JP6906349B2 - Failure rate calculation device and failure rate calculation method - Google Patents

Failure rate calculation device and failure rate calculation method Download PDF

Info

Publication number
JP6906349B2
JP6906349B2 JP2017079489A JP2017079489A JP6906349B2 JP 6906349 B2 JP6906349 B2 JP 6906349B2 JP 2017079489 A JP2017079489 A JP 2017079489A JP 2017079489 A JP2017079489 A JP 2017079489A JP 6906349 B2 JP6906349 B2 JP 6906349B2
Authority
JP
Japan
Prior art keywords
failure rate
deterioration
equipment
degree
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017079489A
Other languages
Japanese (ja)
Other versions
JP2018182903A (en
Inventor
容子 坂内
容子 坂内
正博 戸原
正博 戸原
鳥羽 廣次
廣次 鳥羽
照久 松井
照久 松井
道彦 犬飼
道彦 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017079489A priority Critical patent/JP6906349B2/en
Publication of JP2018182903A publication Critical patent/JP2018182903A/en
Application granted granted Critical
Publication of JP6906349B2 publication Critical patent/JP6906349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明の実施形態は、故障率算出装置および故障率算出方法に関する。 An embodiment of the present invention relates to a failure rate calculation device and a failure rate calculation method.

電力系統設備を更新する際、当該電力系統設備の更新の前後および更新中における、当該電力系統設備が設置された区間における電力の供給信頼度(SAIFI:System Average Interruption Frequency Index、例えば、単位時間当たりの停電の発生率)を算出する必要がある。供給信頼度の算出には、電力系統設備の故障率が必要であるが、電力系統設備が設置されてからの経年数に応じた固定値を故障率として用いている。 When updating the power system equipment, the power supply reliability (SAIFI: System Average Interruption Frequency Index, for example, per unit time) in the section where the power system equipment is installed before, during, and after the update of the power system equipment. It is necessary to calculate the occurrence rate of power outages. The failure rate of the power system equipment is required to calculate the supply reliability, but a fixed value according to the number of years since the power system equipment was installed is used as the failure rate.

特許第4550632号公報Japanese Patent No. 4550632 特許第4977064号公報Japanese Patent No. 4977064 特許第5882849号公報Japanese Patent No. 5882849 特許第5720804号公報Japanese Patent No. 5720804

しかしながら、故障率には、電力系統設備が設置されてからの経年数等の属性情報に基づいて変更した値を用いることはあるが、電力系統設備の設置環境や使用条件によって生じる劣化度による電力系統設備毎のばらつきに対応した値となっておらず、実態を反映した故障率となっていない場合がある。 However, although the failure rate may be a value changed based on attribute information such as the number of years since the power system equipment was installed, the power due to the degree of deterioration caused by the installation environment and usage conditions of the power system equipment. The value does not correspond to the variation of each system equipment, and the failure rate may not reflect the actual situation.

実施形態の故障率算出装置は、取得部と、実力経年数算出部と、故障率算出部と、を備える。取得部は、所定区間内の電力系統の設備の劣化度を示すデータを取得する。実力経年数算出部は、取得したデータが示す劣化度と当該設備が所定区間内に設置されてからの経年数とに基づいて、設備に対する外的要因による設備毎の劣化度のばらつきに対応した実力経年数を算出する。故障率算出部は、実力経年数算出部により算出された実力経年数に応じた設備の故障率を算出する。 The failure rate calculation device of the embodiment includes an acquisition unit, an actual aging calculation unit, and a failure rate calculation unit. The acquisition unit acquires data indicating the degree of deterioration of the equipment of the power system within the predetermined section. Based on the degree of deterioration indicated by the acquired data and the number of years since the equipment was installed within the specified section, the ability aging calculation unit responds to variations in the degree of deterioration for each equipment due to external factors for the equipment. Calculate the number of years of ability. The failure rate calculation unit calculates the failure rate of the equipment according to the actual aging calculated by the actual aging calculation unit.

図1は、第1の実施形態にかかる故障率算出装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of the failure rate calculation device according to the first embodiment. 図2は、第1の実施形態にかかる故障率算出装置による供給信頼度の算出処理の流れの一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of the flow of the supply reliability calculation process by the failure rate calculation device according to the first embodiment. 図3は、第1の実施形態にかかる故障率算出装置によって変換テーブルを作成する処理の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of a process of creating a conversion table by the failure rate calculation device according to the first embodiment. 図4は、第1の実施形態にかかる故障率算出装置によって実力経年数を算出する処理の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of a process of calculating the actual number of years by the failure rate calculation device according to the first embodiment. 図5は、第2の実施形態にかかる故障率算出システムの構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of the failure rate calculation system according to the second embodiment.

以下、添付の図面を用いて、本実施形態にかかる故障率算出装置および故障率算出方法について説明する。 Hereinafter, the failure rate calculation device and the failure rate calculation method according to the present embodiment will be described with reference to the attached drawings.

(第1の実施形態)
図1は、第1の実施形態にかかる故障率算出装置の構成の一例を示すブロック図である。図1に示すように、本実施形態にかかる故障率算出装置1は、データ取得部101と、フィールドデータベース102と、テーブル算出部103と、モデル式作成部104と、実力経年数算出部105と、故障率算出部106と、供給信頼度算出部107と、データ出力部108と、を有する。
(First Embodiment)
FIG. 1 is a block diagram showing an example of the configuration of the failure rate calculation device according to the first embodiment. As shown in FIG. 1, the failure rate calculation device 1 according to the present embodiment includes a data acquisition unit 101, a field database 102, a table calculation unit 103, a model formula creation unit 104, and an actual aging calculation unit 105. It has a failure rate calculation unit 106, a supply reliability calculation unit 107, and a data output unit 108.

フィールドデータベース102は、所定区間内の電力系統の設備(以下、電力系統設備と言う。例えば、ケーブル、変圧器、遮断器)の劣化度と、当該電力系統設備が所定区間内に設置されてからの経年数(以下、真の経年数と言う)と、を記憶する。ここで、所定区間は、発電所から需要家までの電力系統の区間のうち、予め設定された区間である。本実施形態では、所定区間は、発電所から需要家までの電力系統の区間のうち、供給信頼度(SAIFI:System Average Interruption Frequency Index、例えば、単位時間当たりの停電の発生率)を算出する区間である。 The field database 102 shows the degree of deterioration of the power system equipment (hereinafter referred to as power system equipment, for example, cables, transformers, breakers) within the predetermined section, and after the power system equipment is installed in the predetermined section. Memorize the number of years (hereinafter referred to as the true number of years). Here, the predetermined section is a preset section of the section of the electric power system from the power plant to the consumer. In the present embodiment, the predetermined section is a section of the power system from the power plant to the consumer for calculating the supply reliability (SAIFI: System Average Interruption Frequency Index, for example, the occurrence rate of power failure per unit time). Is.

劣化度は、電力系統設備の劣化の度合いを示す値であり、例えば、ケーブルの温度や振動や騒音、変圧器の絶縁抵抗値、遮断器の遮断回数である。また、真の経年数は、電力系統設備が所定区間内に設置されてから実際に経過した年数である。 The degree of deterioration is a value indicating the degree of deterioration of power system equipment, and is, for example, the temperature, vibration, noise, insulation resistance value of a transformer, and the number of times a circuit breaker is cut off. The true number of years is the number of years actually passed since the power system equipment was installed within the predetermined section.

テーブル算出部103は、フィールドデータベース102に記憶される劣化度および真の経年数に基づいて、電力系統設備の劣化度と、実力経年数と、を対応付けるテーブル(以下、変換テーブルと言う)を算出する。ここで、実力経年数は、電力系統設備の劣化度に相当する当該電力系統設備の実効的な経年数である。本実施形態では、実力経年数は、電力系統設備の劣化度に相当する当該電力系統設備の平均的な経年数である。本実施形態では、テーブル算出部103は、電力系統設備の劣化度の種類毎に、変換テーブルを算出する。 The table calculation unit 103 calculates a table (hereinafter referred to as a conversion table) for associating the deterioration degree of the power system equipment with the actual aging degree based on the deterioration degree and the true aging degree stored in the field database 102. do. Here, the actual age is the effective age of the power system equipment corresponding to the degree of deterioration of the power system equipment. In the present embodiment, the actual age is the average age of the power system equipment corresponding to the degree of deterioration of the power system equipment. In the present embodiment, the table calculation unit 103 calculates a conversion table for each type of deterioration degree of the power system equipment.

データ取得部101は、所定区間内の電力系統設備の劣化度を示すデータ(以下、劣化度データと言う)を取得する。例えば、データ取得部101は、ケーブルの温度や振動や騒音、変圧器の絶縁抵抗値、遮断器の遮断回数等を劣化度としてデータを取得する。本実施形態では、データ取得部101は、電力系統設備の複数種類の劣化度を示す劣化度データを取得する。また、本実施形態では、データ取得部101は、予め設定された単位時間毎に、劣化度データを取得する。 The data acquisition unit 101 acquires data indicating the degree of deterioration of the power system equipment in a predetermined section (hereinafter, referred to as deterioration degree data). For example, the data acquisition unit 101 acquires data with the temperature, vibration, noise, insulation resistance value of the transformer, the number of interruptions of the circuit breaker, and the like as the degree of deterioration. In the present embodiment, the data acquisition unit 101 acquires deterioration degree data indicating a plurality of types of deterioration degrees of the power system equipment. Further, in the present embodiment, the data acquisition unit 101 acquires deterioration degree data every preset unit time.

実力経年数算出部105は、フィールドデータベース102に記憶された、所定区間内の電力系統設備の劣化度と、当該電力系統設備の真の経年数とに基づいて、データ取得部101により取得した劣化度データが示す劣化度に相当する電力系統設備の実力経年数を算出する。本実施形態では、実力経年数算出部105は、テーブル算出部103により算出された変換テーブルにおいて、データ取得部101により取得した劣化度データが示す劣化度と対応付けられた実力経年数を、電力系統設備の実力経年数として算出する。 The actual aging calculation unit 105 is the deterioration acquired by the data acquisition unit 101 based on the degree of deterioration of the power system equipment in the predetermined section stored in the field database 102 and the true aging of the power system equipment. Calculate the actual age of the power system equipment corresponding to the degree of deterioration indicated by the degree data. In the present embodiment, the ability aging calculation unit 105 determines the ability aging associated with the deterioration degree indicated by the deterioration degree data acquired by the data acquisition unit 101 in the conversion table calculated by the table calculation unit 103. Calculated as the actual number of years of system equipment.

本実施形態では、実力経年数算出部105は、取得された劣化度データが複数種類の劣化度を示す場合、当該複数種類の劣化度それぞれについて実力経年数を算出し、算出した複数の実力経年数のうち、最も長い実力経年数を、電力系統設備の実力経年数とする。本実施形態では、実力経年数算出部105は、取得された劣化度データが複数種類の劣化度を示す場合、テーブル算出部103により算出された変換テーブルのうち劣化度データが示す劣化度の各種類に対応する変換テーブルにおいて、当該各種類の劣化度と対応付けられた実力経年数を特定する。そして、実力経年数算出部105は、各種類の劣化度について算出した実力経年数のうち、最も長い実力経年数を、電力系統設備の実力経年数として算出する。 In the present embodiment, when the acquired deterioration degree data shows a plurality of types of deterioration degrees, the ability aging calculation unit 105 calculates the ability aging for each of the plurality of types of deterioration degrees, and calculates a plurality of ability aging. Of the numbers, the longest actual age is defined as the actual age of the power system equipment. In the present embodiment, when the acquired deterioration degree data shows a plurality of types of deterioration degrees, the ability aging calculation unit 105 indicates each of the deterioration degrees indicated by the deterioration degree data in the conversion table calculated by the table calculation unit 103. In the conversion table corresponding to each type, specify the actual number of years associated with the degree of deterioration of each type. Then, the ability aging calculation unit 105 calculates the longest ability aging among the ability aging calculated for each type of deterioration degree as the ability aging of the power system equipment.

モデル式作成部104は、フィールドデータベース102に記憶される劣化度および真の経年数を用いて、電力系統設備の故障率と、電力系統設備の経年数との関係を示すモデル式を作成する。本実施形態では、モデル式作成部104は、電力系統設備の種類毎にモデル式を作成する。具体的には、モデル式作成部104は、フィールドデータベース102に記憶される電力系統設備の種類毎の稼働および故障の実績に基づいて、当該電力系統設備の種類毎の故障の原因を特定するハザード分析を行う。次いで、モデル式作成部104は、電力系統設備の故障の原因に基づいて、ワイブル分布等の統計分析によって、電力系統設備の故障率と実力経年数との関係を表すモデル式を作成する。 The model formula creation unit 104 creates a model formula showing the relationship between the failure rate of the power system equipment and the age of the power system equipment by using the degree of deterioration and the true age stored in the field database 102. In the present embodiment, the model formula creation unit 104 creates a model formula for each type of power system equipment. Specifically, the model formula creation unit 104 identifies the cause of failure for each type of power system equipment based on the actual operation and failure of each type of power system equipment stored in the field database 102. Perform an analysis. Next, the model formula creation unit 104 creates a model formula showing the relationship between the failure rate of the power system equipment and the actual age by statistical analysis such as the Weibull distribution based on the cause of the failure of the power system equipment.

例えば、モデル式作成部104は、ワイブル分布によって下記の式(1)に示すモデル式を作成する。式(1)において、λは電力系統設備の故障率であり、tは実力経年数であり、mは形状パラメータであり、ηは尺度パラメータである。

Figure 0006906349
For example, the model formula creation unit 104 creates the model formula shown in the following formula (1) by the Weibull distribution. In equation (1), λ is the failure rate of the power system equipment, t is the actual age, m is the shape parameter, and η is the scale parameter.
Figure 0006906349

故障率算出部106は、実力経年数算出部105により算出される電力系統設備の実力経年数に応じた電力系統設備の故障率を算出する。これにより、電力系統設備の設置環境や使用条件によって生じる電力系統設備の劣化度のばらつきに対応した電力系統設備の経年数に応じた故障率を算出できるので、電力系統設備の実態を反映した故障率を求めることができる。本実施形態では、故障率算出部106は、モデル式作成部104により作成されたモデル式を用いて、実力経年数算出部105により算出される電力系統設備の経年数に応じた電力系統設備の故障率を算出する。また、本実施形態では、故障率算出部106は、予め設定された単位時間毎に、電力系統設備の故障率を算出する。 The failure rate calculation unit 106 calculates the failure rate of the power system equipment according to the actual age of the power system equipment calculated by the actual age calculation unit 105. This makes it possible to calculate the failure rate according to the age of the power system equipment that corresponds to the variation in the degree of deterioration of the power system equipment caused by the installation environment and usage conditions of the power system equipment. The rate can be calculated. In the present embodiment, the failure rate calculation unit 106 uses the model formula created by the model formula creation unit 104 to calculate the power system equipment according to the age of the power system equipment calculated by the actual age calculation unit 105. Calculate the failure rate. Further, in the present embodiment, the failure rate calculation unit 106 calculates the failure rate of the power system equipment for each preset unit time.

供給信頼度算出部107は、故障率算出部106により算出される故障率に基づいて、所定区間の電力系統の供給信頼度を算出する。本実施形態では、供給信頼度算出部107は、故障率算出部106により算出される故障率に基づいて、単位時間当たりの供給信頼度を算出する。また、本実施形態では、供給信頼度算出部107は、下記の式(2)を用いて、供給信頼度を算出する。式(2)において、λは単位時間当たりの故障率であり、nは電力系統設備の故障によって所定区間において停電が発生する需要家の数であり、nallは所定区間内の需要家の総数である。データ出力部108は、供給信頼度算出部107により算出される供給信頼度を外部の装置に出力する。

Figure 0006906349
The supply reliability calculation unit 107 calculates the supply reliability of the power system in a predetermined section based on the failure rate calculated by the failure rate calculation unit 106. In the present embodiment, the supply reliability calculation unit 107 calculates the supply reliability per unit time based on the failure rate calculated by the failure rate calculation unit 106. Further, in the present embodiment, the supply reliability calculation unit 107 calculates the supply reliability using the following formula (2). In equation (2), λ is the failure rate per unit time, n is the number of consumers who experience a power outage in a predetermined section due to a failure of power system equipment, and n all is the total number of consumers in the predetermined section. Is. The data output unit 108 outputs the supply reliability calculated by the supply reliability calculation unit 107 to an external device.
Figure 0006906349

本実施形態では、故障率算出部106により算出される故障率に基づいて、供給信頼度を算出する例について説明したが、これに限定するものではなく、例えば、故障率算出部106により算出される故障率に基づいて、予備の電力系統設備(例えば、変圧器)をどれくらい用意するかなど、電力系統設備の更新計画を作成しても良い。 In the present embodiment, an example of calculating the supply reliability based on the failure rate calculated by the failure rate calculation unit 106 has been described, but the present invention is not limited to this, and is calculated by, for example, the failure rate calculation unit 106. Based on the failure rate, a renewal plan for the power system equipment may be created, such as how much spare power system equipment (for example, a transformer) is prepared.

次に、図2を用いて、本実施形態にかかる故障率算出装置1による供給信頼度の算出処理の流れの一例について説明する。図2は、第1の実施形態にかかる故障率算出装置による供給信頼度の算出処理の流れの一例を示すフローチャートである。 Next, an example of the flow of the supply reliability calculation process by the failure rate calculation device 1 according to the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing an example of the flow of the supply reliability calculation process by the failure rate calculation device according to the first embodiment.

本実施形態では、データ取得部101は、所定区間内の電力系統設備(以下、対象設備と言う)の劣化度を示す劣化度データを取得する劣化診断処理を実行する(ステップS201)。例えば、データ取得部101は、対象設備の一例であるケーブルの劣化診断処理を実行する場合、ケーブルの温度上昇や振動や騒音や絶縁抵抗値を、当該ケーブルの劣化度を示す劣化度データとして取得する。また、データ取得部101は、対象設備の一例である変圧器の劣化診断処理を実行する場合、変圧器の絶縁抵抗値を、当該変圧器の劣化度を示す劣化度データとして取得する。また、データ取得部101は、対象設備の一例である遮断器の劣化診断処理を実行する場合、遮断器の遮断回数を、当該遮断器の劣化度を示す劣化度データとして取得する。 In the present embodiment, the data acquisition unit 101 executes a deterioration diagnosis process for acquiring deterioration degree data indicating the deterioration degree of the power system equipment (hereinafter referred to as the target equipment) in the predetermined section (step S201). For example, when the data acquisition unit 101 executes the deterioration diagnosis process of the cable, which is an example of the target equipment, the data acquisition unit 101 acquires the temperature rise, vibration, noise, and insulation resistance value of the cable as deterioration degree data indicating the deterioration degree of the cable. do. Further, when the data acquisition unit 101 executes the deterioration diagnosis process of the transformer, which is an example of the target equipment, the data acquisition unit 101 acquires the insulation resistance value of the transformer as the deterioration degree data indicating the deterioration degree of the transformer. Further, when the data acquisition unit 101 executes the deterioration diagnosis process of the circuit breaker, which is an example of the target equipment, the data acquisition unit 101 acquires the number of times the circuit breaker is interrupted as the deterioration degree data indicating the degree of deterioration of the circuit breaker.

次いで、テーブル算出部103は、フィールドデータベース102に記憶される劣化度および真の経年数に基づいて、電力系統設備の種類毎に、当該電力系統設備の劣化度と実力経年数とを対応付ける変換テーブルを算出する(ステップS202)。本実施形態では、テーブル算出部103は、電力系統設備の劣化度に相当する当該電力系統設備の平均的な経年数を実力経年数とする。 Next, the table calculation unit 103 is a conversion table that associates the degree of deterioration of the power system equipment with the actual number of years of aging for each type of power system equipment based on the degree of deterioration and the true number of years stored in the field database 102. Is calculated (step S202). In the present embodiment, the table calculation unit 103 sets the average age of the power system equipment corresponding to the degree of deterioration of the power system equipment as the actual age.

次に、実力経年数算出部105は、テーブル算出部103により電力系統設備の種類毎に算出されたテーブルのうち、対象設備の変換テーブルにおいて、当該対象設備の劣化度データが示す劣化度と対応付けられる実力経年数を、対象設備の実力経年数として算出する(ステップS203)。そして、故障率算出部106は、モデル式作成部104により電力系統設備の種類毎に作成されたモデル式(例えば、式(1))のうち対象設備のモデル式に対して、算出した対象設備の経年数を代入することによって、対象設備の故障率を算出する(ステップS204)。さらに、供給信頼度算出部107は、対象設備の故障率に基づいて、所定区間の電力系統の供給信頼度を算出する(ステップS205)。 Next, the ability aging calculation unit 105 corresponds to the deterioration degree indicated by the deterioration degree data of the target equipment in the conversion table of the target equipment among the tables calculated by the table calculation unit 103 for each type of the power system equipment. The attached actual age is calculated as the actual age of the target equipment (step S203). Then, the failure rate calculation unit 106 calculates the target equipment with respect to the model formula of the target equipment among the model formulas (for example, the formula (1)) created for each type of the power system equipment by the model formula creation unit 104. The failure rate of the target equipment is calculated by substituting the number of years of the above (step S204). Further, the supply reliability calculation unit 107 calculates the supply reliability of the power system in the predetermined section based on the failure rate of the target equipment (step S205).

次に、図3を用いて、本実施形態にかかる故障率算出装置1により変換テーブルを作成する処理の一例について説明する。図3は、第1の実施形態にかかる故障率算出装置によって変換テーブルを作成する処理の一例を説明するための図である。図3において、縦軸は電力系統設備の劣化度を表し、横軸は電力系統設備の経年数を表す。 Next, an example of a process of creating a conversion table by the failure rate calculation device 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is a diagram for explaining an example of a process of creating a conversion table by the failure rate calculation device according to the first embodiment. In FIG. 3, the vertical axis represents the degree of deterioration of the power system equipment, and the horizontal axis represents the age of the power system equipment.

上述したように、本実施形態にかかる故障率算出装置1は、実力経年数算出部105によって、電力系統設備に対する外的要因(例えば、設置環境や使用条件)による劣化度のばらつきを考慮して実力経年数を算出する。そのため、故障率算出装置1は、テーブル算出部103によって、電力系統設備の劣化度と実力経年数とを対応付ける変換テーブルを予め作成しておく必要がある。変換テーブルは、電力系統設備の種類(例えば、ケーブル径または電極径が異なるケーブル)毎に異なる。 As described above, in the failure rate calculation device 1 according to the present embodiment, the ability aging calculation unit 105 considers the variation in the degree of deterioration due to external factors (for example, installation environment and usage conditions) for the power system equipment. Calculate the number of years of ability. Therefore, the failure rate calculation device 1 needs to prepare in advance a conversion table for associating the degree of deterioration of the power system equipment with the actual number of years of aging by the table calculation unit 103. The conversion table is different for each type of power system equipment (for example, cables having different cable diameters or electrode diameters).

そこで、フィールドデータベース102は、図3に示すように、電力系統設備の種類毎に、経年数が異なる電力系統設備の劣化度を蓄積する。そして、テーブル算出部103は、フィールドデータベース102に蓄積される、経年数が異なる電力系統設備の劣化度(図3の丸印で示す)を用いて、電力系統設備の劣化度毎の電力系統設備の平均的な経年数を実力経年数として統計的に算出する。次に、テーブル算出部103は、電力系統設備の経年数(実力経年数)と、当該実力経年数の電力系統設備の劣化度と、を対応付ける変換テーブル(図3の実線で示す)を作成する。 Therefore, as shown in FIG. 3, the field database 102 accumulates the degree of deterioration of the power system equipment having different ages for each type of the power system equipment. Then, the table calculation unit 103 uses the degree of deterioration of the power system equipment having different ages (indicated by the circle in FIG. 3) accumulated in the field database 102, and uses the power system equipment for each degree of deterioration of the power system equipment. The average number of years of age is statistically calculated as the number of years of ability. Next, the table calculation unit 103 creates a conversion table (shown by the solid line in FIG. 3) that associates the age of the power system equipment (actual age) with the degree of deterioration of the power system equipment of the actual age. ..

次に、図4を用いて、本実施形態にかかる故障率算出装置1によって実力経年数を算出する処理の一例について説明する。図4は、第1の実施形態にかかる故障率度算出装置によって実力経年数を算出する処理の一例を説明するための図である。図4において、縦軸は電力系統設備の劣化度を表し、横軸は電力系統設備の経年数を表す。また、図4において、符号T1で示す線は、悪環境に設置されて劣化が早い電力系統設備(例えば、使用頻度が高く酷使されている電力系統設備)の真の経年数と当該電力系統設備の劣化度との関係を表す。また、図4において、符号T2で示す線は、電力系統設備の実力経年数と当該電力系統設備の劣化度との関係を表す。また、図4において、符号T3で示す線は、良環境に設置されて劣化が遅い電力系統設備(例えば、使用頻度が少ない電力系統設備)の真の経年数と当該電力系統設備の劣化度との関係を表す。 Next, with reference to FIG. 4, an example of the process of calculating the actual number of years by the failure rate calculation device 1 according to the present embodiment will be described. FIG. 4 is a diagram for explaining an example of a process of calculating the actual number of years by the failure rate calculation device according to the first embodiment. In FIG. 4, the vertical axis represents the degree of deterioration of the power system equipment, and the horizontal axis represents the age of the power system equipment. Further, in FIG. 4, the line indicated by reference numeral T1 indicates the true age of the power system equipment that is installed in a bad environment and deteriorates quickly (for example, the power system equipment that is frequently used and abused) and the power system equipment. Represents the relationship with the degree of deterioration of. Further, in FIG. 4, the line indicated by reference numeral T2 represents the relationship between the actual age of the power system equipment and the degree of deterioration of the power system equipment. Further, in FIG. 4, the line indicated by reference numeral T3 indicates the true age of the power system equipment installed in a good environment and slow deterioration (for example, the power system equipment used infrequently) and the degree of deterioration of the power system equipment. Represents the relationship of.

図4に示すように、電力系統設備の劣化度が同一である場合でも、その電力系統設備の設置環境や使用条件によって、電力系統設備の真の経年数が異なる。例えば、悪環境に設置された電力系統設備は、劣化度が1400である場合でも、真の経年数が25年である(符号T1で示す、真の経年数と劣化度との関係を参照)。これに対して、良環境に設置された電力系統設備は、劣化度が1400である場合、真の経年数が47年である(符号T3で示す、真の経年数と劣化度との関係を参照)。 As shown in FIG. 4, even if the degree of deterioration of the power system equipment is the same, the true age of the power system equipment differs depending on the installation environment and usage conditions of the power system equipment. For example, a power system facility installed in a bad environment has a true age of 25 years even if the degree of deterioration is 1400 (see the relationship between the true age and the degree of deterioration indicated by the reference numeral T1). .. On the other hand, the power system equipment installed in a good environment has a true age of 47 years when the degree of deterioration is 1400 (the relationship between the true age and the degree of deterioration indicated by reference numeral T3). reference).

そのため、本実施形態では、実力経年数算出部105は、電力系統設備の実力経年数と、電力系統設備の平均的な劣化度とを対応付けた変換テーブル(符号T2で示す、実力経年数と劣化度との関係を参照)を用いて、取得した劣化度データが示す劣化度に対応する実力経年数を、電力系統設備の実力経年数として算出する。例えば、実力経年数算出部105は、取得した劣化度データが示す劣化度が1400である場合、37年を実力経年数として算出する。また、実力経年数算出部105は、取得した劣化度データが示す劣化度が1000である場合、31年を実力経年数として算出する。 Therefore, in the present embodiment, the actual aging calculation unit 105 has a conversion table (indicated by reference numeral T2, the actual aging) in which the actual aging of the power system equipment and the average deterioration degree of the power system equipment are associated with each other. (Refer to the relationship with the degree of deterioration), the actual number of years corresponding to the degree of deterioration indicated by the acquired degree of deterioration data is calculated as the actual number of years of power system equipment. For example, when the degree of deterioration indicated by the acquired deterioration degree data is 1400, the ability aging calculation unit 105 calculates 37 years as the ability aging. Further, the ability aging calculation unit 105 calculates 31 years as the ability aging when the deterioration degree indicated by the acquired deterioration degree data is 1000.

このように、第1の実施形態にかかる故障率算出装置1によれば、電力系統設備の設置環境や使用条件によって生じる劣化度による電力系統設備のばらつきに対応した電力系統設備の実力経年数に応じた故障率を算出できるので、電力系統設備の実態を反映した故障率を求めることができる。 As described above, according to the failure rate calculation device 1 according to the first embodiment, the actual age of the power system equipment corresponding to the variation of the power system equipment due to the degree of deterioration caused by the installation environment and the usage conditions of the power system equipment can be obtained. Since the failure rate can be calculated according to the situation, the failure rate that reflects the actual condition of the power system equipment can be obtained.

(第2の実施形態)
本実施形態は、電力系統設備の故障率の算出と、所定区間の電力系統設備の供給信頼度の算出とを、別々の装置で行う故障率算出システムの例である。以下の説明では、第1の実施形態と同様の構成については説明を省略する。
(Second embodiment)
This embodiment is an example of a failure rate calculation system in which the failure rate of the power system equipment and the supply reliability of the power system equipment in a predetermined section are calculated by separate devices. In the following description, description of the same configuration as that of the first embodiment will be omitted.

図5は、第2の実施形態にかかる故障率算出システムの構成の一例を示すブロック図である。図5に示すように、本実施形態にかかる故障率算出システムは、故障率算出装置501と、供給信頼度算出装置502と、を有する。そして、故障率算出装置501は、データ取得部101と、フィールドデータベース102と、テーブル算出部103と、モデル式算出部104と、実力経年数算出部105と、故障率算出部106と、を有する。また、供給信頼度算出装置502は、供給信頼度算出部107と、データ出力部108と、を有する。すなわち、本実施形態にかかる故障率算出システムでは、電力系統設備の故障率の算出と、所定区間内の電力系統設備の供給信頼度の算出とを、別々の装置(故障率算出装置501および供給信頼度算出装置502)で実行する。 FIG. 5 is a block diagram showing an example of the configuration of the failure rate calculation system according to the second embodiment. As shown in FIG. 5, the failure rate calculation system according to the present embodiment includes a failure rate calculation device 501 and a supply reliability calculation device 502. The failure rate calculation device 501 includes a data acquisition unit 101, a field database 102, a table calculation unit 103, a model formula calculation unit 104, an ability aging calculation unit 105, and a failure rate calculation unit 106. .. Further, the supply reliability calculation device 502 includes a supply reliability calculation unit 107 and a data output unit 108. That is, in the failure rate calculation system according to the present embodiment, the calculation of the failure rate of the power system equipment and the calculation of the supply reliability of the power system equipment within the predetermined section are performed by separate devices (failure rate calculation device 501 and supply). It is executed by the reliability calculation device 502).

そして、第2の実施形態にかかる故障率算出システムによれば、電力系統設備の故障率の算出と、所定区間内の電力系統設備の供給信頼度の算出とを、別々の装置で実行した場合でも、第1の実施形態と同様に、電力系統設備の設置環境や使用条件によって生じる劣化度による電力系統設備のばらつきに対応した電力系統設備の経年数に応じた故障率を算出できるので、電力系統設備の実態を反映した故障率を求めることができる。 Then, according to the failure rate calculation system according to the second embodiment, when the calculation of the failure rate of the power system equipment and the calculation of the supply reliability of the power system equipment within the predetermined section are executed by separate devices. However, as in the first embodiment, the failure rate can be calculated according to the age of the power system equipment corresponding to the variation in the power system equipment due to the degree of deterioration caused by the installation environment and usage conditions of the power system equipment. It is possible to obtain the failure rate that reflects the actual condition of the system equipment.

以上説明したとおり、第1,2の実施形態によれば、電力系統設備の実態を反映した故障率を求めることができる。 As described above, according to the first and second embodiments, the failure rate that reflects the actual state of the power system equipment can be obtained.

なお、本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムは、ROM(Read Only Memory)等に予め組み込まれて提供される。本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成しても良い。 The programs executed by the failure rate calculation devices 1, 501 and the supply reliability calculation device 502 of the present embodiment are provided in advance in a ROM (Read Only Memory) or the like. The programs executed by the failure rate calculation device 1,501 and the supply reliability calculation device 502 of the present embodiment are files in an installable format or an executable format, such as a CD-ROM, a flexible disk (FD), or a CD-R. , DVD (Digital Versatile Disk) or the like, and may be configured to be recorded and provided on a computer-readable recording medium.

さらに、本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。 Further, the programs executed by the failure rate calculation devices 1, 501 and the supply reliability calculation device 502 of the present embodiment are stored on a computer connected to a network such as the Internet and provided by downloading via the network. It may be configured as follows. Further, the programs executed by the failure rate calculation devices 1, 501 and the supply reliability calculation device 502 of the present embodiment may be provided or distributed via a network such as the Internet.

本実施形態の故障率算出装置1,501および供給信頼度算出装置502で実行されるプログラムは、上述した各部(データ取得部101、テーブル算出部103、モデル式算出部104、実力経年数算出部105、故障率算出部106、供給信頼度算出部107、およびデータ出力部108)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(Central Processing Unit)が上記ROMからプログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、データ取得部101、テーブル算出部103、モデル式算出部104、実力経年数算出部105、故障率算出部106、供給信頼度算出部107、およびデータ出力部108、が主記憶装置上に生成されるようになっている。 The programs executed by the failure rate calculation device 1,501 and the supply reliability calculation device 502 of the present embodiment include the above-mentioned parts (data acquisition unit 101, table calculation unit 103, model formula calculation unit 104, ability aging calculation unit). It has a module configuration including 105, a failure rate calculation unit 106, a supply reliability calculation unit 107, and a data output unit 108), and as actual hardware, the CPU (Central Processing Unit) reads a program from the ROM. By executing, each of the above units is loaded on the main memory, and the data acquisition unit 101, the table calculation unit 103, the model formula calculation unit 104, the actual aging calculation unit 105, the failure rate calculation unit 106, and the supply reliability calculation unit 107. , And the data output unit 108, are generated on the main storage device.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

101 データ取得部
102 フィールドデータベース
103 テーブル算出部
104 モデル式作成部
105 実力経年数算出部
106 故障率算出部
107 供給信頼度算出部
108 データ出力部
101 Data acquisition unit 102 Field database 103 Table calculation unit 104 Model formula creation unit 105 Actual aging calculation unit 106 Failure rate calculation unit 107 Supply reliability calculation unit 108 Data output unit

Claims (8)

