JP2018172347A - pellet - Google Patents

pellet Download PDF

Info

Publication number
JP2018172347A
JP2018172347A JP2017072384A JP2017072384A JP2018172347A JP 2018172347 A JP2018172347 A JP 2018172347A JP 2017072384 A JP2017072384 A JP 2017072384A JP 2017072384 A JP2017072384 A JP 2017072384A JP 2018172347 A JP2018172347 A JP 2018172347A
Authority
JP
Japan
Prior art keywords
resin
pellet
antibacterial
formula
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017072384A
Other languages
Japanese (ja)
Other versions
JP6864522B2 (en
Inventor
利豪 小松
Toshihide Komatsu
利豪 小松
良太 本岡
Ryota Motooka
良太 本岡
美緒 土谷
Mio Tsuchiya
美緒 土谷
彰宏 丹藤
Akihiro Tando
彰宏 丹藤
上田 俊文
Toshibumi Ueda
俊文 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Fine Chemicals Industry Ltd
Daiwabo Holdings Co Ltd
Daiwabo Neu Co Ltd
Trust Inc
Original Assignee
Ueno Fine Chemicals Industry Ltd
Daiwabo Holdings Co Ltd
Daiwabo Neu Co Ltd
Trust Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Fine Chemicals Industry Ltd, Daiwabo Holdings Co Ltd, Daiwabo Neu Co Ltd, Trust Inc filed Critical Ueno Fine Chemicals Industry Ltd
Priority to JP2017072384A priority Critical patent/JP6864522B2/en
Publication of JP2018172347A publication Critical patent/JP2018172347A/en
Application granted granted Critical
Publication of JP6864522B2 publication Critical patent/JP6864522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pellet that has excellent functionalities such as safety and antibacterial properties, and includes a functional agent uniformly dispersed therein.SOLUTION: A pellet comprises a thermoplastic resin and a compound represented by formula (1), where the compound represented by formula (1) is dispersed in the thermoplastic resin with a particle size of 5 μm or less (Ris a hydrogen atom or an alkali metal, Ris a C1 to 10 alkyl group or an aryl group).SELECTED DRAWING: None

Description

本発明は、パラベン類を含有するペレットに関する。   The present invention relates to pellets containing parabens.

近年、機能性を備えた樹脂からなる加工製品が増加しており、特に、抗菌機能を備えた樹脂からなる抗菌加工製品が一般家庭においても広く使用されている。樹脂に抗菌機能を付加させる手段としては、樹脂表面に抗菌剤含有の塗料を塗付する方法や、樹脂中に抗菌剤を混在させる方法等が知られている。   In recent years, processed products made of a resin having functionality have increased, and in particular, antibacterial processed products made of a resin having an antibacterial function are widely used in general households. As means for adding an antibacterial function to the resin, a method of applying a paint containing an antibacterial agent to the resin surface, a method of mixing an antibacterial agent in the resin, and the like are known.

このような用途に用いられる抗菌剤としては、抗菌機能が高く安全性の高い銀系抗菌剤や亜鉛系抗菌剤等の無機系抗菌剤が使用されている(特許文献1、特許文献2)。   As antibacterial agents used for such applications, inorganic antibacterial agents such as silver antibacterial agents and zinc antibacterial agents having a high antibacterial function and high safety are used (Patent Documents 1 and 2).

しかし、無機系抗菌剤を樹脂に混在させる場合、抗菌剤は無機物固体であるため、熱可塑性の有機物の樹脂中では分散性が劣る。そこで、従来の樹脂中への混練手段としては、製品素材の樹脂と同一の樹脂に、一旦抗菌剤を高濃度で混在させ、粒状に形成した抗菌マスターバッチを形成し、製品成形時の樹脂素材中に前記の抗菌マスターバッチを所定量混合する方法が提案されている。しかしながら、抗菌マスターバッチを用いた場合においても、無機系抗菌剤の分散性が必ずしも十分であるといえず、また、光による無機系抗菌剤の変色や白濁、あるいは樹脂自体の物性の低下を招く等の問題があった。   However, when an inorganic antibacterial agent is mixed in the resin, the antibacterial agent is an inorganic solid, and therefore dispersibility is poor in a thermoplastic organic resin. Therefore, as a conventional kneading method into the resin, the antibacterial masterbatch formed into a granular form once mixed with the antibacterial agent at a high concentration in the same resin as the resin of the product material, the resin material at the time of product molding A method of mixing a predetermined amount of the antibacterial masterbatch therein has been proposed. However, even when an antibacterial masterbatch is used, it cannot be said that the dispersibility of the inorganic antibacterial agent is sufficient, and the inorganic antibacterial agent is discolored or clouded by light, or the physical properties of the resin itself are reduced. There was a problem such as.

一方、有機系抗菌剤は、無機系抗菌剤と比較して種々の樹脂と相溶性が高いものが多く、樹脂との混練や均一な分散が容易であるといった利点があり、例えば、天然由来の抗菌剤を樹脂に含有させる方法が提案されている(特許文献3)。しかしながら、有機系抗菌剤は一般的に揮発性が高く、樹脂との溶融混練が困難であったり、樹脂と混在させることで抗菌性が著しく低下してしまうといった問題があった。また、人体への安全性が十分に確認されていないものも多く、アレルギー等の問題を引き起こす原因にも成り得ていた。そのため、有機系抗菌剤を樹脂中に使用した製品は無機系抗菌剤を樹脂中に使用した製品と比較して少なかった。   On the other hand, many organic antibacterial agents have higher compatibility with various resins than inorganic antibacterial agents, and have the advantage of being easy to knead and uniformly disperse with resins. A method of incorporating an antibacterial agent into a resin has been proposed (Patent Document 3). However, organic antibacterial agents generally have high volatility, and it has been difficult to melt and knead them with a resin, or when mixed with a resin, the antibacterial properties are significantly reduced. In addition, there are many cases where safety to the human body has not been sufficiently confirmed, and it could be a cause of problems such as allergies. Therefore, there were few products using organic antibacterial agents in the resin compared to products using inorganic antibacterial agents in the resin.

特開2005−047884JP 2005-047884 A 特開2015−105252JP2015-105252A 特開2013−237653JP2013-237653A

本発明の目的は、安全性および抗菌性などの機能性に優れ、機能剤が均一に分散されたペレットを提供することにある。   An object of the present invention is to provide a pellet having excellent functionality such as safety and antibacterial properties and in which a functional agent is uniformly dispersed.

本発明者らは、機能性を有するペレットについて鋭意検討した結果、粒子径5μm以下のパラベン(パラヒドロキシ安息香酸エステル)類の粒子を熱可塑性樹脂に分散させることにより、安全性および抗菌性などの機能性に優れ、機能剤が均一に分散されたペレットが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies on the functional pellets, the present inventors have dispersed particles of parabens (parahydroxybenzoic acid esters) having a particle size of 5 μm or less in a thermoplastic resin, thereby improving safety and antibacterial properties. It has been found that pellets with excellent functionality and a functional agent uniformly dispersed can be obtained, and the present invention has been completed.

すなわち本発明は、熱可塑性樹脂および式(1)で表される化合物を含有し、機能剤としての式(1)で表される化合物が熱可塑性樹脂中に粒子径5μm以下の粒子として分散したペレットを提供する。
(Rは水素原子またはアルカリ金属、Rは炭素原子数1〜10のアルキル基またはアリール基を示す。)
That is, the present invention contains a thermoplastic resin and a compound represented by the formula (1), and the compound represented by the formula (1) as a functional agent is dispersed as particles having a particle diameter of 5 μm or less in the thermoplastic resin. Provide pellets.
(R 1 represents a hydrogen atom or an alkali metal, and R 2 represents an alkyl group or an aryl group having 1 to 10 carbon atoms.)

本発明のペレット(以下、抗菌ペレットと呼ぶ場合もある)は安全性および抗菌性などの機能性に優れるため、人体と接触する製品にも使用することができる。また、本発明のペレットは機能剤が均一に分散されているため、本発明のペレットからなる成形品、中空成形体、フィルム、シートおよび繊維製品等は、製品の部位による機能性の偏りが少ない。   Since the pellets of the present invention (hereinafter sometimes referred to as antibacterial pellets) are excellent in safety and antibacterial functionality, they can also be used for products that come into contact with the human body. Further, since the functional agent is uniformly dispersed in the pellet of the present invention, the molded product, the hollow molded body, the film, the sheet, the fiber product, and the like made of the pellet of the present invention are less functionally uneven depending on the product part. .

実施例1で得た樹脂成形体の表面の走査電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of a resin molded body obtained in Example 1. FIG. 実施例5で得た樹脂成形体の表面の走査電子顕微鏡写真である。6 is a scanning electron micrograph of the surface of a resin molded body obtained in Example 5. FIG. 比較例3で得た樹脂成形体の表面の走査電子顕微鏡写真である。4 is a scanning electron micrograph of the surface of a resin molded body obtained in Comparative Example 3.

本発明に使用する熱可塑性樹脂としては、ポリプロピレン、ポリエチレン、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)、アクリロニトリル−スチレン共重合樹脂(AS樹脂)、ポリエステルおよび熱可塑性エラストマーからなる群から選択される1種以上の樹脂またはその共重合樹脂が挙げられ、中でも式(1)で表される化合物との相溶性に優れる点で、ポリプロピレンまたはポリエチレンが好ましい。   Examples of the thermoplastic resin used in the present invention include polypropylene, polyethylene, polyoxymethylene, polyamide, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), and acrylonitrile-styrene copolymer resin (AS resin). , One or more resins selected from the group consisting of polyester and thermoplastic elastomer or copolymer resins thereof are mentioned. Among them, polypropylene or polyethylene is used because of excellent compatibility with the compound represented by the formula (1). preferable.

式(1)で表される化合物において、Rは、好ましくは水素原子、ナトリウムまたはカリウムであり、より好ましくは水素原子である。 In the compound represented by the formula (1), R 1 is preferably a hydrogen atom, sodium or potassium, more preferably a hydrogen atom.

式(1)で表される化合物において、Rは、好ましくは炭素原子数1〜6のアルキル基またはアリール基であり、より好ましくはメチル基、エチル基、プロピル基、ブチル基、ヘキシル基またはベンジル基であり、さらに好ましくはブチル基またはヘキシル基である。 In the compound represented by the formula (1), R 2 is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group, more preferably a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or A benzyl group, more preferably a butyl group or a hexyl group.

本発明に使用する式(1)で表される化合物の具体例としては、4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸プロピル、4−ヒドロキシ安息香酸ブチル、4−ヒドロキシ安息香酸ヘキシルおよび4−ヒドロキシ安息香酸ベンジルからなる群から選択される1種以上が挙げられ、抗菌性が高く、難昇華性であることから4−ヒドロキシ安息香酸ブチルおよび4−ヒドロキシ安息香酸ヘキシルが好ましい。   Specific examples of the compound represented by the formula (1) used in the present invention include methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, 4- 1 or more types selected from the group consisting of hexyl hydroxybenzoate and benzyl 4-hydroxybenzoate are mentioned, butyl 4-hydroxybenzoate and hexyl 4-hydroxybenzoate are highly antibacterial and non-sublimable. Is preferred.

式(1)で表される化合物を得る方法は特に限定されないが、市販されているものでもよく、あるいは、触媒の存在下、4−ヒドロキシ安息香酸と炭素原子数1〜10の脂肪族アルコールまたはアリールアルコールとの反応によって得られたものを用いてもよい。   The method for obtaining the compound represented by the formula (1) is not particularly limited, but may be a commercially available one, or 4-hydroxybenzoic acid and an aliphatic alcohol having 1 to 10 carbon atoms in the presence of a catalyst. You may use what was obtained by reaction with aryl alcohol.

本発明のペレットは、熱可塑性樹脂100質量部に対して式(1)で表される化合物を0.5〜30質量部含有するのが好ましく、1〜20質量部含有するのがより好ましく、3〜15質量部含有するのがさらに好ましく、5〜15質量部含有するのが特に好ましい。また、熱可塑性樹脂100質量部に対して式(1)で表される化合物の含有量が0.5質量部未満であると、抗菌性などの機能性が発揮されず、およびペレットのマスターバッチとしての使用が困難になる傾向があり、30質量部を超えると、樹脂としての物性に問題が生じ、および式(1)で表される化合物がペレット中に沈殿又は凝集するおそれがある。   The pellet of the present invention preferably contains 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass of the compound represented by the formula (1) with respect to 100 parts by mass of the thermoplastic resin. It is more preferable to contain 3-15 mass parts, and it is especially preferable to contain 5-15 mass parts. In addition, when the content of the compound represented by the formula (1) is less than 0.5 parts by mass with respect to 100 parts by mass of the thermoplastic resin, functions such as antibacterial properties are not exhibited, and a master batch of pellets When it exceeds 30 parts by mass, there is a problem in physical properties as a resin, and the compound represented by the formula (1) may be precipitated or aggregated in the pellet.

