JP7405707B2 - Transformer diagnostic method and system - Google Patents

Transformer diagnostic method and system Download PDF

Info

Publication number
JP7405707B2
JP7405707B2 JP2020113879A JP2020113879A JP7405707B2 JP 7405707 B2 JP7405707 B2 JP 7405707B2 JP 2020113879 A JP2020113879 A JP 2020113879A JP 2020113879 A JP2020113879 A JP 2020113879A JP 7405707 B2 JP7405707 B2 JP 7405707B2
Authority
JP
Japan
Prior art keywords
transformer
gas
amount
insulating oil
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020113879A
Other languages
Japanese (ja)
Other versions
JP2022012217A (en
Inventor
瑞 小木
明 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020113879A priority Critical patent/JP7405707B2/en
Priority to PCT/JP2021/017926 priority patent/WO2022004139A1/en
Publication of JP2022012217A publication Critical patent/JP2022012217A/en
Application granted granted Critical
Publication of JP7405707B2 publication Critical patent/JP7405707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

本発明は、変圧器の現在の異常や将来的な異常を診断する診断方法および診断システムに関する。 The present invention relates to a diagnostic method and system for diagnosing current abnormalities and future abnormalities in a transformer.

電力系統の整備計画は、10年以上先の電力需要や電源開発等の予測の下に行われている。しかし、近年では、温室効果ガスを排出しない再生可能エネルギ、例えば、太陽光、太陽熱、水力、風力、バイオマス、地熱等の利用が拡大している。また、社会の高齢化や労働人口の減少、情報化社会への移行も進んでいる。そのため、これらの動向に合わせて、電力系統の柔軟な整備が要求されるようになっている。 Power system development plans are made based on forecasts of power demand and power source development for more than 10 years. However, in recent years, the use of renewable energies that do not emit greenhouse gases, such as sunlight, solar heat, hydropower, wind power, biomass, and geothermal heat, has been expanding. Furthermore, society is aging, the working population is decreasing, and the transition to an information society is progressing. Therefore, flexible maintenance of power systems is required in line with these trends.

再生可能エネルギの普及が進んだ場合、電力潮流の適正化がより重要になると予想される。火力発電や原子力発電に加え、風力発電、太陽光発電等が増設されると、特定の電力系統に電力潮流が集中して線路過負荷が生じる可能性がある。電力系統上の機器の状態によっては、電力系統を不安定化させる計画段階で想定していない事象が発生し得るため、機器の異常を事前に予測することが重要になっている。 As renewable energy becomes more widespread, it is expected that optimization of power flow will become more important. When wind power generation, solar power generation, etc. are expanded in addition to thermal power generation and nuclear power generation, there is a possibility that power flow will be concentrated in a specific power system, causing track overload. Depending on the state of equipment on the power system, events that are not anticipated at the planning stage can destabilize the power system, so it is important to predict equipment abnormalities in advance.

電力系統に備えられる変圧器には、油入式や、乾式(モールド式)がある。油入変圧器は、コイルを絶縁油に浸漬させた構造であり、乾式と比較して広く普及している。絶縁油としては、鉱油や植物油等が用いられている。耐電圧性が高い鉱油等を自然対流ないし強制循環させることにより、絶縁性能と冷却性能の両方を満たしている。 There are two types of transformers installed in power systems: oil-immersed type and dry type (molded type). Oil-immersed transformers have a structure in which the coil is immersed in insulating oil, and are more widely used than dry transformers. Mineral oil, vegetable oil, etc. are used as the insulating oil. Both insulation and cooling performance are achieved by natural convection or forced circulation of mineral oil, etc., which has high voltage resistance.

従来、変圧器を保守管理する方法としては、時間計画保全(Time Based Maintenace:TBM)が、採用されている。変圧器の一般的な期待寿命は、30年程度とされている。絶縁油や絶縁材が劣化すると、内部異常の特徴ガスを生じるため、年間に1回程度の油中ガス分析が、電力会社、鉄道会社、一般事業会社等で行われている。 Conventionally, time-based maintenance (TBM) has been adopted as a method for maintaining and managing transformers. The general expected lifespan of a transformer is said to be about 30 years. When insulating oil and insulating materials deteriorate, gases characteristic of internal abnormalities are generated, so gas-in-oil analysis is performed at electric power companies, railway companies, general business companies, etc. about once a year.

非特許文献1には、油入変圧器の保守管理に用いる指標として、絶縁油中で許容されるガスの基準値が記載されている。水素(H)≧400ppm、メタン(CH)≧100ppm、エタン(C)≧150ppm、エチレン(C)≧10ppm、アセチレン(C)≧0.5ppm、一酸化炭素(CO)≧300ppm、可燃性ガス総量(TCG)≧500ppm、のいずれか一つで「要注意I」、C≧0.5ppm、C≧10ppm且つTCG≧500ppmのいずれか一つで「要注意II」、C≧5ppm、C≧100ppm且つTCG≧700ppm、C≧100ppm且つTCG増加量≧70ppm/月のいずれか一つで「異常」と判定される旨が記載されている。 Non-Patent Document 1 describes a standard value of gas allowed in insulating oil as an index used for maintenance management of an oil-immersed transformer. Hydrogen (H 2 )≧400ppm, Methane (CH 4 )≧100ppm, Ethane (C 2 H 6 )≧150ppm, Ethylene (C 2 H 4 )≧10ppm, Acetylene (C 2 H 2 )≧0.5ppm, Monoxide Either carbon (CO) ≧300ppm, total combustible gas (TCG) ≧500ppm, “Caution required I”, C 2 H 2 ≧0.5ppm, C 2 H 4 ≧10ppm and TCG ≧500ppm. "Caution required II" for one of the following, "Abnormal" for any one of C 2 H 2 ≥ 5 ppm, C 2 H 4 ≥ 100 ppm and TCG ≥ 700 ppm, and C 2 H 4 ≥ 100 ppm and TCG increase ≥ 70 ppm/month. ”.

一般社団法人電気協同研究会、「電気協同研究」、第54巻、第5号(その1)「油入変圧器の保守管理」Electric Cooperative Research Association, “Electric Cooperative Research”, Volume 54, No. 5 (Part 1) “Maintenance and Management of Oil-immersed Transformers”

従来の変圧器の保守管理の方法によると、TBMによる油中ガス分析を実施するため、絶縁油を採取した時点で絶縁油中に生成していたガスの量については知ることができる。そのため、絶縁油や絶縁材の現在の劣化の状態から、変圧器の現在の異常の有無を診断することができる。また、変圧器の平均的な運転寿命は知られているため、現在の劣化の状態から、その後に運転可能な余寿命についても予測することができる。 According to the conventional method of maintenance and management of transformers, since gas in oil analysis is performed using TBM, it is possible to know the amount of gas generated in the insulating oil at the time the insulating oil is sampled. Therefore, it is possible to diagnose whether there is a current abnormality in the transformer based on the current state of deterioration of the insulating oil or insulating material. Furthermore, since the average operational life of the transformer is known, the remaining operational life can be predicted from the current state of deterioration.

しかし、従来の保守管理の方法では、変圧器に起こる将来的な異常を予測することができないという問題がある。変圧器の運転寿命は、絶縁油や絶縁材の経年劣化や、偶発的な異常等によって左右されるが、実際には、経年劣化で寿命が尽きる事例は少ない傾向である。 However, conventional maintenance management methods have a problem in that they cannot predict future abnormalities that will occur in transformers. The operating life of a transformer is affected by aging deterioration of the insulating oil and insulating material, accidental abnormalities, etc., but in reality, there are very few cases where the life of a transformer ends due to aging.

変圧器の故障は異常が進展したときに起こり易いと考えられるため、電力系統を安定的に運用するためには、偶発的な故障に繋がる異常を事前に予測することが望まれる。偶発的な故障に繋がる異常を事前に予測することができれば、修理、点検等を実施することにより、故障による運転停止を未然に防ぐことが可能になる。しかし、偶発的な故障に繋がる現在の異常を把握する方法は知られているが、将来の異常を正確に把握する方法は従来知られていない。 It is thought that transformer failures are likely to occur when abnormalities progress, so in order to operate power systems stably, it is desirable to predict abnormalities that may lead to accidental failures in advance. If abnormalities that can lead to accidental failures can be predicted in advance, it becomes possible to prevent operation stoppages due to failures by carrying out repairs, inspections, etc. However, although methods are known for determining current abnormalities that may lead to accidental failures, there has been no known method for accurately determining future abnormalities.

今後、再生可能エネルギの普及が進み、電力系統上の電源が多様化した場合、整備計画で想定していない瞬時負荷変動や高調波電流による故障が増加する可能性がある。従来の保守管理の方法では、TBMによる油中ガス分析を行うため、故障に繋がる異常が確認された場合であっても、変圧器を停止する措置等を速やか実行することが難しい。そのため、変圧器の故障に繋がる前兆現象としての現在の異常や将来の異常を正確に把握する手段が求められている。 In the future, if renewable energy becomes more widespread and the power sources on the power system become more diverse, there is a possibility that failures due to instantaneous load fluctuations and harmonic currents that are not anticipated in maintenance plans will increase. In conventional maintenance management methods, gas in oil analysis is performed using TBM, so even if an abnormality leading to a failure is confirmed, it is difficult to promptly take measures such as stopping the transformer. Therefore, there is a need for a means to accurately grasp current abnormalities and future abnormalities as precursory phenomena that lead to transformer failure.

そこで、本発明は、変圧器の故障に繋がる現在の異常と将来の異常を診断することができる診断方法および診断システムを提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a diagnostic method and system capable of diagnosing current abnormalities and future abnormalities that may lead to a failure of a transformer.

すなわち、前記課題を解決するために本発明に係る診断方法は、変圧器の異常を診断する診断方法であって、変圧器の絶縁油中のガスの量を経時的に計測する工程と、変圧器の運転時間が前記変圧器の故障率曲線における故障率の変化の傾向に応じて複数の期間に区分けされた変圧器の運転期間毎に、計測された前記絶縁油中ガスの量に基づいて、時間を独立変数、変圧器の絶縁油中のガスの量を従属変数とした回帰分析を行い、前記変圧器の運転時間と前記絶縁油中のガスの量との関係を表す近似関数を求める工程と、前記変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、前記近似関数に基づいて推定された前記絶縁油中ガスの量と比較する工程と、を含み、前記変圧器の運転期間は、前記変圧器の故障率曲線における故障率が経時的に減少する初期故障期、前記変圧器の故障率曲線における故障率が定常である偶発故障期、および、前記変圧器の故障率曲線における故障率が経時的に増加する摩耗故障期のうち、いずれかとして設定された期間である
That is, in order to solve the above problems, the diagnostic method according to the present invention is a diagnostic method for diagnosing an abnormality in a transformer, and includes a step of measuring the amount of gas in the insulating oil of the transformer over time ; Based on the amount of gas in the insulating oil measured for each operating period of the transformer, the operating time of the transformer is divided into a plurality of periods according to the tendency of change in failure rate in the failure rate curve of the transformer. Then , a regression analysis was performed with time as an independent variable and the amount of gas in the insulating oil of the transformer as a dependent variable , and an approximate function representing the relationship between the operating time of the transformer and the amount of gas in the insulating oil was calculated. and a step of comparing the amount of gas in the insulating oil of the transformer with the amount of gas in the insulating oil estimated based on the approximation function for each operating period of the transformer. The operation period of the transformer includes an initial failure period in which the failure rate in the failure rate curve of the transformer decreases over time, an occasional failure period in which the failure rate in the failure rate curve of the transformer is steady, and This is a period set as one of the wear-out failure periods in which the failure rate in the failure rate curve of the transformer increases over time .

また、本発明に係る診断システムは、変圧器の異常を診断する診断システムであって、変圧器の運転時間が前記変圧器の故障率曲線における故障率の変化の傾向に応じて複数の期間に区分けされた変圧器の運転期間毎に、経時的に計測された変圧器の絶縁油中のガスの量に基づいて、時間を独立変数、変圧器の絶縁油中のガスの量を従属変数とした回帰分析を行い、前記変圧器の運転時間と前記絶縁油中のガスの量との関係を表す近似関数を求める回帰分析部と、前記変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、前記近似関数に基づいて推定された前記絶縁油中ガスの量と比較する診断部と、を備え、前記変圧器の運転期間は、前記変圧器の故障率曲線における故障率が経時的に減少する初期故障期、前記変圧器の故障率曲線における故障率が定常である偶発故障期、および、前記変圧器の故障率曲線における故障率が経時的に増加する摩耗故障期のうち、いずれかとして設定された期間であるFurther, the diagnostic system according to the present invention is a diagnostic system for diagnosing an abnormality in a transformer, and the operating time of the transformer is divided into a plurality of periods according to a tendency of change in failure rate in a failure rate curve of the transformer. Based on the amount of gas in the insulating oil of the transformer measured over time for each operating period of the divided transformer , we set time as the independent variable and the amount of gas in the insulating oil of the transformer as the dependent variable. a regression analysis unit that performs regression analysis to calculate an approximate function representing the relationship between the operating time of the transformer and the amount of gas in the insulating oil; a diagnostic unit that compares the amount of gas in the insulating oil with the amount of gas in the insulating oil estimated based on the approximation function, an early failure period in which the failure rate decreases over time, a random failure period in which the failure rate in the failure rate curve of the transformer is steady, and a wear-out failure period in which the failure rate in the failure rate curve of the transformer increases over time. This is the period set as one of the following .

本発明によると、変圧器の故障に繋がる現在の異常と将来の異常を診断することができる診断方法および診断システムを提供することができる。 According to the present invention, it is possible to provide a diagnostic method and a diagnostic system that can diagnose current abnormalities and future abnormalities that lead to transformer failure.

本発明の第1実施形態に係る診断システムの構成を示す図である。1 is a diagram showing the configuration of a diagnostic system according to a first embodiment of the present invention. 変圧器の絶縁油中のガスの量を経時的に計測した結果を示す図である。It is a figure showing the result of measuring the amount of gas in the insulating oil of a transformer over time. 変圧器の絶縁油中のガスの量を経時的に計測した結果を示す図である。It is a figure showing the result of measuring the amount of gas in the insulating oil of a transformer over time. 一般的な変圧器の故障率曲線を示す図である。FIG. 3 is a diagram showing a failure rate curve of a general transformer. 初期故障期の範囲で求められる近似関数を説明する図である。It is a figure explaining the approximation function calculated|required in the range of an early failure period. 偶発故障期の範囲で求められる近似関数を説明する図である。FIG. 3 is a diagram illustrating an approximation function obtained within a range of random failure periods. 摩耗故障期の範囲で求められる近似関数を説明する図である。FIG. 3 is a diagram illustrating an approximation function obtained within a wear-out failure period range. 変圧器の異常を診断する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of diagnosing abnormality of a transformer. 本発明の第2実施形態に係る診断システムを示す図である。It is a figure showing the diagnostic system concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る診断システムの構成を示す図である。It is a figure showing the composition of the diagnostic system concerning a 2nd embodiment of the present invention. 複数の変圧器で得られた計測データに基づく計測データベースの一例を示す図である。FIG. 3 is a diagram showing an example of a measurement database based on measurement data obtained from a plurality of transformers. 複数の変圧器の異常を診断する処理の一例を示すフローチャートである。2 is a flowchart illustrating an example of a process for diagnosing abnormalities in a plurality of transformers.

以下、本発明の一実施形態に係る診断方法および診断システムについて説明する。なお、以下の各図において、共通する構成については同一の符号を付して重複した説明を省略する。 A diagnosis method and a diagnosis system according to an embodiment of the present invention will be described below. In addition, in each of the following figures, common components are given the same reference numerals and redundant explanations will be omitted.

本実施形態に係る診断方法は、変圧器の異常を診断する方法に関する。変圧器の異常の診断には、変圧器に生じている現在の異常の診断、および、変圧器に生じる将来の異常の予測が含まれる。診断対象の変圧器は、油入変圧器であるが、絶縁媒体である絶縁油の種類、絶縁材の種類、変圧器の定格容量や定格電圧等は、特に限定されるものではない。 The diagnostic method according to this embodiment relates to a method for diagnosing abnormality in a transformer. Diagnosis of abnormalities in a transformer includes diagnosing current abnormalities occurring in the transformer and predicting future abnormalities occurring in the transformer. Although the transformer to be diagnosed is an oil-immersed transformer, the type of insulating oil that is the insulating medium, the type of insulating material, the rated capacity and rated voltage of the transformer, etc. are not particularly limited.

変圧器の異常としては、絶縁媒体や絶縁材の交換が必要な事象、変圧器の運転の停止が必要な事象、これらの前兆現象等が挙げられる。変圧器の異常の具体例としては、絶縁媒体や絶縁材の絶縁性の低下ないし絶縁破壊、コイルの短絡や過熱、絶縁媒体の流動帯電現象の進行、部分放電の発生等が挙げられる。 Examples of abnormalities in transformers include events that require replacement of the insulating medium or insulating material, events that require stopping the operation of the transformer, and precursory phenomena thereof. Specific examples of transformer abnormalities include a decrease in the insulation properties or dielectric breakdown of the insulating medium or insulating material, a short circuit or overheating of the coil, progression of the flow charging phenomenon of the insulating medium, and occurrence of partial discharge.

本実施形態に係る診断方法は、変圧器の絶縁油中のガスの量を経時的に計測する工程と、変圧器の運転期間毎に、計測された油中ガスの量に基づいて回帰分析を行い、ガスの単位時間当たりの増加量を表す近似関数を求める工程と、変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、近似関数に基づいて推定された油中ガスの量と比較する工程と、を含む。 The diagnosis method according to the present embodiment includes a step of measuring the amount of gas in the insulating oil of a transformer over time, and a regression analysis based on the measured amount of gas in the oil for each operating period of the transformer. the amount of gas in the insulating oil of the transformer estimated based on the approximation function. and comparing the amount of.

本実施形態に係る診断方法では、変圧器に封入されている絶縁油を対象として、経時的な油中ガス分析を実施して、絶縁油中のガスの量を経時的に計測する。そして、経時的に計測された計測結果を回帰分析し、変圧器に生じる異常の傾向を把握することにより、状態監視保全(Condition Based Maintenance:CBM)用の保守管理を可能にする。 In the diagnostic method according to the present embodiment, gas in oil analysis is performed over time on insulating oil sealed in a transformer, and the amount of gas in the insulating oil is measured over time. Then, by regression-analyzing the measurement results measured over time and grasping the tendency of abnormalities occurring in the transformer, maintenance management for condition-based maintenance (CBM) is enabled.

油中ガス分析の計測結果からは、時間を独立変数、油中ガスの量を従属変数とした回帰分析を行うことにより、油中ガスの単位時間当たりの増加量(増加速度)を表す近似関数が求められる。近似関数は、絶縁媒体や絶縁材の経年劣化による影響や、繰り返し異常の蓄積による影響を反映しているといえる。近似関数からは、現在の油中ガスの量の測定値や、将来の油中ガスの量の予測値が、過去の経年劣化や過去の繰り返し異常と同様の傾向にあるか否かが分かる。 From the measurement results of gas-in-oil analysis, by performing regression analysis with time as an independent variable and the amount of gas in oil as a dependent variable, an approximate function representing the amount of increase (increase rate) of gas in oil per unit time can be calculated. is required. It can be said that the approximate function reflects the effects of aging deterioration of the insulating medium and insulating material, as well as the effects of accumulation of repeated abnormalities. From the approximation function, it can be determined whether the current measured value of the amount of gas in oil and the predicted value of the future amount of gas in oil have the same tendency as past aging deterioration or past repeated abnormalities.

そのため、変圧器の絶縁油中のガスの量の計測値が、近似関数から推定される現在の油中ガスの量の推定値から逸脱しているかどうかを判定することにより、現在における偶発的な異常の有無を診断することができる。また、近似関数から推定される将来の油中ガスの量の推定値が、変圧器の絶縁油中のガスの量として許容される上限値から逸脱しているかどうかを判定することにより、従来予測が困難であった将来の異常の可能性を診断することができる。 Therefore, by determining whether the measured amount of gas in the transformer's insulating oil deviates from the current estimate of the amount of gas in the oil estimated from the approximation function, It is possible to diagnose the presence or absence of an abnormality. In addition, by determining whether the estimated value of the future amount of gas in oil estimated from the approximate function deviates from the upper limit allowed for the amount of gas in the insulating oil of the transformer, the conventional prediction It is possible to diagnose the possibility of future abnormalities, which was previously difficult.

変圧器の現在の異常を診断する場合、油中ガスの単位時間当たりの増加量を表す近似関数に、現在の変圧器の運転時間を代入して、現在の油中ガスの量の推定値を求める。そして、同一の運転時間に対応している変圧器の絶縁油中のガスの量の現在の計測値を、近似関数に基づいて推定された油中ガスの量の推定値と比較する。 When diagnosing a current abnormality in a transformer, the estimated value of the current amount of gas in oil can be obtained by substituting the current operating time of the transformer into the approximate function that represents the increase in the amount of gas in oil per unit time. demand. Then, the current measured value of the amount of gas in the insulating oil of the transformer corresponding to the same operating time is compared with the estimated value of the amount of gas in the oil estimated based on the approximation function.

比較の結果、変圧器の絶縁油中のガスの量の計測値が、近似関数に基づいて推定された油中ガスの量の推定値に対して、予め設定されている所定値以上になったとき、当該変圧器に異常が生じている旨の判定を行うことができる。このような場合、変圧器の運用者に警告を表示、通知等して、絶縁油や絶縁材の交換や、変圧器の運転の停止を行う。 As a result of the comparison, the measured value of the amount of gas in the insulating oil of the transformer exceeds a predetermined value with respect to the estimated value of the amount of gas in the oil estimated based on the approximation function. In this case, it can be determined that an abnormality has occurred in the transformer. In such a case, a warning is displayed or notified to the transformer operator, and the insulating oil or insulation material is replaced or the transformer operation is stopped.

また、変圧器の将来の異常を診断する場合、油中ガスの単位時間当たりの増加量を表す近似関数に、将来の変圧器の運転時間を代入して、将来の油中ガスの量の推定値を求める。そして、近似関数に基づいて推定された油中ガスの量の推定値を、同一の運転時間に対応している変圧器の絶縁油中のガスの量の上限値と比較する。 In addition, when diagnosing future abnormalities in a transformer, the future amount of gas in oil can be estimated by substituting the future operating time of the transformer into an approximate function that represents the increase in the amount of gas in oil per unit time. Find the value. Then, the estimated value of the amount of gas in the oil estimated based on the approximate function is compared with the upper limit value of the amount of gas in the insulating oil of the transformer corresponding to the same operating time.

比較の結果、近似関数に基づいて推定された油中ガスの量の推定値が、変圧器の絶縁油中のガスの量の上限値に対して、予め設定されている所定値以上になったとき、当該変圧器に将来的に異常が生じる旨の判定を行うことができる。このような場合、変圧器の運用者に警告を表示、通知等して、変圧器の検査や、絶縁油や絶縁材の交換や、変圧器の運転の停止を行う。 As a result of the comparison, the estimated value of the amount of gas in oil estimated based on the approximation function is greater than or equal to a preset value with respect to the upper limit of the amount of gas in insulating oil of the transformer. In this case, it can be determined that an abnormality will occur in the transformer in the future. In such a case, a warning is displayed or notified to the transformer operator, and the transformer is inspected, the insulating oil and insulating material are replaced, and the transformer operation is stopped.

判定のために用いる所定値は、油中ガスの量の測定誤差や、油中ガスの量の自然変動を超える範囲において、油中ガスの種類に応じて、任意に設定することができる。所定値としては、近似関数に基づいて推定された油中ガスの量の推定値に対して20%以上の値であることが好ましい。一般に、変圧器の装置誤差や測定誤差は、最大で約20%あるといわれている。そのため、近似関数が示す油中ガスの量に対して20%以上の値を設定すると、誤診断を抑制することができる。 The predetermined value used for the determination can be arbitrarily set according to the type of gas in oil within a range that exceeds measurement errors in the amount of gas in oil and natural fluctuations in the amount of gas in oil. The predetermined value is preferably a value that is 20% or more of the estimated value of the amount of gas in oil estimated based on the approximation function. Generally, it is said that the equipment error and measurement error of a transformer is about 20% at most. Therefore, if a value of 20% or more is set for the amount of gas in oil indicated by the approximation function, misdiagnosis can be suppressed.

次に、本実施形態に係る診断方法を用いる診断システムについて、診断方法の詳細と共に、図を参照しながら説明する。 Next, a diagnostic system using the diagnostic method according to the present embodiment will be described with reference to the drawings and the details of the diagnostic method.

図1は、本発明の第1実施形態に係る診断システムの構成を示す図である。
図1に示すように、本実施形態に係る診断システム100は、変圧器の異常を診断する処理を行う演算部10と、診断の処理に用いるデータを格納する記憶部20と、入力部30と、表示部40と、通信部50と、を備えている。
FIG. 1 is a diagram showing the configuration of a diagnostic system according to a first embodiment of the present invention.
As shown in FIG. 1, the diagnostic system 100 according to the present embodiment includes a calculation unit 10 that performs processing for diagnosing an abnormality in a transformer, a storage unit 20 that stores data used for diagnostic processing, and an input unit 30. , a display section 40, and a communication section 50.

診断システム100は、前記の診断方法を実行する機能を備えた装置であり、変圧器の現在の異常や将来の異常の診断に用いられる。診断対象である変圧器は、油入変圧器であり、診断システム100から離れた電力系統上に設置されている。 The diagnostic system 100 is a device that has a function of executing the above-described diagnostic method, and is used to diagnose current abnormalities and future abnormalities in the transformer. The transformer to be diagnosed is an oil-immersed transformer, and is installed on the power system away from the diagnostic system 100.

診断システム100は、変圧器の絶縁油中のガスの量を表す一つの入力に対して、変圧器の異常の診断結果を出力するように構成される。診断システム100は、変圧器の絶縁油中のガスの量を表す計測データを、計測値の読み取りにより手動で入力する構成とされてもよいし、ガスセンサから通信回線を介して入力する構成とされてもよい。 The diagnostic system 100 is configured to output a diagnosis result of a transformer abnormality in response to one input representing the amount of gas in the insulating oil of the transformer. The diagnostic system 100 may be configured to input measurement data representing the amount of gas in the insulating oil of the transformer manually by reading measured values, or may be configured to input measurement data from a gas sensor via a communication line. It's okay.

診断システム100とガスセンサを接続する回線は、有線通信回線および無線通信回線のいずれであってもよい。また、計測データを手動で入力する場合、計測データは、変圧器に取り付けたガスセンサで取得してもよいし、変圧器の絶縁油をサンプリングして分析装置等で取得してもよい。 The line connecting the diagnostic system 100 and the gas sensor may be either a wired communication line or a wireless communication line. Further, when manually inputting the measurement data, the measurement data may be acquired by a gas sensor attached to the transformer, or the insulating oil of the transformer may be sampled and acquired by an analyzer or the like.

油中ガス分析の対象ガスとしては、メタン、アセチレン、エチレン、エタン、水素、一酸化炭素および二酸化炭素のうち、一種以上を分析することが好ましい。対象ガスとしては、メタン、水素および二酸化炭素のうち、一種以上を分析することがより好ましく、少なくとも水素を分析することが更に好ましい。 As target gases for gas-in-oil analysis, it is preferable to analyze one or more of methane, acetylene, ethylene, ethane, hydrogen, carbon monoxide, and carbon dioxide. As the target gas, it is more preferable to analyze one or more of methane, hydrogen, and carbon dioxide, and it is even more preferable to analyze at least hydrogen.

これらのガスは、絶縁油や絶縁紙が異常放電や異常過熱で熱分解されたり、絶縁油や絶縁紙が経年劣化を起こしたりすると、絶縁油中における濃度が上昇する。メタン、アセチレン、エチレン、エタンおよび水素は、主に絶縁油の劣化に由来することが知られている。一酸化炭素および二酸化炭素は、主に絶縁材である絶縁紙やプレスボードの劣化に由来することが知られている。 The concentration of these gases in the insulating oil increases when the insulating oil or insulating paper is thermally decomposed due to abnormal electrical discharge or overheating, or when the insulating oil or insulating paper deteriorates over time. It is known that methane, acetylene, ethylene, ethane and hydrogen are mainly derived from the deterioration of insulating oil. It is known that carbon monoxide and carbon dioxide mainly originate from the deterioration of insulating materials such as insulating paper and pressboard.

そのため、これらのガスの量を計測すると、絶縁油や絶縁材の現在の状態や、変圧器の内部で過去に生じた異常の程度が分かる。すなわち、現在の油中ガスの量から、変圧器に生じている現在の異常を診断することができる。また、現在までの油中ガスの単位時間当たりの増加量の傾向から、将来の状態を推定することができるため、変圧器に生じる将来の異常も診断することができる。 Therefore, by measuring the amount of these gases, it is possible to determine the current condition of the insulating oil and insulation material, as well as the extent of abnormalities that have occurred inside the transformer in the past. That is, the current abnormality occurring in the transformer can be diagnosed from the current amount of gas in oil. Furthermore, since the future state can be estimated from the trend of the increase in the amount of gas in oil per unit time up to the present, it is also possible to diagnose future abnormalities that may occur in the transformer.

図2および図3は、変圧器の絶縁油中のガスの量を経時的に計測した結果を示す図である。
図2および図3には、絶縁媒体である鉱油と絶縁材である絶縁紙を用いた油入変圧器の油中ガス分析の結果を示している。図2および図3において、横軸は、変圧器の運転時間[年]、縦軸は、ガス量(濃度)[ppm]を示す。
FIGS. 2 and 3 are diagrams showing the results of measuring the amount of gas in the insulating oil of a transformer over time.
2 and 3 show the results of gas-in-oil analysis of an oil-immersed transformer using mineral oil as an insulating medium and insulating paper as an insulating material. In FIGS. 2 and 3, the horizontal axis shows the operating time of the transformer [years], and the vertical axis shows the gas amount (concentration) [ppm].

図2の〇は、アセチレン(C)の結果、△は、メタン(CH)の結果、□は、エタン(C)の結果、◇は、エチレン(C)の結果である。図3の□は、二酸化炭素(CO)の結果、◇は、一酸化炭素(CO)の結果、〇は、水素(H)の結果である。 In Figure 2, ○ is the result of acetylene (C 2 H 2 ), △ is the result of methane (CH 4 ), □ is the result of ethane (C 2 H 6 ), and ◇ is the result of ethylene (C 2 H 4 ). This is the result. In FIG. 3, □ is the result for carbon dioxide (CO 2 ), ◇ is the result for carbon monoxide (CO), and ○ is the result for hydrogen (H 2 ).

図2および図3に示すように、変圧器の運転を続けると、変圧器の定格容量や定格電圧、絶縁媒体や絶縁材の種類、異常の原因の種類等に応じて、ガスの量が上昇する。ガスの量の上昇は、ガスの種類毎に起こり、上昇の程度も互いに異なる。但し、偶発的な異常は、経年劣化とは異なり、比較的急激な変化として起こるため、短時間でガスの量の大きな変化をもたらす。 As shown in Figures 2 and 3, as the transformer continues to operate, the amount of gas increases depending on the rated capacity and rated voltage of the transformer, the type of insulating medium and material, the type of cause of the abnormality, etc. do. The amount of gas increases depending on the type of gas, and the degree of increase also differs from one another. However, unlike aging deterioration, an accidental abnormality occurs as a relatively rapid change, resulting in a large change in the amount of gas in a short period of time.

そのため、油中ガスの種類毎に油中ガスの単位時間当たりの増加量を表す近似関数を求めると、近似関数に基づいて推定された油中ガスの量の推定値との差によって、経年劣化以外の要因による異常を診断することができる。また、油中ガスの種類毎の比較の結果は、特徴的なパターンを示すため、異常の原因の種類を推定することができる。 Therefore, when an approximate function representing the increase in the amount of gas in oil per unit time is obtained for each type of gas in oil, the difference between the estimated value of the amount of gas in oil and the amount estimated based on the approximate function causes aging degradation. It is possible to diagnose abnormalities caused by other factors. Furthermore, the results of the comparison for each type of gas in oil show a characteristic pattern, so it is possible to estimate the type of cause of the abnormality.

本実施形態に係る診断方法や診断システム100において、油中ガスの単位時間当たりの増加量を表す近似関数は、変圧器の運転期間毎に求められる。回帰分析の対象範囲とする変圧器の運転期間としては、変圧器の故障率の時間変化の傾向に基づいて設定された期間、例えば、故障率曲線に基づいて設定された期間を用いることができる。 In the diagnostic method and diagnostic system 100 according to the present embodiment, an approximate function representing the amount of increase in gas in oil per unit time is determined for each operating period of the transformer. As the operating period of the transformer that is the target range of the regression analysis, a period set based on the trend of time change in the failure rate of the transformer, for example, a period set based on the failure rate curve can be used. .

図4は、一般的な変圧器の故障率曲線を示す図である。
図4において、横軸は、変圧器の運転時間、縦軸は、変圧器の故障率[%]を示す。破線は、変圧器の設計や製造に原因がある初期故障の故障率、一点鎖線は、変圧器に偶発的に起こる偶発故障の故障率、二点鎖線は、摩耗等の経年劣化に原因がある摩耗故障の故障率を表す。実線は、これらを合わせた故障率曲線を表す。
FIG. 4 is a diagram showing a failure rate curve of a typical transformer.
In FIG. 4, the horizontal axis shows the operating time of the transformer, and the vertical axis shows the failure rate [%] of the transformer. The broken line shows the failure rate for early failures caused by transformer design and manufacturing, the one-dot chain line shows the failure rate for random failures that occur accidentally in the transformer, and the two-dot chain line shows the failure rate due to aging such as wear and tear. Represents the failure rate of wear-out failures. The solid line represents the combined failure rate curve.

図4に示すように、一般的な変圧器が単位時間内に故障を起こす確率は、運転時間に依存した特徴的な傾向を示し、バスタブ状の故障率曲線で表されることが知られている。故障率曲線は、故障率の変化の傾向に応じて、3つの領域に分けることができる。故障率が経時的に減少する最初の期間は、初期故障期、故障率が定常である中間の期間は、偶発故障期、故障率が経時的に増加する最後の期間は、摩耗故障期と呼ばれる。 As shown in Figure 4, it is known that the probability that a typical transformer will fail within a unit time shows a characteristic tendency that depends on operating time, and is expressed by a bathtub-shaped failure rate curve. There is. The failure rate curve can be divided into three regions depending on the tendency of change in failure rate. The first period in which the failure rate decreases over time is called the early failure period, the intermediate period in which the failure rate is steady is called the random failure period, and the final period in which the failure rate increases over time is called the wear-out failure period. .

図5は、初期故障期の範囲で求められる近似関数を説明する図である。図6は、偶発故障期の範囲で求められる近似関数を説明する図である。図7は、摩耗故障期の範囲で求められる近似関数を説明する図である。
図5~図7において、横軸は、変圧器の運転時間[年]、縦軸は、油中ガス量(濃度)[ppm]を示す。実線は、絶縁油中のガスの量を経時的に計測した結果であり、破線は、計測結果を回帰分析して得られる近似関数、すなわち、油中ガスの単位時間当たりの増加量を表す近似関数である。
FIG. 5 is a diagram illustrating an approximation function determined within the range of the initial failure period. FIG. 6 is a diagram illustrating an approximation function obtained within the range of the random failure period. FIG. 7 is a diagram illustrating an approximation function obtained within the wear-out failure period range.
In FIGS. 5 to 7, the horizontal axis shows the operating time of the transformer [years], and the vertical axis shows the amount (concentration) of gas in oil [ppm]. The solid line is the result of measuring the amount of gas in the insulating oil over time, and the broken line is an approximation function obtained by regression analysis of the measurement results, that is, an approximation representing the increase in the amount of gas in the oil per unit time. It is a function.

図5~図7に示すように、油中ガスの単位時間当たりの増加量を表す近似関数は、変圧器の運転期間毎に、線形回帰によって求めることができる。線形回帰による1次の近似関数は、Y=aX+bのように表される。係数a,bは、油中ガスの種類毎、且つ、変圧器の運転期間毎に求められる。このような近似関数を求める線形回帰の方法としては、例えば、最小二乗法を用いることができる。 As shown in FIGS. 5 to 7, an approximate function representing the amount of increase in gas in oil per unit time can be obtained by linear regression for each operating period of the transformer. A first-order approximation function by linear regression is expressed as Y=aX+b. The coefficients a and b are determined for each type of gas in oil and for each operating period of the transformer. As a linear regression method for obtaining such an approximate function, for example, the least squares method can be used.

変圧器の初期故障期としては、変圧器の定格容量や定格電圧等にもよるが、変圧器の運転開始時から3年以上6年以内までの期間が挙げられる。初期故障期は、変圧器の故障率が経時的に減少する期間であり、油中ガスの単位時間当たりの増加量が比較的小さい傾向を示す。油中ガスの種類毎の油中ガスの量の差は、初期の脱気条件等にもよるが、通常、小さくなる。図5においては、運転時間5年までの期間を初期故障期としている。 The initial failure period of a transformer includes a period of 3 to 6 years from the start of operation of the transformer, depending on the rated capacity, rated voltage, etc. of the transformer. The initial failure period is a period in which the failure rate of the transformer decreases over time, and the amount of increase in gas in oil per unit time tends to be relatively small. Although the difference in the amount of gas in oil for each type of gas in oil depends on the initial degassing conditions, etc., it is usually small. In FIG. 5, the period up to 5 years of operating time is defined as the initial failure period.

変圧器の偶発故障期としては、変圧器の定格容量や定格電圧等にもよるが、初期故障期の終了時から20年以上30年以内までの期間が挙げられる。偶発故障期は、変圧器の故障率が定常である期間であり、偶発的な異常に応じて、油中ガスの単位時間当たりの増加量が拡大し始める傾向を示す。図6においては、運転時間5~25年までの期間を偶発故障期としている。 The random failure period of a transformer includes a period of 20 to 30 years from the end of the initial failure period, although it depends on the rated capacity, rated voltage, etc. of the transformer. The random failure period is a period in which the failure rate of the transformer is steady, and the amount of increase in gas in oil per unit time tends to increase in response to random abnormalities. In FIG. 6, the period from 5 to 25 years of operating time is defined as the random failure period.

変圧器の摩耗故障期としては、偶発故障期の終了時以後の期間が挙げられる。摩耗故障期は、変圧器の故障率が経時的に増加する期間であり、油中ガスの単位時間当たりの増加量が比較的大きい傾向を示す。油中ガスの種類毎の油中ガスの量の差は、経年劣化による影響や、異常の蓄積による影響に応じて、拡大する傾向を示す。図7においては、運転時間25~30年までの期間を摩耗故障期としている。 The wear-out failure period of a transformer includes the period after the end of the random failure period. The wear-out failure period is a period in which the failure rate of the transformer increases over time, and the amount of increase in gas in oil per unit time tends to be relatively large. The difference in the amount of gas in oil for each type of gas in oil tends to increase depending on the effects of aging and accumulation of abnormalities. In FIG. 7, the period from 25 to 30 years of operating time is defined as the wear-out failure period.

回帰分析の対象範囲とする変圧器の運転期間として、このように区分けされた故障率曲線に基づいて設定された期間を用いると、変圧器の運転期間毎に、異常の原因が絞られた近似関数が得られる。偶発的な異常の診断を正確に行える近似関数が得られるため、変圧器の故障に繋がる現在の異常や、変圧器の故障に繋がる将来の異常を、より正確に診断することができる。 If the period set based on the failure rate curve divided in this way is used as the operating period of the transformer that is the target range of regression analysis, an approximation that narrows down the causes of abnormalities for each operating period of the transformer can be made. A function is obtained. Since an approximate function that can accurately diagnose accidental abnormalities is obtained, it is possible to more accurately diagnose current abnormalities that lead to transformer failure and future abnormalities that lead to transformer failure.

図1に示すように、診断システム100において、演算部10、記憶部20、入力部30、表示部40および通信部50は、バスに接続されている。 As shown in FIG. 1, in the diagnostic system 100, the calculation section 10, the storage section 20, the input section 30, the display section 40, and the communication section 50 are connected to a bus.

演算部10は、データ取得部11と、一次診断部12と、回帰分析部13と、推定部14と、診断部15と、画像生成部16と、を備えている。これらの機能は、演算部10が所定のプログラムを実行することにより具現化される。 The calculation unit 10 includes a data acquisition unit 11, a primary diagnosis unit 12, a regression analysis unit 13, an estimation unit 14, a diagnosis unit 15, and an image generation unit 16. These functions are realized by the calculation unit 10 executing a predetermined program.

また、記憶部20は、油中ガスの量の計測データ21と、診断条件データ22と、運転期間データ23と、近似関数データ24と、推定データ25と、診断結果データ26と、を格納する。診断条件データ22および運転期間データ23は、予め診断システム100に入力される。 The storage unit 20 also stores measurement data 21 of the amount of gas in oil, diagnostic condition data 22, operating period data 23, approximate function data 24, estimated data 25, and diagnostic result data 26. . The diagnostic condition data 22 and the operating period data 23 are input into the diagnostic system 100 in advance.

演算部10は、各種のデータやプログラムの読み取り、変圧器の異常の診断のためのプログラムの実行、演算等を行う。演算部10は、例えば、CPU(Central Processing Unit)等の演算装置や、RAM(Random Access Memory)、ROM(Read Only Memory)等の記憶装置によって構成される。演算部10は、IC、コンピュータ、演算用サーバ、クラウド等の適宜のハードウェアによって構成することができる。 The calculation unit 10 reads various data and programs, executes programs for diagnosing abnormalities in the transformer, performs calculations, and the like. The calculation unit 10 is configured by, for example, a calculation device such as a CPU (Central Processing Unit), and a storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory). The calculation unit 10 can be configured with appropriate hardware such as an IC, a computer, a calculation server, and a cloud.

記憶部20は、変圧器の異常の診断のための各種のデータやプログラムを格納する。記憶部20は、例えば、ROM、ハードディスク、フラッシュメモリ、磁気ディスク、光学ディスク等の記憶装置によって構成される。記憶部20は、一つのハードウェアで構成されてもよいし、複数のハードウェアで構成されてもよい。記憶部20の機能の一部または全部は、外部の記憶装置等によって実現されてもよい。 The storage unit 20 stores various data and programs for diagnosing abnormalities in the transformer. The storage unit 20 is configured by a storage device such as a ROM, a hard disk, a flash memory, a magnetic disk, an optical disk, etc., for example. The storage unit 20 may be composed of one piece of hardware, or may be composed of a plurality of pieces of hardware. A part or all of the functions of the storage unit 20 may be realized by an external storage device or the like.

入力部30は、診断システム100の操作者による入力を受け付ける装置である。入力部30は、例えば、キーボード、マウス、タッチパネル等によって構成される。入力部30は、不図示の入力インターフェイスを介して接続される。変圧器の絶縁油中のガスの量を表す計測データ21を手動で入力する場合、計測データ21の入力に入力部30を用いることができる。 The input unit 30 is a device that receives input from the operator of the diagnostic system 100. The input unit 30 includes, for example, a keyboard, a mouse, a touch panel, and the like. The input unit 30 is connected via an input interface (not shown). When manually inputting the measured data 21 representing the amount of gas in the insulating oil of the transformer, the input unit 30 can be used to input the measured data 21.

表示部40は、診断システム100の操作情報、各種のデータの内容、診断状況、診断結果等を表示する装置である。表示部40は、例えば、液晶ディスプレイ、有機ELディスプレイ、ブラウン管等によって構成される。表示部40は、不図示の出力インターフェイスを介して接続される。 The display unit 40 is a device that displays operation information of the diagnostic system 100, contents of various data, diagnostic status, diagnostic results, and the like. The display unit 40 is configured by, for example, a liquid crystal display, an organic EL display, a cathode ray tube, or the like. The display unit 40 is connected via an output interface (not shown).

通信部50は、通信インターフェイスを介して、各種のデータの送信および受信を行う。変圧器の絶縁油中のガスの量を表す計測データ21をガスセンサから入力する場合、計測データ21の入力に通信部50を用いることができる。 The communication unit 50 transmits and receives various data via a communication interface. When the measurement data 21 representing the amount of gas in the insulating oil of the transformer is input from the gas sensor, the communication unit 50 can be used to input the measurement data 21.

計測データ21は、変圧器の絶縁油中のガスの量の計測値を表すデータであり、時間と関連付けられた油中ガスの種類毎の油中ガスの量、濃度等の情報を含む。計測データ21は、診断対象の変圧器の定格容量や定格電圧毎、且つ、油中ガスの種類毎に、時系列のデータとして収集される。 The measurement data 21 is data representing a measured value of the amount of gas in the insulating oil of the transformer, and includes information such as the amount and concentration of gas in oil for each type of gas in oil associated with time. The measurement data 21 is collected as time-series data for each rated capacity and rated voltage of the transformer to be diagnosed, and for each type of gas in oil.

診断条件データ22は、診断に用いる各種の条件を表すデータであり、診断する異常の時期、異常の診断に用いる油中ガスの種類、診断に用いる油中ガスの量の上限値、異常の診断の感度(判定に用いる閾値)等の情報を含む。診断する異常の時期としては、最新の計測データ21に基づく現在の異常を診断するか、予め設定されている上限値との比較による将来の異常を診断するかを設定する。上限値としては、変圧器の保守管理上で許容される基準値、例えば、非特許文献1に記載されている「要注意I」の数値等を設定することができる。 Diagnostic condition data 22 is data representing various conditions used for diagnosis, including the timing of abnormality to be diagnosed, the type of gas in oil used for diagnosis of abnormality, the upper limit value of the amount of gas in oil used for diagnosis, and diagnosis of abnormality. Contains information such as sensitivity (threshold value used for determination). As the timing of the abnormality to be diagnosed, it is set whether to diagnose the current abnormality based on the latest measurement data 21 or to diagnose the future abnormality by comparison with a preset upper limit value. As the upper limit value, it is possible to set a standard value that is permissible in maintenance management of the transformer, for example, a value of "Caution I" described in Non-Patent Document 1, etc.

運転期間データ23は、回帰分析の対象範囲とする変圧器の運転期間を表すデータであり、初期故障期、偶発故障期、摩耗故障期等の運転期間の始期および終期の情報を含む。回帰分析の対象範囲とする変圧器の運転期間は、診断対象の変圧器の定格容量や定格電圧毎に、故障率の時間変化の知見等に応じて、任意の期間を設定することができる。 The operating period data 23 is data representing the operating period of the transformer that is the target range of the regression analysis, and includes information on the beginning and end of the operating period, such as the initial failure period, random failure period, and wear-out failure period. The operation period of the transformer that is the target range of the regression analysis can be set to any period depending on the rated capacity and rated voltage of the transformer to be diagnosed, depending on the knowledge of the change in failure rate over time.

近似関数データ24は、油中ガスの単位時間当たりの増加量を表すデータであり、回帰分析によって求められた近似関数の情報を含む。近似関数データ24は、油中ガスの種類毎、且つ、変圧器の運転期間毎に、近似関数の係数等のデータとして求められる。 The approximate function data 24 is data representing the amount of increase in gas in oil per unit time, and includes information on the approximate function determined by regression analysis. The approximate function data 24 is obtained as data such as coefficients of the approximate function for each type of gas in oil and for each operating period of the transformer.

推定データ25は、近似関数に基づいて推定された変圧器の運転時間毎の油中ガスの量の推定値を表すデータであり、時間と関連付けられた油中ガスの種類毎の油中ガスの量、濃度等の情報を含む。推定データ25は、診断する異常の時期を設定することにより、設定された時間を近似関数に代入して求められる。 Estimated data 25 is data representing an estimated value of the amount of gas in oil for each operating time of the transformer estimated based on an approximation function, and represents the amount of gas in oil for each type of gas in oil associated with time. Contains information such as amount and concentration. The estimated data 25 is obtained by setting the time of the abnormality to be diagnosed and substituting the set time into an approximation function.

診断結果データ26は、変圧器の異常の診断結果を表すデータであり、診断する異常の時期に対応した油中ガスの量の計測値が、近似関数に基づいて推定された油中ガスの量の推定値に対して所定値以上であるか否かや、近似関数に基づいて推定された油中ガスの量の推定値が、予め設定されている上限値に対して所定値以上であるか否かの情報を含む。診断結果データ26は、例えば、油中ガスの量の計測値と推定値との差や、油中ガスの量の推定値と上限値との差として求められる。 Diagnosis result data 26 is data representing a diagnosis result of a transformer abnormality, and the measured value of the amount of gas in oil corresponding to the time of the abnormality to be diagnosed is the amount of gas in oil estimated based on the approximate function. Whether or not the estimated value of the amount of gas in oil is greater than or equal to a predetermined value, and whether the estimated value of the amount of gas in oil estimated based on the approximation function is greater than or equal to a predetermined upper limit value. Contains information on whether or not. The diagnosis result data 26 is obtained, for example, as a difference between a measured value and an estimated value of the amount of gas in oil, or a difference between an estimated value and an upper limit value of the amount of gas in oil.

データ取得部11は、診断システム100に入力される計測データ21を、油中ガスの種類毎に時系列のデータとして取得する。計測データ21は、油中ガスの種類を区別する識別子と関連付けられ、記憶部20や一次診断部12に出力される。データ取得部11は、計測データ21の手動による入力やガスセンサからの入力のために、共通インターフェイスの機能を備えてもよい。 The data acquisition unit 11 acquires the measurement data 21 input to the diagnostic system 100 as time-series data for each type of gas in oil. The measurement data 21 is associated with an identifier that distinguishes the type of gas in oil, and is output to the storage unit 20 and the primary diagnosis unit 12. The data acquisition unit 11 may have a common interface function for manual input of the measurement data 21 or input from a gas sensor.

一次診断部12は、最新の計測データ21と診断条件データ22を読み出し、変圧器の運転期間毎に、油中ガス分析で計測された最新の油中ガスの量の計測値を、予め設定されている油中ガスの量の上限値と比較して一次診断を行う。一次診断の結果を表す診断結果データ26は、記憶部20や画像生成部16に出力される。 The primary diagnosis unit 12 reads out the latest measurement data 21 and diagnostic condition data 22, and calculates the latest measurement value of the amount of gas in oil measured by the gas-in-oil analysis for each operating period of the transformer. Perform a primary diagnosis by comparing the amount of gas in oil with the upper limit value. Diagnosis result data 26 representing the results of the primary diagnosis is output to the storage section 20 and the image generation section 16.

回帰分析部13は、変圧器の運転期間が同一の範囲に属する計測データ21と運転期間データ23を読み出し、変圧器の運転期間毎に、油中ガス分析で計測された油中ガスの量に基づいて回帰分析を行う。近似関数データ24は、記憶部20や推定部14に出力される。 The regression analysis unit 13 reads measurement data 21 and operation period data 23 that belong to the same range of operating periods of the transformer, and calculates the amount of gas in oil measured by gas in oil analysis for each operating period of the transformer. Perform regression analysis based on The approximate function data 24 is output to the storage section 20 and the estimation section 14.

推定部14は、計測データ21や診断条件データ22と近似関数データ24を読み出し、油中ガスの単位時間当たりの増加量を表す近似関数から、診断する異常の時期に対応した油中ガスの量の推定値を求める。推定データ25は、記憶部20や比較部15に出力される。 The estimation unit 14 reads out the measurement data 21, the diagnostic condition data 22, and the approximation function data 24, and calculates the amount of gas in oil corresponding to the period of the abnormality to be diagnosed from the approximation function representing the amount of increase in gas in oil per unit time. Find the estimated value of . Estimated data 25 is output to storage section 20 and comparison section 15.

診断部15は、計測データ21や診断条件データ22と推定データ25を読み出し、変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、近似関数に基づいて推定された油中ガスの量と比較する。診断の結果を表す診断結果データ26は、記憶部20や画像生成部16に出力される。 The diagnostic unit 15 reads the measured data 21, the diagnostic condition data 22, and the estimated data 25, and calculates the amount of gas in the insulating oil of the transformer for each operating period of the transformer. Compare with the amount of gas. Diagnosis result data 26 representing the diagnosis results are output to the storage section 20 and the image generation section 16.

画像生成部16は、診断結果データ26に基づき、診断対象の変圧器に異常が生じている旨、または、診断対象の変圧器に将来的に異常が生じる旨の警告として、診断の結果を表す画像データを生成する。画像データは、出力部50に出力される。画像データは、計測データ21、診断条件データ22、運転期間データ23、近似関数データ24、推定データ25を表示の内容として含んでもよい。 Based on the diagnosis result data 26, the image generation unit 16 displays the diagnosis result as a warning that an abnormality has occurred in the transformer to be diagnosed or that an abnormality will occur in the future in the transformer to be diagnosed. Generate image data. The image data is output to the output section 50. The image data may include measurement data 21, diagnostic condition data 22, driving period data 23, approximate function data 24, and estimated data 25 as display contents.

図8は、変圧器の異常を診断する処理の一例を示すフローチャートである。
図8に示すように、診断システム100では、予め設定されている油中ガスの量の上限値との比較による一次診断と、回帰分析による近似関数に基づいて推定された油中ガスの量の推定値との比較による二次診断との2段階の診断を行うことができる。二次診断としては、現在の異常の診断または将来の異常の診断を行うことができる。
FIG. 8 is a flowchart illustrating an example of a process for diagnosing an abnormality in a transformer.
As shown in FIG. 8, the diagnostic system 100 performs a primary diagnosis by comparing the amount of gas in oil with a preset upper limit value, and the amount of gas in oil estimated based on an approximation function by regression analysis. It is possible to perform a two-step diagnosis including a secondary diagnosis based on comparison with estimated values. As a secondary diagnosis, a diagnosis of a current abnormality or a diagnosis of a future abnormality can be performed.

変圧器の異常の診断に際しては、はじめに、回帰分析の対象範囲とする変圧器の運転期間の設定と、診断条件の設定を行う。変圧器の運転期間としては、初期故障期、偶発故障期、摩耗故障期等の具体的な始期および終期を設定する。診断条件としては、診断する異常の時期、異常の診断に用いる油中ガスの種類、診断に用いる油中ガスの量の上限値、異常の診断の感度等を設定する。 When diagnosing an abnormality in a transformer, first, the operating period of the transformer to be subjected to regression analysis is set, and diagnostic conditions are set. As the operating period of the transformer, specific starting and ending periods such as initial failure period, random failure period, wear-out failure period, etc. are set. As the diagnosis conditions, the timing of the abnormality to be diagnosed, the type of gas in oil used for diagnosis of abnormality, the upper limit value of the amount of gas in oil used for diagnosis, the sensitivity of diagnosis of abnormality, etc. are set.

続いて、変圧器の絶縁油中のガスの量の計測データを取得する(ステップS101)。変圧器の絶縁油中のガスの量の計測は、ガスセンサによるサンプリング間隔毎、日毎、週毎、月毎、年毎等の適宜の時間間隔で行うことができる。計測された最新の計測データ21は、予め設定されている油中ガスの量の上限値のデータと共に、一次診断部12に入力される。 Next, measurement data of the amount of gas in the insulating oil of the transformer is acquired (step S101). The amount of gas in the insulating oil of the transformer can be measured at appropriate time intervals, such as every sampling interval by a gas sensor, every day, every week, every month, every year, etc. The latest measured data 21 is input to the primary diagnosis section 12 together with data on the upper limit value of the amount of gas in oil set in advance.

続いて、診断対象の変圧器の絶縁油中のガスの量が、予め設定されている油中ガスの量の上限値以上である否かを判定する(ステップS102)。一次診断部12は、最新の油中ガスの量の計測値と、予め設定されている上限値を、油中ガスの種類毎に比較する。 Next, it is determined whether the amount of gas in the insulating oil of the transformer to be diagnosed is greater than or equal to a preset upper limit for the amount of gas in oil (step S102). The primary diagnosis unit 12 compares the latest measured value of the amount of gas in oil with a preset upper limit value for each type of gas in oil.

判定の結果、変圧器の絶縁油中のガスの量が上限値以上であると(ステップS102;YES)、ステップS106に進み、変圧器に異常が生じている旨の警告を行う。一方、変圧器の絶縁油中のガスの量が上限値未満であると(ステップS102;NO)、ステップS103に進む。 As a result of the determination, if the amount of gas in the insulating oil of the transformer is greater than or equal to the upper limit value (step S102; YES), the process proceeds to step S106, where a warning is issued to the effect that an abnormality has occurred in the transformer. On the other hand, if the amount of gas in the insulating oil of the transformer is less than the upper limit value (step S102; NO), the process proceeds to step S103.

続いて、変圧器の運転期間毎に、変圧器の絶縁油中のガスの量の計測データに基づいて回帰分析を行い、油中ガスの単位時間当たりの増加量を表す近似関数を求める(ステップS103)。回帰分析部13は、変圧器の運転期間が同一の範囲に属する計測データ21に基づいて、最小二乗法による線形回帰等のフィッティングを行い、診断に用いる近似関数を更新する。 Next, for each operating period of the transformer, a regression analysis is performed based on the measured data of the amount of gas in the insulating oil of the transformer, and an approximate function representing the increase in the amount of gas in the oil per unit time is determined (step S103). The regression analysis unit 13 performs fitting such as linear regression using the least squares method based on the measurement data 21 in which the operating periods of the transformers belong to the same range, and updates the approximation function used for diagnosis.

続いて、油中ガスの単位時間当たりの増加量を表す近似関数に基づいて、変圧器の運転時間毎の油中ガスの量の推定値を求める(ステップS104)。 Next, an estimated value of the amount of gas in oil for each operating time of the transformer is obtained based on an approximate function representing the amount of increase in gas in oil per unit time (step S104).

現在の異常を診断する場合、推定部14は、近似関数に現在の変圧器の運転時間を代入して、現在の油中ガスの量の推定値を求める。一方、将来の異常を診断する場合、推定部14は、近似関数に将来の変圧器の運転時間を代入して、将来の油中ガスの量の推定値を求める。 When diagnosing a current abnormality, the estimation unit 14 substitutes the current operating time of the transformer into the approximation function to obtain an estimated value of the current amount of gas in oil. On the other hand, when diagnosing a future abnormality, the estimation unit 14 substitutes the future operating time of the transformer into the approximation function to obtain an estimated value of the future amount of gas in oil.

続いて、変圧器の絶縁油中のガスの量と、近似関数に基づいて推定された油中ガスの量の推定値とを比較し、変圧器の絶縁油中のガスの量が所定値以上であるか否かを判定する(ステップS105)。 Next, the amount of gas in the insulating oil of the transformer is compared with the estimated value of the amount of gas in the oil estimated based on the approximation function, and the amount of gas in the insulating oil of the transformer is greater than or equal to a predetermined value. It is determined whether or not (step S105).

現在の異常を診断する場合、診断部15は、変圧器の絶縁油中のガスの量の現在の計測値を、近似関数に基づいて推定された油中ガスの量の推定値と比較し、変圧器の絶縁油中のガスの量の現在の計測値が、近似関数に基づいて推定された油中ガスの量の推定値に対して所定値以上であるか否かを判定する。 When diagnosing the current abnormality, the diagnostic unit 15 compares the current measured value of the amount of gas in the insulating oil of the transformer with the estimated value of the amount of gas in the oil estimated based on the approximation function, It is determined whether the current measured value of the amount of gas in the insulating oil of the transformer is greater than or equal to a predetermined value with respect to the estimated value of the amount of gas in the oil estimated based on the approximation function.

一方、将来の異常を診断する場合、診断部15は、近似関数に基づいて推定された油中ガスの量の推定値を、変圧器の絶縁油中のガスの量の上限値と比較し、近似関数に基づいて推定された油中ガスの量の推定値が、変圧器の絶縁油中のガスの量の上限値に対して所定値以上であるか否かを判定する。 On the other hand, when diagnosing future abnormalities, the diagnostic unit 15 compares the estimated value of the amount of gas in oil estimated based on the approximation function with the upper limit value of the amount of gas in the insulating oil of the transformer, It is determined whether an estimated value of the amount of gas in oil estimated based on the approximation function is greater than or equal to a predetermined value with respect to an upper limit value of the amount of gas in insulating oil of the transformer.

判定の結果、変圧器の絶縁油中のガスの量が所定値未満であると(ステップS105;NO)、診断の処理を終了する。 As a result of the determination, if the amount of gas in the insulating oil of the transformer is less than a predetermined value (step S105; NO), the diagnostic process is ended.

なお、油中ガスの量が所定値未満である場合、演算部10は、診断対象の変圧器に異常が生じていない旨、または、診断対象の変圧器に将来的に異常が生じる可能性が低い旨等を示す画像を生成し、表示部40に診断結果画像として表示してもよい。また、将来的に上限値以上となることが予測される変圧器の運転時間を求め、表示部40に診断結果画像として表示してもよい。 Note that when the amount of gas in oil is less than a predetermined value, the calculation unit 10 determines that there is no abnormality in the transformer to be diagnosed, or that there is a possibility that an abnormality will occur in the transformer to be diagnosed in the future. An image indicating that the condition is low may be generated and displayed on the display unit 40 as a diagnosis result image. Alternatively, the operation time of the transformer that is predicted to exceed the upper limit in the future may be determined and displayed on the display unit 40 as a diagnosis result image.

一方、判定の結果、変圧器の絶縁油中のガスの量が所定値以上であると(ステップS105;YES)、変圧器の異常の診断結果として、異常を警告する(ステップS106)。その後、診断の処理を終了する。 On the other hand, if the result of the determination is that the amount of gas in the insulating oil of the transformer is greater than or equal to the predetermined value (step S105; YES), an abnormality is warned as a result of the diagnosis of abnormality in the transformer (step S106). After that, the diagnostic process is finished.

現在の異常を診断した場合、画像生成部16は、変圧器の異常の診断結果として、診断対象の変圧器に異常が生じている旨の診断結果画像を生成し、表示部40に診断結果画像を表示して警告を行う。現在の異常を診断した結果を示す診断結果画像は、診断した変圧器の運転期間を示す画像や、異常を示した油中ガスの種類を示す画像や、近似関数に基づいて推定された油中ガスの量の推定値との差を示す画像等を含むことができる。 When the current abnormality is diagnosed, the image generation unit 16 generates a diagnosis result image indicating that an abnormality has occurred in the transformer to be diagnosed as a diagnosis result of the abnormality of the transformer, and displays the diagnosis result image on the display unit 40. Displays a warning. The diagnosis result image showing the result of diagnosing the current abnormality includes an image showing the operating period of the diagnosed transformer, an image showing the type of gas in oil that showed an abnormality, and an image showing the type of gas in oil that showed an abnormality, and an image showing the type of gas in oil that showed an abnormality. It can include an image or the like showing the difference from the estimated gas amount.

一方、将来の異常を診断した場合、画像生成部16は、変圧器の異常の診断結果として、診断対象の変圧器に将来的に異常が生じる旨の診断結果画像を生成し、表示部40に診断結果画像を表示して警告を行う。将来の異常を診断した結果を示す診断結果画像は、診断した変圧器の運転期間を示す画像や、異常を示した油中ガスの種類を示す画像や、予め設定されている油中ガスの量の上限値との差を示す画像等を含むことができる。 On the other hand, when a future abnormality is diagnosed, the image generation unit 16 generates a diagnosis result image indicating that an abnormality will occur in the future in the transformer to be diagnosed as a diagnosis result of the abnormality in the transformer, and displays it on the display unit 40. Displays the diagnosis result image and issues a warning. Diagnosis result images showing the results of diagnosing future abnormalities include images showing the operating period of the diagnosed transformer, images showing the type of gas in oil that showed an abnormality, and images showing the preset amount of gas in oil. It is possible to include an image showing the difference between the maximum value and the upper limit value.

このような診断方法や診断システム100によると、変圧器で計測された油中ガスの量に基づいて変圧器の運転期間毎に回帰分析を行い、変圧器の絶縁油中のガスの量を、運転期間毎に求められた近似関数に基づいて推定された油中ガスの量と比較するため、絶縁媒体や絶縁材の経年劣化や繰り返し異常の蓄積とは異なる偶発的な異常を、高精度に診断することができる。変圧器の故障は異常が蓄積したときに起こり易いため、変圧器の故障に繋がる前兆現象としての現在の異常と将来の異常を正確に把握することができる。近似関数は、油中ガスの種類毎に求められるため、種類毎の将来の油中ガスの量をパターンとして予測することが可能になり、将来の故障の原因の種類を推定することも可能になる。 According to such a diagnostic method and diagnostic system 100, regression analysis is performed for each operating period of the transformer based on the amount of gas in oil measured in the transformer, and the amount of gas in the insulating oil of the transformer is calculated. Because the amount of gas in oil is compared with the amount estimated based on the approximate function obtained for each operating period, it is possible to accurately detect accidental abnormalities that are different from aging deterioration of the insulating medium or insulation material or accumulation of repeated abnormalities. can be diagnosed. Since transformer failures tend to occur when abnormalities accumulate, it is possible to accurately grasp current abnormalities and future abnormalities as precursory phenomena that lead to transformer failures. Since the approximate function is obtained for each type of gas in oil, it is possible to predict the future amount of gas in oil for each type as a pattern, and it is also possible to estimate the type of cause of future failures. Become.

また、予め設定されている油中ガスの量の上限値との比較による一次診断と、回帰分析による近似関数に基づいて推定された油中ガスの量の推定値との比較による二次診断との2段階の診断を行うため、既に発生している明確な異常と、将来的に故障に繋がる偶発的な異常とを、個別に診断することができる。明確な異常が既に発生している場合、一次診断の段階で処理が終了し、回帰分析や推定値との比較が不要になるため、変圧器の異常の診断を速やかに行うことができる。 In addition, primary diagnosis is performed by comparing with a preset upper limit value of the amount of gas in oil, and secondary diagnosis is performed by comparing with the estimated value of the amount of gas in oil estimated based on an approximation function by regression analysis. Because this two-step diagnosis is performed, it is possible to separately diagnose clear abnormalities that have already occurred and accidental abnormalities that may lead to failures in the future. If a clear abnormality has already occurred, the process ends at the primary diagnosis stage, eliminating the need for regression analysis or comparison with estimated values, allowing for prompt diagnosis of transformer abnormalities.

なお、図8に示す処理では、一次診断と二次診断との2段階の診断を行っているが、一次診断を実行せず、二次診断のみを実行するように構成してもよい。また、診断に用いる油中ガスの量の上限値は、一次診断で用いる数値と、将来の異常を診断する場合の二次診断で用いる数値との間で、互いに同一であってもよいし、互いに異なっていてもよい。 Note that in the process shown in FIG. 8, a two-stage diagnosis of a primary diagnosis and a secondary diagnosis is performed, but the configuration may be such that only the secondary diagnosis is performed without performing the primary diagnosis. Further, the upper limit value of the amount of gas in oil used for diagnosis may be the same between the value used in primary diagnosis and the value used in secondary diagnosis when diagnosing future abnormalities, They may be different from each other.

次に、本発明の別の実施形態に係る診断方法および診断システムについて説明する。 Next, a diagnostic method and a diagnostic system according to another embodiment of the present invention will be described.

図9は、本発明の第2実施形態に係る診断システムを示す図である。
図9に示すように、本実施形態に係る診断システム200は、複数の変圧器1毎に備えられる複数の端末140と通信回線を介して接続されており、複数の変圧器1の異常を監視して診断する診断サーバとして機能するように構成されている。
FIG. 9 is a diagram showing a diagnostic system according to a second embodiment of the present invention.
As shown in FIG. 9, the diagnostic system 200 according to the present embodiment is connected via a communication line to a plurality of terminals 140 provided for each of the plurality of transformers 1, and monitors abnormalities in the plurality of transformers 1. It is configured to function as a diagnostic server that performs diagnostics.

複数の変圧器1は、互いに同じ電力系統上に設置されており、定格容量や定格電圧が互いに同等である油入変圧器同士で構成される。複数の変圧器1は、それぞれ、絶縁油中のガスの量を計測するガスセンサ110を備えている。各変圧器1の絶縁油中のガスの量は、ガスセンサ110により、オンラインで経時的に計測される。 The plurality of transformers 1 are installed on the same power system, and are composed of oil-immersed transformers having the same rated capacity and the same rated voltage. Each of the plurality of transformers 1 includes a gas sensor 110 that measures the amount of gas in the insulating oil. The amount of gas in the insulating oil of each transformer 1 is measured online over time by a gas sensor 110.

通信回線は、インターネット、LAN(Local Area Network)、固定専用回線等で構成される。通信回線は、有線通信回線、無線通信回線、これらを組み合わせた回線のいずれであってもよい。 Communication lines include the Internet, LAN (Local Area Network), fixed dedicated lines, and the like. The communication line may be a wired communication line, a wireless communication line, or a combination thereof.

端末140は、ガスセンサ110が計測した計測データを収集するアプリケーションと、診断システム200との間でデータの送受信を行うための通信デバイスを搭載している。端末140は、ガスセンサ110によって経時的に計測された計測データを、変圧器1毎の識別子と関連付けて、所定の時間間隔で診断システム200に送信する。 The terminal 140 is equipped with an application that collects measurement data measured by the gas sensor 110 and a communication device that transmits and receives data between the diagnostic system 200 and the diagnostic system 200 . Terminal 140 associates measurement data measured over time by gas sensor 110 with an identifier for each transformer 1, and transmits the data to diagnostic system 200 at predetermined time intervals.

なお、図9において、変圧器1および端末140は、それぞれ、2基が示されているが、変圧器1および端末140の基数は、特に限定されるものではない。端末140は、変圧器1毎に1基が備えられてもよいし、複数の変圧器1に対して1基が備えられてもよい。 Although two transformers 1 and two terminals 140 are shown in FIG. 9, the number of transformers 1 and terminals 140 is not particularly limited. One terminal 140 may be provided for each transformer 1, or one terminal 140 may be provided for a plurality of transformers 1.

図10は、本発明の第2実施形態に係る診断システムの構成を示す図である。
図10に示すように、本実施形態に係る診断システム200は、前記の診断システム100と同様に、変圧器の異常を診断する処理を行う演算部10と、診断の処理に用いるデータを格納する記憶部20と、入力部30と、表示部40と、通信部50と、を備えている。
FIG. 10 is a diagram showing the configuration of a diagnostic system according to a second embodiment of the present invention.
As shown in FIG. 10, the diagnostic system 200 according to the present embodiment, like the diagnostic system 100 described above, includes a calculation unit 10 that performs processing for diagnosing an abnormality in a transformer, and a calculation unit 10 that stores data used in the diagnostic processing. It includes a storage section 20, an input section 30, a display section 40, and a communication section 50.

診断システム200が、前記の診断システム100と異なる点は、変圧器の絶縁油中のガスの量の計測値を表す計測データ21を複数の変圧器1から収集し、複数の変圧器1で得られた油中ガスの量の計測値に基づいて、油中ガスの単位時間当たりの増加量を表す近似関数を求め、診断対象の変圧器1の現在の異常または将来の異常を、複数の変圧器1に対して求めた近似関数を用いて診断する点である。 The diagnostic system 200 differs from the diagnostic system 100 described above in that it collects measurement data 21 representing the measured value of the amount of gas in the insulating oil of the transformer from a plurality of transformers 1, and Based on the measured value of the amount of gas in oil obtained by The point is that the diagnosis is made using the approximation function obtained for device 1.

診断システム200において、演算部10は、データ取得部111と、一次診断部12と、回帰分析部131と、計算部132と、推定部14と、診断部15と、画像生成部16と、を備えている。 In the diagnosis system 200, the calculation unit 10 includes a data acquisition unit 111, a primary diagnosis unit 12, a regression analysis unit 131, a calculation unit 132, an estimation unit 14, a diagnosis unit 15, and an image generation unit 16. We are prepared.

また、診断システム200において、記憶部20は、計測データベース211と、診断条件データ221と、運転期間データ23と、近似関数データ24と、推定データ25と、診断結果データ26と、を格納する。診断条件データ221および運転期間データ23は、予め診断システム200に入力される。 In the diagnostic system 200, the storage unit 20 also stores a measurement database 211, diagnostic condition data 221, driving period data 23, approximate function data 24, estimated data 25, and diagnostic result data 26. The diagnostic condition data 221 and the operating period data 23 are input into the diagnostic system 200 in advance.

診断システム200は、変圧器の絶縁油中のガスの量を表す計測データ21をガスセンサ110から入力する構成とされている。端末140は、ガスセンサ110が油中ガスの量を計測すると、変圧器1毎の識別子や油中ガスの種類を区別する識別子と関連付けられた計測データ21を、通信回線を介して診断システム200に送信する。 The diagnostic system 200 is configured to input measurement data 21 representing the amount of gas in the insulating oil of the transformer from the gas sensor 110. When the gas sensor 110 measures the amount of gas in oil, the terminal 140 transmits measurement data 21 associated with an identifier for each transformer 1 and an identifier that distinguishes the type of gas in oil to the diagnostic system 200 via a communication line. Send.

図11は、複数の変圧器で得られた計測データに基づく計測データベースの一例を示す図である。
図11に示すように、複数の変圧器1で得られた計測データ21は、診断システム200の記憶部20に計測データベース211として格納される。計測データベース211は、電力系統上の変圧器を区別する変圧器名の情報や、変圧器毎、且つ、油中ガスの種類毎の絶縁油中のガスの量の計測値や、油中ガスの量を計測した日付・時刻の情報を含んでいる。
FIG. 11 is a diagram showing an example of a measurement database based on measurement data obtained from a plurality of transformers.
As shown in FIG. 11, measurement data 21 obtained from the plurality of transformers 1 is stored in the storage unit 20 of the diagnostic system 200 as a measurement database 211. The measurement database 211 includes information on transformer names that distinguish transformers on the power system, measured values of the amount of gas in insulating oil for each transformer and for each type of gas in oil, and information on gas in oil. Contains information on the date and time when the amount was measured.

診断条件データ221は、診断する異常の時期、異常の診断に用いる油中ガスの種類、診断に用いる油中ガスの量の上限値、異常の診断の感度等の情報に加え、診断対象の変圧器の選定のための情報を含む。複数の変圧器1のうち、診断対象の変圧器は、所定の順序による診断スケジュールにしたがって選定されてもよいし、運転時間の長さ等に基づく優先順位の設定にしたがって選定されてもよい。 Diagnosis condition data 221 includes information such as the timing of the abnormality to be diagnosed, the type of gas in oil used for abnormality diagnosis, the upper limit of the amount of gas in oil used for diagnosis, and the sensitivity of abnormality diagnosis, as well as the transformation voltage to be diagnosed. Contains information for equipment selection. Among the plurality of transformers 1, the transformer to be diagnosed may be selected according to a diagnosis schedule in a predetermined order, or may be selected according to a priority setting based on the length of operating time, etc.

データ取得部111は、定格容量および定格電圧が互いに同等である複数の変圧器から通信回線を介して診断システム200に入力される計測データ21を、電力系統上の変圧器毎、且つ、油中ガスの種類毎に、時系列のデータとして取得する。計測データ21は、電力系統上の変圧器を区別する識別子や、油中ガスの種類を区別する識別子と関連付けられ、計測データベース211として格納される。 The data acquisition unit 111 collects measurement data 21 that is input to the diagnostic system 200 via a communication line from a plurality of transformers having the same rated capacity and rated voltage, for each transformer on the power system, and for each transformer submerged in oil. Obtain time-series data for each type of gas. The measurement data 21 is stored as a measurement database 211 in association with an identifier that distinguishes a transformer on the power system and an identifier that distinguishes the type of gas in oil.

回帰分析部131は、計測データベース211中の変圧器の運転期間が同一の範囲に属する変圧器毎の計測データ21と運転期間データ23を読み出し、電力系統上の変圧器毎、且つ、変圧器の運転期間毎に、複数の変圧器で計測された油中ガスの量に基づいて回帰分析を行う。変圧器毎に求められた近似関数データ24は、記憶部20に出力される。 The regression analysis unit 131 reads measurement data 21 and operation period data 23 for each transformer whose operation period falls within the same range in the measurement database 211, and calculates the measurement data 21 and operation period data 23 for each transformer on the power system and for each transformer. Regression analysis is performed based on the amount of gas in oil measured at multiple transformers during each operating period. The approximate function data 24 obtained for each transformer is output to the storage section 20.

計算部132は、電力系統上の変圧器毎に求められた近似関数データ24を読み出し、電力系統上の変圧器毎に求められた複数の近似関数を、複数の変圧器同士の間で平均化する。平均化処理は、例えば、計測データ21を計測した複数の変圧器を母集団として、近似関数の係数の相加平均を計算する処理として行うことができる。平均化された近似関数を表す近似関数データ24は、記憶部20に出力される。 The calculation unit 132 reads approximate function data 24 obtained for each transformer on the power system, and averages the plurality of approximate functions obtained for each transformer on the power system among the plurality of transformers. do. The averaging process can be performed, for example, as a process of calculating the arithmetic mean of the coefficients of the approximation function, using a plurality of transformers that have measured the measurement data 21 as a population. Approximate function data 24 representing the averaged approximate function is output to the storage unit 20.

図12は、複数の変圧器の異常を診断する処理の一例を示すフローチャートである。
図12に示すように、診断システム200では、前記の診断システム100と同様に、予め設定されている油中ガスの量の上限値との比較による一次診断と、回帰分析による近似関数に基づいて推定された油中ガスの量の推定値との比較による二次診断との2段階の診断を行うことができる。二次診断としては、現在の異常の診断または将来の異常の診断を行うことができる。
FIG. 12 is a flowchart illustrating an example of a process for diagnosing abnormalities in a plurality of transformers.
As shown in FIG. 12, the diagnostic system 200, like the diagnostic system 100 described above, performs a primary diagnosis based on a comparison with a preset upper limit value of the amount of gas in oil and an approximate function based on regression analysis. A two-step diagnosis can be performed, including a secondary diagnosis based on comparison with the estimated amount of gas in oil. As a secondary diagnosis, a diagnosis of a current abnormality or a diagnosis of a future abnormality can be performed.

診断システム200では、前記の診断システム100と同様に、変圧器の絶縁油中のガスの量の計測データを取得し(ステップS201)、異常を診断する診断対象の変圧器を選定し(ステップS202)、診断対象の変圧器の絶縁油中のガスの量が、予め設定されている油中ガスの量の上限値以上である否かを判定する(ステップS203)。 In the diagnostic system 200, similarly to the diagnostic system 100 described above, measurement data of the amount of gas in the insulating oil of a transformer is acquired (step S201), and a transformer to be diagnosed for abnormality is selected (step S202). ), it is determined whether the amount of gas in the insulating oil of the transformer to be diagnosed is greater than or equal to a preset upper limit for the amount of gas in oil (step S203).

判定の結果、変圧器の絶縁油中のガスの量が上限値以上であると(ステップS203;YES)、ステップS208に進み、変圧器に異常が生じている旨の警告を行う。一方、変圧器の絶縁油中のガスの量が上限値未満であると(ステップS203;NO)、ステップS204に進む。 As a result of the determination, if the amount of gas in the insulating oil of the transformer is greater than or equal to the upper limit value (step S203; YES), the process proceeds to step S208, where a warning is issued to the effect that an abnormality has occurred in the transformer. On the other hand, if the amount of gas in the insulating oil of the transformer is less than the upper limit (step S203; NO), the process proceeds to step S204.

続いて、変圧器毎、且つ、変圧器の運転期間毎に、変圧器の絶縁油中のガスの量の計測データに基づいて回帰分析を行い、油中ガスの単位時間当たりの増加量を表す変圧器毎の近似関数を求める(ステップS204)。回帰分析部131は、変圧器の運転期間が同一の範囲に属する変圧器毎の計測データ21に基づいて、最小二乗法による線形回帰等のフィッティングを行い、複数の近似関数を作成する。 Next, a regression analysis is performed for each transformer and each transformer operating period based on the measurement data of the amount of gas in the insulating oil of the transformer, and the amount of increase in gas in the oil per unit time is expressed. An approximate function for each transformer is determined (step S204). The regression analysis unit 131 performs fitting such as linear regression using the least squares method based on the measurement data 21 for each transformer whose operating period falls within the same range, and creates a plurality of approximation functions.

続いて、変圧器毎、且つ、変圧器の運転期間毎に求められた複数の近似関数を変圧器同士の間で平均化する(ステップS205)。計算部132は、近似関数の係数の相加平均を計算することにより、電力系統上の変圧器毎に作成された複数の近似関数から、平均化された一つの近似関数を求める。 Subsequently, the plurality of approximate functions obtained for each transformer and each operating period of the transformer are averaged among the transformers (step S205). The calculation unit 132 obtains one averaged approximation function from a plurality of approximation functions created for each transformer on the power system by calculating the arithmetic mean of the coefficients of the approximation functions.

続いて、前記の診断システム100と同様に、油中ガスの単位時間当たりの増加量を表す近似関数に基づいて、変圧器の運転時間毎の油中ガスの量の推定値を求め(ステップS206)、変圧器の絶縁油中のガスの量と、近似関数に基づいて推定された油中ガスの量の推定値とを比較し、変圧器の絶縁油中のガスの量が所定値以上であるか否かを判定する(ステップS207)。 Next, similarly to the diagnosis system 100 described above, an estimated value of the amount of gas in oil for each operating time of the transformer is determined based on an approximation function representing the amount of increase in gas in oil per unit time (step S206 ), the amount of gas in the insulating oil of the transformer is compared with the estimated value of the amount of gas in the oil estimated based on the approximate function, and it is determined that the amount of gas in the insulating oil of the transformer is greater than or equal to a predetermined value. It is determined whether there is one (step S207).

判定の結果、変圧器の絶縁油中のガスの量が所定値未満であると(ステップS207;NO)、ステップS209に進む。一方、判定の結果、変圧器の絶縁油中のガスの量が所定値以上であると(ステップS207;YES)、変圧器の異常の診断結果として、異常を警告する(ステップS208)。画像生成部16は、変圧器毎の異常の診断結果として、診断対象の変圧器に異常が生じている旨や診断対象の変圧器に将来的に異常が生じる旨の診断結果画像を生成し、表示部40に診断結果画像を表示して警告を行う。 As a result of the determination, if the amount of gas in the insulating oil of the transformer is less than a predetermined value (step S207; NO), the process advances to step S209. On the other hand, if the result of the determination is that the amount of gas in the insulating oil of the transformer is equal to or greater than the predetermined value (step S207; YES), an abnormality is warned as a result of the diagnosis of abnormality in the transformer (step S208). The image generation unit 16 generates a diagnosis result image indicating that an abnormality has occurred in the transformer to be diagnosed or that an abnormality will occur in the transformer to be diagnosed in the future as a diagnosis result of the abnormality for each transformer, A diagnosis result image is displayed on the display unit 40 to issue a warning.

続いて、診断対象の全ての診断が終了したか否かを判定する(ステップS209)。診断対象の診断が終了したか否かは、電力系統上の複数の変圧器毎にログデータを記録して管理することができる。 Subsequently, it is determined whether or not the diagnosis of all the diagnosis targets has been completed (step S209). Whether or not the diagnosis of a diagnosis target has been completed can be managed by recording log data for each of a plurality of transformers on the power system.

判定の結果、診断対象の全ての診断が終了していないと(ステップS208;NO)、ステップS201に戻る。その後、診断対象を切り替え、診断の処理を繰り返す。一方、診断対象の全ての診断が終了していると(ステップS208;YES)、診断の処理を終了する。 As a result of the determination, if the diagnosis of all the diagnosis targets has not been completed (step S208; NO), the process returns to step S201. Thereafter, the diagnostic target is switched and the diagnostic process is repeated. On the other hand, if all the diagnoses for the diagnosis target have been completed (step S208; YES), the diagnostic process is ended.

このような診断方法や診断システム200によると、定格容量および定格電圧が互いに同等である複数の変圧器で計測された油中ガスの量に基づいて変圧器の運転期間毎に回帰分析を行い、変圧器の絶縁油中のガスの量を、運転期間毎に求められた近似関数に基づいて推定された油中ガスの量と比較するため、共通の電力潮流の下で偶発的に生じる異常を高精度に診断することができる。同じ電力系統内で生じた過去の経年劣化の傾向や、過去の繰り返し異常の傾向が、複数の変圧器に対する回帰分析によって加味されることになる。 According to such a diagnostic method and diagnostic system 200, a regression analysis is performed for each operating period of a transformer based on the amount of gas in oil measured in a plurality of transformers having the same rated capacity and rated voltage. In order to compare the amount of gas in the insulating oil of the transformer with the amount of gas in the oil estimated based on the approximation function determined for each operating period, abnormalities that occur accidentally under a common power flow are detected. Can be diagnosed with high accuracy. Past trends in deterioration over time and trends in past repeated abnormalities that have occurred within the same power system are taken into consideration through regression analysis of multiple transformers.

また、変圧器毎に求められた近似関数を変圧器同士の間で平均化するため、電力系統上で得られた全計測データの範囲で回帰分析する場合とは異なり、診断に用いる近似関数を、変圧器毎に逐次得ることができる。絶縁油中のガスの量の計測が難しい場合や、変圧器毎の運転時間が一致していない場合等であっても、全体としての診断を効率的に行うことができる。 In addition, because the approximation function obtained for each transformer is averaged between transformers, unlike regression analysis in the range of all measurement data obtained on the power system, the approximation function used for diagnosis is , can be obtained sequentially for each transformer. Even if it is difficult to measure the amount of gas in the insulating oil, or if the operating hours of each transformer do not match, the overall diagnosis can be performed efficiently.

なお、診断システム200において、近似関数は、同じ電力系統上に設置されている全部の変圧器1の計測データ21から求めてもよいし、一部の変圧器1の計測データ21から求めてもよい。診断対象の変圧器1は、回帰分析の対象として含まれてもよいし、回帰分析の対象として含まれなくてもよい。 In the diagnostic system 200, the approximation function may be obtained from the measurement data 21 of all transformers 1 installed on the same power system, or may be obtained from the measurement data 21 of some transformers 1. good. The transformer 1 to be diagnosed may be included as a subject of regression analysis, or may not be included as a subject of regression analysis.

すなわち、診断システム200は、回帰分析部131が、複数の変圧器1のうち、一部または全部の変圧器で計測された油中ガスの量に基づいて一つの近似関数を求め、診断部15が、変圧器の運転期間毎に、近似関数を求めた変圧器で計測された油中ガスの量を、近似関数に基づいて推定された油中ガスの量と比較するように構成することができる。 That is, in the diagnostic system 200, the regression analysis unit 131 calculates one approximate function based on the amount of gas in oil measured in some or all of the plurality of transformers 1, and the diagnostic unit 15 However, it is possible to configure the system to compare the amount of gas in oil measured by the transformer for which the approximation function was obtained every operating period of the transformer with the amount of gas in oil estimated based on the approximation function. can.

このような構成によると、回帰分析に用いられる計測データ21が多くなるため、診断対象の変圧器の異常をより高精度に診断することができる。特に、偶発的な異常を検知する精度が向上するため、異常の蓄積により起こる可能性がある突発的な故障の予測に有利である。 According to such a configuration, since the amount of measurement data 21 used for the regression analysis increases, abnormalities in the transformer to be diagnosed can be diagnosed with higher accuracy. In particular, since the accuracy of detecting random abnormalities is improved, it is advantageous in predicting sudden failures that may occur due to accumulation of abnormalities.

或いは、診断システム200は、回帰分析部131が、複数の変圧器1のうち、一部の変圧器で計測された油中ガスの量に基づいて一つの近似関数を求め、診断部15が、変圧器の運転期間毎に、近似関数を求めていない残部の変圧器で計測された油中ガスの量を、近似関数に基づいて推定された油中ガスの量と比較するように構成することもできる。 Alternatively, in the diagnostic system 200, the regression analysis unit 131 calculates one approximation function based on the amount of gas in oil measured in some of the transformers 1, and the diagnostic unit 15 calculates the following: The system is configured to compare the amount of gas in oil measured in the remaining transformers for which the approximation function has not been obtained for each operating period of the transformer with the amount of gas in oil estimated based on the approximation function. You can also do it.

このような構成によると、診断対象の変圧器において、油中ガスの量が計測されていない場合であっても、他の変圧器で計測された油中ガスの量に基づいて近似関数が求められる。そのため、絶縁油中のガスの量の計測が難しい場合や、変圧器の運転時間が一致していない場合等であっても、診断対象の変圧器の現在の異常や将来の異常を診断することができる。 With such a configuration, even if the amount of gas in oil is not measured in the transformer to be diagnosed, an approximate function can be calculated based on the amount of gas in oil measured in other transformers. It will be done. Therefore, even if it is difficult to measure the amount of gas in the insulating oil or the operating hours of the transformers do not match, it is possible to diagnose current and future abnormalities in the transformer being diagnosed. I can do it.

以上、本発明の実施形態について説明したが、本発明は前記の実施形態に限定されるものではなく、技術的範囲を逸脱しない限り、様々な変形例が含まれる。例えば、前記の実施形態は、必ずしも説明した全ての構成を備えるものに限定されない。また、或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成に他の構成を加えたりすることが可能である。また、或る実施形態の構成の一部について、他の構成の追加、構成の削除、構成の置換をすることも可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications without departing from the technical scope. For example, the embodiments described above are not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of a certain embodiment with another configuration, or to add another configuration to the configuration of a certain embodiment. Furthermore, it is also possible to add other configurations, delete configurations, and replace configurations of some of the configurations of a certain embodiment.

例えば、前記の診断方法、診断システム100,200においては、油中ガスの種類毎に近似関数を求め、近似関数から所定値以上はずれた特異点を推定値として、ガスの種類毎の診断を行っているが、複数の油中ガスの種類について比較を行い、所定値以上はずれた油中ガスの種類をランク集計して変圧器毎の診断を行ってもよい。また、油中ガスの種類に応じた多変量解析を組み合わせてもよい。多変量解析としては、複数の油中ガスの種類について、各計測データを多次元空間上にクラスタリングし、クラスタのパターンに対する数学的距離から異常を診断する方法が挙げられる。 For example, in the above-described diagnostic method and diagnostic system 100, 200, an approximate function is obtained for each type of gas in oil, and a singular point that deviates from the approximate function by a predetermined value or more is used as an estimated value to diagnose each type of gas. However, it is also possible to perform a diagnosis for each transformer by comparing a plurality of types of gas in oil and ranking the types of gas in oil that deviate by a predetermined value or more. Additionally, multivariate analysis depending on the type of gas in oil may be combined. Examples of multivariate analysis include a method of clustering measurement data of multiple types of gas in oil in a multidimensional space and diagnosing abnormalities from mathematical distances to the cluster patterns.

また、前記の診断システム100,200は、変圧器の異常を診断した場合に、異常を警告するように構成されているが、異常の警告と共に、または、異常の警告に代えて、異常が診断された変圧器の運転を停止する制御を行うように構成してもよい。異常の警告としては、診断結果画像に代えて、音声による警告を行ってもよい。 Further, the diagnostic systems 100 and 200 are configured to issue an abnormality warning when an abnormality in the transformer is diagnosed. The configuration may be such that control is performed to stop the operation of the transformer that has been turned off. As an abnormality warning, an audio warning may be provided instead of the diagnosis result image.

10 演算部
11 データ取得部
12 一次診断部
13 回帰分析部
14 推定部
15 診断部
16 画像生成部
20 記憶部
21 計測データ
22 診断条件データ
23 運転期間データ
24 近似関数データ
25 推定データ
26 診断結果データ
30 入力部
40 表示部
50 通信部
100 診断システム
10 Arithmetic unit 11 Data acquisition unit 12 Primary diagnosis unit 13 Regression analysis unit 14 Estimation unit 15 Diagnosis unit 16 Image generation unit 20 Storage unit 21 Measurement data 22 Diagnosis condition data 23 Operating period data 24 Approximate function data 25 Estimated data 26 Diagnosis result data 30 input section 40 display section 50 communication section 100 diagnostic system

Claims (13)