所定区間内の電力系統の設備の劣化度を示すデータを取得する取得部と、
取得した前記データが示す前記劣化度と、前記設備が前記所定区間内に設置されてからの経年数とに基づいて、前記設備に対する外的要因による前記設備毎の前記劣化度のばらつきに対応した実力経年数を算出する実力経年数算出部と、
前記実力経年数算出部により算出された前記実力経年数に応じた前記設備の故障率を算出する故障率算出部と、
を備える故障率算出装置。
An acquisition unit that acquires data indicating the degree of deterioration of power system equipment within a predetermined section,
Based on the degree of deterioration indicated by the acquired data and the number of years since the equipment was installed in the predetermined section, it was possible to deal with variations in the degree of deterioration for each equipment due to external factors for the equipment. The ability aging calculation unit that calculates the ability aging and the ability aging calculation unit
A failure rate calculation unit that calculates the failure rate of the equipment according to the actual age calculation unit calculated by the ability age calculation unit, and a failure rate calculation unit.
A failure rate calculation device including.
前記所定区間内の前記設備の劣化度と、当該劣化度に対応する前記実力経年数とを対応付けるテーブルを算出するテーブル算出部をさらに備え、
前記実力経年数算出部は、前記テーブルにおいて、取得した前記データが示す前記劣化度と対応付けられた前記実力経年数を、前記設備の前記実力経年数として算出する請求項1に記載の故障率算出装置。
Further provided with a table calculation unit for calculating a table for associating the degree of deterioration of the equipment within the predetermined section with the number of years of ability corresponding to the degree of deterioration.
The ability age of calculation unit, in the table, the number of ability aging associated with the previous cracking degree indicated by the acquired the data, according to claim 1 which is calculated as the ability age of the equipment Failure rate calculation device.
前記故障率に基づいて、前記所定区間の電力系統の供給信頼度を算出する供給信頼度算出部をさらに備えた請求項1または2に記載の故障率算出装置。 The failure rate calculation device according to claim 1 or 2, further comprising a supply reliability calculation unit that calculates the supply reliability of the power system in the predetermined section based on the failure rate. 前記取得部は、前記設備の複数種類の劣化度を示す前記データを取得し、
前記実力経年数算出部は、前記データが示す複数種類の劣化度それぞれについて、前記実力経年数を算出し、算出した複数の前記実力経年数のうち、最も長い前記実力経年数を、前記設備の前記実力経年数とする請求項1から3のいずれか一に記載の故障率算出装置。
The acquisition unit acquires the data indicating the degree of deterioration of a plurality of types of the equipment, and obtains the data.
The ability aging calculation unit calculates the ability aging for each of the plurality of types of deterioration degrees shown in the data, and among the calculated plurality of ability aging, the longest ability aging is calculated by the equipment. The failure rate calculation device according to any one of claims 1 to 3, which is the actual number of years.
前記実力経年数は、前記設備の劣化度に相当する前記設備の平均的な経年数である請求項1から4のいずれか一に記載の故障率算出装置。 The failure rate calculation device according to any one of claims 1 to 4, wherein the actual age is the average age of the equipment corresponding to the degree of deterioration of the equipment. 前記故障率算出部は、予め設定された単位時間毎の前記故障率を算出する請求項1から5のいずれか一に記載の故障率算出装置。 The failure rate calculation device according to any one of claims 1 to 5, wherein the failure rate calculation unit calculates the failure rate for each preset unit time. 前記供給信頼度算出部は、前記故障率に基づいて、単位時間当たりの前記供給信頼度を算出する請求項に記載の故障率算出装置。 The failure rate calculation device according to claim 3 , wherein the supply reliability calculation unit calculates the supply reliability per unit time based on the failure rate. 所定区間内の電力系統の設備の劣化度を示すデータを取得し、
取得した前記データが示す前記劣化度と、前記設備が前記所定区間内に設置されてからの経年数とに基づいて、前記設備に対する外的要因による前記設備毎の前記劣化度のばらつきに対応した実力経年数を算出し、
算出された前記実力経年数に応じた前記設備の故障率を算出する、
ことを含む故障率算出方法。
Acquire data showing the degree of deterioration of the equipment of the power system within the specified section,
Based on the degree of deterioration indicated by the acquired data and the number of years since the equipment was installed in the predetermined section, it was possible to deal with variations in the degree of deterioration for each equipment due to external factors for the equipment. Calculate the number of years of ability,
Calculate the failure rate of the equipment according to the calculated number of years of ability.
Failure rate calculation method including that.
JP2017079489A 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method Active JP6906349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017079489A JP6906349B2 (en) 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017079489A JP6906349B2 (en) 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method

Publications (2)

Publication Number Publication Date
JP2018182903A JP2018182903A (en) 2018-11-15
JP6906349B2 true JP6906349B2 (en) 2021-07-21

Family

ID=64276370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079489A Active JP6906349B2 (en) 2017-04-13 2017-04-13 Failure rate calculation device and failure rate calculation method

Country Status (1)

Country Link
JP (1) JP6906349B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110956447A (en) * 2019-11-27 2020-04-03 云南电网有限责任公司电力科学研究院 Method and system for determining suspected familial defect

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020201B2 (en) * 2003-02-05 2007-12-12 東京電力株式会社 Power system supply reliability evaluation method and apparatus
JP2008236867A (en) * 2007-03-19 2008-10-02 Kansai Electric Power Co Inc:The Voltage adjuster with life span management function
JP4990877B2 (en) * 2008-12-26 2012-08-01 中国電力株式会社 Equipment risk assessment system and risk assessment method

Also Published As

Publication number Publication date
JP2018182903A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Zhou et al. Data requisites for transformer statistical lifetime modelling—Part II: Combination of random and aging-related failures
US20150100284A1 (en) Metrics and Semiparametric Model Estimating Failure Rate and Mean time Between Failures
JP6906349B2 (en) Failure rate calculation device and failure rate calculation method
JP2018085834A (en) System stabilizer
WO2019151496A1 (en) Lighting damage prediction device, method, and program
WO2020008490A1 (en) Electric power equipment planning assistance system
CN111178698B (en) Equipment capability evaluation method and device
Sagre et al. Voltage sag assessment using an extended fault positions method and Monte Carlo simulation
JP7293156B2 (en) Information processing device, information processing method and program
JP6627258B2 (en) System model generation support device, system model generation support method, and program
JP5513348B2 (en) Lightning strike prediction apparatus, method and program
JP2015021916A (en) Insulation deterioration diagnostic device for insulating material and diagnostic method thereof
JP7249875B2 (en) Deterioration estimation device, deterioration estimation system, deterioration estimation method, and deterioration estimation program
CN109508387B (en) Atlas renaming method and device, computer equipment and storage medium
Sarada et al. On a random lead time and threshold shock model using phase‐type geometric processes
JP6668270B2 (en) Apparatus and method for extracting communication quality features
JP6462607B2 (en) Data complementing apparatus and data complementing method
JP7173292B2 (en) Accident point location device, accident point location system, accident point location method and program
JP6971936B2 (en) Maintenance support equipment, methods and programs for electric power equipment
JP5459857B2 (en) Life diagnosis method of power switchgear, diagnosis system and diagnosis program thereof
KR102211438B1 (en) Apparatus and method for deciding similarity of time series signals using cosine similarity
Vancells et al. Analysis of importance of components in power systems using time sequential simulation
JP2019101712A (en) Abnormality estimation device, abnormality estimation method and program
ILGEVICIUS et al. Integrated transformer fleet management (ITFM) system
JP7382909B2 (en) Equipment management device, its control method and program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150