本発明のペレットは抗菌機能の他、抗カビ、防藻およびダニ等に対する防虫機能を有する。   The pellet of the present invention has an antibacterial function, an antifungal function, an algae control, an insect control function against mites and the like.

本発明のペレットは、熱可塑性樹脂および式(1)で表される化合物以外に、添加剤を含有していてもよく、添加剤としては、着色剤、難燃剤、熱安定剤、可塑剤、光安定剤(紫外線吸収剤等)、帯電防止剤、分散剤、離型剤等の各種添加剤、繊維状強化剤等の強化剤、および粉末増量剤等の充填剤からなる群から選択される一種以上が挙げられる。ただし、当該化合物の担体となるような無機物やペレット化の際に溶融しない有機物は、化合物の微粒子化による均一分散性の点で担持させないほうがより効果的である。   The pellet of the present invention may contain an additive in addition to the thermoplastic resin and the compound represented by the formula (1). Examples of the additive include a colorant, a flame retardant, a heat stabilizer, a plasticizer, Selected from the group consisting of light stabilizers (such as ultraviolet absorbers), various additives such as antistatic agents, dispersants, mold release agents, reinforcing agents such as fibrous reinforcing agents, and fillers such as powder extenders. One or more. However, it is more effective not to support an inorganic substance that becomes a carrier of the compound or an organic substance that does not melt during pelletization in terms of uniform dispersibility by compounding the compound.

本発明のペレットの形状としては、特に限定されるものではなく、例えば、角柱状、球状、円柱状等とすることができる。ペレットの大きさとしては、角柱状の場合は最大辺の長さが1〜20mmであることが好ましく、球状の場合は粒子径が1〜20mmであることが好ましく、円柱状の場合は直径が1.5〜5mm、高さが1.5〜5mmであることが好ましい。ペレットの大きさが上記範囲内にあることで、取扱性が向上し、ペレットの包装作業等が容易になる。また、上記ペレットは粒子径が0.1〜1mmである微粒子からなるパウダーとして用いることもできる。パウダーは、ペレットを公知の微粉砕機を用いて得ることができる。   The shape of the pellet of the present invention is not particularly limited, and may be, for example, a prismatic shape, a spherical shape, a cylindrical shape, or the like. As for the size of the pellet, the length of the maximum side is preferably 1 to 20 mm in the case of a prismatic shape, the particle diameter is preferably 1 to 20 mm in the case of a spherical shape, and the diameter in the case of a columnar shape. It is preferable that the height is 1.5 to 5 mm and the height is 1.5 to 5 mm. When the size of the pellet is within the above range, the handleability is improved, and the pellet packaging operation and the like are facilitated. Moreover, the said pellet can also be used as powder which consists of microparticles | fine-particles whose particle diameter is 0.1-1 mm. The powder can be obtained by using a known pulverizer.

本発明のペレットの製造方法としては、特に限定されないが、例えば、式(1)で表される化合物と熱可塑性樹脂とを含有させた樹脂組成物(以下、樹脂組成物1ともいう)を押出成形によりシート状に成形し、この得られたシート状成形物をカッター等により適度な大きさに切断してペレットに加工する方法等を用いることができる。   Although it does not specifically limit as a manufacturing method of the pellet of this invention, For example, the resin composition (henceforth the resin composition 1) containing the compound represented by Formula (1) and a thermoplastic resin is extruded. A method of forming into a sheet by molding, cutting the obtained sheet-like product into an appropriate size with a cutter or the like, and processing it into a pellet can be used.

本発明のペレットを構成する樹脂組成物1は、熱可塑性樹脂および式(1)で表される化合物を混合することによって製造することができる。混合は、熱可塑性樹脂と式(1)で表される化合物を溶融混合させることによって行ってもよく、式(1)で表される化合物を溶媒に溶解させた状態で、加熱溶融させた樹脂と混合し、溶融樹脂から溶媒を気体の状態で除去することによって行ってもよい。   The resin composition 1 constituting the pellet of the present invention can be produced by mixing a thermoplastic resin and a compound represented by the formula (1). The mixing may be performed by melt-mixing the thermoplastic resin and the compound represented by formula (1), and the resin melted by heating in a state where the compound represented by formula (1) is dissolved in a solvent. And the solvent may be removed from the molten resin in a gaseous state.

熱可塑性樹脂と式(1)で表される化合物を溶融混合する場合、例えばタンブラーブレンダー、ヘンシェルミキサー又はスーパーミキサーのような混合機で予め均一に混合した後、単軸押出機や多軸押出機で溶融混練し、押出されたストランドをカッター等で切断して造粒する方法や、ニーダーやバンバリーミキサー等で溶融混練した後に押出機を用いて造粒する方法等が挙げられる。   When the thermoplastic resin and the compound represented by the formula (1) are melt-mixed, for example, after being uniformly mixed in a mixer such as a tumbler blender, a Henschel mixer or a super mixer, a single-screw extruder or a multi-screw extruder is used. And a method of granulating the extruded strand by cutting with a cutter or the like, and a method of melting and kneading with a kneader or a Banbury mixer and then granulating with an extruder.

加熱条件は、用いる熱可塑性樹脂や式(1)で表される化合物、添加剤の種類や配合量、或いは用いる混合機の条件等によっても相違するので、一概には規定できないが、用いる熱可塑性樹脂の結晶融解温度以上、熱可塑性樹脂および当該化合物の劣化温度未満の温度で1〜600秒加熱されることが望ましい。   The heating conditions differ depending on the thermoplastic resin to be used, the compound represented by the formula (1), the type and amount of additives, the conditions of the mixer to be used, and the like. It is desirable to heat for 1 to 600 seconds at a temperature equal to or higher than the crystal melting temperature of the resin and lower than the deterioration temperature of the thermoplastic resin and the compound.

式(1)で表される化合物を溶媒に溶解させた状態で、加熱溶融させた樹脂と混合する場合、溶媒としては、式(1)で表される化合物を溶解させるものであれば特に限定されないが、有機溶剤、例えばメタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、トルエン、キシレン、メシチレン、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジフェニルエーテル、ジメチルスルホキシド、N,N―ジメチルホルムアミド、N−メチルピロリドン、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等が挙げられる。   In the case where the compound represented by the formula (1) is dissolved in a solvent and mixed with the heat-melted resin, the solvent is particularly limited as long as it dissolves the compound represented by the formula (1). Organic solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, propylene glycol, toluene, xylene, mesitylene, diethyl ether, tetrahydrofuran, dioxane, diphenyl ether, dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone , Dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride and the like.

式(1)で表される化合物を溶媒に溶解させる温度としては特に限定されないが、例えば10〜80℃であってよい。また、式(1)で表される化合物は、溶媒100質量部に対し、例えば10〜200質量部の範囲の量で溶解させることができる。   Although it does not specifically limit as temperature which dissolves the compound represented by Formula (1) in a solvent, For example, you may be 10-80 degreeC. Moreover, the compound represented by Formula (1) can be dissolved in the quantity of the range of 10-200 mass parts with respect to 100 mass parts of solvents, for example.

混合された式(1)で表される化合物は、熱可塑性樹脂中に粒子径が5μm以下の粒子として分散した状態、すなわち、粒子径が5μmを超える粒子がない状態である。熱可塑性樹脂中の式(1)で表される化合物の粒子径が5μmを超えると、十分な抗菌性などの機能性が得られ難くなる傾向がある。熱可塑性樹脂中の式(1)で表される化合物は、熱可塑性樹脂中において好ましくは粒子径が2.5μm以下の粒子として分散した状態、より好ましくは粒子径が1μm以下の粒子として分散した状態、さらに好ましくは粒子径が0.1μm以下の粒子として分散した状態である。粒子の状態は、走査電子顕微鏡(SEM)で観察して確認することができる。粒子径の測定は、走査電子顕微鏡像において、一つの粒子について最大寸法となる2点間距離を測定する画像解析法により行った。ペレット中の式(1)で表される化合物の粒子径は、成形品等の製造過程を経ても変化し難い傾向がある。したがって、ペレット中における式(1)で表される化合物の粒子径と、ペレットを用いて製造した成形品等における式(1)で表される化合物の粒子径とは、ほぼ同一となる。   The mixed compound represented by the formula (1) is in a state of being dispersed as particles having a particle size of 5 μm or less in the thermoplastic resin, that is, in a state where there are no particles having a particle size exceeding 5 μm. When the particle size of the compound represented by the formula (1) in the thermoplastic resin exceeds 5 μm, it tends to be difficult to obtain sufficient functionality such as antibacterial properties. The compound represented by the formula (1) in the thermoplastic resin is preferably dispersed as particles having a particle size of 2.5 μm or less in the thermoplastic resin, more preferably as particles having a particle size of 1 μm or less. More preferably, the particle is dispersed as particles having a particle diameter of 0.1 μm or less. The state of the particles can be confirmed by observing with a scanning electron microscope (SEM). The particle diameter was measured by an image analysis method for measuring the distance between two points which is the maximum dimension for one particle in a scanning electron microscope image. The particle size of the compound represented by the formula (1) in the pellet tends to hardly change even after a manufacturing process of a molded product or the like. Therefore, the particle diameter of the compound represented by the formula (1) in the pellet and the particle diameter of the compound represented by the formula (1) in a molded article or the like produced using the pellet are substantially the same.

本発明のペレットは式(1)で表される化合物が均一に分散されているため、当該化合物の有する抗菌性などの機能を均一に具備するので、成形品、中空成形体、フィルム、シートおよび繊維製品等の材料として好適に用いられる。尚、本発明における抗菌活性値はJIS Z 2801 : 2010に準拠して測定したものである。   Since the compound represented by the formula (1) is uniformly dispersed in the pellets of the present invention, the pellets of the present invention are uniformly provided with functions such as antibacterial properties, so that the molded product, hollow molded body, film, sheet and It is suitably used as a material for textile products. In addition, the antibacterial activity value in this invention is measured based on JISZ2801: 2010.

本発明のペレットは、ベース樹脂と混合することなくそのまま使用することにより、またはベース樹脂と混合してマスターバッチとして使用することにより、成形品、中空成形体、フィルム、シートおよび繊維製品等へ成形することができる。本発明のペレットはマスターバッチとして使用することが好ましい。本発明において、マスターバッチとは、式(1)で表される化合物を熱可塑性樹脂100質量部に対して1質量部以上の高濃度に含有したペレットのことをいい、式(1)で表される化合物を含有しないベース樹脂に混合され、ベース樹脂と共に成形される。マスターバッチを用いると、式(1)で表される化合物を直接ベース樹脂に添加して成形することと比較して、材料の取り扱い性が容易で秤量精度も向上する。また、マスターバッチを用いると、汎用の成形機を用いて、式(1)で表される化合物の微粒子を含有する成形体を製造できるという利点も有する。   The pellets of the present invention can be molded into molded products, hollow molded products, films, sheets, textile products, etc. by using them as they are without mixing with the base resin, or by mixing them with the base resin and using them as master batches. can do. The pellet of the present invention is preferably used as a master batch. In the present invention, the master batch refers to a pellet containing the compound represented by the formula (1) at a high concentration of 1 part by mass or more with respect to 100 parts by mass of the thermoplastic resin, and is represented by the formula (1). And mixed with a base resin that does not contain a compound to be molded together with the base resin. When the master batch is used, the handling property of the material is easy and the weighing accuracy is improved as compared with molding by directly adding the compound represented by the formula (1) to the base resin. Moreover, when a masterbatch is used, there also exists an advantage that the molded object containing the microparticles | fine-particles of the compound represented by Formula (1) can be manufactured using a general purpose molding machine.

ベース樹脂の例としては、ペレット(すなわちマスターバッチ)に用いる熱可塑性樹脂として上述したものが挙げられる。ベース樹脂としては、マスターバッチに含有される熱可塑性樹脂と同一のものであってもよく、異なったものでもよく、とりわけマスターバッチに含有される熱可塑性樹脂と相溶性の高いものが好ましい。   As an example of base resin, what was mentioned above as a thermoplastic resin used for a pellet (namely, masterbatch) is mentioned. The base resin may be the same as or different from the thermoplastic resin contained in the masterbatch, and is particularly preferably highly compatible with the thermoplastic resin contained in the masterbatch.

マスターバッチのベース樹脂への配合量は、マスターバッチ中の式(1)で表される化合物およびその量によって適宜変更することが可能であり、マスターバッチを樹脂に例えば2倍〜40倍に希釈して混合するのが望ましい。上記範囲よりもマスターバッチ量が少ない場合には、成形体に十分な抗菌性能を付与することができず、一方上記範囲よりもマスターバッチ量が多い場合には、成形性に劣るおそれがある。   The compounding amount of the masterbatch into the base resin can be appropriately changed depending on the compound represented by the formula (1) in the masterbatch and the amount thereof, and the masterbatch is diluted to a resin, for example, 2 to 40 times. It is desirable to mix. When the amount of the master batch is smaller than the above range, sufficient antibacterial performance cannot be imparted to the molded body, while when the amount of the master batch is larger than the above range, the moldability may be inferior.

マスターバッチをベース樹脂に配合してなる樹脂組成物(以下、樹脂組成物2ともいう)またはペレットを、二本ロール法、射出成形、押出成形、圧縮成形等の従来公知の溶融成形に付することにより、最終成形品の用途に応じた形状、例えば成形品、中空成形体、フィルム、シートおよび繊維製品等の抗菌性成形体を得ることができる。すなわち、本発明の成形品、中空成形体、フィルム、シートおよび繊維製品は、ペレットから直接構成されたものであってもよく、マスターバッチとしてのペレットとベース樹脂とから構成されたものであってもよい。   A resin composition (hereinafter also referred to as “resin composition 2”) or a pellet obtained by blending a master batch with a base resin is subjected to conventionally known melt molding such as a two-roll method, injection molding, extrusion molding, and compression molding. Thereby, the shape according to the use of the final molded product, for example, an antibacterial molded product such as a molded product, a hollow molded product, a film, a sheet, and a textile product can be obtained. That is, the molded article, hollow molded article, film, sheet and fiber product of the present invention may be composed directly from pellets, and are composed of pellets as a master batch and a base resin. Also good.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。   Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this.

実施例および比較例に用いた抗菌剤A〜D、ならびに各測定方法を以下に示す。
≪抗菌剤A≫
4−ヒドロキシ安息香酸ブチルエステル(4−ヒドロキシ安息香酸とブチルアルコールとを触媒の存在下で反応させることにより得た)
≪抗菌剤B≫
4−ヒドロキシ安息香酸ヘキシルエステル(4−ヒドロキシ安息香酸とヘキシルアルコールとを触媒の存在下で反応させることにより得た)
≪抗菌剤C≫
ゼオライト銀(富士ケミカル社製、商品名:バクテライト、品番:MP−102SVC13)
≪抗菌剤D≫
ベヘン酸銀(東京化成工業社製)
Antibacterial agents A to D used in Examples and Comparative Examples, and measurement methods are shown below.
≪Antimicrobial agent A≫
4-hydroxybenzoic acid butyl ester (obtained by reacting 4-hydroxybenzoic acid and butyl alcohol in the presence of a catalyst)
≪Antimicrobial agent B≫
4-Hydroxybenzoic acid hexyl ester (obtained by reacting 4-hydroxybenzoic acid with hexyl alcohol in the presence of a catalyst)
≪Antimicrobial agent C≫
Zeolite silver (manufactured by Fuji Chemical Co., Ltd., trade name: bacterite, product number: MP-102SVC13)
≪Antimicrobial agent D≫
Silver behenate (manufactured by Tokyo Chemical Industry Co., Ltd.)

(測定方法)
(1)抗菌性試験
試験方法:JIS Z 2801 : 2010
試験菌株:大腸菌 Escherichia coli NBRC 3972
試験菌株:黄色ブドウ球菌 Staphylococcus aureus NBRC 12732
(Measuring method)
(1) Antibacterial test method: JIS Z 2801: 2010
Test strain: E. coli Escherichia coli NBRC 3972
Test strain: Staphylococcus aureus Staphylococcus aureus NBRC 12732

実施例および比較例において得られた抗菌剤を含む樹脂成形体表面に、大腸菌および黄色ブドウ球菌をそれぞれ含む菌液を滴下し、その上からポリエチレン製フィルムを密着させ、温度35℃、湿度90%の条件下で24時間培養した。培養後、ポリエチレン製フィルムおよび試験片に付着している菌体をSCDLP培地で洗いだした液(VmL)を1mL取り、希釈(D倍希釈)した液1mLをシャーレに移して、SPC培地約20mLを加え、混合した。培地が固まった後、温度35℃、湿度90%の条件下で40〜48時間培養した後、大腸菌および黄色ブドウ球菌の生菌数をそれぞれカウントした。評価の基準は、ペレットを含まないポリプロピレン製樹脂成形体(以下、無加工樹脂成形体ともいう)を用いた。試験はそれぞれ3回行い、平均値を算出した。   The bacterial solution containing each of Escherichia coli and Staphylococcus aureus was dropped onto the surface of the resin molded body containing the antibacterial agent obtained in Examples and Comparative Examples, and a polyethylene film was adhered thereto, and the temperature was 35 ° C. and the humidity was 90%. The cells were cultured for 24 hours under the above conditions. After culturing, 1 mL of the liquid (VmL) obtained by washing the bacterial cells adhering to the polyethylene film and the test piece with SCDLP medium is taken, and 1 mL of the diluted (D-fold diluted) liquid is transferred to a petri dish, and about 20 mL of SPC medium is obtained. And mixed. After the medium had solidified, the cells were cultured for 40 to 48 hours under conditions of a temperature of 35 ° C. and a humidity of 90%, and then the viable counts of Escherichia coli and Staphylococcus aureus were counted. As a criterion for evaluation, a polypropylene resin molded body containing no pellets (hereinafter also referred to as a non-processed resin molded body) was used. Each test was performed three times, and the average value was calculated.

抗菌試験の評価は以下の方法により算出した。
N=(C×D×V)/ A
N:生菌数(試験片1cmあたり)
C:集落数(採用した2枚のシャーレの集落数平均値)
D:希釈倍数(採用したシャーレに分注した希釈液の希釈倍率)
V:洗い出しに用いたSCDLP培地の液量(mL)
A:被覆フィルムの表面積(cm
ただし、Cが<1の場合はCを1として生菌数を算出する。
たとえば、V=10mL、A=16cm、D=1の場合、N<0.63と表示する。
R=(U−U)−(A−U)=U−A
R :抗菌活性値
:無加工樹脂成形体の接種直後の生菌数の対数値の平均値
:無加工樹脂成形体の24時間後の生菌数の対数値の平均値
:実施例および比較例において得られた抗菌剤を含む樹脂成形体の24時間後の生菌数の対数値の平均値
抗菌活性評価:抗菌活性値Rが3.0以上を◎、2.0以上3.0未満を○、1.5以上2.0未満を△、1.5未満を×とした。
The antibacterial test was calculated by the following method.
N = (C × D × V) / A
N: Number of viable bacteria (per 1 cm 2 test piece)
C: Number of villages (average number of villages of the two petri dishes adopted)
D: Dilution factor (dilution ratio of the diluted solution dispensed to the adopted petri dish)
V: Volume of SCDLP medium used for washing out (mL)
A: Surface area of the coated film (cm 2 )
However, when C is <1, C is set to 1 and the viable cell count is calculated.
For example, when V = 10 mL, A = 16 cm 2 , and D = 1, N <0.63 is displayed.
R = (U t −U 0 ) − (A t −U 0 ) = U t −A t
R: antibacterial activity value U 0: No machining mean value of number of living bacteria logarithmic value immediately after inoculation of the resin molded body U t: mean A t logarithm of the number of viable bacteria after 24 hours of non-processed resin molding : Average value of logarithmic value of the number of viable bacteria after 24 hours of the resin moldings containing antibacterial agents obtained in Examples and Comparative Examples Antibacterial activity evaluation: Antibacterial activity value R of 3.0 or more More than 3.0 and less than 3.0 were evaluated as ◯, 1.5 and less than 2.0 as Δ, and less than 1.5 as ×.

(2)抗菌剤粒子の観察
樹脂成形体の表面を、走査電子顕微鏡(SEM)を用い、倍率を適宜設定して観察した。次の基準で判定を行った。
○:粒子径1μmを超える粒子が観測されなかった。
△:粒子径1μm超え5μm以下の粒子が観測された。
×:粒子径5μmを超える粒子が観測された。
(2) Observation of antibacterial agent particles The surface of the resin molding was observed using a scanning electron microscope (SEM) with the magnification set appropriately. Judgment was made according to the following criteria.
○: Particles having a particle diameter exceeding 1 μm were not observed.
Δ: Particles having a particle diameter of more than 1 μm and not more than 5 μm were observed.
X: Particles having a particle diameter exceeding 5 μm were observed.

(3)着色性の評価
樹脂成形体を分光測色計(形式CM−3600d(KONICA MINOLTA製)、色彩ソフトウェアCM−S100W Spectra Magic NXを用い、測定方法:反射、視野:10°、主光源:C光源、ジメオトリ:d/8、正反射光処理:SCI+SCE、測定径:LAV(25.4mm)、UV条件:100%の条件でb*を測定し、次の基準で判定を行った。
◎:b*が2未満
○:b*が2以上20未満
△:b*が20以上40未満
×:b*が40以上
(3) Evaluation of colorability Using a spectrocolorimeter (model CM-3600d (manufactured by KONICA MINOLTA)) and color software CM-S100W Spectra Magic NX, the resin molding was measured using a measurement method: reflection, field of view: 10 °, main light source: B * was measured under the conditions of C light source, dimetrie: d / 8, regular reflection light treatment: SCI + SCE, measurement diameter: LAV (25.4 mm), UV condition: 100%, and the determination was made according to the following criteria.
◎: b * is less than 2 ○: b * is 2 or more and less than 20 Δ: b * is 20 or more and less than 40 x: b * is 40 or more

[実施例1]
(抗菌ペレットの作製)
抗菌剤A100gを150gに50℃にて溶解した。ポリプロピレン樹脂(株式会社プライムポリマー製、J105G)100質量部に対して、抗菌剤Aが11質量部配合されることとなるように、メタノールに溶解した抗菌剤Aと、200℃の温度で溶融したポリプロピレン樹脂とを二軸押出機(株式会社池貝社製、PCM−30)に供給し、溶融混練し、メタノールを気体の状態で除去することにより得たものをペレット化し、抗菌ペレットを得た。
[Example 1]
(Production of antibacterial pellets)
100 g of antibacterial agent A was dissolved in 150 g at 50 ° C. The antibacterial agent A dissolved in methanol was melted at a temperature of 200 ° C. so that 11 parts by weight of the antibacterial agent A was mixed with 100 parts by weight of the polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G). Polypropylene resin was supplied to a twin screw extruder (Ikegai Co., Ltd., PCM-30), melt kneaded, and methanol was removed in a gaseous state to pelletize to obtain antibacterial pellets.

(樹脂成形体の作製)
得られた抗菌ペレットとポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を表1に記載の比率にて混合し、射出成形機(日精樹脂工業(株)製UH−1000−110)を用いて射出成形し、樹脂成形体を得た。得られた樹脂成形体の表面を走査電子顕微鏡(SEM)を用い10000倍に拡大して観察したところ、粒子は観察されなかった。走査電子顕微鏡写真を図1に示す。また、得られた樹脂成形体について、抗菌性試験および着色性の評価を行った。結果を表1に示す。
(Production of resin molding)
The obtained antibacterial pellets and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) were mixed at the ratios shown in Table 1, and injected using an injection molding machine (Nissei Plastic Industries, Ltd. UH-1000-110). Molded to obtain a resin molded body. When the surface of the obtained resin molded body was observed at a magnification of 10,000 times using a scanning electron microscope (SEM), no particles were observed. A scanning electron micrograph is shown in FIG. In addition, the obtained resin molded body was subjected to an antibacterial test and coloring evaluation. The results are shown in Table 1.

[実施例2〜4]
樹脂成形体の抗菌ペレットとポリプロピレン樹脂との混合比を表1に示すように変更した以外は、実施例1と同様にして抗菌ペレットおよび樹脂成形体を得た。得られた各樹脂成形体について、抗菌性試験、走査電子顕微鏡にて表面の観察および着色性の評価を行った。結果を表1に示す。
[Examples 2 to 4]
An antibacterial pellet and a resin molded body were obtained in the same manner as in Example 1 except that the mixing ratio of the antibacterial pellet of the resin molded body and the polypropylene resin was changed as shown in Table 1. About each obtained resin molding, surface observation and coloring property evaluation were performed with the antibacterial test, the scanning electron microscope. The results are shown in Table 1.

[実施例5〜8]
抗菌剤の種類および樹脂成形体の抗菌ペレットとポリプロピレン樹脂との混合比を表1に示すように変更した以外は、実施例1と同様にして抗菌ペレットおよび樹脂成形体を得た。得られた各樹脂成形体の表面を走査電子顕微鏡(SEM)を用い10000倍に拡大して観察したところ、粒子は観察されなかった。実施例5の走査電子顕微鏡写真を図2に示す。また、得られた各樹脂成形体について、抗菌性試験および着色性の評価を行った。結果を表1に示す。
[実施例9〜10]
[Examples 5 to 8]
An antibacterial pellet and a resin molded body were obtained in the same manner as in Example 1 except that the type of antibacterial agent and the mixing ratio of the antibacterial pellet of the resin molded body and the polypropylene resin were changed as shown in Table 1. When the surface of each obtained resin molding was observed at a magnification of 10,000 times using a scanning electron microscope (SEM), no particles were observed. A scanning electron micrograph of Example 5 is shown in FIG. Moreover, the antibacterial property test and coloring evaluation were performed about each obtained resin molding. The results are shown in Table 1.
[Examples 9 to 10]

(抗菌ペレットの作製)
抗菌剤Aの比率を表1に示すように変更した以外は、実施例1と同様にして抗菌ペレットを得た。
(Production of antibacterial pellets)
Antibacterial pellets were obtained in the same manner as in Example 1 except that the ratio of the antibacterial agent A was changed as shown in Table 1.

(樹脂成形体の作製)
得られた抗菌ペレットの比率を表1に示すように変更した以外は、実施例1と同様にして樹脂成形体を得た。得られた各樹脂成形体の表面を走査電子顕微鏡(SEM)を用い10000倍に拡大して観察したところ、粒子は観察されなかった。また、得られた各樹脂成形体について、抗菌性試験および着色性の評価を行った。結果を表1に示す。
(Production of resin molding)
A resin molded body was obtained in the same manner as in Example 1 except that the ratio of the obtained antibacterial pellets was changed as shown in Table 1. When the surface of each obtained resin molding was observed at a magnification of 10,000 times using a scanning electron microscope (SEM), no particles were observed. Moreover, the antibacterial property test and coloring evaluation were performed about each obtained resin molding. The results are shown in Table 1.

[実施例11]
(抗菌ペレットの作製)
抗菌剤Aの比率を表1に示すように変更した以外は、実施例1と同様にして抗菌ペレットを得た。
[Example 11]
(Production of antibacterial pellets)
Antibacterial pellets were obtained in the same manner as in Example 1 except that the ratio of the antibacterial agent A was changed as shown in Table 1.

(樹脂成形体の作製)
得られた抗菌ペレットを射出成形機(日精樹脂工業(株)製UH−1000−110)を用いて射出成形し、樹脂成形体を得た。得られた各樹脂成形体の表面を走査電子顕微鏡(SEM)を用い10000倍に拡大して観察したところ、粒子は観察されなかった。また、得られた樹脂成形体について、抗菌性試験および着色性の評価を行った。結果を表1に示す。
(Production of resin molding)
The obtained antibacterial pellet was injection-molded using an injection molding machine (UH-1000-110 manufactured by Nissei Plastic Industry Co., Ltd.) to obtain a resin molded body. When the surface of each obtained resin molding was observed at a magnification of 10,000 times using a scanning electron microscope (SEM), no particles were observed. In addition, the obtained resin molded body was subjected to an antibacterial test and coloring evaluation. The results are shown in Table 1.

[比較例1〜2]
表1に示す抗菌剤および割合でポリプロピレン樹脂と各抗菌剤とを二軸押出機(株式会社池貝社製、PCM−30)に供給し、溶融混練して抗菌ペレットを得た。得られた抗菌ペレットを用いて実施例1と同様にして樹脂成形体を得た。得られた各樹脂組成物の表面を走査電子顕微鏡(SEM)を用い3000倍に拡大して観察したところ、粒子径が5μmを超える粒子が観察された。また、得られた各樹脂成形体について、抗菌性試験および着色性の評価を行った。結果を表1に示す。
[Comparative Examples 1-2]
The antibacterial agent and each antibacterial agent shown in Table 1 were supplied to a twin screw extruder (Ikegai Co., Ltd., PCM-30) and melt kneaded to obtain antibacterial pellets. Using the obtained antibacterial pellets, a resin molded body was obtained in the same manner as in Example 1. When the surface of each obtained resin composition was observed by magnifying it 3000 times using a scanning electron microscope (SEM), particles having a particle diameter exceeding 5 μm were observed. Moreover, the antibacterial property test and coloring evaluation were performed about each obtained resin molding. The results are shown in Table 1.

[比較例3]
(樹脂成形体の作製)
抗菌剤(A)とポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を表1に記載の比率にて混合し、射出成形機(日精樹脂工業(株)製UH−1000−110)を用いて射出成形し、樹脂成形体を得た。得られた樹脂成形体の表面を走査電子顕微鏡(SEM)を用い3000倍に拡大して観察したところ、粒子径5μmを超える粒子が観察された。走査電子顕微鏡写真を図3に示す。また、得られた樹脂成形体について、抗菌性試験および着色性の評価を行った。結果を表1に示す。
[Comparative Example 3]
(Production of resin molding)
Antibacterial agent (A) and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) are mixed at the ratio shown in Table 1, and injected using an injection molding machine (Nissei Plastic Industries, Ltd. UH-1000-110). Molded to obtain a resin molded body. When the surface of the obtained resin molding was observed by magnifying it 3000 times using a scanning electron microscope (SEM), particles having a particle diameter exceeding 5 μm were observed. A scanning electron micrograph is shown in FIG. In addition, the obtained resin molded body was subjected to an antibacterial test and coloring evaluation. The results are shown in Table 1.

Claims (8)

熱可塑性樹脂および式(1)で表される化合物を含有し、該化合物が熱可塑性樹脂中に粒子径5μm以下の粒子として分散したペレット。
(Rは水素原子またはアルカリ金属、Rは炭素原子数1〜10のアルキル基またはアリール基を示す。)
A pellet containing a thermoplastic resin and a compound represented by formula (1), wherein the compound is dispersed as particles having a particle diameter of 5 μm or less in the thermoplastic resin.
(R 1 represents a hydrogen atom or an alkali metal, and R 2 represents an alkyl group or an aryl group having 1 to 10 carbon atoms.)
熱可塑性樹脂がポリプロピレン、ポリエチレン、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル−ブタジエン−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリエステルおよび熱可塑性エラストマーからなる群から選択される1種以上である、請求項1に記載のペレット。   The thermoplastic resin is selected from the group consisting of polypropylene, polyethylene, polyoxymethylene, polyamide, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyester, and thermoplastic elastomer. The pellet according to claim 1, which is the above. 熱可塑性樹脂がポリプロピレンまたはポリエチレンである、請求項1または2に記載のペレット。   The pellet according to claim 1 or 2, wherein the thermoplastic resin is polypropylene or polyethylene. 式(1)で表される化合物が4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸プロピル、4−ヒドロキシ安息香酸ブチル、4−ヒドロキシ安息香酸ヘキシルおよび4−ヒドロキシ安息香酸ベンジルからなる群から選択される1種以上である、請求項1〜3のいずれかに記載のペレット。   The compound represented by formula (1) is methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, hexyl 4-hydroxybenzoate and 4-hydroxybenzoic acid. The pellet in any one of Claims 1-3 which is 1 or more types selected from the group which consists of benzyl. 式(1)で表される化合物が4−ヒドロキシ安息香酸ブチルまたは4−ヒドロキシ安息香酸ヘキシルである、請求項1〜4のいずれかに記載のペレット。   The pellet in any one of Claims 1-4 whose compound represented by Formula (1) is 4-hydroxybenzoate butyl or 4-hydroxybenzoate hexyl. 熱可塑性樹脂100質量部に対して式(1)で表される化合物を0.5〜30質量部含有する、請求項1〜5のいずれかに記載のペレット。   The pellet in any one of Claims 1-5 which contains 0.5-30 mass parts of compounds represented by Formula (1) with respect to 100 mass parts of thermoplastic resins. 請求項1〜6のいずれかに記載のペレットから構成される成形品、中空成形体、フィルム、シートまたは繊維製品。   A molded article, a hollow molded article, a film, a sheet, or a textile product comprising the pellet according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載のペレットのマスターバッチとしての使用。   Use of the pellet according to any one of claims 1 to 6 as a master batch.
JP2017072384A 2017-03-31 2017-03-31 pellet Active JP6864522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072384A JP6864522B2 (en) 2017-03-31 2017-03-31 pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072384A JP6864522B2 (en) 2017-03-31 2017-03-31 pellet

Publications (2)

Publication Number Publication Date
JP2018172347A true JP2018172347A (en) 2018-11-08
JP6864522B2 JP6864522B2 (en) 2021-04-28

Family

ID=64108195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072384A Active JP6864522B2 (en) 2017-03-31 2017-03-31 pellet

Country Status (1)

Country Link
JP (1) JP6864522B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045404A (en) * 2018-09-18 2020-03-26 上野製薬株式会社 Masterbatch
JP2021116397A (en) * 2020-01-29 2021-08-10 上野製薬株式会社 Algicidal coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429902A (en) * 1990-05-28 1992-01-31 Shinto Paint Co Ltd Antifungal agent and fungal control using the same
JPH05271016A (en) * 1992-01-30 1993-10-19 Sumitomo Chem Co Ltd Multilayer filmy substance for sustainedly releasing medicine
JPH10265677A (en) * 1997-03-24 1998-10-06 Asahi Denka Kogyo Kk Antibacterial polymeric material composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429902A (en) * 1990-05-28 1992-01-31 Shinto Paint Co Ltd Antifungal agent and fungal control using the same
JPH05271016A (en) * 1992-01-30 1993-10-19 Sumitomo Chem Co Ltd Multilayer filmy substance for sustainedly releasing medicine
JPH10265677A (en) * 1997-03-24 1998-10-06 Asahi Denka Kogyo Kk Antibacterial polymeric material composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045404A (en) * 2018-09-18 2020-03-26 上野製薬株式会社 Masterbatch
JP7202114B2 (en) 2018-09-18 2023-01-11 上野製薬株式会社 Master Badge
JP2021116397A (en) * 2020-01-29 2021-08-10 上野製薬株式会社 Algicidal coating

Also Published As

Publication number Publication date
JP6864522B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
US20200115534A1 (en) Mechanically reinforced, transparent, anti-biofouling thermoplastic resin composition and manufacturing method thereof
US11172676B2 (en) Antibacterial resin composition
JP6864522B2 (en) pellet
JP6944265B2 (en) the film
EP2985319B1 (en) Composite molding material, its use to produce an extrusion molded article, and production method for said composite molding material
TWI224083B (en) Antibacterial glass compositions, antibacterial resin compositions and a method for the preparation thereof
JP2010248125A (en) Antibacterial composition, antibacterial resin composition and molded product
ES2784932T3 (en) Color concentrate comprising coloring particles and a poly (hydroxy fatty acid) ester polyol as a dispersing agent
JPWO2016088767A1 (en) Manufacturing method of additive for granular resin, additive for granular resin, thermoplastic resin composition, and molded product obtained by the manufacturing method
CN111944232A (en) Antibacterial plastic composition and preparation method and application thereof
JP6578487B2 (en) Glass powder granules
CN111087767B (en) Antibacterial and mildewproof polyester composition, foaming bead, preparation method of foaming bead and formed body
WO2017141938A1 (en) Cellulose acetate composition
JP7202114B2 (en) Master Badge
JP2019104678A (en) Scaly glass granule and method for producing the same
US20130093119A1 (en) Processes for producing thermostable polyhydroxyalkanoate and products produced therefrom
JP6893832B2 (en) Antistatic agents for thermoplastic resins and their use
JP2019034994A (en) Hygroscopic antibacterial resin composition and molded body
JP2018172570A (en) Hollow molded body
JP6458412B2 (en) Thermoplastic resin composition containing scaly glass granules and method for producing the same
JP2018172348A (en) Fiber product
KR101824189B1 (en) Manufacturing method of hydrate of zinc carboxylate, hydrate of zinc carboxylate manufactured therefrom and material for antimicrobial plastic comprising the hydrate of zinc carboxylate
JPH0753770A (en) Production of antibacterial thermoplastic resin molding
JP4950583B2 (en) Antibacterial resin composition and production method thereof, antibacterial resin molded article, and antibacterial article
JP2005047884A (en) Antibacterial agent, antibacterial resin and method for preparing antibacterial agent

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210402

R150 Certificate of patent or registration of utility model

Ref document number: 6864522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250