変圧器の異常を診断する診断方法であって、
変圧器の絶縁油中のガスの量を経時的に計測する工程と、
変圧器の運転時間が前記変圧器の故障率曲線における故障率の変化の傾向に応じて複数の期間に区分けされた変圧器の運転期間毎に、計測された前記絶縁油中ガスの量に基づいて、時間を独立変数、変圧器の絶縁油中のガスの量を従属変数とした回帰分析を行い、前記変圧器の運転時間と前記絶縁油中のガスの量との関係を表す近似関数を求める工程と、
前記変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、前記近似関数に基づいて推定された前記絶縁油中ガスの量と比較する工程と、を含み、
前記変圧器の運転期間は、前記変圧器の故障率曲線における故障率が経時的に減少する初期故障期、前記変圧器の故障率曲線における故障率が定常である偶発故障期、および、前記変圧器の故障率曲線における故障率が経時的に増加する摩耗故障期のうち、いずれかとして設定された期間である診断方法。
A diagnostic method for diagnosing an abnormality in a transformer,
A process of measuring the amount of gas in the insulating oil of the transformer over time,
The amount of gas in the insulating oil measured for each operating period of the transformer is divided into a plurality of periods according to the tendency of change in failure rate in the failure rate curve of the transformer. Based on this, a regression analysis is performed with time as an independent variable and the amount of gas in the insulating oil of the transformer as a dependent variable , and an approximate function representing the relationship between the operating time of the transformer and the amount of gas in the insulating oil is calculated. The process of finding
Comparing the amount of gas in the insulating oil of the transformer with the amount of gas in the insulating oil estimated based on the approximation function for each operating period of the transformer ,
The operating period of the transformer includes an initial failure period in which the failure rate in the failure rate curve of the transformer decreases over time, an occasional failure period in which the failure rate in the failure rate curve of the transformer is steady, and A diagnostic method that is a period set as one of the wear-out failure periods in the failure rate curve of a device where the failure rate increases over time .
請求項1に記載の診断方法であって、
変圧器の絶縁油中のガスの量の計測値が、前記近似関数に基づいて推定された前記絶縁油中ガスの量の推定値に対して所定値以上であるとき、当該変圧器に異常が生じている旨の判定を行う診断方法。
The diagnostic method according to claim 1,
When the measured value of the amount of gas in the insulating oil of a transformer is greater than a predetermined value with respect to the estimated value of the amount of gas in the insulating oil estimated based on the approximation function, an abnormality occurs in the transformer. A diagnostic method that determines that this is occurring.
請求項1に記載の診断方法であって、
近似関数に基づいて推定された前記絶縁油中ガスの量の推定値が、変圧器の絶縁油中のガスの量の予め設定されている上限値に対して所定値以上であるとき、当該変圧器に将来的に異常が生じる旨の判定を行う診断方法。
The diagnostic method according to claim 1,
When the estimated value of the amount of gas in the insulating oil estimated based on the approximation function is greater than or equal to a predetermined value with respect to the preset upper limit of the amount of gas in the insulating oil of the transformer, A diagnostic method that determines whether an abnormality will occur in the transformer in the future.
請求項2または請求項3に記載の診断方法であって、
前記所定値は、前記推定値に対して20%以上の値である診断方法。
The diagnostic method according to claim 2 or 3,
The diagnostic method, wherein the predetermined value is 20% or more of the estimated value.
請求項に記載の診断方法であって、
前記初期故障期は、前記変圧器の運転開始時から3年以上6年以内までの期間であり、
前記偶発故障期は、前記初期故障期の終了時から20年以上30年以内までの期間であり、
前記摩耗故障期は、前記偶発故障期の終了時以後の期間である診断方法。
The diagnostic method according to claim 1 ,
The initial failure period is a period of 3 years to 6 years from the start of operation of the transformer,
The random failure period is a period of 20 to 30 years from the end of the initial failure period,
The wear-out failure period is a period after the end of the random failure period.
請求項1に記載の診断方法であって、
前記ガスは、メタン、アセチレン、エチレン、エタン、水素、一酸化炭素および二酸化炭素のうち、一種以上である診断方法。
The diagnostic method according to claim 1,
The diagnostic method wherein the gas is one or more of methane, acetylene, ethylene, ethane, hydrogen, carbon monoxide, and carbon dioxide.
請求項1に記載の診断方法であって、
前記ガスの量を経時的に計測する工程を、定格容量および定格電圧が互いに同等である複数の変圧器について行い、
前記近似関数を求める工程を、前記複数の変圧器のうち、一部の変圧器について行い、
変圧器の運転期間毎に、前記近似関数を求めていない前記変圧器で計測された前記絶縁油中ガスの量を、別の変圧器で求められた近似関数に基づいて推定された前記絶縁油中ガスの量と比較する診断方法。
The diagnostic method according to claim 1,
The step of measuring the amount of gas over time is performed on a plurality of transformers having the same rated capacity and rated voltage,
performing the step of determining the approximate function for some transformers among the plurality of transformers;
For each period of operation of a transformer, the amount of gas in the insulating oil measured in the transformer for which the approximate function has not been determined is calculated based on the insulating oil estimated based on the approximate function determined in another transformer. A diagnostic method that compares the amount of gas in the oil.
請求項1に記載の診断方法であって、
前記ガスの量を経時的に計測する工程を、定格容量および定格電圧が互いに同等である複数の変圧器について行い、
前記近似関数を求める工程を、前記複数の変圧器のうち、全部または一部の変圧器について行い、
前記近似関数を前記変圧器同士の間で平均化し、
変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、平均化された前記近似関数に基づいて推定された前記絶縁油中ガスの量と比較する診断方法。
The diagnostic method according to claim 1,
The step of measuring the amount of gas over time is performed on a plurality of transformers having the same rated capacity and rated voltage,
performing the step of determining the approximate function for all or some of the plurality of transformers;
averaging the approximate function between the transformers;
A diagnostic method that compares the amount of gas in the insulating oil of the transformer with the amount of gas in the insulating oil estimated based on the averaged approximation function for each operating period of the transformer.
変圧器の異常を診断する診断システムであって、
変圧器の運転時間が前記変圧器の故障率曲線における故障率の変化の傾向に応じて複数の期間に区分けされた変圧器の運転期間毎に、経時的に計測された変圧器の絶縁油中のガスの量に基づいて、時間を独立変数、変圧器の絶縁油中のガスの量を従属変数とした回帰分析を行い、前記変圧器の運転時間と前記絶縁油中のガスの量との関係を表す近似関数を求める回帰分析部と、
前記変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、前記近似関数に基づいて推定された前記絶縁油中ガスの量と比較する診断部と、を備え
前記変圧器の運転期間は、前記変圧器の故障率曲線における故障率が経時的に減少する初期故障期、前記変圧器の故障率曲線における故障率が定常である偶発故障期、および、前記変圧器の故障率曲線における故障率が経時的に増加する摩耗故障期のうち、いずれかとして設定された期間である診断システム。
A diagnostic system for diagnosing an abnormality in a transformer,
Insulating oil of the transformer measured over time for each operating period of the transformer, which is divided into multiple periods according to the tendency of change in failure rate in the failure rate curve of the transformer. Based on the amount of gas of a regression analysis unit that calculates an approximate function representing the relationship ;
a diagnostic unit that compares the amount of gas in the insulating oil of the transformer with the amount of gas in the insulating oil estimated based on the approximation function for each operating period of the transformer ,
The operating period of the transformer includes an initial failure period in which the failure rate in the failure rate curve of the transformer decreases over time, an occasional failure period in which the failure rate in the failure rate curve of the transformer is steady, and A diagnostic system is a period set as one of the wear-out failure periods in a device's failure rate curve where the failure rate increases over time .
請求項に記載の診断システムであって、
変圧器の絶縁油中の前記ガスの量の計測値が、前記近似関数に基づいて推定された前記絶縁油中ガスの量の推定値に対して所定値以上であるとき、当該変圧器に異常が生じている旨の警告を表示する診断システム。
The diagnostic system according to claim 9 ,
When the measured value of the amount of gas in the insulating oil of the transformer is greater than or equal to a predetermined value with respect to the estimated value of the amount of gas in the insulating oil estimated based on the approximation function, A diagnostic system that displays a warning that something is wrong.
請求項に記載の診断システムであって、
近似関数に基づいて推定された前記絶縁油中ガスの量の推定値が、変圧器の絶縁油中のガスの量の予め設定されている上限値に対して所定値以上であるとき、当該変圧器に将来的に異常が生じる旨の警告を表示する診断システム。
The diagnostic system according to claim 9 ,
When the estimated value of the amount of gas in the insulating oil estimated based on the approximation function is greater than or equal to a predetermined value with respect to the preset upper limit of the amount of gas in the insulating oil of the transformer, A diagnostic system that displays a warning that an abnormality will occur in the transformer in the future.
請求項に記載の診断システムであって、
前記変圧器の運転期間の始期および終期のデータを記憶した記憶部を備える診断システム。
The diagnostic system according to claim 9 ,
A diagnostic system comprising a storage section that stores data at the beginning and end of the operating period of the transformer.
変圧器の異常を診断する診断システムであって、
定格容量および定格電圧が互いに同等である複数の変圧器から、経時的に計測された変圧器の絶縁油中のガスの量の計測データを取得するデータ取得部と、
変圧器毎、且つ、変圧器の運転時間が前記変圧器の故障率曲線における故障率の変化の傾向に応じて複数の期間に区分けされた変圧器の運転期間毎に、経時的に計測された変圧器の絶縁油中のガスの量に基づいて、時間を独立変数、変圧器の絶縁油中のガスの量を従属変数とした回帰分析を行い、前記変圧器の運転時間と前記絶縁油中のガスの量との関係を表す近似関数を求める回帰分析部と、
前記近似関数を前記変圧器同士の間で平均化する計算部と、
前記変圧器毎、且つ、前記変圧器の運転期間毎に、変圧器の絶縁油中のガスの量を、平均化された前記近似関数に基づいて推定された前記絶縁油中ガスの量と比較する診断部と、を備え
前記変圧器の運転期間は、前記変圧器の故障率曲線における故障率が経時的に減少する初期故障期、前記変圧器の故障率曲線における故障率が定常である偶発故障期、および、前記変圧器の故障率曲線における故障率が経時的に増加する摩耗故障期のうち、いずれかとして設定された期間である診断システム。
A diagnostic system for diagnosing an abnormality in a transformer,
a data acquisition unit that acquires measurement data of the amount of gas in the insulating oil of the transformers measured over time from a plurality of transformers having the same rated capacity and voltage;
The operating time of the transformer was measured over time for each transformer and for each operating period of the transformer, which was divided into a plurality of periods according to the tendency of change in failure rate in the failure rate curve of the transformer. Based on the amount of gas in the insulating oil of the transformer , regression analysis was performed with time as an independent variable and the amount of gas in the insulating oil of the transformer as a dependent variable , and the operating time of the transformer and the amount of gas in the insulating oil were a regression analysis unit that calculates an approximate function representing the relationship between the amount of gas and the amount of gas ;
a calculation unit that averages the approximate function between the transformers;
For each transformer and for each operating period of the transformer, the amount of gas in the insulating oil of the transformer is equal to the amount of gas in the insulating oil estimated based on the averaged approximation function. a diagnostic section for comparison ;
The operating period of the transformer includes an initial failure period in which the failure rate in the failure rate curve of the transformer decreases over time, an occasional failure period in which the failure rate in the failure rate curve of the transformer is steady, and A diagnostic system is a period set as one of the wear-out failure periods in a device's failure rate curve where the failure rate increases over time .
JP2020113879A 2020-07-01 2020-07-01 Transformer diagnostic method and system Active JP7405707B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020113879A JP7405707B2 (en) 2020-07-01 2020-07-01 Transformer diagnostic method and system
PCT/JP2021/017926 WO2022004139A1 (en) 2020-07-01 2021-05-11 Transformer diagnosis method and diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020113879A JP7405707B2 (en) 2020-07-01 2020-07-01 Transformer diagnostic method and system

Publications (2)

Publication Number Publication Date
JP2022012217A JP2022012217A (en) 2022-01-17
JP7405707B2 true JP7405707B2 (en) 2023-12-26

Family

ID=79315190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020113879A Active JP7405707B2 (en) 2020-07-01 2020-07-01 Transformer diagnostic method and system

Country Status (2)

Country Link
JP (1) JP7405707B2 (en)
WO (1) WO2022004139A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545294B (en) * 2022-01-14 2023-06-16 国电南瑞科技股份有限公司 Transformer fault diagnosis method, system, storage medium and computing device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200348A (en) 2002-12-18 2004-07-15 Tokyo Electric Power Co Inc:The Diagnostic method of oil filled transformer by analysis of gas-in-oil
JP2007317836A (en) 2006-05-25 2007-12-06 Tokyo Electric Power Co Inc:The Diagnosis method of oil-filled transformer
JP2009224578A (en) 2008-03-17 2009-10-01 Toshiba Corp Deterioration diagnosis method of oil electrical apparatus
JP2009266988A (en) 2008-04-24 2009-11-12 Sumitomo Metal Ind Ltd Diagnostic method of internal failure of oil-filled electric apparatus
JP2010256208A (en) 2009-04-27 2010-11-11 Tokyo Electric Power Co Inc:The Method for diagnosing secular deterioration of insulating oil in electric device
JP2011185880A (en) 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
WO2012029154A1 (en) 2010-09-02 2012-03-08 株式会社かんでんエンジニアリング Internal abnormality diagnosis method, internal abnormality diagnosis system, and decision tree generating method for internal abnormality diagnosis of oil-filled electric apparatus utilizing gas concentration in oil
JP2013045860A (en) 2011-08-24 2013-03-04 Nippon Steel & Sumitomo Metal Diagnostic method for internal abnormality of oil-immersed electrical apparatus
CN104764869A (en) 2014-12-11 2015-07-08 国家电网公司 Transformer gas fault diagnosis and alarm method based on multidimensional characteristics
CN109030791A (en) 2018-09-07 2018-12-18 广西电网有限责任公司电力科学研究院 It is a kind of to be colonized the optimization SVM Diagnosis Method of Transformer Faults of Competitive Algorithms based on empire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687448B2 (en) * 1987-05-22 1994-11-02 株式会社日立製作所 Abnormality diagnosis device for oil-filled electrical equipment
JPH0452567A (en) * 1990-06-20 1992-02-20 Yuka Ind:Kk Method for diagnosing abnormality within oil-immersed electrical equipment and diagnosis diagram used for it
JPH0540114A (en) * 1991-08-08 1993-02-19 Osaka Gas Co Ltd Estimating method of cause of degradation of oil
JPH0673336B2 (en) * 1992-07-15 1994-09-14 大阪瓦斯株式会社 Abnormality prediction system for oil-filled transformer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200348A (en) 2002-12-18 2004-07-15 Tokyo Electric Power Co Inc:The Diagnostic method of oil filled transformer by analysis of gas-in-oil
JP2007317836A (en) 2006-05-25 2007-12-06 Tokyo Electric Power Co Inc:The Diagnosis method of oil-filled transformer
JP2009224578A (en) 2008-03-17 2009-10-01 Toshiba Corp Deterioration diagnosis method of oil electrical apparatus
JP2009266988A (en) 2008-04-24 2009-11-12 Sumitomo Metal Ind Ltd Diagnostic method of internal failure of oil-filled electric apparatus
JP2010256208A (en) 2009-04-27 2010-11-11 Tokyo Electric Power Co Inc:The Method for diagnosing secular deterioration of insulating oil in electric device
JP2011185880A (en) 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
WO2012029154A1 (en) 2010-09-02 2012-03-08 株式会社かんでんエンジニアリング Internal abnormality diagnosis method, internal abnormality diagnosis system, and decision tree generating method for internal abnormality diagnosis of oil-filled electric apparatus utilizing gas concentration in oil
JP2013045860A (en) 2011-08-24 2013-03-04 Nippon Steel & Sumitomo Metal Diagnostic method for internal abnormality of oil-immersed electrical apparatus
CN104764869A (en) 2014-12-11 2015-07-08 国家电网公司 Transformer gas fault diagnosis and alarm method based on multidimensional characteristics
CN109030791A (en) 2018-09-07 2018-12-18 广西电网有限责任公司电力科学研究院 It is a kind of to be colonized the optimization SVM Diagnosis Method of Transformer Faults of Competitive Algorithms based on empire

Also Published As

Publication number Publication date
WO2022004139A1 (en) 2022-01-06
JP2022012217A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
US10001518B2 (en) System and method for power transmission and distribution asset condition prediction and diagnosis
KR20140041568A (en) Method and system for estimating transformer remaining life
JP5431324B2 (en) Transformer decomposition gas harmonic regression analysis method and system
US6446027B1 (en) Intelligent analysis system and method for fluid-filled electrical equipment
JP7405707B2 (en) Transformer diagnostic method and system
Bhalla et al. Transformer incipient fault diagnosis based on DGA using fuzzy logic
JP4623334B1 (en) Method for predicting the possibility of abnormality in oil-filled electrical equipment
Vasquez et al. Risk‐based approach for power transformer replacement considering temperature, apparent age, and expected capacity
JP2018113737A (en) Life estimation device of pole transformer
Poiss Development of DGA indicator for estimating risk level of power transformers
KR102309979B1 (en) Asset management method for electric power equipment
KR20220011046A (en) Method for status prediction of transformer based on oil filtering and apparatus for using the method
Li et al. Research on prediction model of insulation failure rate of power transformer considering real-time aging state
Agarwal et al. Implementation of remaining useful lifetime transformer models in the fleet-wide prognostic and health management suite
Lian et al. Smart asset management of aging devices in energy systems: A case study of transformers
Perkins et al. Transformer life assessment tools with specific application to nuclear power station generator transformers
KR102520723B1 (en) Method for determination of status of oil immersed type transformer and apparatus for using the method
US20220019937A1 (en) Apparatus and method for predicting transformer state in consideration of whether oil filtering is performed
KR102124787B1 (en) method for analyzing condition Based Risk of power equipment
JP2022089753A (en) Device and method for diagnosing state
BR102020008829A2 (en) CONDITION ASSESSMENT METHODOLOGY OF POWER TRANSFORMERS, REACTORS, CIRCUIT BREAKERS, INSTRUMENT TRANSFORMERS, DISCONNECTOR SWITCHES AND CONGENERAL HIGH VOLTAGE EQUIPMENT
CN116762045A (en) Pre-breaking of high-voltage equipment
JP2020030649A (en) Power apparatus maintenance support device, method and program
Suwanasri et al. Program Development Using Dissolved Gas Analysis Method for an Analysis of Power Transformer Oil Testing Results

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7405707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150