of a power system including the power equipment,
    A system information acquisition unit that acquires measurement information indicating a state of the power system measured at a preset position when the power system operates,
    An equipment state estimation unit that estimates a deterioration state of the power equipment based on the specification information, the maintenance information, the power flow information, and the measurement information,
    Based on the estimation result estimated by the equipment state estimation unit, a system state change unit that changes the configuration state of the power system so that a result different from the estimation result can be expected,
    With
    The power equipment planning support system, wherein the equipment state estimation unit estimates a deterioration state of the power equipment in the power system each time a configuration state is changed by the system state change unit.
  2.  前記設備状態推定部は、前記電力設備の劣化状態に影響を与える影響因子と前記計測情報と前記メンテナンス情報との少なくともいずれか一つに基づき、前記電力設備の故障確率を示す確率モデルを生成する、請求項1に記載の電力設備計画支援システム。 The equipment state estimating unit generates a probability model indicating a failure probability of the power equipment based on at least one of an influencing factor affecting the deterioration state of the power equipment, the measurement information, and the maintenance information. The power facility planning support system according to claim 1.
  3.  前記設備状態推定部は、前記系統状態変更部により前記電力系統の構成状態が変更された場合に、前記影響因子と前記電力設備の劣化状態が関連する確率の変化を推定する、請求項2に記載の電力設備計画支援システム。 3. The facility state estimating unit according to claim 2, wherein when the configuration state of the power system is changed by the system state changing unit, a change in a probability that the influencing factor and the deterioration state of the power equipment are related is estimated. The described power equipment planning support system.
  4.  前記系統状態変更部は、前記電力系統における前記電力設備の設置箇所を変更する、請求項1から請求項3のいずれか1項に記載の電力設備計画支援システム。 4. The power equipment planning support system according to claim 1, wherein the system state changing unit changes an installation location of the power equipment in the power system. 5.
  5.  前記系統状態変更部は、前記電力系統における前記電力設備の接続状態を変更する、請求項1から請求項4のいずれか1項に記載の電力設備計画支援システム。 5. The power equipment planning support system according to claim 1, wherein the system state changing unit changes a connection state of the power equipment in the power grid. 6.
PCT/JP2018/024999 2018-07-02 2018-07-02 Electric power equipment planning assistance system WO2020008490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024999 WO2020008490A1 (en) 2018-07-02 2018-07-02 Electric power equipment planning assistance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024999 WO2020008490A1 (en) 2018-07-02 2018-07-02 Electric power equipment planning assistance system

Publications (1)

Publication Number Publication Date
WO2020008490A1 true WO2020008490A1 (en) 2020-01-09

Family

ID=69059509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024999 WO2020008490A1 (en) 2018-07-02 2018-07-02 Electric power equipment planning assistance system

Country Status (1)

Country Link
WO (1) WO2020008490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195807A1 (en) * 2021-03-18 2022-09-22 東芝エネルギーシステムズ株式会社 Information processing device, information processing method, and program
CN115392809A (en) * 2022-10-31 2022-11-25 北京国电通网络技术有限公司 Power index information generation method, device, electronic device and medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169483A (en) * 2008-01-11 2009-07-30 Hitachi Ltd System for supporting facility life cycle management, facility life cycle management program and one system related with system configuration
JP2010020573A (en) * 2008-07-11 2010-01-28 Hitachi Ltd System for managing life cycle of equipment and method therefor
JP2010027044A (en) * 2008-06-18 2010-02-04 Central Res Inst Of Electric Power Ind Electric power distribution facility maintenance support device, electric power distribution facility maintenance support method and electric power distribution facility support program
JP2011259575A (en) * 2010-06-08 2011-12-22 Hitachi Ltd Power distribution facility deterioration diagnosis device
JP2017135902A (en) * 2016-01-29 2017-08-03 株式会社日立製作所 Power distribution network management system and first management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169483A (en) * 2008-01-11 2009-07-30 Hitachi Ltd System for supporting facility life cycle management, facility life cycle management program and one system related with system configuration
JP2010027044A (en) * 2008-06-18 2010-02-04 Central Res Inst Of Electric Power Ind Electric power distribution facility maintenance support device, electric power distribution facility maintenance support method and electric power distribution facility support program
JP2010020573A (en) * 2008-07-11 2010-01-28 Hitachi Ltd System for managing life cycle of equipment and method therefor
JP2011259575A (en) * 2010-06-08 2011-12-22 Hitachi Ltd Power distribution facility deterioration diagnosis device
JP2017135902A (en) * 2016-01-29 2017-08-03 株式会社日立製作所 Power distribution network management system and first management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195807A1 (en) * 2021-03-18 2022-09-22 東芝エネルギーシステムズ株式会社 Information processing device, information processing method, and program
CN115392809A (en) * 2022-10-31 2022-11-25 北京国电通网络技术有限公司 Power index information generation method, device, electronic device and medium
CN115392809B (en) * 2022-10-31 2022-12-23 北京国电通网络技术有限公司 Power index information generation method and device, electronic equipment and medium

Similar Documents

Publication Publication Date Title
US10389117B2 (en) Dynamic modeling and resilience for power distribution
WO2020008490A1 (en) Electric power equipment planning assistance system
CN108985498A (en) A kind of retired replacing options of cable based on risk assessment
US20150100284A1 (en) Metrics and Semiparametric Model Estimating Failure Rate and Mean time Between Failures
JP5775399B2 (en) Damage evaluation method for lightning protection equipment, damage evaluation equipment for lightning protection equipment, damage evaluation method for transformers, damage evaluation equipment for transformers
KR20180121753A (en) Asset management method for substation
JP2018147234A (en) Maintenance plan creation device and method
Klerx et al. Analyzing parameters that affect the reliability of low-voltage cable grids and their applicability in asset management
CN117196251A (en) Monitoring method, system, equipment and medium for park power distribution facility
CN109932591B (en) Method and device for detecting fault of power equipment
US11520324B2 (en) Apparatus for prediction of the residual lifetime of an electrical system
CN109919390B (en) Method and device for predicting temperature rise of contact point of power equipment
Koksal et al. RCAM model for Turkish National Power Transmission System: SF6 circuit breakers, transmission lines, transformer centers and protection relays
Ridzuan et al. Incorporating regulator requirements in reliability analysis of smart grids. Part 2: Scenarios and results
JP7405707B2 (en) Transformer diagnostic method and system
JP2017522670A (en) Method, apparatus and computer program product for calculating maintenance date of technical equipment based on condition
JP5513348B2 (en) Lightning strike prediction apparatus, method and program
CN112578232B (en) Lightning early warning method and lightning early warning equipment of wind generating set
JP6906349B2 (en) Failure rate calculation device and failure rate calculation method
Vilayphonh et al. Reliability Centered Maintenance for electrical distribution system of Phontong substation in Vientiane Capital
JP6462607B2 (en) Data complementing apparatus and data complementing method
CN117214587B (en) Detection method and detection system for cable equipment
JP5459857B2 (en) Life diagnosis method of power switchgear, diagnosis system and diagnosis program thereof
US20240079895A1 (en) Battery performance monitoring and optimization
Jamieson et al. A simulation framework to analyse dependent weather-induced faults

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP